1
|
Borra E, Gerbella M, Rozzi S, Luppino G. Neural substrate for the engagement of the ventral visual stream in motor control in the macaque monkey. Cereb Cortex 2024; 34:bhae354. [PMID: 39227311 DOI: 10.1093/cercor/bhae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
The present study aimed to describe the cortical connectivity of a sector located in the ventral bank of the superior temporal sulcus in the macaque (intermediate area TEa and TEm [TEa/m]), which appears to represent the major source of output of the ventral visual stream outside the temporal lobe. The retrograde tracer wheat germ agglutinin was injected in the intermediate TEa/m in four macaque monkeys. The results showed that 58-78% of labeled cells were located within ventral visual stream areas other than the TE complex. Outside the ventral visual stream, there were connections with the memory-related medial temporal area 36 and the parahippocampal cortex, orbitofrontal areas involved in encoding subjective values of stimuli for action selection, and eye- or hand-movement related parietal (LIP, AIP, and SII), prefrontal (12r, 45A, and 45B) areas, and a hand-related dysgranular insula field. Altogether these data provide a solid substrate for the engagement of the ventral visual stream in large scale cortical networks for skeletomotor or oculomotor control. Accordingly, the role of the ventral visual stream could go beyond pure perceptual processes and could be also finalized to the neural mechanisms underlying the control of voluntary motor behavior.
Collapse
Affiliation(s)
- Elena Borra
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Marzio Gerbella
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Rozzi
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| | - Giuseppe Luppino
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Parma, Italy
| |
Collapse
|
2
|
Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased Functional Connectivity Between the Parietal and Occipital Modules Among Flight Cadets. Aerosp Med Hum Perform 2024; 95:375-380. [PMID: 38915163 DOI: 10.3357/amhp.6370.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION: Modular organization in brain regions often performs specific biological functions and is largely based on anatomically and/or functionally related brain areas. The current study aimed to explore changes in whole-brain modular organization affected by flight training.METHODS: The study included 25 male flight cadets and 24 male controls. The first assessment was performed in 2019, when the subjects were university freshmen. The second assessment was completed in 2022. High spatial resolution structural imaging (T1) and resting-state functional MRI data were collected. Then, 90 cerebral regions were organized into 6 brain modules. The intensity of intra- and intermodular communication was calculated.RESULTS: Mixed-effect regression model analysis identified significantly increased interconnections between the parietal and occipital modules in the cadet group, but significantly decreased interconnections in the control group. This change was largely attributed to flight training.DISCUSSION: Pilots need to control the aircraft (e.g., attitude, heading, etc.) using the stick and pedal in response to the current state of the aircraft displayed by the instrument panel; as such, flying requires a large amount of hand-eye coordination. Day-to-day flight training appeared to intensify the connection between the parietal and occipital modules among cadets.Chen X, Jiang H, Meng Y, Xu Z, Luo C. Increased functional connectivity between the parietal and occipital modules among flight cadets. Aerosp Med Hum Perform. 2024; 95(7):375-380.
Collapse
|
3
|
Héroux ME, Fisher G, Axelson LH, Butler AA, Gandevia SC. How we perceive the width of grasped objects: Insights into the central processes that govern proprioceptive judgements. J Physiol 2024; 602:2899-2916. [PMID: 38734987 DOI: 10.1113/jp286322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Low-level proprioceptive judgements involve a single frame of reference, whereas high-level proprioceptive judgements are made across different frames of reference. The present study systematically compared low-level (grasp → $\rightarrow$ grasp) and high-level (vision → $\rightarrow$ grasp, grasp → $\rightarrow$ vision) proprioceptive tasks, and quantified the consistency of grasp → $\rightarrow$ vision and possible reciprocal nature of related high-level proprioceptive tasks. Experiment 1 (n = 30) compared performance across vision → $\rightarrow$ grasp, a grasp → $\rightarrow$ vision and a grasp → $\rightarrow$ grasp tasks. Experiment 2 (n = 30) compared performance on the grasp → $\rightarrow$ vision task between hands and over time. Participants were accurate (mean absolute error 0.27 cm [0.20 to 0.34]; mean [95% CI]) and precise (R 2 $R^2$ = 0.95 [0.93 to 0.96]) for grasp → $\rightarrow$ grasp judgements, with a strong correlation between outcomes (r = -0.85 [-0.93 to -0.70]). Accuracy and precision decreased in the two high-level tasks (R 2 $R^2$ = 0.86 and 0.89; mean absolute error = 1.34 and 1.41 cm), with most participants overestimating perceived width for the vision → $\rightarrow$ grasp task and underestimating it for grasp → $\rightarrow$ vision task. There was minimal correlation between accuracy and precision for these two tasks. Converging evidence indicated performance was largely reciprocal (inverse) between the vision → $\rightarrow$ grasp and grasp → $\rightarrow$ vision tasks. Performance on the grasp → $\rightarrow$ vision task was consistent between dominant and non-dominant hands, and across repeated sessions a day or week apart. Overall, there are fundamental differences between low- and high-level proprioceptive judgements that reflect fundamental differences in the cortical processes that underpin these perceptions. Moreover, the central transformations that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. KEY POINTS: Low-level proprioceptive judgements involve a single frame of reference (e.g. indicating the width of a grasped object by selecting from a series of objects of different width), whereas high-level proprioceptive judgements are made across different frames of reference (e.g. indicating the width of a grasped object by selecting from a series of visible lines of different length). We highlight fundamental differences in the precision and accuracy of low- and high-level proprioceptive judgements. We provide converging evidence that the neural transformations between frames of reference that govern high-level proprioceptive judgements of grasp are personalised, stable and reciprocal for reciprocal tasks. This stability is likely key to precise judgements and accurate predictions in high-level proprioception.
Collapse
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| | - Georgia Fisher
- Neuroscience Research Australia, Randwick, Australia
- Australian Institute of Health Innovation, Macquarie University, Macquarie Park, Australia
| | | | - Annie A Butler
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia, Randwick, Australia
- University of New South Wales, Sydney, Australia
| |
Collapse
|
4
|
Wegner-Clemens K, Malcolm GL, Shomstein S. Predicting attentional allocation in real-world environments: The need to investigate crossmodal semantic guidance. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1675. [PMID: 38243393 DOI: 10.1002/wcs.1675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024]
Abstract
Real-world environments are multisensory, meaningful, and highly complex. To parse these environments in a highly efficient manner, a subset of this information must be selected both within and across modalities. However, the bulk of attention research has been conducted within sensory modalities, with a particular focus on vision. Visual attention research has made great strides, with over a century of research methodically identifying the underlying mechanisms that allow us to select critical visual information. Spatial attention, attention to features, and object-based attention have all been studied extensively. More recently, research has established semantics (meaning) as a key component to allocating attention in real-world scenes, with the meaning of an item or environment affecting visual attentional selection. However, a full understanding of how semantic information modulates real-world attention requires studying more than vision in isolation. The world provides semantic information across all senses, but with this extra information comes greater complexity. Here, we summarize visual attention (including semantic-based visual attention), crossmodal attention, and argue for the importance of studying crossmodal semantic guidance of attention. This article is categorized under: Psychology > Attention Psychology > Perception and Psychophysics.
Collapse
Affiliation(s)
- Kira Wegner-Clemens
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| | | | - Sarah Shomstein
- Psychological and Brain Sciences, George Washington University, Washington, DC, USA
| |
Collapse
|
5
|
Morfoisse T, Herrera Altamira G, Angelini L, Clément G, Beraneck M, McIntyre J, Tagliabue M. Modality-Independent Effect of Gravity in Shaping the Internal Representation of 3D Space for Visual and Haptic Object Perception. J Neurosci 2024; 44:e2457202023. [PMID: 38267257 PMCID: PMC10977025 DOI: 10.1523/jneurosci.2457-20.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Visual and haptic perceptions of 3D shape are plagued by distortions, which are influenced by nonvisual factors, such as gravitational vestibular signals. Whether gravity acts directly on the visual or haptic systems or at a higher, modality-independent level of information processing remains unknown. To test these hypotheses, we examined visual and haptic 3D shape perception by asking male and female human subjects to perform a "squaring" task in upright and supine postures and in microgravity. Subjects adjusted one edge of a 3D object to match the length of another in each of the three canonical reference planes, and we recorded the matching errors to obtain a characterization of the perceived 3D shape. The results show opposing, body-centered patterns of errors for visual and haptic modalities, whose amplitudes are negatively correlated, suggesting that they arise in distinct, modality-specific representations that are nevertheless linked at some level. On the other hand, weightlessness significantly modulated both visual and haptic perceptual distortions in the same way, indicating a common, modality-independent origin for gravity's effects. Overall, our findings show a link between modality-specific visual and haptic perceptual distortions and demonstrate a role of gravity-related signals on a modality-independent internal representation of the body and peripersonal 3D space used to interpret incoming sensory inputs.
Collapse
Affiliation(s)
- Theo Morfoisse
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Gabriela Herrera Altamira
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Leonardo Angelini
- HumanTech Institute, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
- School of Management Fribourg, University of Applied Sciences Western Switzerland//HES-SO, Fribourg 1700, Switzerland
| | - Gilles Clément
- Université de Caen Normandie, Inserm, COMETE U1075, CYCERON, CHU de Caen, Normandie Univ, Caen 14000, France
| | - Mathieu Beraneck
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Joseph McIntyre
- Tecnalia, Basque Research and Technology Alliance, San Sebastian 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009, Spain
| | - Michele Tagliabue
- Université Paris Cité, CNRS UMR 8002, INCC - Integrative Neuroscience and Cognition Center, Paris F-75006, France
| |
Collapse
|
6
|
Hwang SH, Park D, Paeng S, Lee SW, Lee SH, Kim HF. Pneumatic tactile stimulus delivery system for studying brain responses evoked by active finger touch with fMRI. J Neurosci Methods 2023; 397:109938. [PMID: 37544383 DOI: 10.1016/j.jneumeth.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Primates use their hands to actively touch objects and collect information. To study tactile information processing, it is important for participants to experience tactile stimuli through active touch while monitoring brain activities. NEW METHOD Here, we developed a pneumatic tactile stimulus delivery system (pTDS) that delivers various tactile stimuli on a programmed schedule and allows voluntary finger touches during MRI scanning. The pTDS uses a pneumatic actuator to move tactile stimuli and place them in a finger hole. A photosensor detects the time when an index finger touches a tactile stimulus, enabling the analysis of the touch-elicited brain responses. RESULTS We examined brain responses while the participants actively touched braille objects presented by the pTDS. BOLD responses during tactile perception were significantly stronger in a finger touch area of the contralateral somatosensory cortex compared with that of visual perception. CONCLUSION The pTDS enables MR studies of brain mechanisms for tactile processes through natural finger touch.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Doyoung Park
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Institute of Psychological Sciences, Institute of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Somang Paeng
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| |
Collapse
|
7
|
Unruh KE, Bartolotti JV, McKinney WS, Schmitt LM, Sweeney JA, Mosconi MW. Functional connectivity of cortical-cerebellar networks in relation to sensorimotor behavior and clinical features in autism spectrum disorder. Cereb Cortex 2023; 33:8990-9002. [PMID: 37246152 PMCID: PMC10350826 DOI: 10.1093/cercor/bhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023] Open
Abstract
Sensorimotor issues are present in the majority of individuals with autism spectrum disorder (ASD) and are associated with core symptoms. The neural systems associated with these impairments remain unclear. Using a visually guided precision gripping task during functional magnetic resonance imaging, we characterized task-based connectivity and activation of cortical, subcortical, and cerebellar visuomotor networks. Participants with ASD (n = 19; ages 10-33) and age- and sex-matched neurotypical controls (n = 18) completed a visuomotor task at low and high force levels. Relative to controls, individuals with ASD showed reduced functional connectivity of right primary motor-anterior cingulate cortex and left anterior intraparietal lobule (aIPL)-right Crus I at high force only. At low force, increased caudate, and cerebellar activation each were associated with sensorimotor behavior in controls, but not in ASD. Reduced left aIPL-right Crus I connectivity was associated with more severe clinically rated ASD symptoms. These findings suggest that sensorimotor problems in ASD, particularly at high force levels, involve deficits in the integration of multimodal sensory feedback and reduced reliance on error-monitoring processes. Adding to literature positing that cerebellar dysfunction contributes to multiple developmental issues in ASD, our data implicate parietal-cerebellar connectivity as a key neural marker underlying both core and comorbid features of ASD.
Collapse
Affiliation(s)
- Kathryn E Unruh
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
| | - James V Bartolotti
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Walker S McKinney
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Matthew W Mosconi
- Life Span Institute, University of Kansas, Lawrence, KS, United States
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
8
|
Neural Correlates of Oral Stereognosis—An fMRI Study. Dysphagia 2022; 38:923-932. [PMID: 36087119 PMCID: PMC10182931 DOI: 10.1007/s00455-022-10517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
AbstractOral stereognosis is the ability to recognize, discriminate and localize a bolus in the oral cavity. Clinical observation indicates deficits in oral stereognosis in patients with vascular or neurodegenerative diseases particularly affecting the parietal lobes. However, the precise neural representation of oral stereognosis remains unclear whereas the neural network of manual stereognosis has already been identified. We hypothesize that oral and manual stereognosis share common neuronal substrates whilst also showing somatotopic distribution. Functional magnetic resonance images (fMRI; Siemens Prisma 3 T) from 20 healthy right-handed participants (11 female; mean age 25.7 years) using a cross-modal task of oral and manual spatial object manipulation were acquired. Data were analyzed using FSL software using a block design and standard analytical and statistical procedures. A conjunction analysis targeted the common neuronal substrate for stereognosis. Activations associated with manual and oral stereognosis were found in partially overlapping fronto-parietal networks in a somatotopic fashion, where oral stereognosis is located caudally from manual stereognosis. A significant overlap was seen in the left anterior intraparietal sulcus. Additionally, cerebellar activations were shown particularly for the oral condition. Spatial arrangement of shaped boli in the oral cavity is associated with neuronal activity in fronto-parietal networks and the cerebellum. These findings have significant implications for clinical diagnostics and management of patients with lesions or atrophy in parietal lobule (e.g. Alzheimer’s disease, stroke). More studies are required to investigate the clinical effect of damage to these areas, such as loss of oral stereognosis or an impaired oral phase.
Collapse
|
9
|
van Polanen V, Buckingham G, Davare M. The effects of TMS over the anterior intraparietal area on anticipatory fingertip force scaling and the size-weight illusion. J Neurophysiol 2022; 128:290-301. [PMID: 35294305 PMCID: PMC9363003 DOI: 10.1152/jn.00265.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/10/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
When lifting an object skillfully, fingertip forces need to be carefully scaled to the object's weight, which can be inferred from its apparent size and material. This anticipatory force scaling ensures smooth and efficient lifting movements. However, even with accurate motor plans, weight perception can still be biased. In the size-weight illusion, objects of different size but equal weight are perceived to differ in heaviness, with the small object perceived to be heavier than the large object. The neural underpinnings of anticipatory force scaling to object size and the size-weight illusion are largely unknown. In this study, we tested the role of anterior intraparietal cortex (aIPS) in predictive force scaling and the size-weight illusion, by applying continuous theta burst stimulation (cTBS) prior to participants lifting objects of different sizes. Participants received cTBS over aIPS, the primary motor cortex (control area), or Sham stimulation. We found no evidence that aIPS stimulation affected the size-weight illusion. Effects were, however, found on anticipatory force scaling, where grip force was less tuned to object size during initial lifts. These findings suggest that aIPS is not involved in the perception of object weight but plays a transient role in the sensorimotor predictions related to object size. NEW & NOTEWORTHY Skilled object manipulation requires forming anticipatory motor plans according to the object's properties. Here, we demonstrate the role of anterior intraparietal sulcus (aIPS) in anticipatory grip force scaling to object size, particularly during initial lifting experience. Interestingly, this role was not maintained after continued practice and was not related to perceptual judgments measured with the size-weight illusion.
Collapse
Affiliation(s)
- Vonne van Polanen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences group, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Gavin Buckingham
- Department of Sport and Health Sciences, University of Exeter, Exeter, United Kingdom
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Sabbah S, Worden MS, Laniado DD, Berson DM, Sanes JN. Luxotonic signals in human prefrontal cortex as a possible substrate for effects of light on mood and cognition. Proc Natl Acad Sci U S A 2022; 119:e2118192119. [PMID: 35867740 PMCID: PMC9282370 DOI: 10.1073/pnas.2118192119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.
Collapse
Affiliation(s)
- Shai Sabbah
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael S. Worden
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Dimitrios D. Laniado
- Department of Medical Neurobiology, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - David M. Berson
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
| | - Jerome N. Sanes
- Department of Neuroscience, Brown University, Providence, RI 02912
- Carney Institute for Brain Science, Brown University, Providence, RI 02912
- Center for Neurorestoration and Neurotechnology, Veterans Affairs Providence Healthcare System, Providence, RI 02908
| |
Collapse
|
11
|
Song J, Shin H, Park M, Nam S, Kim CY. Complex Shapes Are Bluish, Darker, and More Saturated; Shape-Color Correspondence in 3D Object Perception. Front Psychol 2022; 13:854574. [PMID: 35602700 PMCID: PMC9114860 DOI: 10.3389/fpsyg.2022.854574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
It has been shown that there is a non-random association between shape and color. However, the results of previous studies on the shape-color correspondence did not converge. To address the issue, we focused on shape complexity among a number of shape properties, particularly in terms of 3D shape, and parametrically manipulated the shape complexity and all three components of color. With two experiments, the current study aimed to closely examine the correspondence between shape complexity of 3D shape and color in terms of hue (Experiment 1), luminance, and saturation (Experiment 2). Participants were presented with the 3D shapes in either visual or visuo-haptic modes of exploration. Subsequently, they had to pick from a color palette the color best matching each shape of the object. In Experiment 1, we found that as shapes became more complex, the best associated hue changed from those with long wavelengths to ones with short wavelengths. Results of Experiment 2 demonstrated that as the shapes grew more complex, the associated luminance decreased, and saturation increased. Additionally, adding haptic exploration to visual exploration strengthened the association – for saturation in particular – with the pattern of shape-color correspondence maintained. Taken together, we demonstrated that complex shapes are associated with bluish, darker and more saturated colors, suggesting that shape complexity has a systematic relationship with color including hue, luminance, and saturation.
Collapse
Affiliation(s)
- Jiwon Song
- School of Psychology, Korea University, Seoul, South Korea
| | - Haeji Shin
- School of Psychology, Korea University, Seoul, South Korea
| | - Minsun Park
- School of Psychology, Korea University, Seoul, South Korea
| | - Seungmin Nam
- School of Psychology, Korea University, Seoul, South Korea
| | - Chai-Youn Kim
- School of Psychology, Korea University, Seoul, South Korea
| |
Collapse
|
12
|
Hensel L, Lange F, Tscherpel C, Viswanathan S, Freytag J, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Recovered grasping performance after stroke depends on interhemispheric frontoparietal connectivity. Brain 2022; 146:1006-1020. [PMID: 35485480 PMCID: PMC9976969 DOI: 10.1093/brain/awac157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/19/2022] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Activity changes in the ipsi- and contralesional parietal cortex and abnormal interhemispheric connectivity between these regions are commonly observed after stroke, however, their significance for motor recovery remains poorly understood. We here assessed the contribution of ipsilesional and contralesional anterior intraparietal cortex (aIPS) for hand motor function in 18 recovered chronic stroke patients and 18 healthy control subjects using a multimodal assessment consisting of resting-state functional MRI, motor task functional MRI, online-repetitive transcranial magnetic stimulation (rTMS) interference, and 3D movement kinematics. Effects were compared against two control stimulation sites, i.e. contralesional M1 and a sham stimulation condition. We found that patients with good motor outcome compared to patients with more substantial residual deficits featured increased resting-state connectivity between ipsilesional aIPS and contralesional aIPS as well as between ipsilesional aIPS and dorsal premotor cortex. Moreover, interhemispheric connectivity between ipsilesional M1 and contralesional M1 as well as ipsilesional aIPS and contralesional M1 correlated with better motor performance across tasks. TMS interference at individual aIPS and M1 coordinates led to differential effects depending on the motor task that was tested, i.e. index finger-tapping, rapid pointing movements, or a reach-grasp-lift task. Interfering with contralesional aIPS deteriorated the accuracy of grasping, especially in patients featuring higher connectivity between ipsi- and contralesional aIPS. In contrast, interference with the contralesional M1 led to impaired grasping speed in patients featuring higher connectivity between bilateral M1. These findings suggest differential roles of contralesional M1 and aIPS for distinct aspects of recovered hand motor function, depending on the reorganization of interhemispheric connectivity.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Fabian Lange
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Shivakumar Viswanathan
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany,Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Christian Grefkes
- Correspondence to: Christian Grefkes Institute of Neuroscience and Medicine - Cognitive Neuroscience (INM-3) Research Centre Juelich, Juelich, Germany E-mail:
| |
Collapse
|
13
|
Bernard-Espina J, Dal Canto D, Beraneck M, McIntyre J, Tagliabue M. How Tilting the Head Interferes With Eye-Hand Coordination: The Role of Gravity in Visuo-Proprioceptive, Cross-Modal Sensory Transformations. Front Integr Neurosci 2022; 16:788905. [PMID: 35359704 PMCID: PMC8961421 DOI: 10.3389/fnint.2022.788905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
To correctly position the hand with respect to the spatial location and orientation of an object to be reached/grasped, visual information about the target and proprioceptive information from the hand must be compared. Since visual and proprioceptive sensory modalities are inherently encoded in a retinal and musculo-skeletal reference frame, respectively, this comparison requires cross-modal sensory transformations. Previous studies have shown that lateral tilts of the head interfere with the visuo-proprioceptive transformations. It is unclear, however, whether this phenomenon is related to the neck flexion or to the head-gravity misalignment. To answer to this question, we performed three virtual reality experiments in which we compared a grasping-like movement with lateral neck flexions executed in an upright seated position and while lying supine. In the main experiment, the task requires cross-modal transformations, because the target information is visually acquired, and the hand is sensed through proprioception only. In the other two control experiments, the task is unimodal, because both target and hand are sensed through one, and the same, sensory channel (vision and proprioception, respectively), and, hence, cross-modal processing is unnecessary. The results show that lateral neck flexions have considerably different effects in the seated and supine posture, but only for the cross-modal task. More precisely, the subjects’ response variability and the importance associated to the visual encoding of the information significantly increased when supine. We show that these findings are consistent with the idea that head-gravity misalignment interferes with the visuo-proprioceptive cross-modal processing. Indeed, the principle of statistical optimality in multisensory integration predicts the observed results if the noise associated to the visuo-proprioceptive transformations is assumed to be affected by gravitational signals, and not by neck proprioceptive signals per se. This finding is also consistent with the observation of otolithic projections in the posterior parietal cortex, which is involved in the visuo-proprioceptive processing. Altogether these findings represent a clear evidence of the theorized central role of gravity in spatial perception. More precisely, otolithic signals would contribute to reciprocally align the reference frames in which the available sensory information can be encoded.
Collapse
Affiliation(s)
- Jules Bernard-Espina
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Daniele Dal Canto
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Mathieu Beraneck
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Joseph McIntyre
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- Ikerbasque Science Foundation, Bilbao, Spain
- TECNALIA, Basque Research and Technology Alliance (BRTA), San Sebastian, Spain
| | - Michele Tagliabue
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
- *Correspondence: Michele Tagliabue,
| |
Collapse
|
14
|
Taguchi J, Takami A, Makino M. Changes in cerebral blood flow before, during, and after forward and backward walking in stroke patients trained using virtual reality walking videos with deliberately induced inaccuracies in walking speed estimations. J Phys Ther Sci 2022; 34:668-672. [PMID: 36213187 PMCID: PMC9535245 DOI: 10.1589/jpts.34.668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to examine the effects of virtual reality (VR)
training, with deliberately induced inaccuracies in walking speed estimations, on brain
activity. [Participants and Methods] The study participants were 21 stroke patients, and
the walking tasks involved forward and backward walking. While the VR walking speed was
set at 3 km/h, estimation errors were induced by using an actual walking speed of 1 km/h
during the walking tasks. Cerebral blood flow was measured using two functional
near-infrared spectroscopy (fNIRS) channels located over the left and right prefrontal
cortices, to determine changes in oxyhemoglobin levels from the resting state. Cerebral
hemodynamics were compared during and after the VR training. [Results] The backward
walking task induced a significant increase in cerebral blood flow in the right prefrontal
cortex during and after the VR training. No significant changes were observed during the
forward walking task. [Conclusion] In the backward walking condition, greater activation
of the right prefrontal cortex was observed during and immediately after the VR training.
Watching VR may have led to inaccurate walking-speed estimations, necessitating postural
control (which may be attributed to the activation of the prefrontal cortex) during
walking.
Collapse
Affiliation(s)
- Jun Taguchi
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Akiyoshi Takami
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Misato Makino
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan
| |
Collapse
|
15
|
Schmidt CC, Achilles EIS, Fink GR, Weiss PH. Distinct cognitive components and their neural substrates underlying praxis and language deficits following left hemisphere stroke. Cortex 2021; 146:200-215. [PMID: 34896806 DOI: 10.1016/j.cortex.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Apraxia is characterised by multiple deficits of higher motor functions, primarily caused by left hemisphere (LH) lesions to parietal-frontal praxis networks. While previous neuropsychological and lesion studies tried to relate the various apraxic deficits to specific lesion sites, a comprehensive analysis of the different apraxia profiles and the related (impaired) motor-cognitive processes as well as their differential neural substrates in LH stroke is lacking. To reveal the cognitive mechanisms that underlie the different patterns of praxis and (related) language deficits, we applied principal component analysis (PCA) to the scores of sub-acute LH stroke patients (n = 91) in several tests of apraxia and aphasia. Voxel-based lesion-symptom mapping (VLSM) analyses were then used to investigate the neural substrates of the identified components. The PCA yielded a first component related to language functions and three components related to praxis functions, with each component associated with specific lesion patterns. Regarding praxis functions, performance in imitating arm/hand gestures was accounted for by a second component related to the left precentral gyrus and the inferior parietal lobule. Imitating finger configurations, pantomiming the use of objects related to the face, and actually using objects loaded on component 3, related to the left anterior intraparietal sulcus and angular gyrus. The last component represented the imitation of bucco-facial gestures and was linked to the basal ganglia and LH white matter tracts. The results further revealed that pantomime of (limb-related) object use depended on both the component 2 and 3, which were shared with gesture imitation and actual object use. Data support and extend the notion that apraxia represents a multi-componential syndrome comprising different (impaired) motor-cognitive processes, which dissociate - at least partially - from language processes. The distinct components might be disturbed to a varying degree following LH stroke since they are associated with specific lesion patterns within the LH.
Collapse
Affiliation(s)
- Claudia C Schmidt
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany.
| | - Elisabeth I S Achilles
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Peter H Weiss
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
16
|
Takami A, Taguchi J, Makino M. Changes in cerebral blood flow during forward and backward walking with speed misperception generated by virtual reality. J Phys Ther Sci 2021; 33:565-569. [PMID: 34393364 PMCID: PMC8332638 DOI: 10.1589/jpts.33.565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/01/2021] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of this study was to investigate the effect of speed misperception on brain activity, created by a speed difference between actual walking and virtual reality walking videos. [Participants and Methods] The participants were 20 healthy young people. The walking speed in the video was set to 3 km/h to induce an error, while the actual walking speed was 1 km/h. Cerebral blood flow was measured using an optical imaging brain function measurement device. Left and right prefrontal cortices were analyzed using two channels and oxyhemoglobin level change from rest was used as a cerebral blood flow index. A t-test compared the cerebral blood flow dynamics before, during, and after the virtual reality video viewing under forward and backward walking conditions. [Results] Regarding changes in oxyhemoglobin levels during walking after watching the virtual reality video, cerebral blood flow increased especially in the backward walking state, where the difference was large in the right prefrontal cortex. [Conclusion] The backward walking that caused misperception by virtual reality is an extraordinary movement compared to forward walking. Thus, it is necessary to voluntarily adjust the movement by the cerebral cortex, and it is thought that activation of the prefrontal cortex occurs.
Collapse
Affiliation(s)
- Akiyoshi Takami
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan
| | - Jun Taguchi
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan.,Hirosaki Stroke and Rehabilitation Center, Japan
| | - Misato Makino
- Graduate School of Health Sciences, Hirosaki University: 66-1 Honcho, Hirosaki-shi, Aomori 036-8564, Japan
| |
Collapse
|
17
|
Bernard-Espina J, Beraneck M, Maier MA, Tagliabue M. Multisensory Integration in Stroke Patients: A Theoretical Approach to Reinterpret Upper-Limb Proprioceptive Deficits and Visual Compensation. Front Neurosci 2021; 15:646698. [PMID: 33897359 PMCID: PMC8058201 DOI: 10.3389/fnins.2021.646698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.
Collapse
Affiliation(s)
| | | | - Marc A Maier
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | | |
Collapse
|
18
|
Richard N, Desmurget M, Teillac A, Beuriat PA, Bardi L, Coudé G, Szathmari A, Mottolese C, Sirigu A, Hiba B. Anatomical bases of fast parietal grasp control in humans: A diffusion-MRI tractography study. Neuroimage 2021; 235:118002. [PMID: 33789136 DOI: 10.1016/j.neuroimage.2021.118002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 11/26/2022] Open
Abstract
The dorso-posterior parietal cortex (DPPC) is a major node of the grasp/manipulation control network. It is assumed to act as an optimal forward estimator that continuously integrates efferent outflows and afferent inflows to modulate the ongoing motor command. In agreement with this view, a recent per-operative study, in humans, identified functional sites within DPPC that: (i) instantly disrupt hand movements when electrically stimulated; (ii) receive short-latency somatosensory afferences from intrinsic hand muscles. Based on these results, it was speculated that DPPC is part of a rapid grasp control loop that receives direct inputs from the hand-territory of the primary somatosensory cortex (S1) and sends direct projections to the hand-territory of the primary motor cortex (M1). However, evidence supporting this hypothesis is weak and partial. To date, projections from DPPC to M1 grasp zone have been identified in monkeys and have been postulated to exist in humans based on clinical and transcranial magnetic studies. This work uses diffusion-MRI tractography in two samples of right- (n = 50) and left-handed (n = 25) subjects randomly selected from the Human Connectome Project. It aims to determine whether direct connections exist between DPPC and the hand control sectors of the primary sensorimotor regions. The parietal region of interest, related to hand control (hereafter designated DPPChand), was defined permissively as the 95% confidence area of the parietal sites that were found to disrupt hand movements in the previously evoked per-operative study. In both hemispheres, irrespective of handedness, we found dense ipsilateral connections between a restricted part of DPPChand and focal sectors within the pre and postcentral gyrus. These sectors, corresponding to the hand territories of M1 and S1, targeted the same parietal zone (spatial overlap > 92%). As a sensitivity control, we searched for potential connections between the angular gyrus (AG) and the pre and postcentral regions. No robust pathways were found. Streamline densities identified using AG as the starting seed represented less than 5 % of the streamline densities identified from DPPChand. Together, these results support the existence of a direct sensory-parietal-motor loop suited for fast manual control and more generally, for any task requiring rapid integration of distal sensorimotor signals.
Collapse
Affiliation(s)
- Nathalie Richard
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Michel Desmurget
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Achille Teillac
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Institut de neurosciences cognitives et intégratives d'Aquitaine, CNRS / UMR 5287, 33076 Bordeaux, France
| | - Pierre-Aurélien Beuriat
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Lara Bardi
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Gino Coudé
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Alexandru Szathmari
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Carmine Mottolese
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France; Department of Pediatric Neurosurgery, Hôpital Femme Mère Enfant, 69500, Bron, France
| | - Angela Sirigu
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France
| | - Bassem Hiba
- Institute of Cognitive Neuroscience Marc Jeannerod, CNRS / UMR 5229, 69500 Bron, France; Université Claude Bernard, Lyon 1, 69100 Villeurbanne, France.
| |
Collapse
|
19
|
Sensory capability and information integration independently explain the cognitive status of healthy older adults. Sci Rep 2020; 10:22437. [PMID: 33384454 PMCID: PMC7775431 DOI: 10.1038/s41598-020-80069-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
While there is evidence that sensory processing and multisensory integration change with age, links between these alterations and their relation to cognitive status remain unclear. In this study, we assessed sensory thresholds and performance of healthy younger and older adults in a visuotactile delayed match-to-sample task. Using Bayesian structural equation modelling (BSEM), we explored the factors explaining cognitive status in the group of older adults. Additionally, we applied transcranial alternating current stimulation (tACS) to a parieto-central network found to underlie visuotactile interactions and working memory matching in our previous work. Response times and signal detection measures indicated enhanced multisensory integration and enhanced benefit from successful working memory matching in older adults. Further, tACS caused a frequency-specific speeding (20 Hz) and delaying (70 Hz) of responses. Data exploration suggested distinct underlying factors for sensory acuity and sensitivity d’ on the one side, and multisensory and working memory enhancement on the other side. Finally, BSEM showed that these two factors labelled ‘sensory capability’ and ‘information integration’ independently explained cognitive status. We conclude that sensory decline and enhanced information integration might relate to distinct processes of ageing and discuss a potential role of the parietal cortex in mediating augmented integration in older adults.
Collapse
|
20
|
Wang Y, Wang X, Sang L, Zhang C, Zhao BT, Mo JJ, Hu WH, Shao XQ, Wang F, Ai L, Zhang JG, Zhang K. Network of ictal head version in mesial temporal lobe epilepsy. Brain Behav 2020; 10:e01820. [PMID: 32857475 PMCID: PMC7667364 DOI: 10.1002/brb3.1820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/29/2020] [Accepted: 08/11/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Ictal head version is a common clinical manifestation of mesial temporal lobe epilepsy (MTLE). Nevertheless, the location of the symptomatogenic zone and the network involved in head version remains unclear. We attempt to explain these problems by analyzing interictal 18 FDG-PET imaging and ictal stereo-electroencephalography (SEEG) recordings in MTLE patients. METHODS Fifty-eight patients with MTLE were retrospectively analyzed. The patients were divided into version (+) and (-) groups according to the occurrence of versive head movements. The interictal PET data were compared among 18 healthy controls and the (+) and (-) groups. Furthermore, epileptogenicity index (EI) values and correlations with the onset time of head version were analyzed with SEEG. RESULTS Intergroup comparisons showed that PET differences were observed in the middle temporal neocortex (MTN), posterior temporal neocortex (PTN), supramarginal gyrus (SMG), and inferior parietal lobe (IPL). The EI values in the SMG, MTN, and PTN were significantly higher in the version (+) group than in the version (-) group. A linear relationship was observed between head version onset and ipsilateral onset time in the SMG, orbitofrontal cortex (OFC), MTN, and PTN. A linear relationship was observed between EI, the difference between version onset and temporal neocortex onset, and the y-axis of the MNI coordinate. CONCLUSION The generation of ictal head version contributes to the propagation of ictal discharges to the intraparietal sulcus (IPS) area. The network of version originates from a mesial temporal lobe structure, passes through the MTN, PTN, and SMG, and likely ends at the IPS.
Collapse
Affiliation(s)
- Yao Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Lin Sang
- Epilepsy Center, Peking University First Hospital Fengtai Hospital, Beijing, China
| | - Chao Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| | - Bao-Tian Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia-Jie Mo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Han Hu
- Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiao-Qiu Shao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian-Guo Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China.,Stereotactic and Functional Neurosurgery Laboratory, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Kai Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neurostimulation, Beijing, China
| |
Collapse
|
21
|
Reduction of somatosensory functional connectivity by transcranial alternating current stimulation at endogenous mu-frequency. Neuroimage 2020; 221:117175. [DOI: 10.1016/j.neuroimage.2020.117175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022] Open
|
22
|
Hensel L, Tscherpel C, Freytag J, Ritter S, Rehme AK, Volz LJ, Eickhoff SB, Fink GR, Grefkes C. Connectivity-Related Roles of Contralesional Brain Regions for Motor Performance Early after Stroke. Cereb Cortex 2020; 31:993-1007. [DOI: 10.1093/cercor/bhaa270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract
Hemiparesis after stroke is associated with increased neural activity not only in the lesioned but also in the contralesional hemisphere. While most studies have focused on the role of contralesional primary motor cortex (M1) activity for motor performance, data on other areas within the unaffected hemisphere are scarce, especially early after stroke. We here combined functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) to elucidate the contribution of contralesional M1, dorsal premotor cortex (dPMC), and anterior intraparietal sulcus (aIPS) for the stroke-affected hand within the first 10 days after stroke. We used “online” TMS to interfere with neural activity at subject-specific fMRI coordinates while recording 3D movement kinematics. Interfering with aIPS activity improved tapping performance in patients, but not healthy controls, suggesting a maladaptive role of this region early poststroke. Analyzing effective connectivity parameters using a Lasso prediction model revealed that behavioral TMS effects were predicted by the coupling of the stimulated aIPS with dPMC and ipsilesional M1. In conclusion, we found a strong link between patterns of frontoparietal connectivity and TMS effects, indicating a detrimental influence of the contralesional aIPS on motor performance early after stroke.
Collapse
Affiliation(s)
- Lukas Hensel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Caroline Tscherpel
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Jana Freytag
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Stella Ritter
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Anne K Rehme
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Lukas J Volz
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
| | - Simon B Eickhoff
- Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Brain and Behaviour, Institute of Neuroscience and Medicine, (INM-7), Research Centre Jülich, 52428 Jülich, Germany
| | - Gereon R Fink
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| | - Christian Grefkes
- Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, 50931 Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, 52428 Jülich, Germany
| |
Collapse
|
23
|
Hannanu FF, Goundous I, Detante O, Naegele B, Jaillard A. Spatiotemporal patterns of sensorimotor fMRI activity influence hand motor recovery in subacute stroke: A longitudinal task-related fMRI study. Cortex 2020; 129:80-98. [DOI: 10.1016/j.cortex.2020.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 01/01/2023]
|
24
|
Kassuba T, Pinsk MA, Kastner S. Distinct auditory and visual tool regions with multisensory response properties in human parietal cortex. Prog Neurobiol 2020; 195:101889. [PMID: 32707071 DOI: 10.1016/j.pneurobio.2020.101889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/12/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022]
Abstract
Left parietal cortex has been associated with the human-specific ability of sophisticated tool use. Yet, it is unclear how tool information is represented across senses. Here, we compared auditory and visual tool-specific activations within healthy human subjects to probe the relation of tool-specific networks, uni- and multisensory response properties, and functional and structural connectivity using functional and diffusion-weighted MRI. In each subject, we identified an auditory tool network with regions in left anterior inferior parietal cortex (aud-aIPL), bilateral posterior lateral sulcus, and left inferior precentral sulcus, and a visual tool network with regions in left aIPL (vis-aIPL) and bilateral inferior temporal gyrus. Aud-aIPL was largely separate and anterior/inferior from vis-aIPL, with varying degrees of overlap across subjects. Both regions displayed a strong preference for tools versus other stimuli presented within the same modality. Despite their modality preference, aud-aIPL and vis-aIPL and a region in left inferior precentral sulcus displayed multisensory response properties, as revealed in multivariate analyses. Thus, two largely separate tool networks are engaged by the visual and auditory modalities with nodes in parietal and prefrontal cortex potentially integrating information across senses. The diversification of tool processing in human parietal cortex underpins its critical role in complex object processing.
Collapse
Affiliation(s)
- Tanja Kassuba
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Mark A Pinsk
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Niu M, Impieri D, Rapan L, Funck T, Palomero-Gallagher N, Zilles K. Receptor-driven, multimodal mapping of cortical areas in the macaque monkey intraparietal sulcus. eLife 2020; 9:55979. [PMID: 32613942 PMCID: PMC7365665 DOI: 10.7554/elife.55979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The intraparietal sulcus (IPS) is structurally and functionally heterogeneous. We performed a quantitative cyto-/myelo- and receptor architectonical analysis to provide a multimodal map of the macaque IPS. We identified 17 cortical areas, including novel areas PEipe, PEipi (external and internal subdivisions of PEip), and MIPd. Multivariate analyses of receptor densities resulted in a grouping of areas based on the degree of (dis)similarity of their receptor architecture: a cluster encompassing areas located in the posterior portion of the IPS and associated mainly with the processing of visual information, a cluster including areas found in the anterior portion of the IPS and involved in sensorimotor processing, and an ‘intermediate’ cluster of multimodal association areas. Thus, differences in cyto-/myelo- and receptor architecture segregate the cortical ribbon within the IPS, and receptor fingerprints provide novel insights into the relationship between the structural and functional segregation of this brain region in the macaque monkey.
Collapse
Affiliation(s)
- Meiqi Niu
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Daniele Impieri
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Lucija Rapan
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Thomas Funck
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| |
Collapse
|
26
|
Lanzilotto M, Ferroni CG, Livi A, Gerbella M, Maranesi M, Borra E, Passarelli L, Gamberini M, Fogassi L, Bonini L, Orban GA. Anterior Intraparietal Area: A Hub in the Observed Manipulative Action Network. Cereb Cortex 2020; 29:1816-1833. [PMID: 30766996 PMCID: PMC6418391 DOI: 10.1093/cercor/bhz011] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/07/2019] [Accepted: 01/18/2019] [Indexed: 11/13/2022] Open
Abstract
Current knowledge regarding the processing of observed manipulative actions (OMAs) (e.g., grasping, dragging, or dropping) is limited to grasping and underlying neural circuitry remains controversial. Here, we addressed these issues by combining chronic neuronal recordings along the anteroposterior extent of monkeys’ anterior intraparietal (AIP) area with tracer injections into the recorded sites. We found robust neural selectivity for 7 distinct OMAs, particularly in the posterior part of AIP (pAIP), where it was associated with motor coding of grip type and own-hand visual feedback. This cluster of functional properties appears to be specifically grounded in stronger direct connections of pAIP with the temporal regions of the ventral visual stream and the prefrontal cortex, as connections with skeletomotor related areas and regions of the dorsal visual stream exhibited opposite or no rostrocaudal gradients. Temporal and prefrontal areas may provide visual and contextual information relevant for manipulative action processing. These results revise existing models of the action observation network, suggesting that pAIP constitutes a parietal hub for routing information about OMA identity to the other nodes of the network.
Collapse
Affiliation(s)
- Marco Lanzilotto
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | | | - Alessandro Livi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Monica Maranesi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Elena Borra
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, Bologna, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Luca Bonini
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39, Parma, Italy
| |
Collapse
|
27
|
Kim Y, Usui N, Miyazaki A, Haji T, Matsumoto K, Taira M, Nakamura K, Katsuyama N. Cortical Regions Encoding Hardness Perception Modulated by Visual Information Identified by Functional Magnetic Resonance Imaging With Multivoxel Pattern Analysis. Front Syst Neurosci 2019; 13:52. [PMID: 31632245 PMCID: PMC6779815 DOI: 10.3389/fnsys.2019.00052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/11/2019] [Indexed: 01/09/2023] Open
Abstract
Recent studies have revealed that hardness perception is determined by visual information along with the haptic input. This study investigated the cortical regions involved in hardness perception modulated by visual information using functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA). Twenty-two healthy participants were enrolled. They were required to place their left and right hands at the front and back, respectively, of a mirror attached to a platform placed above them while lying in a magnetic resonance scanner. In conditions SFT, MED, and HRD, one of three polyurethane foam pads of varying hardness (soft, medium, and hard, respectively) was presented to the left hand in a given trial, while only the medium pad was presented to the right hand in all trials. MED was defined as the control condition, because the visual and haptic information was congruent. During the scan, the participants were required to push the pad with the both hands while observing the reflection of the left hand and estimate the hardness of the pad perceived by the right (hidden) hand based on magnitude estimation. Behavioral results showed that the perceived hardness was significantly biased toward softer or harder in >73% of the trials in conditions SFT and HRD; we designated these trials as visually modulated (SFTvm and HRDvm, respectively). The accuracy map was calculated individually for each of the pair-wise comparisons of (SFTvm vs. MED), (HRDvm vs. MED), and (SFTvm vs. HRDvm) by a searchlight MVPA, and the cortical regions encoding the perceived hardness with visual modulation were identified by conjunction of the three accuracy maps in group analysis. The cluster was observed in the right sensory motor cortex, left anterior intraparietal sulcus (aIPS), bilateral parietal operculum (PO), and occipito-temporal cortex (OTC). Together with previous findings on such cortical regions, we conclude that the visual information of finger movements processed in the OTC may be integrated with haptic input in the left aIPS, and the subjective hardness perceived by the right hand with visual modulation may be processed in the cortical network between the left PO and aIPS.
Collapse
Affiliation(s)
- Yuri Kim
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuo Usui
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Tomoki Haji
- Tamagawa University Brain Science Institute, Tokyo, Japan
| | | | - Masato Taira
- Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Narumi Katsuyama
- Primate Research Institute, Kyoto University, Inuyama, Japan.,Department of Cognitive Neurobiology, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
Stickel S, Weismann P, Kellermann T, Regenbogen C, Habel U, Freiherr J, Chechko N. Audio-visual and olfactory-visual integration in healthy participants and subjects with autism spectrum disorder. Hum Brain Mapp 2019; 40:4470-4486. [PMID: 31301203 PMCID: PMC6865810 DOI: 10.1002/hbm.24715] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The human capacity to integrate sensory signals has been investigated with respect to different sensory modalities. A common denominator of the neural network underlying the integration of sensory clues has yet to be identified. Additionally, brain imaging data from patients with autism spectrum disorder (ASD) do not cover disparities in neuronal sensory processing. In this fMRI study, we compared the underlying neural networks of both olfactory-visual and auditory-visual integration in patients with ASD and a group of matched healthy participants. The aim was to disentangle sensory-specific networks so as to derive a potential (amodal) common source of multisensory integration (MSI) and to investigate differences in brain networks with sensory processing in individuals with ASD. In both groups, similar neural networks were found to be involved in the olfactory-visual and auditory-visual integration processes, including the primary visual cortex, the inferior parietal sulcus (IPS), and the medial and inferior frontal cortices. Amygdala activation was observed specifically during olfactory-visual integration, with superior temporal activation having been seen during auditory-visual integration. A dynamic causal modeling analysis revealed a nonlinear top-down IPS modulation of the connection between the respective primary sensory regions in both experimental conditions and in both groups. Thus, we demonstrate that MSI has shared neural sources across olfactory-visual and audio-visual stimulation in patients and controls. The enhanced recruitment of the IPS to modulate changes between areas is relevant to sensory perception. Our results also indicate that, with respect to MSI processing, adults with ASD do not significantly differ from their healthy counterparts.
Collapse
Affiliation(s)
- Susanne Stickel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Pauline Weismann
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Thilo Kellermann
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| | - Jessica Freiherr
- Department of Psychiatry and PsychotherapyFriedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
- Sensory AnalyticsFraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany
| | - Natalya Chechko
- Department of Psychiatry, Psychotherapy and PsychosomaticsFaculty of Medicine, RWTH AachenAachenGermany
- Institute of Neuroscience and Medicine: JARA‐Institute Brain Structure Function Relationship (INM 10)Research Center JülichJülichGermany
| |
Collapse
|
29
|
Li H, Liu N, Li Y, Weidner R, Fink GR, Chen Q. The Simon Effect Based on Allocentric and Egocentric Reference Frame: Common and Specific Neural Correlates. Sci Rep 2019; 9:13727. [PMID: 31551429 PMCID: PMC6760495 DOI: 10.1038/s41598-019-49990-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 09/04/2019] [Indexed: 11/09/2022] Open
Abstract
An object's location can be represented either relative to an observer's body effectors (egocentric reference frame) or relative to another external object (allocentric reference frame). In non-spatial tasks, an object's task-irrelevant egocentric position conflicts with the side of a task-relevant manual response, which defines the classical Simon effect. Growing evidence suggests that the Simon effect occurs not only based on conflicting positions within the egocentric but also within the allocentric reference frame. Although neural mechanisms underlying the egocentric Simon effect have been extensively researched, neural mechanisms underlying the allocentric Simon effect and their potential interaction with those underlying its egocentric variant remain to be explored. In this fMRI study, spatial congruency between the task-irrelevant egocentric and allocentric target positions and the task-relevant response hand was orthogonally manipulated. Behaviorally, a significant Simon effect was observed for both reference frames. Neurally, three sub-regions in the frontoparietal network were involved in different aspects of the Simon effect, depending on the source of the task-irrelevant object locations. The right precentral gyrus, extending to the right SMA, was generally activated by Simon conflicts, irrespective of the spatial reference frame involved, and showed no additive activity to Simon conflicts. In contrast, the right postcentral gyrus was specifically involved in Simon conflicts induced by task-irrelevant allocentric, rather than egocentric, representations. Furthermore, a right lateral frontoparietal network showed increased neural activity whenever the egocentric and allocentric target locations were incongruent, indicating its functional role as a mismatch detector that monitors the discrepancy concerning allocentric and egocentric object locations.
Collapse
Affiliation(s)
- Hui Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Nan Liu
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - You Li
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China
| | - Ralph Weidner
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Center Jülich, 52425, Jülich, Germany
- Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Qi Chen
- Center for Studies of Psychological Application and School of Psychology, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, P.R. China.
| |
Collapse
|
30
|
Borra E, Luppino G. Large-scale temporo–parieto–frontal networks for motor and cognitive motor functions in the primate brain. Cortex 2019; 118:19-37. [DOI: 10.1016/j.cortex.2018.09.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 10/28/2022]
|
31
|
Abela E, Missimer JH, Pastore-Wapp M, Krammer W, Wiest R, Weder BJ. Early prediction of long-term tactile object recognition performance after sensorimotor stroke. Cortex 2019; 115:264-279. [DOI: 10.1016/j.cortex.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/20/2018] [Accepted: 01/10/2019] [Indexed: 01/10/2023]
|
32
|
Brown RM, Penhune VB. Efficacy of Auditory versus Motor Learning for Skilled and Novice Performers. J Cogn Neurosci 2018; 30:1657-1682. [PMID: 30156505 DOI: 10.1162/jocn_a_01309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Humans must learn a variety of sensorimotor skills, yet the relative contributions of sensory and motor information to skill acquisition remain unclear. Here we compare the behavioral and neural contributions of perceptual learning to that of motor learning, and we test whether these contributions depend on the expertise of the learner. Pianists and nonmusicians learned to perform novel melodies on a piano during fMRI scanning in four learning conditions: listening (auditory learning), performing without auditory feedback (motor learning), performing with auditory feedback (auditory-motor learning), or observing visual cues without performing or listening (cue-only learning). Visual cues were present in every learning condition and consisted of musical notation for pianists and spatial cues for nonmusicians. Melodies were performed from memory with no visual cues and with auditory feedback (recall) five times during learning. Pianists showed greater improvements in pitch and rhythm accuracy at recall during auditory learning compared with motor learning. Nonmusicians demonstrated greater rhythm improvements at recall during auditory learning compared with all other learning conditions. Pianists showed greater primary motor response at recall during auditory learning compared with motor learning, and response in this region during auditory learning correlated with pitch accuracy at recall and with auditory-premotor network response during auditory learning. Nonmusicians showed greater inferior parietal response during auditory compared with auditory-motor learning, and response in this region correlated with pitch accuracy at recall. Results suggest an advantage for perceptual learning compared with motor learning that is both general and expertise-dependent. This advantage is hypothesized to depend on feedforward motor control systems that can be used during learning to transform sensory information into motor production.
Collapse
|
33
|
O'Callaghan G, O'Dowd A, Simões-Franklin C, Stapleton J, Newell FN. Tactile-to-Visual Cross-Modal Transfer of Texture Categorisation Following Training: An fMRI Study. Front Integr Neurosci 2018; 12:24. [PMID: 29946245 PMCID: PMC6001281 DOI: 10.3389/fnint.2018.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/22/2018] [Indexed: 11/20/2022] Open
Abstract
We investigated the neural underpinnings of texture categorisation using exemplars that were previously learned either within modalities (visual training and visual test) or across modalities (tactile training and visual test). Previous models of learning suggest a decrease in activation in brain regions that are typically involved in cognitive control during task acquisition, but a concomitant increase in activation in brain regions associated with the representation of the acquired information. In our study, participants were required to learn to categorise fabrics of different textures as either natural or synthetic. Training occurred over several sessions, with each fabric presented either visually or through touch to a participant. Pre- and post-training tests, in which participants categorised visual images only of the fabrics, were conducted during a functional magnetic resonance imaging (fMRI) scan. Consistent with previous research on cognitive processes involved in task acquisition, we found that categorisation training was associated with a decrease in activation in brain regions associated with cognitive systems involved in learning, including the superior parietal cortex, dorsal anterior cingulate cortex (dACC), and the right dorsolateral prefrontal cortex (DLFC). Moreover, these decreases were independent of training modality. In contrast, we found greater activation to visual textures in a region within the left medial occipital cortex (MOC) following training. There was no overall evidence of an effect of training modality in the main analyses, with texture-specific regional changes associated with both within- (visual) and cross- (touch) modal training. However, further analyses suggested that, unlike categorisation performance following within-modal training, crossmodal training was associated with bilateral activation of the MOC. Our results support previous evidence for a multisensory representation of texture within early visual regions of the cortex and provide insight into how multisensory categories are formed in the brain.
Collapse
Affiliation(s)
- Georgia O'Callaghan
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Alan O'Dowd
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Cristina Simões-Franklin
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - John Stapleton
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Fiona N Newell
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
34
|
Bruni S, Giorgetti V, Fogassi L, Bonini L. Multimodal Encoding of Goal-Directed Actions in Monkey Ventral Premotor Grasping Neurons. Cereb Cortex 2018; 27:522-533. [PMID: 26494802 DOI: 10.1093/cercor/bhv246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Visuo-motor neurons of the ventral premotor area F5 encode "pragmatic" representations of object in terms of the potential motor acts (e.g., precision grip) afforded by it. Likewise, objects with identical pragmatic features (e.g., small spheres) but different behavioral value (e.g., edible or inedible) convey different "semantic" information and thus afford different goal-directed behaviors (e.g., grasp-to-eat or grasp-to-place). However, whether F5 neurons can extract distinct behavioral affordances from objects with similar pragmatic features is unknown. We recorded 134 F5 visuo-motor neurons in 2 macaques during a contextually cued go/no-go task in which the monkey grasped, or refrained from grasping, a previously presented edible or inedible target to eat it or placing it, respectively. Sixty-nine visuo-motor neurons showed motor selectivity for the target (35 food and 34 object), and about half of them (N = 35) exhibited congruent visual preference. Interestingly, when the monkey grasped in complete darkness and could identify the target only based on haptic feedback, visuo-motor neurons lost their precontact selectivity, but most of them (80%) showed it again 60 ms after hand-target contact. These findings suggest that F5 neurons possess a multimodal access to semantic information on objects, which are transformed into motor representations of the potential goal-directed actions afforded by them.
Collapse
Affiliation(s)
- Stefania Bruni
- Department of Neuroscience, University of Parma, Parma 43125, Italy
| | | | - Leonardo Fogassi
- Department of Neuroscience, University of Parma, Parma 43125, Italy
| | - Luca Bonini
- Istituto Italiano di Tecnologia (IIT), Brain Center for Social and Motor Cognition (BCSMC), Parma 43125, Italy
| |
Collapse
|
35
|
Phantom Acupuncture Induces Placebo Credibility and Vicarious Sensations: A Parallel fMRI Study of Low Back Pain Patients. Sci Rep 2018; 8:930. [PMID: 29343693 PMCID: PMC5772373 DOI: 10.1038/s41598-017-18870-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023] Open
Abstract
Although acupuncture is an effective therapeutic intervention for pain reduction, the exact difference between real and sham acupuncture has not been clearly understood because a somatosensory tactile component is commonly included in the existing sham acupuncture protocols. In an event-related fMRI experiment, we implemented a novel form of sham acupuncture, phantom acupuncture, that reproduces the acupuncture needling procedure without somatosensory tactile stimulation while maintaining the credibility of the acupuncture treatment context. Fifty-six non-specific low back pain patients received either real (REAL) or phantom (PHNT) acupuncture stimulation in a parallel group study. The REAL group exhibited greater activation in the posterior insula and anterior cingulate cortex, reflecting the needling-specific components of acupuncture. We demonstrated that PHNT could be delivered credibly. Interestingly, the PHNT-credible group exhibited bilateral activation in SI/SII and also reported vicarious acupuncture sensations without needling stimulation. The PHNT group showed greater activation in the bilateral dorsolateral/ventrolateral prefrontal cortex (dlPFC/vlPFC). Moreover, the PHNT group exhibited significant pain reduction, with a significant correlation between the subjective fMRI signal in the right dlPFC/vlPFC and a score assessing belief in acupuncture effectiveness. These results support an expectation-related placebo analgesic effect on subjective pain intensity ratings, possibly mediated by right prefrontal cortex activity.
Collapse
|
36
|
Billino J, Drewing K. Age Effects on Visuo-Haptic Length Discrimination: Evidence for Optimal Integration of Senses in Senior Adults. Multisens Res 2018; 31:273-300. [PMID: 31264626 DOI: 10.1163/22134808-00002601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/25/2017] [Indexed: 11/19/2022]
Abstract
Demographic changes in most developed societies have fostered research on functional aging. While cognitive changes have been characterized elaborately, understanding of perceptual aging lacks behind. We investigated age effects on the mechanisms of how multiple sources of sensory information are merged into a common percept. We studied visuo-haptic integration in a length discrimination task. A total of 24 young (20-25 years) and 27 senior (69-77 years) adults compared standard stimuli to appropriate sets of comparison stimuli. Standard stimuli were explored under visual, haptic, or visuo-haptic conditions. The task procedure allowed introducing an intersensory conflict by anamorphic lenses. Comparison stimuli were exclusively explored haptically. We derived psychometric functions for each condition, determining points of subjective equality and discrimination thresholds. We notably evaluated visuo-haptic perception by different models of multisensory processing, i.e., the Maximum-Likelihood-Estimate model of optimal cue integration, a suboptimal integration model, and a cue switching model. Our results support robust visuo-haptic integration across the adult lifespan. We found suboptimal weighted averaging of sensory sources in young adults, however, senior adults exploited differential sensory reliabilities more efficiently to optimize thresholds. Indeed, evaluation of the MLE model indicates that young adults underweighted visual cues by more than 30%; in contrast, visual weights of senior adults deviated only by about 3% from predictions. We suggest that close to optimal multisensory integration might contribute to successful compensation for age-related sensory losses and provides a critical resource. Differentiation between multisensory integration during healthy aging and age-related pathological challenges on the sensory systems awaits further exploration.
Collapse
Affiliation(s)
- Jutta Billino
- Department of Psychology, Justus-Liebig-Universität, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany
| | - Knut Drewing
- Department of Psychology, Justus-Liebig-Universität, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany
| |
Collapse
|
37
|
Casimo K, Levinson LH, Zanos S, Gkogkidis CA, Ball T, Fetz E, Weaver KE, Ojemann JG. An interspecies comparative study of invasive electrophysiological functional connectivity. Brain Behav 2017; 7:e00863. [PMID: 29299382 PMCID: PMC5745242 DOI: 10.1002/brb3.863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Resting-state connectivity patterns have been observed in humans and other mammal species, and can be recorded using a variety of different technologies. Functional connectivity has been previously compared between species using resting-state fMRI, but not in electrophysiological studies. METHODS We compared connectivity with implanted electrodes in humans (electrocorticography) to macaques and sheep (microelectrocorticography), which are capable of recording neural data at high frequencies with spatial precision. We specifically examined synchrony, implicated in functional integration between regions. RESULTS We found that connectivity strength was overwhelmingly similar in humans and monkeys for pairs of two different brain regions (prefrontal, motor, premotor, parietal), but differed more often within single brain regions. The two connectivity measures, correlation and phase locking value, were similar in most comparisons. Connectivity strength agreed more often between the species at higher frequencies. Where the species differed, monkey synchrony was stronger than human in all but one case. In contrast, human and sheep connectivity within somatosensory cortex diverged in almost all frequencies, with human connectivity stronger than sheep. DISCUSSION Our findings imply greater heterogeneity within regions in humans than in monkeys, but comparable functional interactions between regions in the two species. This suggests that monkeys may be effectively used to probe resting-state connectivity in humans, and that such findings can then be validated in humans. Although the discrepancy between humans and sheep is larger, we suggest that findings from sheep in highly invasive studies may be used to provide guidance for studies in other species.
Collapse
Affiliation(s)
- Kaitlyn Casimo
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA
| | | | - Stavros Zanos
- Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Physiology and Biophysics University of Washington Seattle WA USA.,Washington National Primate Research Center University of Washington Seattle WA USA.,Feinstein Institute for Medical Research New York City NY USA
| | - C Alexis Gkogkidis
- Translational Neurotechnology Laboratory Department of Neurosurgery Faculty of Medicine Medical Center - University of Freiburg Freiburg Germany.,Laboratory for Biomedical Microtechnology Department of Microsystems Engineering Faculty of Engineering University of Freiburg Freiburg Germany
| | - Tonio Ball
- Translational Neurotechnology Laboratory Department of Neurosurgery Faculty of Medicine Medical Center - University of Freiburg Freiburg Germany.,Laboratory for Biomedical Microtechnology Department of Microsystems Engineering Faculty of Engineering University of Freiburg Freiburg Germany
| | - Eberhard Fetz
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Physiology and Biophysics University of Washington Seattle WA USA.,Washington National Primate Research Center University of Washington Seattle WA USA
| | - Kurt E Weaver
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Department of Radiology University of Washington Seattle WA USA.,Integrated Brain Imaging Center University of Washington Seattle WA USA
| | - Jeffrey G Ojemann
- Graduate Program in Neuroscience University of Washington Seattle WA USA.,Center for Sensorimotor Neural Engineering University of Washington Seattle WA USA.,Department of Neurological Surgery University of Washington Seattle WA USA.,Department of Neurological Surgery Seattle Children's Hospital Seattle WA USA
| |
Collapse
|
38
|
Functional anatomy of the macaque temporo-parieto-frontal connectivity. Cortex 2017; 97:306-326. [DOI: 10.1016/j.cortex.2016.12.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/21/2016] [Accepted: 12/04/2016] [Indexed: 01/19/2023]
|
39
|
Benedek M, Schües T, Beaty RE, Jauk E, Koschutnig K, Fink A, Neubauer AC. To create or to recall original ideas: Brain processes associated with the imagination of novel object uses. Cortex 2017; 99:93-102. [PMID: 29197665 DOI: 10.1016/j.cortex.2017.10.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/11/2017] [Accepted: 10/30/2017] [Indexed: 01/01/2023]
Abstract
This fMRI study investigated what brain processes contribute to the generation of new ideas. Brain activation was measured while participants generated new original object uses, recalled original object uses, or recalled common object uses. Post-scan evaluations were used to confirm what ideas were newly generated on the spot or actually retrieved from memory. When compared to the recall of common ideas, the generation of new and old original ideas showed a similar activation pattern including activation of bilateral parahippocampal and mPFC regions, suggesting that the construction of new ideas builds on similar processes like the reconstruction of original ideas from episodic memory. As a difference, the generation of new object uses involved higher activation of a focused cluster in the left supramarginal gyrus compared to the recall of original ideas. This finding adds to the converging evidence that the left supramarginal gyrus is crucially involved in the construction of novel representations, potentially by integrating memory content in new ways and supporting executively demanding mental simulations. This study deepens our understanding of how creative thought builds on and goes beyond memory.
Collapse
Affiliation(s)
- Mathias Benedek
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria.
| | - Till Schües
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria
| | - Roger E Beaty
- Department of Psychology and Center for Brain Science, Harvard University, USA
| | - Emanuel Jauk
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria
| | - Karl Koschutnig
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria
| | - Andreas Fink
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria
| | - Aljoscha C Neubauer
- Institute of Psychology, University of Graz, Austria; BioTecMed Graz, Austria
| |
Collapse
|
40
|
Recruitment of Foveal Retinotopic Cortex During Haptic Exploration of Shapes and Actions in the Dark. J Neurosci 2017; 37:11572-11591. [PMID: 29066555 DOI: 10.1523/jneurosci.2428-16.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/05/2017] [Indexed: 12/23/2022] Open
Abstract
The role of the early visual cortex and higher-order occipitotemporal cortex has been studied extensively for visual recognition and to a lesser degree for haptic recognition and visually guided actions. Using a slow event-related fMRI experiment, we investigated whether tactile and visual exploration of objects recruit the same "visual" areas (and in the case of visual cortex, the same retinotopic zones) and if these areas show reactivation during delayed actions in the dark toward haptically explored objects (and if so, whether this reactivation might be due to imagery). We examined activation during visual or haptic exploration of objects and action execution (grasping or reaching) separated by an 18 s delay. Twenty-nine human volunteers (13 females) participated in this study. Participants had their eyes open and fixated on a point in the dark. The objects were placed below the fixation point and accordingly visual exploration activated the cuneus, which processes retinotopic locations in the lower visual field. Strikingly, the occipital pole (OP), representing foveal locations, showed higher activation for tactile than visual exploration, although the stimulus was unseen and location in the visual field was peripheral. Moreover, the lateral occipital tactile-visual area (LOtv) showed comparable activation for tactile and visual exploration. Psychophysiological interaction analysis indicated that the OP showed stronger functional connectivity with anterior intraparietal sulcus and LOtv during the haptic than visual exploration of shapes in the dark. After the delay, the cuneus, OP, and LOtv showed reactivation that was independent of the sensory modality used to explore the object. These results show that haptic actions not only activate "visual" areas during object touch, but also that this information appears to be used in guiding grasping actions toward targets after a delay.SIGNIFICANCE STATEMENT Visual presentation of an object activates shape-processing areas and retinotopic locations in early visual areas. Moreover, if the object is grasped in the dark after a delay, these areas show "reactivation." Here, we show that these areas are also activated and reactivated for haptic object exploration and haptically guided grasping. Touch-related activity occurs not only in the retinotopic location of the visual stimulus, but also at the occipital pole (OP), corresponding to the foveal representation, even though the stimulus was unseen and located peripherally. That is, the same "visual" regions are implicated in both visual and haptic exploration; however, touch also recruits high-acuity central representation within early visual areas during both haptic exploration of objects and subsequent actions toward them. Functional connectivity analysis shows that the OP is more strongly connected with ventral and dorsal stream areas when participants explore an object in the dark than when they view it.
Collapse
|
41
|
Stimulation of PPC Affects the Mapping between Motion and Force Signals for Stiffness Perception But Not Motion Control. J Neurosci 2017; 36:10545-10559. [PMID: 27733607 DOI: 10.1523/jneurosci.1178-16.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/13/2016] [Indexed: 11/21/2022] Open
Abstract
How motion and sensory inputs are combined to assess an object's stiffness is still unknown. Here, we provide evidence for the existence of a stiffness estimator in the human posterior parietal cortex (PPC). We showed previously that delaying force feedback with respect to motion when interacting with an object caused participants to underestimate its stiffness. We found that applying theta-burst transcranial magnetic stimulation (TMS) over the PPC, but not the dorsal premotor cortex, enhances this effect without affecting movement control. We explain this enhancement as an additional lag in force signals. This is the first causal evidence that the PPC is not only involved in motion control, but also has an important role in perception that is disassociated from action. We provide a computational model suggesting that the PPC integrates position and force signals for perception of stiffness and that TMS alters the synchronization between the two signals causing lasting consequences on perceptual behavior. SIGNIFICANCE STATEMENT When selecting an object such as a ripe fruit or sofa, we need to assess the object's stiffness. Because we lack dedicated stiffness sensors, we rely on an as yet unknown mechanism that generates stiffness percepts by combining position and force signals. Here, we found that the posterior parietal cortex (PPC) contributes to combining position and force signals for stiffness estimation. This finding challenges the classical view about the role of the PPC in regulating position signals only for motion control because we highlight a key role of the PPC in perception that is disassociated from action. Altogether this sheds light on brain mechanisms underlying the interaction between action and perception and may help in the development of better teleoperation systems and rehabilitation of patients with sensory impairments.
Collapse
|
42
|
Semantic congruent audiovisual integration during the encoding stage of working memory: an ERP and sLORETA study. Sci Rep 2017; 7:5112. [PMID: 28698594 PMCID: PMC5505990 DOI: 10.1038/s41598-017-05471-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 05/31/2017] [Indexed: 11/09/2022] Open
Abstract
Although multisensory integration is an inherent component of functional brain organization, multisensory integration during working memory (WM) has attracted little attention. The present study investigated the neural properties underlying the multisensory integration of WM by comparing semantically related bimodal stimulus presentations with unimodal stimulus presentations and analysing the results using the standardized low-resolution brain electromagnetic tomography (sLORETA) source location approach. The results showed that the memory retrieval reaction times during congruent audiovisual conditions were faster than those during unisensory conditions. Moreover, our findings indicated that the event-related potential (ERP) for simultaneous audiovisual stimuli differed from the ERP for the sum of unisensory constituents during the encoding stage and occurred within a 236-530 ms timeframe over the frontal and parietal-occipital electrodes. The sLORETA images revealed a distributed network of brain areas that participate in the multisensory integration of WM. These results suggested that information inputs from different WM subsystems yielded nonlinear multisensory interactions and became integrated during the encoding stage. The multicomponent model of WM indicates that the central executive could play a critical role in the integration of information from different slave systems.
Collapse
|
43
|
Borra E, Gerbella M, Rozzi S, Luppino G. The macaque lateral grasping network: A neural substrate for generating purposeful hand actions. Neurosci Biobehav Rev 2017; 75:65-90. [DOI: 10.1016/j.neubiorev.2017.01.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 10/20/2022]
|
44
|
Battaglia-Mayer A, Babicola L, Satta E. Parieto-frontal gradients and domains underlying eye and hand operations in the action space. Neuroscience 2016; 334:76-92. [DOI: 10.1016/j.neuroscience.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 07/06/2016] [Accepted: 07/06/2016] [Indexed: 12/16/2022]
|
45
|
Hand-independent representation of tool-use pantomimes in the left anterior intraparietal cortex. Exp Brain Res 2016; 234:3677-3687. [DOI: 10.1007/s00221-016-4765-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
|
46
|
Dombert PL, Kuhns A, Mengotti P, Fink GR, Vossel S. Functional mechanisms of probabilistic inference in feature- and space-based attentional systems. Neuroimage 2016; 142:553-564. [PMID: 27523448 DOI: 10.1016/j.neuroimage.2016.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022] Open
Abstract
Humans flexibly attend to features or locations and these processes are influenced by the probability of sensory events. We combined computational modeling of response times with fMRI to compare the functional correlates of (re-)orienting, and the modulation by probabilistic inference in spatial and feature-based attention systems. Twenty-four volunteers performed two task versions with spatial or color cues. Percentage of cue validity changed unpredictably. A hierarchical Bayesian model was used to derive trial-wise estimates of probability-dependent attention, entering the fMRI analysis as parametric regressors. Attentional orienting activated a dorsal frontoparietal network in both tasks, without significant parametric modulation. Spatially invalid trials activated a bilateral frontoparietal network and the precuneus, while invalid feature trials activated the left intraparietal sulcus (IPS). Probability-dependent attention modulated activity in the precuneus, left posterior IPS, middle occipital gyrus, and right temporoparietal junction for spatial attention, and in the left anterior IPS for feature-based and spatial attention. These findings provide novel insights into the generality and specificity of the functional basis of attentional control. They suggest that probabilistic inference can distinctively affect each attentional subsystem, but that there is an overlap in the left IPS, which responds to both spatial and feature-based expectancy violations.
Collapse
Affiliation(s)
- Pascasie L Dombert
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany.
| | - Anna Kuhns
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany
| | - Paola Mengotti
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany
| | - Gereon R Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany; Department of Neurology, University Hospital Cologne, 50937 Cologne, Germany
| | - Simone Vossel
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Juelich, 52425, Juelich, Germany; Department of Psychology, University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
47
|
Ferretti G. Through the forest of motor representations. Conscious Cogn 2016; 43:177-96. [PMID: 27310110 DOI: 10.1016/j.concog.2016.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Following neuroscience, and using different labels, several philosophers have addressed the idea of the presence of a single representational mechanism lying in between (visual) perceptual processes and motor processes involved in different functions and useful for shaping suitable action performances: a motor representation (MR). MRs are the naturalized mental antecedents of action. This paper presents a new, non-monolithic view of MRs, according to which, contrarily to the received view, when looking at in between (visual) perceptual processes and motor processes, we find not only a single representational mechanism with different functions, but an ensemble of different sub-representational phenomena, each of which with a different function. This new view is able to avoid several issues emerging from the literature and to address something the literature is silent about, which however turns out to be crucial for a theory of MRs.
Collapse
Affiliation(s)
- Gabriele Ferretti
- Department of Pure and Applied Science, University of Urbino Carlo Bo, Via Timoteo Viti, 10, 61029 Urbino, PU, Italy; Centre for Philosophical Psychology, University of Antwerp, S.S. 208, Lange Sint Annastraat 7, 2000 Antwerpen, Belgium.
| |
Collapse
|
48
|
Zimmermann E, Derichs C, Fink GR. The functional role of time compression. Sci Rep 2016; 6:25843. [PMID: 27180810 PMCID: PMC4867590 DOI: 10.1038/srep25843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
Multisensory integration provides continuous and stable perception from separate sensory inputs. Here, we investigated the functional role of temporal binding between the visual and the tactile senses. To this end we used the paradigm of compression that induces shifts in time when probe stimuli are degraded, e.g., by a visual mask (Zimmermann et al. 2014). Subjects had to estimate the duration of temporal intervals of 500 ms defined by a tactile and a visual, masked stimulus. We observed a strong (~100 ms) underestimation of the temporal interval when the stimuli from both senses appeared to occur at the same position in space. In contrast, when the positions of the visual and tactile stimuli were spatially separate, interval perception was almost veridical. Temporal compression furthermore depended on the correspondence of probe features and was absent when the orientation of the tactile and visual probes was incongruent. An additional experiment revealed that temporal compression also occurs when objects were presented outside the attentional focus. In conclusion, these data support a role for spatiotemporal binding in temporal compression, which is at least in part selective for object features.
Collapse
Affiliation(s)
- Eckart Zimmermann
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany
| | - Christina Derichs
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Germany
- Department of Neurology, University Hospital Cologne, Germany
| |
Collapse
|
49
|
Leo A, Handjaras G, Bianchi M, Marino H, Gabiccini M, Guidi A, Scilingo EP, Pietrini P, Bicchi A, Santello M, Ricciardi E. A synergy-based hand control is encoded in human motor cortical areas. eLife 2016; 5. [PMID: 26880543 PMCID: PMC4786436 DOI: 10.7554/elife.13420] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/13/2016] [Indexed: 01/17/2023] Open
Abstract
How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI:http://dx.doi.org/10.7554/eLife.13420.001 The human hand can perform an enormous range of movements with great dexterity. Some common everyday actions, such as grasping a coffee cup, involve the coordinated movement of all four fingers and thumb. Others, such as typing, rely on the ability of individual fingers to move relatively independently of one another. This flexibility is possible in part because of the complex anatomy of the hand, with its 27 bones and their connecting joints and muscles. But with this complexity comes a huge number of possibilities. Any movement-related task – such as picking up a cup – can be achieved via many different combinations of muscle contractions and joint positions. So how does the brain decide which muscles and joints to use? One theory is that the brain simplifies this problem by encoding particularly useful patterns of joint movements as distinct units or “synergies”. A given task can then be performed by selecting from a small number of synergies, avoiding the need to choose between huge numbers of options every time movement is required. Leo et al. now provide the first direct evidence for the encoding of synergies by the human brain. Volunteers lying inside a brain scanner reached towards virtual objects – from tennis rackets to toothpicks – while activity was recorded from the area of the brain that controls hand movements. As predicted, the scans showed specific and reproducible patterns of activity. Analysing these patterns revealed that each corresponded to a particular combination of joint positions. These activity patterns, or synergies, could even be ‘decoded’ to work out which type of movement a volunteer had just performed. Future experiments should examine how the brain combines synergies with sensory feedback to allow movements to be adjusted as they occur. Such findings could help to develop brain-computer interfaces and systems for controlling the movement of artificial limbs. DOI:http://dx.doi.org/10.7554/eLife.13420.002
Collapse
Affiliation(s)
- Andrea Leo
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Giacomo Handjaras
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy
| | - Matteo Bianchi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Hamal Marino
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Marco Gabiccini
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Andrea Guidi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| | - Enzo Pasquale Scilingo
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Pietro Pietrini
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Clinical Psychology Branch, Pisa University Hospital, Pisa, Italy.,IMT School for Advanced Studies Lucca, Lucca, Italy
| | - Antonio Bicchi
- Research Center 'E. Piaggio', University of Pisa, Pisa, Italy.,Advanced Robotics Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, United States
| | - Emiliano Ricciardi
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa, Italy.,Research Center 'E. Piaggio', University of Pisa, Pisa, Italy
| |
Collapse
|
50
|
Romero MC, Janssen P. Receptive field properties of neurons in the macaque anterior intraparietal area. J Neurophysiol 2016; 115:1542-55. [PMID: 26792887 DOI: 10.1152/jn.01037.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 01/12/2016] [Indexed: 01/08/2023] Open
Abstract
Visual object information is necessary for grasping. In primates, the anterior intraparietal area (AIP) plays an essential role in visually guided grasping. Neurons in AIP encode features of objects, but no study has systematically investigated the receptive field (RF) of AIP neurons. We mapped the RF of posterior AIP (pAIP) neurons in the central visual field, using images of objects and small line fragments that evoked robust responses, together with less effective stimuli. The RF sizes we measured varied between 3°(2)and 90°(2), with the highest response either at the fixation point or at parafoveal positions. A large fraction of pAIP neurons showed nonuniform RFs, with multiple local maxima in both ipsilateral and contralateral hemifields. Moreover, the RF profile could depend strongly on the stimulus used to map the RF. Highly similar results were obtained with the smallest stimulus that evoked reliable responses (line fragments measuring 1-2°). The nonuniformity and dependence of the RF profile on the stimulus in pAIP were comparable to previous observations in the anterior part of the lateral intraparietal area (aLIP), but the average RF of pAIP neurons was located at the fovea whereas the average RF of aLIP neurons was located parafoveally. Thus nonuniformity and stimulus dependence of the RF may represent general RF properties of neurons in the dorsal visual stream involved in object analysis, which contrast markedly with those of neurons in the ventral visual stream.
Collapse
Affiliation(s)
- Maria C Romero
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| | - Peter Janssen
- Laboratorium voor Neuro- en Psychofysiologie, KU Leuven, Leuven, Belgium
| |
Collapse
|