1
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
2
|
Zhang L, Li Y, Dong L, Sun K, Liu H, Ma Z, Yan L, Yin Y. MAP Kinase FgHog1 and Importin β FgNmd5 Regulate Calcium Homeostasis in Fusarium graminearum. J Fungi (Basel) 2023; 9:707. [PMID: 37504696 PMCID: PMC10381525 DOI: 10.3390/jof9070707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Maintaining cellular calcium (Ca2+) homeostasis is essential for many aspects of cellular life. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway responsible for signal integration and transduction plays crucial roles in environmental adaptation, especially in the response to osmotic stress. Hog1 is activated by transient Ca2+ increase in yeast, but the functions of the HOG pathway in Ca2+ homeostasis are largely unknown. We found that the HOG pathway was involved in the regulation of Ca2+ homeostasis in Fusarium graminearum, a devastating fungal pathogen of cereal crops. The deletion mutants of HOG pathway displayed increased sensitivity to Ca2+ and FK506, and elevated intracellular Ca2+ content. Ca2+ treatment induced the phosphorylation of FgHog1, and the phosphorylated FgHog1 was transported into the nucleus by importin β FgNmd5. Moreover, the increased phosphorylation and nuclear accumulation of FgHog1 upon Ca2+ treatment is independent of the calcineurin pathway that is conserved and downstream of the Ca2+ signal. Taken together, this study reported the novel function of FgHog1 in the regulation of Ca2+ homeostasis in F. graminearum, which advance the understanding of the HOG pathway and the association between the HOG and calcineurin pathways in fungi.
Collapse
Affiliation(s)
- Lixin Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yiqing Li
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lanlan Dong
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Kewei Sun
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hao Liu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhonghua Ma
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Leiyan Yan
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Yanni Yin
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
3
|
Bio-electrochemical inter-molecular impedance sensing (Bio-EI2S) at calcium-calmodulin interface induced at Au-electrode surface. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Sosa-Peinado A, León-Cruz E, Velázquez-López I, Matuz-Mares D, Cano-Sánchez P, González-Andrade M. Theoretical-experimental studies of calmodulin-peptide interactions at different calcium equivalents. J Biomol Struct Dyn 2022; 40:2689-2700. [DOI: 10.1080/07391102.2020.1841679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Erika León-Cruz
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Deyamira Matuz-Mares
- Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Cano-Sánchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | |
Collapse
|
5
|
Identification of the Wheat (Triticum aestivum) IQD Gene Family and an Expression Analysis of Candidate Genes Associated with Seed Dormancy and Germination. Int J Mol Sci 2022; 23:ijms23084093. [PMID: 35456910 PMCID: PMC9025732 DOI: 10.3390/ijms23084093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
The IQ67 Domain (IQD) gene family plays important roles in plant developmental processes and stress responses. Although IQDs have been characterized in model plants, little is known about their functions in wheat (Triticum aestivum), especially their roles in the regulation of seed dormancy and germination. Here, we identified 73 members of the IQD gene family from the wheat genome and phylogenetically separated them into six major groups. Gene structure and conserved domain analyses suggested that most members of each group had similar structures. A chromosome positional analysis showed that TaIQDs were unevenly located on 18 wheat chromosomes. A synteny analysis indicated that segmental duplications played significant roles in TaIQD expansion, and that the IQD gene family underwent strong purifying selection during evolution. Furthermore, a large number of hormone, light, and abiotic stress response elements were discovered in the promoters of TaIQDs, implying their functional diversity. Microarray data for 50 TaIQDs showed different expression levels in 13 wheat tissues. Transcriptome data and a quantitative real-time PCR analysis of wheat varieties with contrasting seed dormancy and germination phenotypes further revealed that seven genes (TaIQD4/-28/-32/-58/-64/-69/-71) likely participated in seed dormancy and germination through the abscisic acid-signaling pathway. The study results provide valuable information for cloning and a functional investigation of candidate genes controlling wheat seed dormancy and germination; consequently, they increase our understanding of the complex regulatory networks affecting these two traits.
Collapse
|
6
|
Baker K, Geeves MA, Mulvihill DP. Acetylation stabilises calmodulin-regulated calcium signalling. FEBS Lett 2022; 596:762-771. [PMID: 35100446 PMCID: PMC9303947 DOI: 10.1002/1873-3468.14304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
Abstract
Calmodulin is a conserved calcium signalling protein that regulates a wide range of cellular functions. Amino‐terminal acetylation is a ubiquitous post‐translational modification that affects the majority of human proteins, to stabilise structure, as well as regulate function and proteolytic degradation. Here, we present data on the impact of amino‐terminal acetylation upon structure and calcium signalling function of fission yeast calmodulin. We show that NatA‐dependent acetylation stabilises the helical structure of the Schizosaccharomyces pombe calmodulin, impacting its ability to associate with myosin at endocytic foci. We go on to show that this conserved modification impacts both the calcium‐binding capacity of yeast and human calmodulins. These findings have significant implications for research undertaken into this highly conserved essential protein.
Collapse
Affiliation(s)
- Karen Baker
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Michael A Geeves
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| | - Daniel P Mulvihill
- School of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ, UK
| |
Collapse
|
7
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Samarasinghe TN, Zeng Y, Johnson CK. Microchip Electrophoresis Assay for Calmodulin Binding Proteins. J Sep Sci 2021; 44:895-902. [PMID: 34321981 DOI: 10.1002/jssc.202000884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The calcium signaling protein calmodulin regulates numerous intracellular processes. We introduce a sensitive microchip assay to separate and detect calmodulin binding proteins. The assay utilizes an optimized microchip electrophoresis protein separation platform with laser-induced fluorescence detection. Fluorescence-labeled calmodulin modified with a photoreactive diazirine crosslinker allowed selective detection of calmodulin binding proteins. We demonstrate successful in-vitro crosslinking of calmodulin with two calmodulin binding proteins, calcineurin and nitric oxide synthase. We compare the efficacy of commonly applied electrophoretic separation modes: microchip capillary zone electrophoresis, microchip micellar electrokinetic chromatography/gel electrophoresis, and nanoparticle colloidal arrays. Out of the methods tested, polydymethylsiloxane/glass chips with microchip zone electrophoresis gave the poorest separation, whereas sieving methods in which electro-osmotic flow was suppressed gave the best separation of photoproducts of calmodulin conjugated with calmodulin binding proteins.
Collapse
Affiliation(s)
| | - Yong Zeng
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| | - Carey K Johnson
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
9
|
Kim WD, Yap SQ, Huber RJ. A Proteomics Analysis of Calmodulin-Binding Proteins in Dictyostelium discoideum during the Transition from Unicellular Growth to Multicellular Development. Int J Mol Sci 2021; 22:ijms22041722. [PMID: 33572113 PMCID: PMC7915506 DOI: 10.3390/ijms22041722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 11/24/2022] Open
Abstract
Calmodulin (CaM) is an essential calcium-binding protein within eukaryotes. CaM binds to calmodulin-binding proteins (CaMBPs) and influences a variety of cellular and developmental processes. In this study, we used immunoprecipitation coupled with mass spectrometry (LC-MS/MS) to reveal over 500 putative CaM interactors in the model organism Dictyostelium discoideum. Our analysis revealed several known CaMBPs in Dictyostelium and mammalian cells (e.g., myosin, calcineurin), as well as many novel interactors (e.g., cathepsin D). Gene ontology (GO) term enrichment and Search Tool for the Retrieval of Interacting proteins (STRING) analyses linked the CaM interactors to several cellular and developmental processes in Dictyostelium including cytokinesis, gene expression, endocytosis, and metabolism. The primary localizations of the CaM interactors include the nucleus, ribosomes, vesicles, mitochondria, cytoskeleton, and extracellular space. These findings are not only consistent with previous work on CaM and CaMBPs in Dictyostelium, but they also provide new insight on their diverse cellular and developmental roles in this model organism. In total, this study provides the first in vivo catalogue of putative CaM interactors in Dictyostelium and sheds additional light on the essential roles of CaM and CaMBPs in eukaryotes.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Shyong Q. Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; (W.D.K.); (S.Q.Y.)
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON K9L 0G2, Canada
- Correspondence: ; Tel.: +1-705-748-1011 (ext. 7316)
| |
Collapse
|
10
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
11
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
12
|
Tendon and ligament mechanical loading in the pathogenesis of inflammatory arthritis. Nat Rev Rheumatol 2020; 16:193-207. [PMID: 32080619 DOI: 10.1038/s41584-019-0364-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
Abstract
Mechanical loading is an important factor in musculoskeletal health and disease. Tendons and ligaments require physiological levels of mechanical loading to develop and maintain their tissue architecture, a process that is achieved at the cellular level through mechanotransduction-mediated fine tuning of the extracellular matrix by tendon and ligament stromal cells. Pathological levels of force represent a biological (mechanical) stress that elicits an immune system-mediated tissue repair pathway in tendons and ligaments. The biomechanics and mechanobiology of tendons and ligaments form the basis for understanding how such tissues sense and respond to mechanical force, and the anatomical extent of several mechanical stress-related disorders in tendons and ligaments overlaps with that of chronic inflammatory arthritis in joints. The role of mechanical stress in 'overuse' injuries, such as tendinopathy, has long been known, but mechanical stress is now also emerging as a possible trigger for some forms of chronic inflammatory arthritis, including spondyloarthritis and rheumatoid arthritis. Thus, seemingly diverse diseases of the musculoskeletal system might have similar mechanisms of immunopathogenesis owing to conserved responses to mechanical stress.
Collapse
|
13
|
O’Day DH, Taylor RJ, Myre MA. Calmodulin and Calmodulin Binding Proteins in Dictyostelium: A Primer. Int J Mol Sci 2020; 21:E1210. [PMID: 32054133 PMCID: PMC7072818 DOI: 10.3390/ijms21041210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 01/11/2023] Open
Abstract
Dictyostelium discoideum is gaining increasing attention as a model organism for the study of calcium binding and calmodulin function in basic biological events as well as human diseases. After a short overview of calcium-binding proteins, the structure of Dictyostelium calmodulin and the conformational changes effected by calcium ion binding to its four EF hands are compared to its human counterpart, emphasizing the highly conserved nature of this central regulatory protein. The calcium-dependent and -independent motifs involved in calmodulin binding to target proteins are discussed with examples of the diversity of calmodulin binding proteins that have been studied in this amoebozoan. The methods used to identify and characterize calmodulin binding proteins is covered followed by the ways Dictyostelium is currently being used as a system to study several neurodegenerative diseases and how it could serve as a model for studying calmodulinopathies such as those associated with specific types of heart arrythmia. Because of its rapid developmental cycles, its genetic tractability, and a richly endowed stock center, Dictyostelium is in a position to become a leader in the field of calmodulin research.
Collapse
Affiliation(s)
- Danton H. O’Day
- Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L6L 1X3, Canada
| | - Ryan J. Taylor
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA; (R.J.T.); (M.A.M.)
| |
Collapse
|
14
|
Choi YJ, Kim MH, Yu KY, Kim J. Suppression of urease, which affects nitrogen metabolism and biological efficacy, by Ca 2+/calmodulin in Cordyceps militaris. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118568. [PMID: 31676355 DOI: 10.1016/j.bbamcr.2019.118568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022]
Affiliation(s)
- Young-Ji Choi
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54810, Republic of Korea; National Marine Biodiversity Institute of Korea, Seocheon-gun, Chungnam 33662, Republic of Korea
| | - Mi-Hee Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54810, Republic of Korea
| | - Kang-Yeol Yu
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54810, Republic of Korea
| | - Jiyoung Kim
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeonbuk 54810, Republic of Korea.
| |
Collapse
|
15
|
Regulation of secondary metabolism by calmodulin signaling in filamentous fungi. Rev Iberoam Micol 2019; 36:167-168. [PMID: 31530465 DOI: 10.1016/j.riam.2019.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/04/2018] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
|
16
|
Zhu W, Kong J, Zhang J, Wang J, Li W, Wang W. Consequences of Hydrophobic Nanotube Binding on the Functional Dynamics of Signaling Protein Calmodulin. ACS OMEGA 2019; 4:10494-10501. [PMID: 31460146 PMCID: PMC6648716 DOI: 10.1021/acsomega.9b01217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The wide applications of nanomaterials in industry and our daily life have raised growing concerns on their toxicity to human body. Increasing evidence links the cytotoxicity of nanoparticles to the disruption of cellular signaling pathways. Here, we report a computational study on the mechanisms of the cytotoxicity of carbon nanotubes (CNTs) by investigating the direct impacts of CNTs on the functional motions of calmodulin (CaM), which is one of the most important signaling proteins in a cell, and its signaling function relies on the Ca2+ binding-coupled conformational switching. Computational simulations with a coarse-grained model showed that binding of CNTs modifies the conformational equilibrium of CaM and induces the closed-to-open conformational transition, leading to the loss of its Ca2+-sensing ability. In addition, the binding of CNTs drastically increases the calcium affinity of CaM, which may disrupt the Ca2+ homeostasis in a cell. These results suggest that the binding of hydrophobic nanotubes not only inhibits the signaling function of CaM as a calcium sensor but also renders CaM to toxic species through sequestering Ca2+ from other competing calcium-binding proteins, suggesting a new physical mechanism of the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Wentao Zhu
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jianyang Kong
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State
Microstructure, and Collaborative Innovation Center of Advanced Microstructures
and Department of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Kim J, Sung GH. Beauvericin synthetase contains a calmodulin binding motif in the entomopathogenic fungus Beauveria bassiana. J GEN APPL MICROBIOL 2018; 64:145-147. [PMID: 29553056 DOI: 10.2323/jgam.2017.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca2+ signals are partially decoded by Ca2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca2+-dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca2+. In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca2+-dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.
Collapse
Affiliation(s)
| | - Gi-Ho Sung
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University.,Department of Microbiology, College of Medicine, Catholic Kwandong University.,Institute for Translational and Clinical Research, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University
| |
Collapse
|
18
|
Kim J, Oh J, Yoon DH, Sung GH. Suppression of a methionine synthase by calmodulin under environmental stress in the entomopathogenic fungus Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:612-617. [PMID: 28556625 DOI: 10.1111/1758-2229.12548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 06/07/2023]
Abstract
Methionine synthase (MetE, EC 2.1.1.14) catalyses the final step in the methionine biosynthetic pathway. Methionine biosynthesis plays a major role in protein biogenesis and is the source of S-adenosyl methionine (SAM), the universal donor of methyl groups. In this study, we demonstrated that BbMetE acts as a typical MetE enzyme in the entomopathogenic fungus Beauveria bassiana. In addition, we found that BbMetE binds to calmodulin (CaM) in vitro and in vivo. The functional role of CaM binding to BbMetE was to negatively regulate BbMetE activity in B. bassiana. Our proton-nuclear magnetic resonance data revealed that CaM inhibitor W-7 increases methionine content in B. bassiana, suggesting that CaM negatively regulates the BbMetE activity. Environmental stress stimuli such as salt, H2 O2 and heat suppressed BbMetE activity in B. bassiana. W-7 reversed this effect, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbMetE plays an important role in methionine biosynthesis, which is mediated by environmental stress stimuli via the CaM signalling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Junsang Oh
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Deok-Hyo Yoon
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| | - Gi-Ho Sung
- Institute for Healthcare and Life Science, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
- Department of Medicine, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 25601, Korea
- Institute for Translational and Clinical Research, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon 22711, Korea
| |
Collapse
|
19
|
Kim J, Oh J, Yoon DH, Sung GH. Identification of calmodulin binding proteins in the entomopathogenic fungus Beauveria bassiana. Folia Microbiol (Praha) 2017; 63:13-16. [PMID: 28497337 DOI: 10.1007/s12223-017-0529-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/05/2017] [Indexed: 01/24/2023]
Abstract
Calmodulin (CaM) is a primary Ca2+ receptor and plays a pivotal role in a variety of cellular responses in eukaryotes. Even though a large number of CaM-binding proteins are well known in yeast, plants, and animals, little is known regarding CaM-targeted proteins in filamentous fungi. To identify CaM-binding proteins in filamentous fungi, we used a proteomics method coupled with co-immunoprecipitation (CoIP) and MALDI-TOF/TOF mass spectrometry (MS) in Beauveria bassiana. Through this method, we identified ten CaM-binding proteins in B. bassiana. One of the CaM-targeted proteins was the heat shock protein 70 (BbHSP70) in B. bassiana. Our biochemical study showed that ATP inhibits the molecular interaction between BbHSP70 and CaM, suggesting a regulatory mechanism between CaM and ATP for regulating BbHSP70.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Deok-Hyo Yoon
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, South Korea.
| |
Collapse
|
20
|
Singh S, Virdi AS, Jaswal R, Chawla M, Kapoor S, Mohapatra SB, Manoj N, Pareek A, Kumar S, Singh P. A temperature-responsive gene in sorghum encodes a glycine-rich protein that interacts with calmodulin. Biochimie 2017; 137:115-123. [PMID: 28322928 DOI: 10.1016/j.biochi.2017.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 11/26/2022]
Abstract
Imposition of different biotic and abiotic stress conditions results in an increase in intracellular levels of Ca2+ which is sensed by various sensor proteins. Calmodulin (CaM) is one of the best studied transducers of Ca2+ signals. CaM undergoes conformational changes upon binding to Ca2+ and interacts with different types of proteins, thereby, regulating their activities. The present study reports the cloning and characterization of a sorghum cDNA encoding a protein (SbGRBP) that shows homology to glycine-rich RNA-binding proteins. The expression of SbGRBP in the sorghum seedlings is modulated by heat stress. The SbGRBP protein is localized in the nucleus as well as in cytosol, and shows interaction with CaM that requires the presence of Ca2+. SbGRBP depicts binding to single- and also double-stranded DNA. Fluorescence spectroscopic analyses suggest that interaction of SbGRBP with nucleic acids may be modulated after binding with CaM. To our knowledge, this is the first study to provide evidence for interaction of a stress regulated glycine-rich RNA-binding protein with CaM.
Collapse
Affiliation(s)
- Supreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Amardeep Singh Virdi
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Rajdeep Jaswal
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India
| | - Mrinalini Chawla
- Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Sanjay Kapoor
- Interdisciplinary Center for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Samar B Mohapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Narayanan Manoj
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sanjay Kumar
- Biotechnology Division, Institute of Himalayan Bioresource Technology, Palampur, 176061 Himachal Pradesh, India.
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
21
|
Erol K. The Adsorption of Calmoduline via Nicotinamide Immobilized Poly(HEMA-GMA) Cryogels. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2016. [DOI: 10.18596/jotcsa.287321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
22
|
Kim J, Yoon DH, Oh J, Hyun MW, Han JG, Sung GH. Calmodulin-mediated suppression of 2-ketoisovalerate reductase in Beauveria bassiana beauvericin biosynthetic pathway. Environ Microbiol 2016; 18:4136-4143. [PMID: 27449895 DOI: 10.1111/1462-2920.13461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/10/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Abstract
Ketoisovalerate reductase (KIVR, E.C. 1.2.7.7) mediates the specific reduction of 2-ketoisovalerate (2-Kiv) to d-hydroxyisovalerate (d-Hiv), a precursor for beauvericin biosynthesis. Beauvericin, a famous mycotoxin produced by many fungi, is a cyclooligomer depsipeptide, which has insecticidal, antimicrobial, antiviral, and cytotoxic activities. In this report, we demonstrated that Beauveria bassiana 2-ketoisovalerate reductase (BbKIVR) acts as a typical KIVR enzyme in the entomopathogenic fungus B. bassiana. In addition, we found that BbKIVR interacts with calmodulin (CaM) in vitro and in vivo. The functional role of CaM-binding to BbKIVR was to negatively regulate the BbKIVR activity in B. bassiana. Environmental stimuli such as light and salt stress suppressed BbKIVR activity in B. bassiana. Interestingly, this negative effect of BbKIVR activity by light and salt stress was recovered by CaM inhibitors, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbKIVR plays an important role in the beauvericin biosynthetic pathway mediated by environmental stimuli such as light and salt stress via the CaM signaling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea.,Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon, Korea
| | - Deok-Hyo Yoon
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Min-Woo Hyun
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Jae-Gu Han
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University, Incheon, 404-834, Korea
| |
Collapse
|
23
|
Regulation of MAP kinase Hog1 by calmodulin during hyperosmotic stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2551-2559. [PMID: 27421986 DOI: 10.1016/j.bbamcr.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (Hog1 in yeast and ortholog p38 in human cells) plays a critical role in the signal transduction pathway that is rapidly activated under multiple stress conditions. Environmental stress stimuli such as hyperosmotic stress cause changes in cellular ATP metabolism required for hyperosmotic stress tolerance. Furthermore, hyperosmotic stress induces rapid Ca2+ signals in eukaryotic cells. These Ca2+ signals can be decoded by Ca2+ sensor calmodulin (CaM). By using genetic and biochemical approaches, we demonstrate that Hog1 is a novel CaM-binding protein, and that CaM-binding to Hog1 is involved in the mediation of the hyperosmotic stress signaling pathway. In addition, we show that p38α, a human ortholog of Hog1, interacts with CaM, suggesting that the CaM-binding feature of Hog1/p38α is evolutionarily conserved in eukaryotic cells. Hog1 is likely involved in cellular ATP regulation through CaM signaling during hyperosmotic stress. Therefore, this work suggests that Hog1 plays an important role in connecting CaM signaling with the hyperosmotic stress pathway by directly interacting with CaM in Saccharomyces cerevisiae.
Collapse
|
24
|
Transcriptomic Analysis of Differentially Expressed Genes During Larval Development of Rapana venosa by Digital Gene Expression Profiling. G3-GENES GENOMES GENETICS 2016; 6:2181-93. [PMID: 27194808 PMCID: PMC4938671 DOI: 10.1534/g3.116.029314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa, a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa, which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa, which is a prerequisite for a better understanding of the physiological traits controlling development.
Collapse
|
25
|
McCammick EM, McVeigh P, McCusker P, Timson DJ, Morphew RM, Brophy PM, Marks NJ, Mousley A, Maule AG. Calmodulin disruption impacts growth and motility in juvenile liver fluke. Parasit Vectors 2016; 9:46. [PMID: 26817678 PMCID: PMC4730779 DOI: 10.1186/s13071-016-1324-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/19/2016] [Indexed: 12/15/2022] Open
Abstract
Background Deficiencies in effective flukicide options and growing issues with drug resistance make current strategies for liver fluke control unsustainable, thereby promoting the need to identify and validate new control targets in Fasciola spp. parasites. Calmodulins (CaMs) are small calcium-sensing proteins with ubiquitous expression in all eukaryotic organisms and generally use fluctuations in intracellular calcium levels to modulate cell signalling events. CaMs are essential for fundamental processes including the phosphorylation of protein kinases, gene transcription, calcium transport and smooth muscle contraction. In the blood fluke Schistosoma mansoni, calmodulins have been implicated in egg hatching, miracidial transformation and larval development. Previously, CaMs have been identified amongst liver fluke excretory-secretory products and three CaM-like proteins have been characterised biochemically from adult Fasciola hepatica, although their functions remain unknown. Methods In this study, we set out to investigate the biological function and control target potential of F. hepatica CaMs (FhCaMs) using RNAi methodology alongside novel in vitro bioassays. Results Our results reveal that: (i) FhCaMs are widely expressed in parenchymal cells throughout the forebody region of juvenile fluke; (ii) significant transcriptional knockdown of FhCaM1-3 was inducible by exposure to either long (~200 nt) double stranded (ds) RNAs or 27 nt short interfering (si) RNAs, although siRNAs were less effective than long dsRNAs; (iii) transient long dsRNA exposure-induced RNA interference (RNAi) of FhCaMs triggered transcript knockdown that persisted for ≥ 21 days, and led to detectable suppression of FhCaM proteins; (iv) FhCaM RNAi significantly reduced the growth of juvenile flukes maintained in vitro; (v) FhCaM RNAi juveniles also displayed hyperactivity encompassing significantly increased migration; (vi) both the reduced growth and increased motility phenotypes were recapitulated in juvenile fluke using the CaM inhibitor trifluoperazine hydrochloride, supporting phenotype specificity. Conclusions These data indicate that the Ca2+-modulating functions of FhCaMs are important for juvenile fluke growth and movement and provide the first functional genomics-based example of a growth-defect resulting from gene silencing in liver fluke. Whilst the phenotypic impacts of FhCaM silencing on fluke behaviour do not strongly support their candidature as new flukicide targets, the growth impacts encourage further consideration, especially in light of the speed of juvenile fluke growth in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1324-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin M McCammick
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Paul McVeigh
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Paul McCusker
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - David J Timson
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Russell M Morphew
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FL, UK.
| | - Peter M Brophy
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3FL, UK.
| | - Nikki J Marks
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Angela Mousley
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| | - Aaron G Maule
- Microbes & Pathogen Biology: Institute for Global Food Security, School of Biological Sciences, Queen's, University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
26
|
Kulej K, Sidoli S, Palmisano G, Edwards AV, Robinson PJ, Larsen MR. Optimization of calmodulin-affinity chromatography for brain and organelles. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Kim J, Park H, Han JG, Oh J, Choi HK, Kim SH, Sung GH. Regulation of a phenylalanine ammonia lyase (BbPAL) by calmodulin in response to environmental changes in the entomopathogenic fungus Beauveria bassiana. Environ Microbiol 2015; 17:4484-94. [PMID: 25970691 DOI: 10.1111/1462-2920.12898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
Phenylalanine ammonia lyase (PAL, E.C. 4.3.1.5) catalyses the deamination of L -phenylalanine to trans-cinnamic acid and ammonia, facilitating a critical step in the phenylpropanoid pathway that produces a variety of secondary metabolites. In this study, we isolated BbPAL gene in the entomopathogenic fungus Beauveria bassiana. According to multiple sequence alignment, homology modelling and in vitro PAL activity, we demonstrated that BbPAL acts as a typical PAL enzyme in B. bassiana. BbPAL interacted with calmodulin (CaM) in vitro and in vivo, indicating that BbPAL is a novel CaM-binding protein. The functional role of CaM in BbPAL action was to negatively regulate the BbPAL activity in B. bassiana. High-performance liquid chromatography analysis revealed that L -phenylalanine was reduced and trans-cinnamic acid was increased in response to the CaM inhibitor W-7. Dark conditions suppressed BbPAL activity in B. bassiana, compared with light. In addition, heat and cold stresses inhibited BbPAL activity in B. bassiana. Interestingly, these negative effects of BbPAL activity by dark, heat and cold conditions were recovered by W-7 treatment, suggesting that the inhibitory mechanism is mediated through stimulation of CaM activity. Therefore, this work suggests that BbPAL plays a role in the phenylpropanoid pathway mediated by environmental stimuli via the CaM signalling pathway.
Collapse
Affiliation(s)
- Jiyoung Kim
- Institute of Life Science and Biotechnology, Sungkyunkwan University, Suwon, 440-746, Korea
| | - Hyesung Park
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Jae-Gu Han
- Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 369-873, Korea
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Seong Hwan Kim
- Department of Microbiology, Dankook University, Cheonan, 330-714, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do, 210-701, Korea.,Catholic Kwandong University International St. Mary's Hospital, Incheon Metropolitan City, 404-834, Korea
| |
Collapse
|
28
|
FENG RUI, LIU YAN, SUN XUEFEI, WANG YAN, HU HUIYUAN, GUO FENG, ZHAO JINSHENG, HAO LIYING. Molecular cloning and expression of the calmodulin gene from guinea pig hearts. Exp Ther Med 2015; 9:2311-2318. [DOI: 10.3892/etm.2015.2411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 03/19/2015] [Indexed: 11/06/2022] Open
|
29
|
Chaabane C, Coen M, Bochaton-Piallat ML. Smooth muscle cell phenotypic switch: implications for foam cell formation. Curr Opin Lipidol 2014; 25:374-9. [PMID: 25110900 DOI: 10.1097/mol.0000000000000113] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW It is well accepted that LDLs and its modified form oxidized-LDL (ox-LDL) play a major role in the development of atherosclerosis and foam cell formation. Whereas the majority of these cells have been demonstrated to be derived from macrophages, smooth muscle cells (SMCs) give rise to a significant number of foam cells as well. During atherosclerotic plaque formation, SMCs switch from a contractile to a synthetic phenotype. The contribution of this process to foam cell formation is still not well understood. RECENT FINDINGS It has been confirmed that a large proportion of foam cells in human atherosclerotic plaques and in experimental intimal thickening arise from SMCs. SMC-derived foam cells express receptors involved in ox-LDL uptake and HDL reverse transport. In-vitro studies show that treatment of SMCs with ox-LDL induces typical foam-cell formation; this process is associated with a transition of SMCs toward a synthetic phenotype. SUMMARY This review summarizes data regarding the phenotypic switch of arterial SMCs within atherosclerotic lesion and their contribution to intimal foam cell formation.
Collapse
Affiliation(s)
- Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
30
|
Zhong W, Hutchinson TE, Chebolu S, Darmani NA. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS One 2014; 9:e104718. [PMID: 25121483 PMCID: PMC4133232 DOI: 10.1371/journal.pone.0104718] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/13/2014] [Indexed: 12/11/2022] Open
Abstract
Stimulation of 5-HT3 receptors (5-HT3Rs) by 2-methylserotonin (2-Me-5-HT), a selective 5-HT3 receptor agonist, can induce vomiting. However, downstream signaling pathways for the induced emesis remain unknown. The 5-HT3R channel has high permeability to extracellular calcium (Ca2+) and upon stimulation allows increased Ca2+ influx. We examined the contribution of Ca2+/calmodulin-dependent protein kinase IIα (Ca2+/CaMKIIα), interaction of 5-HT3R with calmodulin, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling to 2-Me-5-HT-induced emesis in the least shrew. Using fluo-4 AM dye, we found that 2-Me-5-HT augments intracellular Ca2+ levels in brainstem slices and that the selective 5-HT3R antagonist palonosetron, can abolish the induced Ca2+ signaling. Pre-treatment of shrews with either: i) amlodipine, an antagonist of L-type Ca2+ channels present on the cell membrane; ii) dantrolene, an inhibitor of ryanodine receptors (RyRs) Ca2+-release channels located on the endoplasmic reticulum (ER); iii) a combination of their less-effective doses; or iv) inhibitors of CaMKII (KN93) and ERK1/2 (PD98059); dose-dependently suppressed emesis caused by 2-Me-5-HT. Administration of 2-Me-5-HT also significantly: i) enhanced the interaction of 5-HT3R with calmodulin in the brainstem as revealed by immunoprecipitation, as well as their colocalization in the area postrema (brainstem) and small intestine by immunohistochemistry; and ii) activated CaMKIIα in brainstem and in isolated enterochromaffin cells of the small intestine as shown by Western blot and immunocytochemistry. These effects were suppressed by palonosetron. 2-Me-5-HT also activated ERK1/2 in brainstem, which was abrogated by palonosetron, KN93, PD98059, amlodipine, dantrolene, or a combination of amlodipine plus dantrolene. However, blockade of ER inositol-1, 4, 5-triphosphate receptors by 2-APB, had no significant effect on the discussed behavioral and biochemical parameters. This study demonstrates that Ca2+ mobilization via extracellular Ca2+ influx through 5-HT3Rs/L-type Ca2+ channels, and intracellular Ca2+ release via RyRs on ER, initiate Ca2+-dependent sequential activation of CaMKIIα and ERK1/2, which contribute to the 5-HT3R-mediated, 2-Me-5-HT-evoked emesis.
Collapse
Affiliation(s)
- Weixia Zhong
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Tarun E. Hutchinson
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Seetha Chebolu
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
| | - Nissar A. Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Gong X, Fan Y, Zhang Y, Luo C, Duan X, Yang L, Pan J. Inserted rest period resensitizes MC3T3-E1 cells to fluid shear stress in a time-dependent manner via F-actin-regulated mechanosensitive channel(s). Biosci Biotechnol Biochem 2014; 78:565-73. [PMID: 25036951 DOI: 10.1080/09168451.2014.895657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The underlying cellular mechanism of anabolic effect recovered by inserting rest is not fully understood. In this work, we studied the role of F-actin regulated mechanosensitive channel(s) re-activation in mechanosensitivity modulation in vitro. Results showed that steady fluid shear stress (sFSS) stimulation with 30-min rest period was more potential in increasing alkalinephosphatase (ALP) activity than 10 and 0-min rest periods, and insertion of 30 min, but not 0 or 10 min, recovered the [Ca(2+)]i transient and contribution of the mechanosensitive channel(s). During the rest period, F-actin experienced polymerization (0-10 min), followed by depolymerization (10-30 min); inhibition of F-actin polymerization/depolymerization significantly increased/decreased the [Ca(2+)]i transient, as well as the contribution of the mechanosensitive channel(s) in subsequent sFSS stimulation. Our results demonstrated that the long rest period between sFSS loadings recruited [Ca(2+)]i transient via F-actin depolymerization-induced reactivation of mechanosensitive channel(s), suggesting that F-actin-regulated cellular stiffness could account for the decreased anabolic response during continuous mechanical loading in bone cells.
Collapse
Affiliation(s)
- Xiaoyuan Gong
- a Key Laboratory for Biorheological Science and Technology of Ministry of Education , College of Bioengineering, Chongqing University , Chongqing , China
| | | | | | | | | | | | | |
Collapse
|
32
|
Huber RJ. The cyclin-dependent kinase family in the social amoebozoan Dictyostelium discoideum. Cell Mol Life Sci 2014; 71:629-39. [PMID: 23974243 PMCID: PMC11113532 DOI: 10.1007/s00018-013-1449-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/24/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
Cyclin-dependent kinases (Cdk) are a family of serine/threonine protein kinases that regulate eukaryotic cell cycle progression. Their ability to modulate the cell cycle has made them an attractive target for anti-cancer therapies. Cdk protein function has been studied in a variety of Eukaryotes ranging from yeast to humans. In the social amoebozoan Dictyostelium discoideum, several homologues of mammalian Cdks have been identified and characterized. The life cycle of this model organism is comprised of a feeding stage where single cells grow and divide mitotically as they feed on their bacterial food source and a multicellular developmental stage that is induced by starvation. Thus it is a valuable system for studying a variety of cellular and developmental processes. In this review I summarize the current knowledge of the Cdk protein family in Dictyostelium by highlighting the research efforts focused on the characterization of Cdk1, Cdk5, and Cdk8 in this model Eukaryote. Accumulated evidence indicates that each protein performs distinct functions during the Dictyostelium life cycle with Cdk1 being required for growth and Cdk5 and Cdk8 being required for processes that occur during development. Recent studies have shown that Dictyostelium Cdk5 shares attributes with mammalian Cdk5 and that the mammalian Cdk inhibitor roscovitine can be used to inhibit Cdk5 activity in Dictyostelium. Together, these results show that Dictyostelium can be used as a model system for studying Cdk protein function.
Collapse
Affiliation(s)
- Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA, 02114, USA,
| |
Collapse
|
33
|
Calmodulin Expression Distinguishes the Smooth Muscle Cell Population of Human Carotid Plaque. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:996-1009. [DOI: 10.1016/j.ajpath.2013.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 05/06/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022]
|
34
|
Zhou Y, Xue S, Yang JJ. Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics 2013; 5:29-42. [PMID: 23235533 DOI: 10.1039/c2mt20009k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium ion (Ca(2+)), the fifth most common chemical element in the earth's crust, represents the most abundant mineral in the human body. By binding to a myriad of proteins distributed in different cellular organelles, Ca(2+) impacts nearly every aspect of cellular life. In prokaryotes, Ca(2+) plays an important role in bacterial movement, chemotaxis, survival reactions and sporulation. In eukaryotes, Ca(2+) has been chosen through evolution to function as a universal and versatile intracellular signal. Viruses, as obligate intracellular parasites, also develop smart strategies to manipulate the host Ca(2+) signaling machinery to benefit their own life cycles. This review focuses on recent advances in applying both bioinformatic and experimental approaches to predict and validate Ca(2+)-binding proteins and their interactomes in biological systems on a genome-wide scale (termed "calciomics"). Calmodulin is used as an example of Ca(2+)-binding protein (CaBP) to demonstrate the role of CaBPs on the regulation of biological functions. This review is anticipated to rekindle interest in investigating Ca(2+)-binding proteins and Ca(2+)-modulated functions at the systems level in the post-genomic era.
Collapse
Affiliation(s)
- Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
35
|
Dell'Aglio E, Giustini C, Salvi D, Brugière S, Delpierre F, Moyet L, Baudet M, Seigneurin-Berny D, Matringe M, Ferro M, Rolland N, Curien G. Complementary biochemical approaches applied to the identification of plastidial calmodulin-binding proteins. MOLECULAR BIOSYSTEMS 2013; 9:1234-48. [PMID: 23549413 DOI: 10.1039/c3mb00004d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ca(2+)/Calmodulin (CaM)-dependent signaling pathways play a major role in the modulation of cell responses in eukaryotes. In the chloroplast, few proteins such as the NAD(+) kinase 2 have been previously shown to interact with CaM, but a general picture of the role of Ca(2+)/CaM signaling in this organelle is still lacking. Using CaM-affinity chromatography and mass spectrometry, we identified 210 candidate CaM-binding proteins from different Arabidopsis and spinach chloroplast sub-fractions. A subset of these proteins was validated by an optimized in vitro CaM-binding assay. In addition, we designed two fluorescence anisotropy assays to quantitatively characterize the binding parameters and applied those assays to NAD(+) kinase 2 and selected candidate proteins. On the basis of our results, there might be many more plastidial CaM-binding proteins than previously estimated. In addition, we showed that an array of complementary biochemical techniques is necessary in order to characterize the mode of interaction of candidate proteins with CaM.
Collapse
|
36
|
Sriskanthadevan S, Brar SK, Manoharan K, Siu CH. Ca(2+) -calmodulin interacts with DdCAD-1 and promotes DdCAD-1 transport by contractile vacuoles in Dictyostelium cells. FEBS J 2013; 280:1795-806. [PMID: 23441816 DOI: 10.1111/febs.12203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/18/2013] [Accepted: 01/25/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED The Ca(2+) -dependent cell-cell adhesion molecule DdCAD-1, encoded by the cadA gene of Dictyostelium discoideum, is synthesized at the onset of development as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Calmodulin associates with contractile vacuoles in a Ca(2+) -dependent manner, and co-localizes with DdCAD-1 on the surface of contractile vacuoles. Bioinformatics analysis revealed multiple calmodulin-binding motifs in DdCAD-1. Co-immunoprecipitation and pull-down studies showed that only Ca(2+) -bound calmodulin was able to bind DdCAD-1. Structural integrity of DdCAD-1, but not the native conformation, was required for its interaction with calmodulin. To investigate the role of calmodulin in the import of DdCAD-1 into contractile vacuoles, an in vitro import assay consisting of contractile vacuoles derived from cadA(-) cells and recombinant proteins was employed. Prior stripping of the bound calmodulin from contractile vacuoles by EGTA impaired import of DdCAD-1, which was restored by addition of exogenous calmodulin. The calmodulin antagonists W-7 and compound 48/80 blocked the binding of calmodulin onto stripped contractile vacuoles, and inhibited the import of DdCAD-1. Together, the data show that calmodulin forms a complex with DdCAD-1 and promotes the docking and import of DdCAD-1 into contractile vacuoles. STRUCTURED DIGITAL ABSTRACT CaM physically interacts with DdCAD-1 by pull down (View Interaction: 1, 2) DdCAD-1 binds to CaM by far western blotting (View interaction) DdCAD-1 physically interacts with CaM by anti bait coimmunoprecipitation (View interaction).
Collapse
|
37
|
O'Day DH, Huber RJ. Matricellular signal transduction involving calmodulin in the social amoebozoan dictyostelium. Genes (Basel) 2013; 4:33-45. [PMID: 24705101 PMCID: PMC3899956 DOI: 10.3390/genes4010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 01/24/2013] [Accepted: 02/05/2013] [Indexed: 11/16/2022] Open
Abstract
The social amoebozoan Dictyostelium discoideum undergoes a developmental sequence wherein an extracellular matrix (ECM) sheath surrounds a group of differentiating cells. This sheath is comprised of proteins and carbohydrates, like the ECM of mammalian tissues. One of the characterized ECM proteins is the cysteine-rich, EGF-like (EGFL) repeat-containing, calmodulin (CaM)-binding protein (CaMBP) CyrA. The first EGFL repeat of CyrA increases the rate of random cell motility and cyclic AMP-mediated chemotaxis. Processing of full-length CyrA (~63 kDa) releases two major EGFL repeat-containing fragments (~45 kDa and ~40 kDa) in an event that is developmentally regulated. Evidence for an EGFL repeat receptor also exists and downstream intracellular signaling pathways involving CaM, Ras, protein kinase A and vinculin B phosphorylation have been characterized. In total, these results identify CyrA as a true matricellular protein comparable in function to tenascin C and other matricellular proteins from mammalian cells. Insight into the regulation and processing of CyrA has also been revealed. CyrA is the first identified extracellular CaMBP in this eukaryotic microbe. In keeping with this, extracellular CaM (extCaM) has been shown to be present in the ECM sheath where it binds to CyrA and inhibits its cleavage to release the 45 kDa and 40 kDa EGFL repeat-containing fragments. The presence of extCaM and its role in regulating a matricellular protein during morphogenesis extends our understanding of CaM-mediated signal transduction in eukaryotes.
Collapse
Affiliation(s)
- Danton H O'Day
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road North, Mississauga, ON, L5L 1C6, Canada.
| | - Robert J Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Huber RJ, Catalano A, O'Day DH. Cyclin-dependent kinase 5 is a calmodulin-binding protein that associates with puromycin-sensitive aminopeptidase in the nucleus of Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:11-20. [PMID: 23063531 DOI: 10.1016/j.bbamcr.2012.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 10/03/2012] [Indexed: 02/06/2023]
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase that has been implicated in a number of cellular processes. In Dictyostelium, Cdk5 localizes to the nucleus and cytoplasm, interacts with puromycin-sensitive aminopeptidase A (PsaA), and regulates endocytosis, secretion, growth, and multicellular development. Here we show that Cdk5 is a calmodulin (CaM)-binding protein (CaMBP) in Dictyostelium. Cdk5, PsaA, and CaM were all present in isolated nuclei and Cdk5 and PsaA co-immunoprecipitated with nuclear CaM. Although nuclear CaMBPs have previously been identified in Dictyostelium, the detection of CaM in purified nuclear fractions had not previously been shown. Putative CaM-binding domains (CaMBDs) were identified in Cdk5 and PsaA. Deletion of one of the two putative CaMBDs in Cdk5 ((132)LLINRKGELKLADFGLARAFGIP(154)) prevented CaM-binding indicating that this region encompasses a functional CaMBD. This deletion also increased the nuclear distribution of Cdk5 suggesting that CaM regulates the nucleocytoplasmic transport of Cdk5. A direct binding between CaM and PsaA could not be determined since deletion of the one putative CaMBD in PsaA prevented the nuclear localization of the deletion protein. Together, this study provides the first direct evidence for nuclear CaM in Dictyostelium and the first evidence in any system for Cdk5 being a CaMBP.
Collapse
Affiliation(s)
- Robert J Huber
- University of Toronto, Department of Cell & Systems Biology, Ontario, Canada.
| | | | | |
Collapse
|
39
|
Identification of differentially expressed proteins involved in the early larval development of the Pacific oyster Crassostrea gigas. J Proteomics 2012; 75:3855-65. [DOI: 10.1016/j.jprot.2012.04.051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Accepted: 04/01/2012] [Indexed: 11/17/2022]
|
40
|
Poloz Y, O'Day DH. Ca2+ signaling regulates ecmB expression, cell differentiation and slug regeneration in Dictyostelium. Differentiation 2012; 84:163-75. [PMID: 22595345 DOI: 10.1016/j.diff.2012.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/27/2012] [Accepted: 02/25/2012] [Indexed: 11/26/2022]
Abstract
Ca(2+) regulates cell differentiation and morphogenesis in a diversity of organisms and dysregulation of Ca(2+) signal transduction pathways leads to many cellular pathologies. In Dictyostelium Ca(2+) induces ecmB expression and stalk cell differentiation in vitro. Here we have analyzed the pattern of ecmB expression in intact and bisected slugs and the effect of agents that affect Ca(2+) levels or antagonize calmodulin (CaM) on this expression pattern. We have shown that Ca(2+) and CaM regulate ecmB expression and pstAB/pstB cell differentiation in vivo. Agents that increase intracellular Ca(2+) levels increased ecmB expression and/or pstAB and pstB cell differentiation, while agents that decrease intracellular Ca(2+) or antagonize CaM decreased it. In isolated slug tips agents that affect Ca(2+) levels and antagonize CaM had differential effect on ecmB expression and cell differentiation in the anterior versus posterior zones. Agents that increase intracellular Ca(2+) levels increased the number of ecmB expressing cells in the anterior region of slugs, while agents that decrease intracellular Ca(2+) levels or antagonize CaM activity increased the number of ecmB expressing cells in the posterior. We have also demonstrated that agents that affect Ca(2+) levels or antagonize CaM affect cells motility and regeneration of shape in isolated slug tips and backs and regeneration of tips in isolated slug backs. To our knowledge, this is the first study detailing the pattern of ecmB expression in regenerating slugs as well as the role of Ca(2+) and CaM in the regeneration process and ecmB expression.
Collapse
Affiliation(s)
- Yekaterina Poloz
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5.
| | | |
Collapse
|
41
|
Panina S, Stephan A, la Cour JM, Jacobsen K, Kallerup LK, Bumbuleviciute R, Knudsen KVK, Sánchez-González P, Villalobo A, Olesen UH, Berchtold MW. Significance of calcium binding, tyrosine phosphorylation, and lysine trimethylation for the essential function of calmodulin in vertebrate cells analyzed in a novel gene replacement system. J Biol Chem 2012; 287:18173-81. [PMID: 22493455 DOI: 10.1074/jbc.m112.339382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin (CaM) was shown to be essential for survival of lower eukaryotes by gene deletion experiments. So far, no CaM gene deletion was reported in higher eukaryotes. In vertebrates, CaM is expressed from several genes, which encode an identical protein, making it difficult to generate a model system to study the effect of CaM gene deletion. Here, we present a novel genetic system based on the chicken DT40 cell line, in which the two functional CaM genes were deleted and one allele replaced with a CaM transgene that can be artificially regulated. We show that CaM is essential for survival of vertebrate cells as they die in the absence of CaM expression. Reversal of CaM repression or ectopic expression of HA-tagged CaM rescued the cells. Cells exclusively expressing HA-CaM with impaired individual calcium binding domains as well as HA-CaM lacking the ability to be phosphorylated at residues Tyr(99)/Tyr(138) or trimethylated at Lys(115) survived and grew well. CaM mutated at both Ca(2+) binding sites 3 and 4 as well as at both sites 1 and 2, but to a lesser degree, showed decreased ability to support cell growth. Cells expressing CaM with all calcium binding sites impaired died with kinetics similar to that of cells expressing no CaM. This system offers a unique opportunity to analyze CaM structure-function relationships in vivo without the use of pharmacological inhibitors and to analyze the function of wild type and mutated CaM in modulating the activity of different target systems without interference of endogenous CaM.
Collapse
Affiliation(s)
- Svetlana Panina
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Huber RJ, Suarez A, O'Day DH. CyrA, a matricellular protein that modulates cell motility in Dictyostelium discoideum. Matrix Biol 2012; 31:271-80. [PMID: 22391412 DOI: 10.1016/j.matbio.2012.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/02/2012] [Accepted: 02/14/2012] [Indexed: 01/16/2023]
Abstract
CyrA, an extracellular matrix (slime sheath), calmodulin (CaM)-binding protein in Dictyostelium discoideum, possesses four tandem EGF-like repeats in its C-terminus and is proteolytically cleaved during asexual development. A previous study reported the expression and localization of CyrA cleavage products CyrA-C45 and CyrA-C40. In this study, an N-terminal antibody was produced that detected the full-length 63kDa protein (CyrA-C63). Western blot analyses showed that the intracellular expression of CyrA-C63 peaked between 12 and 16h of development, consistent with the time that cells are developing into a motile, multicellular slug. CyrA immunolocalization and CyrA-GFP showed that the protein localized to the endoplasmic reticulum, particularly its perinuclear component. CyrA-C63 secretion began shortly after the onset of starvation peaking between 8 and 16h of development. A pharmacological analysis showed that CyrA-C63 secretion was dependent on intracellular Ca(2+) release and active CaM, PI3K, and PLA2. CyrA-C63 bound to CaM both intra- and extracellularly and both proteins were detected in the slime sheath deposited by migrating slugs. In keeping with its purported function, CyrA-GFP over-expression enhanced cAMP-mediated chemotaxis and CyrA-C45 was detected in vinculin B (VinB)-GFP immunoprecipitates, thus providing a link between the increase in chemotaxis and a specific cytoskeletal component. Finally, DdEGFL1-FITC was detected on the membranes of cells capped with concanavalin A suggesting that a receptor exists for this peptide sequence. Together with previous studies, the data presented here suggests that CyrA is a bona fide matricellular protein in D. discoideum.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON, Canada M5S 3G5.
| | | | | |
Collapse
|
43
|
Jing G, Yuan K, Liang Q, Sun Y, Mao X, McDonald JM, Chen Y. Reduced CaM/FLIP binding by a single point mutation in c-FLIP(L) modulates Fas-mediated apoptosis and decreases tumorigenesis. J Transl Med 2012; 92:82-90. [PMID: 21912376 DOI: 10.1038/labinvest.2011.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have previously demonstrated that calmodulin (CaM) binds directly to c-FLIP(L) in a Ca(2+)-dependent manner. Deletion of the CaM-binding region (amino acid 197-213) results in reduced CaM binding, and increased Fas-mediated apoptosis and decreased tumorigenesis of cholangiocarcinoma cells. The present studies were designed to identify the precise amino acids between 197 and 213 that are responsible for CaM/FLIP binding, and their roles in mediating the anti-apoptotic function of c-FLIP(L). Sequence analysis of the CaM-binding region at 197-213 predicted three unique positively charged residues at 204, 207 and 209, which might be responsible for the CaM/FLIP binding. A point mutation at H204 of c-FLIP(L) was found to markedly reduce CaM binding, whereas point mutation at R207 or K209 did not affect c-FLIP(L) binding to CaM. Decreased CaM/FLIP binding was confirmed in cholangiocarcinoma cells overexpressing the H204 c-FLIP(L) mutant. Reduced CaM binding by the H204 mutant resulted in increased sensitivity to Fas-mediated apoptosis and inhibited tumor growth in mice compared with wild-type c-FLIP(L). Death-inducing signaling complex (DISC) analysis showed that the reduced CaM binding to H204 mutant resulted in less c-FLIP(L) recruited into the DISC. Concurrently, increased caspase 8 was recruited to the DISC, which resulted in increased cleavage and activation of caspase 8, activation of downstream caspase 3 and increased apoptosis. Therefore, these results demonstrate that the H204 residue is responsible for c-FLIP(L) binding to CaM, which mediates the anti-apoptotic function of c-FLIP(L), most likely through affecting recruitment of caspase 8 into the DISC and thus caspase 8 activation. These studies further characterized CaM/FLIP interaction and its function in regulating Fas-mediated apoptosis and tumorigenesis, which may provide new therapeutic targets for cancer therapy.
Collapse
Affiliation(s)
- Gu Jing
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Calábria LK, da Cruz GCN, Nascimento R, Carvalho WJ, de Gouveia NM, Alves FV, Furtado FB, Ishikawa-Ankerhold HC, de Sousa MV, Goulart LR, Espindola FS. Overexpression of myosin-IIB in the brain of a rat model of streptozotocin-induced diabetes. J Neurol Sci 2011; 303:43-9. [PMID: 21306737 DOI: 10.1016/j.jns.2011.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 11/15/2022]
Abstract
The Ca(2+)/calmodulin complex interacts with and regulates various enzymes and target proteins known as calmodulin-binding proteins (CaMBPs). This group of proteins includes molecular motors such as myosins. In this study, we show that non-muscle myosin-IIB is overexpressed in the brains of diabetic rats. We isolated CaMBPs from the brains of non-diabetic rats and rats with streptozotocin-induced diabetes and purified them by immobilized-calmodulin affinity chromatography. The proteins were eluted with EGTA and urea, separated by SDS-PAGE, digested and submitted to peptide mass fingerprinting analysis. Thirteen intense bands were found in both types of brains, two were found exclusively in non-diabetic brains and four were found exclusively in diabetic brains. A large fraction of the eluted proteins contained putative IQ motifs or calmodulin-binding sites. The results of the myosin-IIB affinity chromatography elution, western blot and RT-PCR analyses suggest that myosin-IIB protein and mRNA are expressed at high levels in diabetic brains. This is the first study that has demonstrated differential expression of CaMBPs in diabetic and non-diabetic brain tissue through a comparative proteomic analysis, and it opens up a new approach to studying the relationship between the expression of myosins in the brain, hyperglycemia and intracellular calcium regulation.
Collapse
Affiliation(s)
- Luciana Karen Calábria
- Institute of Genetics and Biochemistry, Federal University of Uberlândia, Campus Umuarama, 38400-902, Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Molecular interaction and functional regulation of connexin50 gap junctions by calmodulin. Biochem J 2011; 435:711-22. [PMID: 21320072 DOI: 10.1042/bj20101726] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cx50 (connexin50), a member of the α-family of gap junction proteins expressed in the lens of the eye, has been shown to be essential for normal lens development. In the present study, we identified a CaMBD [CaM (calmodulin)-binding domain] (residues 141-166) in the intracellular loop of Cx50. Elevations in intracellular Ca2+ concentration effected a 95% decline in gj (junctional conductance) of Cx50 in N2a cells that is likely to be mediated by CaM, because inclusion of the CaM inhibitor calmidazolium prevented this Ca2+-dependent decrease in gj. The direct involvement of the Cx50 CaMBD in this Ca2+/CaM-dependent regulation was demonstrated further by the inclusion of a synthetic peptide encompassing the CaMBD in both whole-cell patch pipettes, which effectively prevented the intracellular Ca2+-dependent decline in gj. Biophysical studies using NMR and fluorescence spectroscopy reveal further that the peptide stoichiometrically binds to Ca2+/CaM with an affinity of ~5 nM. The binding of the peptide expanded the Ca2+-sensing range of CaM by increasing the Ca2+ affinity of the C-lobe of CaM, while decreasing the Ca2+ affinity of the N-lobe of CaM. Overall, these results demonstrate that the binding of Ca2+/CaM to the intracellular loop of Cx50 is critical for mediating the Ca2+-dependent inhibition of Cx50 gap junctions in the lens of the eye.
Collapse
|
47
|
Reddy ASN, Ben-Hur A, Day IS. Experimental and computational approaches for the study of calmodulin interactions. PHYTOCHEMISTRY 2011; 72:1007-19. [PMID: 21338992 DOI: 10.1016/j.phytochem.2010.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 11/10/2010] [Accepted: 12/28/2010] [Indexed: 05/22/2023]
Abstract
Ca(2+), a universal messenger in eukaryotes, plays a major role in signaling pathways that control many growth and developmental processes in plants as well as their responses to various biotic and abiotic stresses. Cellular changes in Ca(2+) in response to diverse signals are recognized by protein sensors that either have their activity modulated or that interact with other proteins and modulate their activity. Calmodulins (CaMs) and CaM-like proteins (CMLs) are Ca(2+) sensors that have no enzymatic activity of their own but upon binding Ca(2+) interact and modulate the activity of other proteins involved in a large number of plant processes. Protein-protein interactions play a key role in Ca(2+)/CaM-mediated in signaling pathways. In this review, using CaM as an example, we discuss various experimental approaches and computational tools to identify protein-protein interactions. During the last two decades hundreds of CaM-binding proteins in plants have been identified using a variety of approaches ranging from simple screening of expression libraries with labeled CaM to high-throughput screens using protein chips. However, the high-throughput methods have not been applied to the entire proteome of any plant system. Nevertheless, the data provided by these screens allows the development of computational tools to predict CaM-interacting proteins. Using all known binding sites of CaM, we developed a computational method that predicted over 700 high confidence CaM interactors in the Arabidopsis proteome. Most (>600) of these are not known to bind calmodulin, suggesting that there are likely many more CaM targets than previously known. Functional analyses of some of the experimentally identified Ca(2+) sensor target proteins have uncovered their precise role in Ca(2+)-mediated processes. Further studies on identifying novel targets of CaM and CMLs and generating their interaction network - "calcium sensor interactome" - will help us in understanding how Ca(2+) regulates a myriad of cellular and physiological processes.
Collapse
Affiliation(s)
- A S N Reddy
- Department of Biology, Program in Molecular Plant Biology, Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
48
|
Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM. Protein signatures for survival and recurrence in metastatic melanoma. J Proteomics 2011; 74:1002-14. [PMID: 21549228 DOI: 10.1016/j.jprot.2011.04.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 04/11/2011] [Accepted: 04/15/2011] [Indexed: 12/11/2022]
Abstract
Patients with melanoma metastatic to regional lymph nodes exhibit a range in tumor progression, survival, and treatment. Current approaches to stratify patients with this stage of disease predominantly involve clinical and histological methods. Molecular classification thus far has focused almost exclusively on genetic mutations. In this study, proteomic data from 69 melanoma lymph node metastases and 17 disease free lymph nodes acquired by histology-directed MALDI imaging mass spectrometry were used to classify tumor from control lymph node and to molecularly sub-classify patients with stage III disease. From these data, 12 survival associated protein signals and 3 recurrence associated signals in the acquired mass spectra were combined to generate a multiplex molecular signature to group patients into either poor or favorable groups for recurrence and survival. Proteins represented in the signature include cytochrome c, s100 A6, histone H4, and cleaved forms of thymosin β-4, thymosin β-10, and ubiquitin. In total over 40 protein signals from the tissue were identified.
Collapse
|
49
|
Suarez A, Huber RJ, Myre MA, O'Day DH. An extracellular matrix, calmodulin-binding protein from Dictyostelium with EGF-like repeats that enhance cell motility. Cell Signal 2011; 23:1197-206. [PMID: 21402150 DOI: 10.1016/j.cellsig.2011.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 03/07/2011] [Indexed: 01/16/2023]
Abstract
CyrA is a novel cysteine-rich protein with four EGFL repeats that was isolated using the calmodulin (CaM) binding overlay technique (CaMBOT), suggesting it is a CaM-binding protein (CaMBP). The full-length 63kDa cyrA is cleaved into two major C-terminal fragments, cyrA-C45 and cyrA-C40. A putative CaM-binding domain was detected and both CaM-agarose binding and CaM immunoprecipitation verified that cyrA-C45 and cyrA-C40 each bind to CaM in both a Ca(2+)-dependent and -independent manner. cyrA-C45 was present continuously throughout growth and development but was secreted at high levels during the multicellular slug stage of Dictyostelium development. At this time, cyrA localizes to the extracellular matrix (ECM). ECM purification verified the presence of cyrA-C45. An 18 amino acid peptide (DdEGFL1) from the first EGFL repeat sequence of cyrA (EGFL1) that is present in both cyrA-C45 and -C40 enhances both random cell motility and cAMP-mediated chemotaxis. Here we reveal that the dose-dependent enhancement of motility by DdEGFL1 is related to the time of cell starvation. Addition of DdEGFL1 also inhibits cyrA proteolysis. The status of cyrA as an extracellular CaMBP was further clarified by the demonstration that CaM is secreted during development. Antagonism of CaM with W7 resulted in enhanced cyrA proteolysis suggesting a functional role for extracellular CaM in protecting CaMBPs from proteolysis. cyrA is the first extracellular CaMBP identified in Dictyostelium and since it is an ECM protein with EGF-like repeats that enhance cell motility and it likely also represents the first matricellular protein identified in a lower eukaryote.
Collapse
Affiliation(s)
- Andres Suarez
- Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | | | | | | |
Collapse
|
50
|
Horst JA, Samudrala R. A protein sequence meta-functional signature for calcium binding residue prediction. Pattern Recognit Lett 2010; 31:2103-2112. [PMID: 20824111 PMCID: PMC2932634 DOI: 10.1016/j.patrec.2010.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The diversity of characterized protein functions found amongst experimentally interrogated proteins suggests that a vast array of unknown functions remains undiscovered. These protein functions are imparted by specific geometric distributions of amino acid residue chemical moieties, each contributing a functional interaction. We hypothesize that individual residue function contributions are predictable through sequence analytic knowledge based algorithms, and that they can be recombined to understand composite protein function by predicting spatial relation in tertiary structure. We assess the former by training a meta-functional signature algorithm to specifically predict calcium ion binding residues from protein sequence. We estimate the latter by testing for match between predictive contribution of positions in predicted secondary structures and patterns of side chain proximity forced by secondary structure moieties. Specific training for calcium binding results in 83% area under the receiver operator characteristic curve added value over random (AUCoR) and p<10(-300) significance as measured by Kendall's τ in ten fold cross validation for parallel sets of 811 residues in 336 proteins and 696 residues in 299 proteins. Training for generalized function results in 63% AUCoR and p≅10(-221) for the same tests. Including inference of side chain proximity improves predictive ability by 2% AUCoR consistently. The results demonstrate that protein meta-functional signatures can be trained to predict specific protein functions by considering amino acid identity and structural features accessible from sequence, laying the groundwork for composite sequence based function site prediction.
Collapse
Affiliation(s)
- Jeremy A Horst
- Department of Oral Biology, School of Dentistry, University of Washington, 1959 NE Pacific St #357132, Seattle, WA 98195
- Department of Microbiology, School of Medicine, University of Washington, 1959 NE Pacific St #357132, Seattle, WA 98195
| | - Ram Samudrala
- Department of Oral Biology, School of Dentistry, University of Washington, 1959 NE Pacific St #357132, Seattle, WA 98195
- Department of Microbiology, School of Medicine, University of Washington, 1959 NE Pacific St #357132, Seattle, WA 98195
| |
Collapse
|