1
|
Powell TL, Ferchaud-Roucher V, Madi L, Uhlson C, Zemski-Berry K, Kramer AC, Erickson K, Palmer C, Chassen SS, Castillo-Castrejon M. Synthesis of phospholipids in human placenta. Placenta 2024; 147:12-20. [PMID: 38278000 PMCID: PMC10923060 DOI: 10.1016/j.placenta.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.
Collapse
Affiliation(s)
- Theresa L Powell
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Veronique Ferchaud-Roucher
- University of Nantes-INRAE UMR 1280 PhAN, CHU Nantes, CRNH Ouest CHU Hotel Dieu, 1 place Alexis Ricordeau, 1er etage aile nord HNB, 44093, Nantes Cedex 1, France.
| | - Lana Madi
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Charis Uhlson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Karin Zemski-Berry
- Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Avery C Kramer
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Kathryn Erickson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Claire Palmer
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Stephanie S Chassen
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L Young Biomedical Research Center Room 458, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
2
|
Zhu A, Tan P, Xu D, Zhang X, Yan X. Proteomics and phosphoproteomics analysis identifies liver immune protein markers in large yellow croakers (Larimichthys crocea) fed a soybean oil-based diet. Int J Biol Macromol 2023:125097. [PMID: 37268069 DOI: 10.1016/j.ijbiomac.2023.125097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Dietary fish oil (FO) replacement has led to an inflammatory response in fish species. This study aimed to identify immune-related proteins in the liver tissue of fish fed a FO-based or soybean oil (SO)-based diet. By conducting proteomics and phosphoproteomics analyses, a total of 1601 differentially expressed proteins (DEPs) and 460 differentially abundant phosphorylated proteins (DAPs) were identified, respectively. Enrichment analysis revealed immune-related proteins involved in bacterial infection, pathogen identification, cytokine production, and cell chemotaxis. The mitogen-activated protein kinase (MAPK) pathway exhibited significant alterations in both protein and phosphorylation levels, with several hub DEPs and DAPs associated with MAPK pathway and leukocyte transendothelial migration being notable. In vitro experiments indicated that linolenic acid (LNA), derived from SO, inhibited the expression of NF-E2-related factor 2 (Nrf2), but increased the expression of signaling proteins linked to nuclear factor κB (NF-κB) and MAPK pathways. Transwell assays indicated that treatment of liver cells with LNA promoted macrophage migration. Collectively, the results showed that the SO-based diet upregulated the expression of NF-κB signaling-related proteins and activated the MAPK pathway, promoting immune cell migration. These findings provide novel insights for developing effective solutions to alleviate health problems caused by dietary high levels of SO inclusion.
Collapse
Affiliation(s)
- Aijun Zhu
- School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China
| | - Peng Tan
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fishery Research Institute, Zhoushan 316021, People's Republic of China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fishery Research Institute, Zhoushan 316021, People's Republic of China; Marine and Fisheries Research Institute, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, People's Republic of China; Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| |
Collapse
|
3
|
Chen Y, Liu H, Tian Y, Luo Z, Ran J, Miao Z, Zhang Q, Yin G, Xie Q. Fexofenadine protects against lipopolysaccharide-induced acute lung injury by targeting cytosolic phospholipase A2. Int Immunopharmacol 2023; 116:109637. [PMID: 36764283 DOI: 10.1016/j.intimp.2022.109637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) causes acute respiratory distress syndrome, with a high mortality rate of 40%, with currently available pharmacological treatments. Cytosolic phospholipase A2 (cPLA2) plays a critical role in the lipopolysaccharide (LPS)-induced pathology of ALI. This study assessed the therapeutic effects of fexofenadine (FFD), an on-market small-molecule drug that can target cPLA2 in LPS-induced ALI. METHODS Primary macrophages obtained from the bone marrow of wild-type and cPLA2 knockout mice and the alveolar macrophage cell line, MHS were used to test the inhibitory effect of FFD on the cPLA2/ERK/p65 signaling pathway, NF-κB p65 translocation, and cytokine and chemokine production. An LPS-induced ALI mouse model was used to assess the treatment effects of FFD. Flow cytometry detected subsets of macrophages and neutrophils. cPLA2 activity and downstream hydrolysates were detected. Treatment with a cPLA2 inhibitor or NF-κB p65 inhibitor confirmed that FFD functioned through the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. RESULTS FFD reduced the infiltration of macrophages and neutrophils, decreased the protein secretion in bronchoalveolar lavage fluid, and reduced the production of TNFα, IL-1β, IL-6, MCP-1, and IL-8 in the lung, bronchoalveolar lavage fluid, and sera of LPS-induced ALI mice. FFD inhibited cPLA2 activity, suppressed the cPLA2/ERK/p65 signaling pathway, inhibited translocation of p65, and decreased the production of cytokines, chemokines, and downstream hydrolysates of cPLA2, arachidonic acid, and leukotriene B4. CONCLUSION FFD inhibits the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. Therefore, FFD is promising as a therapeutic against cPLA2-involved diseases, particularly ALI.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
4
|
Needham H, Torpey G, Flores CC, Davis CJ, Vanderheyden WM, Gerstner JR. A Dichotomous Role for FABP7 in Sleep and Alzheimer's Disease Pathogenesis: A Hypothesis. Front Neurosci 2022; 16:798994. [PMID: 35844236 PMCID: PMC9280343 DOI: 10.3389/fnins.2022.798994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
Fatty acid binding proteins (FABPs) are a family of intracellular lipid chaperone proteins known to play critical roles in the regulation of fatty acid uptake and transport as well as gene expression. Brain-type fatty acid binding protein (FABP7) is enriched in astrocytes and has been implicated in sleep/wake regulation and neurodegenerative diseases; however, the precise mechanisms underlying the role of FABP7 in these biological processes remain unclear. FABP7 binds to both arachidonic acid (AA) and docosahexaenoic acid (DHA), resulting in discrete physiological responses. Here, we propose a dichotomous role for FABP7 in which ligand type determines the subcellular translocation of fatty acids, either promoting wakefulness aligned with Alzheimer's pathogenesis or promoting sleep with concomitant activation of anti-inflammatory pathways and neuroprotection. We hypothesize that FABP7-mediated translocation of AA to the endoplasmic reticulum of astrocytes increases astrogliosis, impedes glutamatergic uptake, and enhances wakefulness and inflammatory pathways via COX-2 dependent generation of pro-inflammatory prostaglandins. Conversely, we propose that FABP7-mediated translocation of DHA to the nucleus stabilizes astrocyte-neuron lactate shuttle dynamics, preserves glutamatergic uptake, and promotes sleep by activating anti-inflammatory pathways through the peroxisome proliferator-activated receptor-γ transcriptional cascade. Importantly, this model generates several testable hypotheses applicable to other neurodegenerative diseases, including amyotrophic lateral sclerosis and Parkinson's disease.
Collapse
Affiliation(s)
- Hope Needham
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Grace Torpey
- Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Carlos C. Flores
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Christopher J. Davis
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - William M. Vanderheyden
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Jason R. Gerstner
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
- Steve Gleason Institute for Neuroscience, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| |
Collapse
|
5
|
Moreira V, Leiguez E, Janovits PM, Maia-Marques R, Fernandes CM, Teixeira C. Inflammatory Effects of Bothrops Phospholipases A 2: Mechanisms Involved in Biosynthesis of Lipid Mediators and Lipid Accumulation. Toxins (Basel) 2021; 13:toxins13120868. [PMID: 34941706 PMCID: PMC8709003 DOI: 10.3390/toxins13120868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholipases A2s (PLA2s) constitute one of the major protein groups present in the venoms of viperid and crotalid snakes. Snake venom PLA2s (svPLA2s) exhibit a remarkable functional diversity, as they have been described to induce a myriad of toxic effects. Local inflammation is an important characteristic of snakebite envenomation inflicted by viperid and crotalid species and diverse svPLA2s have been studied for their proinflammatory properties. Moreover, based on their molecular, structural, and functional properties, the viperid svPLA2s are classified into the group IIA secreted PLA2s, which encompasses mammalian inflammatory sPLA2s. Thus, research on svPLA2s has attained paramount importance for better understanding the role of this class of enzymes in snake envenomation and the participation of GIIA sPLA2s in pathophysiological conditions and for the development of new therapeutic agents. In this review, we highlight studies that have identified the inflammatory activities of svPLA2s, in particular, those from Bothrops genus snakes, which are major medically important snakes in Latin America, and we describe recent advances in our collective understanding of the mechanisms underlying their inflammatory effects. We also discuss studies that dissect the action of these venom enzymes in inflammatory cells focusing on molecular mechanisms and signaling pathways involved in the biosynthesis of lipid mediators and lipid accumulation in immunocompetent cells.
Collapse
Affiliation(s)
- Vanessa Moreira
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, Brazil;
| | - Elbio Leiguez
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Priscila Motta Janovits
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Rodrigo Maia-Marques
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Cristina Maria Fernandes
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
| | - Catarina Teixeira
- Laboratório de Farmacologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (E.L.); (P.M.J.); (R.M.-M.); (C.M.F.)
- Correspondence:
| |
Collapse
|
6
|
Pentalinonsterol, a Phytosterol from Pentalinon andrieuxii, is Immunomodulatory through Phospholipase A 2 in Macrophages toward its Antileishmanial Action. Cell Biochem Biophys 2021; 80:45-61. [PMID: 34387841 DOI: 10.1007/s12013-021-01030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.
Collapse
|
7
|
Auclair N, Sané AT, Delvin E, Spahis S, Levy E. Phospholipase D as a Potential Modulator of Metabolic Syndrome: Impact of Functional Foods. Antioxid Redox Signal 2021; 34:252-278. [PMID: 32586106 DOI: 10.1089/ars.2020.8081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Cardiometabolic disorders (CMD) are composed of a plethora of metabolic dysfunctions such as dyslipidemia, nonalcoholic fatty liver disease, insulin resistance, and hypertension. The development of these disorders is highly linked to inflammation and oxidative stress (OxS), two metabolic states closely related to physiological and pathological conditions. Given the drastically rising CMD prevalence, the discovery of new therapeutic targets/novel nutritional approaches is of utmost importance. Recent Advances: The tremendous progress in methods/technologies and animal modeling has allowed the clarification of phospholipase D (PLD) critical roles in multiple cellular processes, whether directly or indirectly via phosphatidic acid, the lipid product mediating signaling functions. In view of its multiple features and implications in various diseases, PLD has emerged as a drug target. Critical Issues: Although insulin stimulates PLD activity and, in turn, PLD regulates insulin signaling, the impact of the two important PLD isoforms on the metabolic syndrome components remains vague. Therefore, after outlining PLD1/PLD2 characteristics and functions, their role in inflammation, OxS, and CMD has been analyzed and critically reported in the present exhaustive review. The influence of functional foods and nutrients in the regulation of PLD has also been examined. Future Directions: Available evidence supports the implication of PLD in CMD, but only few studies emphasize its mechanisms of action and specific regulation by nutraceutical compounds. Therefore, additional investigations are first needed to clarify the functional role of nutraceutics and, second, to elucidate whether targeting PLDs with food compounds represents an appropriate therapeutic strategy to treat CMD. Antioxid. Redox Signal. 34, 252-278.
Collapse
Affiliation(s)
- Nickolas Auclair
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada
| | - Alain T Sané
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Edgard Delvin
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada
| | - Schohraya Spahis
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Emile Levy
- Research Center, CHU Sainte-Justine, Université de Montréal, Montreal, Quebec, Canada.,Department of Pharmacology & Physiology and Université de Montréal, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Context-dependent effect of sPLA 2-IIA induced proliferation on murine hair follicle stem cells and human epithelial cancer. EBioMedicine 2019; 48:364-376. [PMID: 31521610 PMCID: PMC6838435 DOI: 10.1016/j.ebiom.2019.08.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tissue stem cells (SCs) and cancer cells proliferation is regulated by many common signalling mechanisms. These mechanisms temporally balance proliferation and differentiation events during normal tissue homeostasis and repair. However, the effect of these aberrant signalling mechanisms on the ultimate fate of SCs and cancer cells remains obscure. METHODS To evaluate the functional effects of Secretory Phospholipase A2-IIA (sPLA2-IIA) induced abnormal signalling on normal SCs and cancer cells, we have used K14-sPLA2-IIA transgenic mice hair follicle stem cells (HFSCs), DMBA/TPA induced mouse skin tumour tissues, human oral squamous cell carcinoma (OSCC) and skin squamous cell carcinoma (SCC) derived cell lines. FINDINGS Our study demonstrates that sPLA2-IIA induces rapid proliferation of HFSCs, thereby altering the proliferation dynamics leading to a complete loss of the slow cycling H2BGFP positive HFSCs. Interestingly, in vivo reversion study by JNK inhibition exhibited a significant delay in post depilation hair growth, confirming that sPLA2-IIA promotes HFSCs proliferation through JNK/c-Jun signalling. In a different cellular context, we showed increased expression of sPLA2-IIA in human OSCC and mouse skin cancer tissues. Importantly, a xenograft of sPLA2-IIA knockdown cells of OSCC and SCC cell lines showed a concomitant reduction of tumour volume in NOD-SCID mice and decreased JNK/c-Jun signalling. INTERPRETATION This study unravels how an increased proliferation induced by a common proliferation inducer (sPLA2-IIA) alters the fate of normal SCs and cancer cells distinctively through common JNK/c-Jun signalling. Thus, sPLA2-IIA can be a potential target for various diseases including cancer. FUND: This work was partly supported by the Indian Council of Medical Research (ICMR-3097) and ACTREC (42) grants.
Collapse
|
9
|
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA, Stockwell BR. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chem Biol 2019; 26:623-633.e9. [PMID: 30799221 PMCID: PMC6525071 DOI: 10.1016/j.chembiol.2019.01.008] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is a form of regulated cell death that can be induced by inhibition of the cystine-glutamate antiporter, system xc-. Among the existing system xc- inhibitors, imidazole ketone erastin (IKE) is a potent, metabolically stable inhibitor of system xc- and inducer of ferroptosis potentially suitable for in vivo applications. We investigated the pharmacokinetic and pharmacodynamic features of IKE in a diffuse large B cell lymphoma (DLBCL) xenograft model and demonstrated that IKE exerted an antitumor effect by inhibiting system xc-, leading to glutathione depletion, lipid peroxidation, and the induction of ferroptosis biomarkers both in vitro and in vivo. Using untargeted lipidomics and qPCR, we identified distinct features of lipid metabolism in IKE-induced ferroptosis. In addition, biodegradable polyethylene glycol-poly(lactic-co-glycolic acid) nanoparticles were employed to aid in IKE delivery and exhibited reduced toxicity compared with free IKE in a DLBCL xenograft model.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Hui Tan
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Jacob D Daniels
- Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Hengrui Liu
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Lewis M Brown
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Quantitative Proteomics and Metabolomics Center, Columbia University, New York, NY 10027, USA
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10019, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
10
|
Jia Y, Olvera P, Rangel F, Mendez B, Reddy S. Rapid Identification of Phospholipase A₂ Transcripts from Snake Venoms. Toxins (Basel) 2019; 11:E69. [PMID: 30691065 PMCID: PMC6409593 DOI: 10.3390/toxins11020069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Phospholipase A₂ (PLA₂) is a major component in snake venoms and it is found in many different isoforms. To identify transcripts encoding different PLA₂ isoforms, we developed a simple, rapid procedure. Total RNA was extracted from the venoms of three cottonmouth snakes and two diamondback rattlesnakes, and further reverse-transcribed into complementary DNA (cDNA). Using one pair of cottonmouth PLA₂-specific primers and a Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique, we identified 27 unique full-length PLA₂ transcripts, including nine sequences identical to the previously documented ones in the database and one novel GIII-like PLA₂. Two common transcripts respectively encoding Asp49 and Lys49 PLA₂ isoforms were identified in all three cottonmouth venoms, that contain more PLA₂ transcripts than the diamondback rattlesnake venoms. The placement of cloned PLA₂ transcripts in snake venom PLA₂s was further discussed by phylogenetic analysis. The procedure developed in this study paves the way for accelerated acquisition of transcriptome data on any other venom toxin families. The results obtained are crucial for insight into the structure and function of PLA₂ isoforms for scientific and potential therapeutic purposes.
Collapse
Affiliation(s)
- Ying Jia
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Pablo Olvera
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Frida Rangel
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Bianca Mendez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Samir Reddy
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| |
Collapse
|
11
|
Zuliani JP, Gutiérrez JM, Teixeira C. Signaling pathways involved in zymosan phagocytosis induced by two secreted phospholipases A2 isolated from Bothrops asper snake venom in macrophages. Int J Biol Macromol 2018; 113:575-582. [DOI: 10.1016/j.ijbiomac.2018.02.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/12/2023]
|
12
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
13
|
Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Biochim Biophys Acta Gen Subj 2016; 1860:1528-40. [PMID: 27033089 DOI: 10.1016/j.bbagen.2016.03.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 03/14/2016] [Accepted: 03/23/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND The plant Euphorbia hirta is widely used against snake envenomations in rural areas and it was proved to be effective in animal models. Therefore, the scientific validation of its phytoconstituents for their antiophidian activity is aimed in the present study. METHODS E. hirta extract was subjected to bioactivity guided fractionation and the fractions that inhibited different enzyme activities of Naja naja venom in vitro was structurally characterized using UV, FT-IR, LC-MS and NMR spectroscopy. Edema, hemorrhage and lethality inhibition activity of the compound were studied in mice model. In addition, molecular docking and molecular dynamic simulations were also performed in silico. RESULTS The bioactive fraction was identified as Quercetin-3-O-α-rhamnoside (QR, 448.38 Da). In vitro experiments indicated that protease, phospholipase-A(2), hemolytic activity and hemorrhage inducing activity of the venom were inhibited completely at a ratio of 1:20 (venom: QR) w/w. At the same concentration, the edema ratio was drastically reduced from 187% to 107%. Significant inhibition (93%) of hyaluronidase activity was also observed at a slightly higher concentration of QR (1:50). Further, in in vivo analysis, QR significantly prolonged the survival time of mice injected with snake venom. CONCLUSION For the first time Quercetin-3-O-α-rhamnoside, isolated from E. hirta, has been shown to exhibit anti-snake venom activity against Naja naja venom induced toxicity. GENERAL SIGNIFICANCE Exploring such multifunctional lead molecules with anti-venom activity would help in developing complementary medicine for snakebite treatments especially in rural areas where anti-snake venom is not readily available.
Collapse
|
14
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
15
|
Gdula-Argasińska J, Czepiel J, Totoń-Żurańska J, Wołkow P, Librowski T, Czapkiewicz A, Perucki W, Woźniakiewicz M, Woźniakiewicz A. n-3 Fatty acids regulate the inflammatory-state related genes in the lung epithelial cells exposed to polycyclic aromatic hydrocarbons. Pharmacol Rep 2015; 68:319-28. [PMID: 26922534 DOI: 10.1016/j.pharep.2015.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/11/2015] [Accepted: 09/02/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Chronic airway inflammation is coordinated by a complex of inflammatory mediators, including eicosanoids. The aim of this study was to evaluate the impact of polycyclic aromatic hydrocarbons (PAHs) on the human lung epithelial carcinoma A549 cells supplemented with docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids. METHODS We analyzed the influence of DHA, EPA and/or benzo(a)pyrene (BaP), chrysene (Chr), fluoranthene (Flu) and benzo(a)anthracene (Baa) treatment on the fatty acids (FAs) profile and the formation of isoprostanes. We studied the cyclooxygenase-2, FP-receptor, peroxisome proliferator-activated receptors PPARδ and PPARγ, transcription factor NF-кB p50 and p65 expression by Western blot, phospholipase A2 (cPLA2) activity, as well as aryl hydrocarbon receptor (AHR), cytochrome P450 (CYP1A1), phospholipase A2 (PLA2G4A) and prostaglandin synthase 2 (PTGS2) gene expression by qRT-PCR. RESULTS DHA or EPA supplementation and BaP or Baa treatment resulted in a higher level of PGF3α. COX-2 expression was decreased while PPARδ expression and cPLA2 activity was increased after fatty acid supplementation and PAHs treatment. DHA and EPA up-regulated AHR and PLA2G4A genes. CONCLUSIONS Supplementation with n-3 FAs resulted in changes of inflammatory-state related genes in the lung epithelial cells exposed to PAHs. The altered profile of lipid mediators from n-3 FA as well as repression of the COX-2 protein by n-3 PUFAs in A549 cells incubated with PAHs suggests anti-inflammatory and pro-resolving properties of DHA and EPA. It remains to be shown whether these pleiotropic and protective actions of n-3 FAs contribute to fish oil's therapeutic effect in asthma.
Collapse
Affiliation(s)
- Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland.
| | - Jacek Czepiel
- Department of Infectious Diseases, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Totoń-Żurańska
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland; Center for Medical Genomics-OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Wołkow
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland; Center for Medical Genomics-OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University, Medical College, Kraków, Poland
| | - Anna Czapkiewicz
- Faculty of Management, AGH University of Science and Technology, Kraków, Poland
| | - William Perucki
- Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Michał Woźniakiewicz
- Laboratory of Forensic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Kraków, Poland
| | - Aneta Woźniakiewicz
- Laboratory of Forensic Chemistry, Faculty of Chemistry, Jagiellonian University in Kraków, Kraków, Poland
| |
Collapse
|
16
|
Jung S, Kim M, Lee YJ, Lee SH, Lee JH. Associations between metabolomic-identified changes of biomarkers and arterial stiffness in subjects progressing to impaired fasting glucose. Clin Endocrinol (Oxf) 2015; 83:196-204. [PMID: 25990250 DOI: 10.1111/cen.12821] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 12/22/2014] [Accepted: 05/13/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE We investigated correlations between age-related changes in circulating metabolites and arterial stiffness in impaired fasting glucose (IFG). DESIGN, SUBJECTS, MEASUREMENT This prospective cohort study included 602 healthy, normal fasting glucose (NFG) subjects (30-65 years old) who underwent triennial medical evaluation. After 3 years, 9·3% of subjects developed IFG (n = 56). Age, gender, BMI and fasting glucose were used to match the remaining NFG subjects (n = 546) that were included for the control group (NFG group, n = 80). RESULTS After 3 years, levels of fasting glucose, insulin and malondialdehyde, and brachial-ankle pulse wave velocity (baPWV) were significantly greater in the IFG group than in the NFG group after adjusting for baseline values. The IFG group had a greater increase in lactosylceramide (P = 0·001, q < 0·05) and a greater reduction in phosphatidylcholine (PC) (18:0/20:4) than the NFG group. Multiple linear regression analysis showed that the change in baPWV was independently and positively associated with changes in fasting glucose and lactosylceramide. In all subjects, lactosylceramide levels positively correlated with changes in baPWV and fasting glucose, while premenopausal women were not shown, and negatively correlated with changes in PC and LDL particle size. CONCLUSIONS This study indicates that age-related increase in circulating lactosylceramide is an independent predictor of increased arterial stiffness in subjects with impaired fasting glucose.
Collapse
Affiliation(s)
- Saem Jung
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Minjoo Kim
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| | - Young Ju Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Sang-Hyun Lee
- Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
- Research Center for Silver Science, Institute of Symbiotic Life-TECH, Yonsei University, Seoul, Korea
| |
Collapse
|
17
|
Khan M, Shunmugavel A, Dhammu TS, Matsuda F, Singh AK, Singh I. Oral administration of cytosolic PLA2 inhibitor arachidonyl trifluoromethyl ketone ameliorates cauda equina compression injury in rats. J Neuroinflammation 2015; 12:94. [PMID: 25971887 PMCID: PMC4436116 DOI: 10.1186/s12974-015-0311-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Phospholipase A2 (PLA2)-derived proinflammatory lipid mediators such as prostaglandin E2 (PGE2), leukotrienes B4 (LTB4), lysophosphatidylcholine (LPC), and free fatty acids (FFA) are implicated in spinal cord injury (SCI) pathologies. Reducing the levels of these injurious bioactive lipid mediators is reported to ameliorate SCI. However, the specific role of the group IVA isoform of PLA2 cytosolic PLA2 (cPLA2) in lumbar spinal canal stenosis (LSS) due to cauda equina compression (CEC) injury is not clear. In this study, we investigated the role of cPLA2 in a rat model of CEC using a non-toxic cPLA2-preferential inhibitor, arachidonyl trifluoromethyl ketone (ATK). METHODS LSS was induced in adult female rats by CEC procedure using silicone blocks within the epidural spaces of L4 to L6 vertebrae. cPLA2 inhibitor ATK (7.5 mg/kg) was administered by oral gavage at 2 h following the CEC. cPLA2-derived injurious lipid mediators and the expression/activity of cPLA2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were assessed. ATK-treated (CEC + ATK) were compared with vehicle-treated (CEC + VEH) animals in terms of myelin levels, pain threshold, and motor function. RESULTS ATK treatment of CEC animals reduced the phosphorylation of cPLA2 (pcPLA2) determined by Western blot, improved locomotor function evaluated by rotarod task, and reduced pain threshold evaluated by mechanical hyperalgesia method. Levels of FFA and LPC, along with PGE2 and LTB4, were reduced in CEC + ATK compared with CEC + VEH group. However, ATK treatment reduced neither the activity/expression of 5-LOX nor the expression of COX-2 in CEC + VEH animals. Increased cPLA2 activity in the spinal cord from CEC + VEH animals correlated well with decreased spinal cord as well as cauda equina fiber myelin levels, which were restored after ATK treatment. CONCLUSION The data indicate that cPLA2 activity plays a significant role in tissue injury and pain after LSS. Reducing the levels of proinflammatory and tissue damaging eicosanoids and the deleterious lipid mediator LPC shows therapeutic potential. ATK inhibits cPLA2 activity, thereby decreasing the levels of injurious lipid mediators, reducing pain, improving functional deficits, and conferring protection against LSS injury. Thus, it shows potential for preclinical evaluation in LSS.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | | | - Tajinder S Dhammu
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Fumiyo Matsuda
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA. .,School of Health Science, Kagoshima University, Kagoshima, Japan.
| | - Avtar K Singh
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA. .,Ralph H. Johnson VA Medical Center, Charleston, SC, USA.
| | - Inderjit Singh
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
18
|
Kim M, Jung S, Lee SH, Lee JH. Association between arterial stiffness and serum L-octanoylcarnitine and lactosylceramide in overweight middle-aged subjects: 3-year follow-up study. PLoS One 2015; 10:e0119519. [PMID: 25781947 PMCID: PMC4363527 DOI: 10.1371/journal.pone.0119519] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 01/26/2015] [Indexed: 12/31/2022] Open
Abstract
Existing data on the association between being overweight and cardiovascular morbidity and mortality risk in adults are inconsistent. We prospectively and longitudinally investigated the effects of weight on arterial stiffness and plasma metabolites in middle-aged subjects (aged 40–55 years). A group of 59 individuals who remained within the range of overweight during repeated measurements over a 3-year period was compared with a control group of 59 normal weight subjects who were matched for age and gender. Changes in metabolites by UPLC-LTQ-Orbitrap mass spectrometry and changes in brachial-ankle pulse wave velocity (ba-PWV) were examined. At baseline, the overweight group showed higher BMI, waist circumference, triglyceride, free fatty acid (FFA), glucose, insulin, and hs-CRP, and lower HDL-cholesterol than controls. After 3 years, the changes in waist circumference, diastolic and systolic blood pressure (DBP and SBP), triglyceride, FFA, glucose, insulin, hs-CRP, and ba-PWV observed in the overweight group were significantly different from those in the control group after adjusting for baseline levels. Furthermore, the overweight group showed greater increases in L-octanoylcarnitine (q=0.006) and decanoylcarnitine (q=0.007), and higher peak intensities of L-leucine, L-octanoylcarnitine, and decanoylcarnitine. Multiple linear regression analysis showed that the change in ba-PWV was independently and positively associated with changes in L-octanoylcarnitine, lactosylceramide, and SBP, and with baseline BMI. Our results indicate that the duration of overweight is an important aggravating factor for arterial stiffness, especially during middle age. Additionally, an age-related increase in plasma L-octanoylcarnitine, lactosylceramide, SBP, and baseline BMI are independent predictors of increased arterial stiffness in middle-aged individuals.
Collapse
Affiliation(s)
- Minjoo Kim
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Saem Jung
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Sang-Hyun Lee
- Department of Family Practice, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Jong Ho Lee
- National Leading Research Laboratory of Clinical Nutrigenetics/Nutrigenomics, Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
- Yonsei University Research Institute of Science for Aging, Yonsei University, Seoul, Korea
- * E-mail:
| |
Collapse
|
19
|
da Silva RMM, Coimbra JSDR, da Silva CA, da Costa AR, da Rocha RA, Giménez ARM, Santos IJB. Green extraction by aqueous two-phase systems of porcine pancreatic and snake venom phospholipase A2. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2014.11.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Klein C. Pregnancy Recognition and Implantation of the Conceptus in the Mare. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2015; 216:165-88. [PMID: 26450499 DOI: 10.1007/978-3-319-15856-3_9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Few, if any, biological processes are as diverse among domestic species as establishment of early pregnancy, in particular maternal recognition of pregnancy. Following fertilization and initial development in the mare oviduct, selective transport of the embryo through the uterotubal junction driven by embryo-derived PGE2 occurs. Upon arrival in the uterus, an acellular glycoprotein capsule is formed that covers the embryo, blastocyst, and conceptus (embryo and associated extraembryonic membranes) between the second and third weeks of pregnancy. Between Days 9 and 15/16 of pregnancy, the conceptus undergoes an extended phase of mobility. Conceptus mobility is driven by conceptus-derived PGF2α and PGE2 that stimulate uterine contractions which in turn propel migration of the conceptus within the uterine lumen. Cessation of conceptus mobility is referred to as fixation and appears to be attributable to increasing size of the conceptus, preferential thickening of the endometrium near the mesometrial attachment referred to as encroachment, and a reduction in sialic acid content of the capsule. During maternal recognition of pregnancy, endometrial PGF2α release is attenuated, a consequence of reduced expression of key enzymes involved in prostaglandin production. Oxytocin responsiveness is altered during early pregnancy, and reduced expression of the oxytocin receptor appears to be regulated at the posttranscriptional level rather than the transcriptional level. Prostaglandin release is attenuated temporarily only during early pregnancy; during the third week of pregnancy, the endometrium resumes the ability to secrete PGF2α. The equine conceptus initiates steroidogenesis as early as Day 6 and synthesizes estrogens, androgens, and progesterone. Estrogens are metabolized locally, presumably regulating their bioavailability and actions. Results of experiments attempting to prove that conceptus-derived estrogens are responsible for extension of corpus luteum function have been inconclusive. By the fourth week of pregnancy, the chorionic girdle becomes visible on the trophoblast. Subsequent invasion of chorionic girdle cells leads to formation of endometrial cups which secrete equine chorionic gonadotropin. Equine chorionic gonadotropin has luteinizing hormone functions in the mare, causing luteinization of follicles resulting in the formation of secondary corpora lutea essential to production of progesterone and maintenance of pregnancy.
Collapse
Affiliation(s)
- Claudia Klein
- Veterinary and Clinical Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
| |
Collapse
|
21
|
Zhou X, Li J, Yang W. Calcium/calmodulin-dependent protein kinase II regulates cyclooxygenase-2 expression and prostaglandin E2 production by activating cAMP-response element-binding protein in rat peritoneal macrophages. Immunology 2014; 143:287-99. [PMID: 24773364 DOI: 10.1111/imm.12309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/19/2014] [Accepted: 04/24/2014] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin E2 (PGE2 ) is an important inducer of inflammation, which is also closely linked to the progress of tumours. In macrophages, PGE2 production is regulated by arachidonic acid release and cyclooxygenase-2 (COX-2) expression. In the present study, we found that COX-2 expression can be achieved by activating Ca(2+) /Calmodulin (CaM)-dependent protein kinase II (CaMKII) and cAMP-response element-binding protein (CREB) in rat peritoneal macrophages. Our results indicated that lipopolysaccharide and PMA could elicit the transient increase of the concentration of intracellular free calcium ions ([Ca(2+) ]i ), which induced activation of CaMKs with the presence of CaM. The subtype of CaMKs, CaMKII, then triggered the activation of CREB, which elevated COX-2 expression and PGE2 production in a chronological order. These results suggested that Ca(2+) /CaM-dependent CaMKII plays an important role in mediating COX-2 expression and PGE2 production by activating CREB in macrophages. The study also provides more useful information to clarify the mechanism of calcium regulation of PGE2 production, which plays an essential role in inflammation and cancers.
Collapse
Affiliation(s)
- Xueyuan Zhou
- Department of Biophysics, School of Physics, Nankai University, Tianjin, China; Clinic Service Program, Leidos Biomedical Research Inc., Frederick, MD, USA
| | | | | |
Collapse
|
22
|
Qiu S, Chen F, Liu Y, Lai L. Discovery of Novel Secretory Phospholipase A2Inhibitors Using Virtual Screen. Chem Biol Drug Des 2014; 84:216-22. [DOI: 10.1111/cbdd.12307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/11/2014] [Accepted: 02/14/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Shunchen Qiu
- BNLMS; State Key Laboratory of Structural Chemistry for Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fangjin Chen
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| | - Ying Liu
- BNLMS; State Key Laboratory of Structural Chemistry for Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| | - Luhua Lai
- BNLMS; State Key Laboratory of Structural Chemistry for Unstable and Stable Species; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Center for Quantitative Biology; Peking University; Beijing 100871 China
| |
Collapse
|
23
|
Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release. Cell Biochem Biophys 2014; 67:415-29. [PMID: 22183614 DOI: 10.1007/s12013-011-9329-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The mechanisms of poultry particulate matter (PM)-induced agricultural respiratory disorders are not thoroughly understood. Hence, it is hypothesized in this article that poultry PM induces the release of interleukin-8 (IL-8) by lung epithelial cells that is regulated upstream by the concerted action of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK). To test this hypothesis, the widely used cultured human lung epithelial cells (A549) were chosen as the model system. Poultry PM caused a significant activation of PLA2 in A549 cells, which was attenuated by AACOCF3 (cPLA2 inhibitor) and PD98059 (ERK-1/2 upstream inhibitor). Poultry PM induced upstream ERK-1/2 phosphorylation and downstream cPLA2 serine phosphorylation, in a concerted fashion, in cells with enhanced association of ERK-1/2 and cPLA2. The poultry PM-induced cPLA2 serine phosphorylation and IL-8 release were attenuated by AACOCF3, PD98059, and by transfection with dominant-negative ERK-1/2 DNA in cells. The poultry PM-induced IL-8 release by the bone marrow-derived macrophages of cPLA2 knockout mice was significantly lower. For the first time, this study demonstrated that the poultry PM-induced IL-8 secretion by human lung epithelial cells was regulated by cPLA2 activation through ERK-mediated serine phosphorylation, suggesting a mechanism of airway inflammation among poultry farm workers.
Collapse
|
24
|
Quach ND, Arnold RD, Cummings BS. Secretory phospholipase A2 enzymes as pharmacological targets for treatment of disease. Biochem Pharmacol 2014; 90:338-48. [PMID: 24907600 DOI: 10.1016/j.bcp.2014.05.022] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 02/03/2023]
Abstract
Phospholipase A2 (PLA2) cleave phospholipids preferentially at the sn-2 position, liberating free fatty acids and lysophospholipids. They are classified into six main groups based on size, location, function, substrate specificity and calcium requirement. These classes include secretory PLA2 (sPLA2), cytosolic (cPLA2), Ca(2+)-independent (iPLA2), platelet activating factor acetylhydrolases (PAF-AH), lysosomal PLA2 (LyPLA2) and adipose specific PLA2 (AdPLA2). It is hypothesized that PLA2 can serve as pharmacological targets for the therapeutic treatment of several diseases, including cardiovascular diseases, atherosclerosis, immune disorders and cancer. Special emphasis has been placed on inhibitors of sPLA2 isoforms as pharmacological moieties, mostly due to the fact that these enzymes are activated during inflammatory events and because their expression is increased in several diseases. This review focuses on understanding how sPLA2 isoform expression is altered during disease progression and the possible therapeutic interventions to specifically target sPLA2 isoforms, including new approaches using nano-particulate-based strategies.
Collapse
Affiliation(s)
- Nhat D Quach
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Robert D Arnold
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849-5503, United States
| | - Brian S Cummings
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
25
|
Ahmad W, Kumolosasi E, Jantan I, Bukhari SNA, Jasamai M. Effects of Novel Diarylpentanoid Analogues of Curcumin on Secretory Phospholipase A2, Cyclooxygenases, Lipo-oxygenase, and Microsomal Prostaglandin E Synthase-1. Chem Biol Drug Des 2014; 83:670-81. [DOI: 10.1111/cbdd.12280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/23/2013] [Accepted: 01/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Waqas Ahmad
- Drug and Herbal Research Centre; Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre; Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| | - Ibrahim Jantan
- Drug and Herbal Research Centre; Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| | - Syed N. A. Bukhari
- Drug and Herbal Research Centre; Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| | - Malina Jasamai
- Drug and Herbal Research Centre; Faculty of Pharmacy; Universiti Kebangsaan Malaysia; Jalan Raja Muda Abdul Aziz 50300 Kuala Lumpur Malaysia
| |
Collapse
|
26
|
Endothelial PKCα-MAPK/ERK-phospholipase A2 pathway activation as a response of glioma in a triple culture model. A new role for pericytes? Biochimie 2014; 99:77-87. [DOI: 10.1016/j.biochi.2013.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/13/2013] [Indexed: 01/08/2023]
|
27
|
Chakraborti S, Alam MN, Chaudhury A, Sarkar J, Pramanik A, Asrafuzzaman S, Das SK, Ghosh SN, Chakraborti T. Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview. PHOSPHOLIPASES IN HEALTH AND DISEASE 2014:115-133. [DOI: 10.1007/978-1-4939-0464-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
28
|
Abstract
Approximately one third of patients with non-small cell lung cancer have unresectable stage IIIA or stage IIIB disease; combined cytotoxic chemotherapy and radiation therapy delivered concurrently has been established as the standard treatment for such patients. Despite many clinical trials that tested several different radiochemotherapy combinations, it seems that a plateau of efficiencies at the acceptable risk of complications has been reached. Clinical studies indicate that the improved efficacy of radiochemotherapy is associated with the radiosensitizing effects of chemotherapy. Improvement of outcomes of this combined modality by developing novel radiosensitizers is a viable therapeutic strategy. In addition to causing cell death, ionizing radiation also induces a many-faceted signaling response, which activates numerous prosurvival pathways that lead to enhanced proliferation in the endothelial cells and increased vascularization in tumors. Radiation at doses used in the clinic activates cytoplasmic phospholipase A2, leading to increased production of arachidonic acid and lysophosphatidylcholine. The former is the initial step in the generation of eicosanoids, while the later is the initial step in the formation of lysophosphatidic acid, leading to the activation of inflammatory pathways. The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) is member of the insulin superfamily of receptor tyrosine kinases. The EML4-ALK fusion gene appears unique to lung cancer and signals through extracellular signal regulated kinase and phosphoinositide 3-kinase. Heat shock protein 90 (Hsp90) is often overexpressed and present in an activated multichaperone complex in cancer cells, and it is now regarded as essential for malignant transformation and progression. In this review we focus on radiosensitizing strategies involving the targeting of membrane phospholipids, EML4-ALK, and Hsp90 with specific inhibitors and briefly discuss the combination of radiation with antivascular agents.
Collapse
|
29
|
Elsherbiny ME, Emara M, Godbout R. Interaction of brain fatty acid-binding protein with the polyunsaturated fatty acid environment as a potential determinant of poor prognosis in malignant glioma. Prog Lipid Res 2013; 52:562-70. [PMID: 23981365 DOI: 10.1016/j.plipres.2013.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/29/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Malignant gliomas are the most common adult brain cancers. In spite of aggressive treatment, recurrence occurs in the great majority of patients and is invariably fatal. Polyunsaturated fatty acids are abundant in brain, particularly ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Although the levels of ω-6 and ω-3 polyunsaturated fatty acids are tightly regulated in brain, the ω-6:ω-3 ratio is dramatically increased in malignant glioma, suggesting deregulation of fundamental lipid homeostasis in brain tumor tissue. The migratory properties of malignant glioma cells can be modified by altering the ratio of AA:DHA in growth medium, with increased migration observed in AA-rich medium. This fatty acid-dependent effect on cell migration is dependent on expression of the brain fatty acid binding protein (FABP7) previously shown to bind DHA and AA. Increased levels of enzymes involved in eicosanoid production in FABP7-positive malignant glioma cells suggest that FABP7 is an important modulator of AA metabolism. We provide evidence that increased production of eicosanoids in FABP7-positive malignant glioma growing in an AA-rich environment contributes to tumor infiltration in the brain. We discuss pathways and molecules that may underlie FABP7/AA-mediated promotion of cell migration and FABP7/DHA-mediated inhibition of cell migration in malignant glioma.
Collapse
Affiliation(s)
- Marwa E Elsherbiny
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | | | | |
Collapse
|
30
|
Currò M, Ferlazzo N, Risitano R, Condello S, Vecchio M, Caccamo D, Ientile R. Transglutaminase 2 and phospholipase A₂ interactions in the inflammatory response in human Thp-1 monocytes. Amino Acids 2013; 46:759-66. [PMID: 23913269 DOI: 10.1007/s00726-013-1569-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/19/2013] [Indexed: 12/16/2022]
Abstract
Several experimental approaches have demonstrated that transglutaminase 2 (TG2) increased activity is involved in monocyte activation and inflammatory response. Preliminary results also demonstrate a TG-mediated post-translational modification of phospholipase A2 (PLA2), which catalyzes the release of arachidonic acid from its lipid storage sites. The control of PLA2-mediated production of eicosanoids has been found to be of great benefit for inflammatory disease treatment. However, the identification of the mechanisms of PLA2 activation is a very complex issue, because of the presence of multiple PLA2 forms. The aim of this study was to characterize the interactions between TG2 and sPLA2 in LPS-stimulated THP-1 cells, which were treated with TPA to induce early differentiated macrophage-type model. We demonstrated that increases in TG2 enzyme activity and protein expression may be considered an early event in monocyte/macrophage activation by LPS. Under these conditions, TG2 protein was co-immunoprecipitated with PLA2 by monoclonal antibody directed against the secretory form of the enzyme (sPLA2-V). Concomitantly, the PLA2 enzyme activity increased in TPA-treated cells exposed to LPS; these high levels of enzyme activity were significant reduced by R283, a site-specific inhibitor of TG2. Moreover, confocal laser scanning microscopy analysis of double-immunostained cytochemical specimens confirmed a co-localization of BAPA-labeled proteins and sPLA2-V in LPS-treated cells. These findings give evidence of a complex TG2/sPLA2-V, suggesting the possibility that sPLA2-V is a substrate for TG2. These results demonstrated that TG2 increases produced a sustained activation of PLA2 activity, suggesting a functional interaction between these enzymes in the regulation of inflammatory response.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical Sciences and Morphological and Functional Imaging, University of Messina, AOU Policlinico "G. Martino", Via C. Valeria, 98125, Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Rodríguez Diez G, Sánchez Campos S, Giusto N, Salvador G. Specific roles for Group V secretory PLA2 in retinal iron-induced oxidative stress. Implications for age-related macular degeneration. Exp Eye Res 2013; 113:172-81. [DOI: 10.1016/j.exer.2013.05.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/14/2013] [Accepted: 05/21/2013] [Indexed: 11/15/2022]
|
32
|
Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models. PLoS One 2013; 8:e69688. [PMID: 23894523 PMCID: PMC3716600 DOI: 10.1371/journal.pone.0069688] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 06/14/2013] [Indexed: 11/21/2022] Open
Abstract
Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.
Collapse
|
33
|
Moreira V, de Castro Souto PCM, Ramirez Vinolo MA, Lomonte B, María Gutiérrez J, Curi R, Teixeira C. A catalytically-inactive snake venom Lys49 phospholipase A2 homolog induces expression of cyclooxygenase-2 and production of prostaglandins through selected signaling pathways in macrophages. Eur J Pharmacol 2013; 708:68-79. [DOI: 10.1016/j.ejphar.2013.01.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 01/03/2023]
|
34
|
Bratberg M, Olsvik PA, Edvardsen RB, Brekken HK, Vadla R, Meier S. Effects of oil pollution and persistent organic pollutants (POPs) on glycerophospholipids in liver and brain of male Atlantic cod (Gadus morhua). CHEMOSPHERE 2013; 90:2157-2171. [PMID: 23266412 DOI: 10.1016/j.chemosphere.2012.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Fish in the North Sea are exposed to relatively high levels of halogenated compounds in addition to the pollutants released by oil production activities. In this study male Atlantic cod (Gadus morhua) were orally exposed to environmental realistic levels (low and high) of weathered crude oil and/or a mixture of POPs for 4weeks. Lipid composition in brain and in liver extracts were analysed in order to assess the effects of the various pollutants on membrane lipid composition and fatty acid profiles. Transcriptional effects in the liver were studied by microarray and quantitative real-time RT-PCR. Chemical analyses confirmed uptake of polychlorinated biphenyls (PCBs) and chlorinated pesticides, polybrominated diphenyl ethers (PBDEs) and perfluorooctanesulfonate (PFOS) in the liver and excretion of metabolites of polyaromatic hydrocarbons (PAHs) in the bile. Treatment with POPs and/or crude oil did not induce significant changes in lipid composition in cod liver. Only a few minor changes were observed in the fatty acid profile of the brain and the lipid classes in the liver. The hypothesis that pollution from oil or POPs at environmental realistic levels alters the lipid composition in marine fish was therefore not confirmed in this study. However, the transcriptional data suggest that the fish were affected by the treatment at the mRNA level. This study suggests that a combination of oil and POPs induce the CYP1a detoxification system and gives an increase in the metabolism and clearing rate of PAHs and POPs, but with no effects on membrane lipids in male Atlantic cod.
Collapse
|
35
|
A Lys49 phospholipase A2, isolated from Bothrops asper snake venom, induces lipid droplet formation in macrophages which depends on distinct signaling pathways and the C-terminal region. BIOMED RESEARCH INTERNATIONAL 2012; 2013:807982. [PMID: 23509782 PMCID: PMC3591195 DOI: 10.1155/2013/807982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
MT-II, a Lys49PLA2 homologue devoid of catalytic activity from B. asper venom, stimulates inflammatory events in macrophages. We investigated the ability of MT-II to induce formation of lipid droplets (LDs), key elements of inflammatory responses, in isolated macrophages and participation of protein kinases and intracellular PLA2s in this effect. Influence of MT-II on PLIN2 recruitment and expression was assessed, and the effects of some synthetic peptides on LD formation were further evaluated. At noncytotoxic concentrations, MT-II directly activated macrophages to form LDs. This effect was reproduced by a synthetic peptide corresponding to the C-terminal sequence 115–129 of MT-II, evidencing the critical role of C-terminus for MT-II-induced effect. Moreover, MT-II induced expression and recruitment of PLIN2. Pharmacological interventions with specific inhibitors showed that PKC, PI3K, ERK1/2, and iPLA2, but not P38MAPK or cPLA2, signaling pathways are involved in LD formation induced by MT-II. This sPLA2 homologue also induced synthesis of PGE2 that colocalized to LDs. In conclusion, MT-II is able to induce formation of LDs committed to PGE2 formation in a process dependent on C-terminal loop engagement and regulated by distinct protein kinases and iPLA2. LDs may constitute an important inflammatory mechanism triggered by MT-II in macrophages.
Collapse
|
36
|
Mazerik JN, Mikkilineni H, Kuppusamy VA, Steinhour E, Peltz A, Marsh CB, Kuppusamy P, Parinandi NL. Mercury activates phospholipase a(2) and induces formation of arachidonic Acid metabolites in vascular endothelial cells. Toxicol Mech Methods 2012; 17:541-57. [PMID: 20020881 DOI: 10.1080/15376510701380505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
ABSTRACT Currently, mercury has been identified as a risk factor in cardiovascular diseases among humans. Here, we tested our hypothesis that mercury modulates the activity of the vascular endothelial cell (EC) lipid signaling enzyme phospholipase A(2) (PLA(2)), which is an important player in the EC barrier functions. Monolayers of bovine pulmonary artery ECs (BPAECs) in culture, following labeling of membrane phospholipids with [(3)H]arachidonic acid (AA), were exposed to the inorganic form of mercury, mercury chloride, and the release of free AA (index of PLA(2) activity) and formation of AA metabolites were determined by liquid scintillation counting and enzyme immunoassay, respectively. Mercury chloride significantly activated PLA(2) in BPAECs in a dose-dependent (0 to 50 muM) and time-dependent (0 to 120 min) fashion. Metal chelators significantly attenuated mercury-induced PLA(2) activation, suggesting that cellular mercury-ligand interaction is required for the enzyme activation and that chelators are suitable blockers for mercury-induced PLA(2) activation in ECs. Sulfhydryl (thiol-protective) agents, calcium chelating agents, and cPLA(2)-specific inhibitor also significantly attenuated the mercury-induced PLA(2), suggesting the role of thiol and calcium in the activation of cPLA(2) in BPAECs. Significant formation of AA metabolites, including the release of total prostaglandins, thromboxane B(2), and 8-isoprostane, were observed in BPAECs following their exposure to mercury chloride. Mercury chloride induced cytotoxicity as observed by the altered cell morphology and enhanced trypan blue uptake, which was attenuated by the cPLA(2) inhibitor AACOCF(3). The results of this study revealed that inorganic mercury-induced PLA(2) activation through the thiol and calcium signaling and the formation of bioactive AA metabolites further demonstrated the association of PLA(2) with the cytotoxicity of mercury in ECs. Overall, the results of the current study underscore the importance of PLA(2) signaling in mercury-induced endothelial dysfunctions.
Collapse
Affiliation(s)
- Jessica N Mazerik
- Lipid Signaling and Lipidomics Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Tonon J, Guarnier FA, Cecchini AL, Cecchini R. Anemia associated with extraerythrocytic oxidative stress damage mediated by neutrophil superoxide anion production in chronic renal failure patients undergoing hemodialysis. PATHOPHYSIOLOGY 2012; 19:261-8. [DOI: 10.1016/j.pathophys.2012.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/01/2012] [Accepted: 07/23/2012] [Indexed: 11/25/2022] Open
|
38
|
Waters SM, Coyne GS, Kenny DA, MacHugh DE, Morris DG. Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium. Physiol Genomics 2012; 44:878-88. [PMID: 22851761 DOI: 10.1152/physiolgenomics.00065.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The potential for dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) to improve reproductive efficiency in cattle has received much interest. The mechanisms by which n-3 PUFA may affect physiological and biochemical processes in key reproductive tissues are likely to be mediated by significant alterations in gene expression. The objective of this study was to examine the effects of dietary n-3 PUFA supplementation on global uterine endometrial gene expression in cattle. Beef heifers were supplemented with a rumen protected source of either a saturated fatty acid (CON; palmitic acid) or high n-3 PUFA (n-3 PUFA; 275 g) diet per animal per day for 45 days and global gene expression was determined in uterine endometrial tissue using an Affymetrix oligonucleotide bovine array. A total of 1,807 (946 up- and 861 downregulated) genes were differentially expressed following n-3 PUFA supplementation. Dietary n-3 PUFA altered numerous cellular processes potentially important in the control of reproduction in cattle. These included prostaglandin biosynthesis, steroidogenesis and transcriptional regulation, while effects on genes involved in maternal immune response and tissue remodeling were also observed. This study provides new insights into the effects of n-3 PUFA supplementation on the regulation of gene expression in the bovine uterus.
Collapse
Affiliation(s)
- Sinéad M Waters
- Teagasc, Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| | | | | | | | | |
Collapse
|
39
|
Rodríguez Diez G, Uranga RM, Mateos MV, Giusto NM, Salvador GA. Differential participation of phospholipase A2 isoforms during iron-induced retinal toxicity. Implications for age-related macular degeneration. Neurochem Int 2012; 61:749-58. [PMID: 22732705 DOI: 10.1016/j.neuint.2012.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 01/01/2023]
Abstract
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800 μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60 min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxygenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD.
Collapse
Affiliation(s)
- G Rodríguez Diez
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, 8000 Bahía Blanca, Argentina
| | | | | | | | | |
Collapse
|
40
|
Chen S, Yao L, Cunningham TJ. Secreted phospholipase A2 involvement in neurodegeneration: differential testing of prosurvival and anti-inflammatory effects of enzyme inhibition. PLoS One 2012; 7:e39257. [PMID: 22720084 PMCID: PMC3376100 DOI: 10.1371/journal.pone.0039257] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 05/22/2012] [Indexed: 11/20/2022] Open
Abstract
There is increased interest in the contribution of secreted phospholipase A2 (sPLA2) enzymes to neurodegenerative diseases. Systemic treatment with the nonapeptide CHEC-9, a broad spectrum uncompetitive inhibitor of sPLA2, has been shown previously to inhibit neuron death and aspects of the inflammatory response in several models of neurodegeneration. A persistent question in studies of sPLA2 inhibitors, as for several other anti-inflammatory and neuroprotective compounds, is whether the cell protection is direct or due to slowing of the toxic aspects of the inflammatory response. To further explore this issue, we developed assays using SY5Y (neuronal cells) and HL-60 (monocytes) cell lines and examined the effects of sPLA2 inhibition on these homogeneous cell types in vitro. We found that the peptide inhibited sPLA2 enzyme activity in both SY5Y and HL-60 cultures. This inhibition provided direct protection to SY5Y neuronal cells and their processes in response to several forms of stress including exposure to conditioned medium from HL-60 cells. In cultures of HL-60 cells, sPLA2 inhibition had no effect on survival of the cells but attenuated their differentiation into macrophages, with regard to process development, phagocytic ability, and the expression of differentiation marker CD36, as well as the secretion of proinflammatory cytokines TNF-α and IL-6. These results suggest that sPLA2 enzyme activity organizes a cascade of changes comprising both cell degeneration and inflammation, processes that could theoretically operate independently during neurodegenerative conditions. The effectiveness of sPLA2 inhibitor CHEC-9 may be due to its ability to affect both processes in isolation. Testing potential anti-inflammatory/neuroprotective compounds with these human cell lines and their conditioned media may provide a useful screening tool prior to in vivo therapeutic applications.
Collapse
Affiliation(s)
- Shuyan Chen
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Lihua Yao
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Timothy J. Cunningham
- Department of Anatomy and Neurobiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chakraborti S, Roy S, Mandal A, Dey K, Chowdhury A, Shaikh S, Chakraborti T. Role of PKCα-p(38)MAPK-G(i)α axis in NADPH oxidase derived O(2)(·-)-mediated activation of cPLA(2) under U46619 stimulation in pulmonary artery smooth muscle cells. Arch Biochem Biophys 2012; 523:169-80. [PMID: 22568895 DOI: 10.1016/j.abb.2012.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 12/30/2022]
Abstract
We have recently reported that treatment of bovine pulmonary artery smooth muscle cells with the thromboxane A(2) mimetic, U46619 stimulated NADPH oxidase derived O(2)(·-) level, which subsequently caused marked increase in [Ca(2+)](i)[17]. Herein, we demonstrated that O(2)(·-)-mediated increase in [Ca(2+)](i) stimulates an aprotinin sensitive proteinase activity, which proteolytically activates PKC-α under U46619 treatment to the cells. The activated PKC-α then phosphorylates p(38)MAPK and that subsequently caused G(i)α phosphorylation leading to stimulation of cPLA(2) activity in the cell membrane.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- Animals
- Biomimetic Materials/pharmacology
- Calcium/metabolism
- Cattle
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Enzyme Activation/drug effects
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Phospholipases A2, Cytosolic/metabolism
- Protein Kinase C-alpha/genetics
- Protein Kinase C-alpha/metabolism
- Pulmonary Artery/cytology
- Superoxides/metabolism
- Thromboxane A2/metabolism
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| | | | | | | | | | | | | |
Collapse
|
42
|
Talib LL, Diniz BS, Zainaghi IA, Forlenza OV, Gattaz WF. A radioenzymatic assay to identify three groups of phospholipase A(2) in platelets. Prostaglandins Leukot Essent Fatty Acids 2012; 86:149-53. [PMID: 22498046 DOI: 10.1016/j.plefa.2012.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 11/25/2022]
Abstract
Phospholipases A(2) (PLA(2)) are key enzymes in membrane metabolism. The release of fatty acids and lysophospholipids by PLA(2) activates several intra-cellular second messenger cascades that regulate a wide variety of physiological responses. The aim of the present study is to describe a radioenzymatic assay to determine the activity of three main PLA(2) subtypes in platelets, namely extracellular calcium-dependent PLA(2) (sPLA(2)) and intracellular calcium-dependent (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)). The differentiation of these distinct PLA(2) subtypes was based on the enzyme substrate preference (arachdonic acid or palmitoyl acid) and calcium concentration. Our results indicate that this new assay is feasible, precise and specific to measure the activity of the aforementioned subtypes of PLA(2). Therefore, this protocol can be used to investigate modifications of PLA(2) homeostasis in distinct biological models addressing the pathophysiology of many medical and neuropsychiatric disorders such as schizophrenia and Alzheimer's disease.
Collapse
Affiliation(s)
- Leda L Talib
- Laboratory of Neuroscience-LIM 27, Department and Institute of Psychiatry, University of Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
43
|
Vargas LJ, Londoño M, Quintana JC, Rua C, Segura C, Lomonte B, Núñez V. An acidic phospholipase A₂ with antibacterial activity from Porthidium nasutum snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:341-7. [PMID: 22251437 DOI: 10.1016/j.cbpb.2011.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 11/26/2022]
Abstract
Snake venoms are complex mixtures of proteins among which both basic and acidic phospholipases A(2) (PLA(2)s) can be found. Basic PLA(2)s are usually responsible for major toxic effects induced by snake venoms, while acidic PLA(2)s tend to have a lower toxicity. A novel PLA(2), here named PnPLA(2), was purified from the venom of Porthidium nasutum by means of RP-HPLC on a C18 column. PnPLA(2) is an acidic protein with a pI of 4.6, which migrates as a single band under both non-reducing and reducing conditions in SDS-PAGE. PnPLA(2) had a molecular mass of 15,802.6 Da, determined by ESI-MS. Three tryptic peptides of this protein were characterized by HPLC-nESI-MS/MS, and N-terminal sequencing by direct Edman degradation showing homology to other acidic PLA(2)s from viperid venoms. PnPLA(2) displayed indirect hemolytic activity in agarose erythrocyte-egg yolk gels and bactericidal activity against Staphylococcus aureus in a dose-dependent manner, with a MIC and MBC of 32 μg/mL. In addition, PnPLA(2) showed a potent inhibitory effect on platelet aggregation with doses up to 40 μg/mL. This acidic PLA(2), in contrast to basic enzymes isolated from other viperid snake venoms, was not cytotoxic to murine skeletal muscle myoblasts C(2)C(12). This is the first report on a bactericidal protein of Porthidium nasutum venom.
Collapse
Affiliation(s)
- Leidy Johana Vargas
- Programa Ofidismo/Escorpionismo, Universidad de Antioquia, Street 62 No. 52-59, A.A. 1226, Medellín, Colombia.
| | | | | | | | | | | | | |
Collapse
|
44
|
Eicosanoid Signaling and Vascular Dysfunction: Methylmercury-Induced Phospholipase D Activation in Vascular Endothelial Cells. Cell Biochem Biophys 2011; 67:317-29. [DOI: 10.1007/s12013-011-9304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Nievergelt A, Marazzi J, Schoop R, Altmann KH, Gertsch J. Ginger phenylpropanoids inhibit IL-1beta and prostanoid secretion and disrupt arachidonate-phospholipid remodeling by targeting phospholipases A2. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:4140-50. [PMID: 21908733 DOI: 10.4049/jimmunol.1100880] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The rhizome of ginger (Zingiber officinale) is employed in Asian traditional medicine to treat mild forms of rheumatoid arthritis and fever. We have profiled ginger constituents for robust effects on proinflammatory signaling and cytokine expression in a validated assay using human whole blood. Independent of the stimulus used (LPS, PMA, anti-CD28 Ab, anti-CD3 Ab, and thapsigargin), ginger constituents potently and specifically inhibited IL-1β expression in monocytes/macrophages. Both the calcium-independent phospholipase A(2) (iPLA(2))-triggered maturation and the cytosolic phospholipase A(2) (cPLA(2))-dependent secretion of IL-1β from isolated human monocytes were inhibited. In a fluorescence-coupled PLA(2) assay, most major ginger phenylpropanoids directly inhibited i/cPLA(2) from U937 macrophages, but not hog pancreas secretory phospholipase A(2). The effects of the ginger constituents were additive and the potency comparable to the mechanism-based inhibitor bromoenol lactone for iPLA(2) and methyl arachidonyl fluorophosphonate for cPLA(2), with 10-gingerol/-shogaol being most effective. Furthermore, a ginger extract (2 μg/ml) and 10-shogaol (2 μM) potently inhibited the release of PGE(2) and thromboxane B2 (>50%) and partially also leukotriene B(4) in LPS-stimulated macrophages. Intriguingly, the total cellular arachidonic acid was increased 2- to 3-fold in U937 cells under all experimental conditions. Our data show that the concurrent inhibition of iPLA(2) and prostanoid production causes an accumulation of free intracellular arachidonic acid by disrupting the phospholipid deacylation-reacylation cycle. The inhibition of i/cPLA(2), the resulting attenuation of IL-1β secretion, and the simultaneous inhibition of prostanoid production by common ginger phenylpropanoids uncover a new anti-inflammatory molecular mechanism of dietary ginger that may be exploited therapeutically.
Collapse
Affiliation(s)
- Andreas Nievergelt
- Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
46
|
Silva IT, Mello APQ, Damasceno NRT. Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A₂ (Lp-PLA₂): a review. Lipids Health Dis 2011; 10:170. [PMID: 21955667 PMCID: PMC3204246 DOI: 10.1186/1476-511x-10-170] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/28/2011] [Indexed: 12/11/2022] Open
Abstract
The association of cardiovascular events with Lp-PLA2 has been studied continuously today. The enzyme has been strongly associated with several cardiovascular risk markers and events. Its discovery was directly related to the hydrolysis of the platelet-activating factor and oxidized phospholipids, which are considered protective functions. However, the hydrolysis of bioactive lipids generates lysophospholipids, compounds that have a pro-inflammatory function. Therefore, the evaluation of the distribution of Lp-PLA2 in the lipid fractions emphasized the dual role of the enzyme in the inflammatory process, since the HDL-Lp-PLA2 enzyme contributes to the reduction of atherosclerosis, while LDL-Lp-PLA2 stimulates this process. Recently, it has been verified that diet components and drugs can influence the enzyme activity and concentration. Thus, the effects of these treatments on Lp-PLA2 may represent a new kind of prevention of cardiovascular disease. Therefore, the association of the enzyme with the traditional assessment of cardiovascular risk may help to predict more accurately these diseases.
Collapse
Affiliation(s)
- Isis T Silva
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
47
|
Towards novel radiosensitizing agents: the role of cytosolic PLA2α in combined modality cancer therapy. Future Med Chem 2011; 3:835-43. [PMID: 21644828 DOI: 10.4155/fmc.11.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The radioresistant nature of some tumors serves as an obstacle to curative therapy for several poor-prognosis malignancies. The radiosensitivity of a cancer is dependent not only on the intrinsic ability of tumor cells to recover from radiation-induced damage, but also the ability of stromal elements (e.g., vasculature) in the tumor microenvironment to survive and continue proliferating in the face of ionizing radiation. In this regard, it is important to understand the initial events activating radiation-induced signal transduction pathways. Among these events is the activation of cytosolic phospholipase A2 α and the subsequent production of the lipid second messengers. These events occur within minutes following exposure to ionizing radiation, and have been shown to enhance cell viability through a number of prosurvival signaling pathways. Furthermore, inhibition of cytosolic phospholipase A2 α has now been shown to reduce the viability of endothelial cells in culture after exposure to ionizing radiation, as well as slowing the growth of tumors in animal models of cancer.
Collapse
|
48
|
Hermansson M, Hokynar K, Somerharju P. Mechanisms of glycerophospholipid homeostasis in mammalian cells. Prog Lipid Res 2011; 50:240-57. [DOI: 10.1016/j.plipres.2011.02.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/21/2011] [Accepted: 02/25/2011] [Indexed: 01/09/2023]
|
49
|
Cytosolic phospholipase A2 as a molecular target for the radiosensitization of ovarian cancer. Cancer Lett 2011; 304:137-43. [PMID: 21397389 DOI: 10.1016/j.canlet.2011.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 12/14/2022]
Abstract
In ovarian cancer, the molecular targeted chemotherapeutics could increase the efficiency of low-dose radiotherapy while decreasing injury to adjusted organs. In irradiated A2780 human ovarian carcinoma cells, cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF(3) prevented activation of pro-survival Akt signaling and enhanced cell death. The potential molecular mechanisms of this effect could involve signaling through lysophosphatidic acid receptors. In the heterotopic A2780 tumor model using nude mice, cPLA(2) inhibition significantly delayed tumor growth compared to treatment with radiation or vehicle alone. These results identify cPLA(2) as a molecular target to enhance the therapeutic ratio of radiation in ovarian cancer.
Collapse
|
50
|
Lee SH, Schneider C, Higdon AN, Darley-Usmar VM, Chung CY. Role of iPLA(2) in the regulation of Src trafficking and microglia chemotaxis. Traffic 2011; 12:878-89. [PMID: 21438970 DOI: 10.1111/j.1600-0854.2011.01195.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Microglia are immune effector cells in the central nervous system (CNS) and their activation, migration and proliferation play crucial roles in brain injuries and diseases. We examined the role of intracellular Ca(2+) -independent phospholipase A(2) (iPLA(2)) in the regulation of microglia chemotaxis toward ADP. Inhibition of iPLA(2) by 4-bromoenol lactone (BEL) or iPLA(2) knockdown exerted a significant inhibition on phosphatidylinositol-3-kinase (PI3K) activation and chemotaxis. Further examination revealed that iPLA(2) knockdown abrogated Src activation, which is required for PI3K activation and chemotaxis. Colocalization studies showed that cSrc-GFP was retained in the endosomal recycling compartment (ERC) in iPLA(2) knockdown cells, but the addition of arachidonic acid (AA) could restore cSrc trafficking to the plasma membrane by allowing the formation/release of recycling endosomes associated with cSrc-GFP. Using BODIPY-AA, we showed that AA is selectively enriched in recycling endosomes. These results suggest that AA is required for the cSrc trafficking to the plasma membrane by controlling the formation/release of recycling endosomes from the ERC.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | |
Collapse
|