1
|
Chasov V, Davletshin D, Gilyazova E, Mirgayazova R, Kudriaeva A, Khadiullina R, Yuan Y, Bulatov E. Anticancer therapeutic strategies for targeting mutant p53-Y220C. J Biomed Res 2024; 38:222-232. [PMID: 38738269 PMCID: PMC11144932 DOI: 10.7555/jbr.37.20230093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 05/14/2024] Open
Abstract
The tumor suppressor p53 is a transcription factor with a powerful antitumor activity that is controlled by its negative regulator murine double minute 2 (MDM2, also termed HDM2 in humans) through a feedback mechanism. At the same time, TP53 is the most frequently mutated gene in human cancers. Mutant p53 proteins lose wild-type p53 tumor suppression functions but acquire new oncogenic properties, among which are deregulating cell proliferation, increasing chemoresistance, disrupting tissue architecture, and promoting migration, invasion and metastasis as well as several other pro-oncogenic activities. The oncogenic p53 mutation Y220C creates an extended surface crevice in the DNA-binding domain destabilizing p53 and causing its denaturation and aggregation. This cavity accommodates stabilizing small molecules that have therapeutic values. The development of suitable small-molecule stabilizers is one of the therapeutic strategies for reactivating the Y220C mutant protein. In this review, we summarize approaches that target p53-Y220C, including reactivating this mutation with small molecules that bind Y220C to the hydrophobic pocket and developing immunotherapies as the goal for the near future, which target tumor cells that express the p53-Y220C neoantigen.
Collapse
Affiliation(s)
- Vitaly Chasov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Regina Mirgayazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Raniya Khadiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Youyong Yuan
- Institute of Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
2
|
Wang Q, Xie JF, Yao TT, Wang XX, Guo QW, Wang LS, Yu Y, Xu LC. MicroRNA‑30a‑5p regulates cypermethrin-induced apoptosis of Sertoli cells by targeting KLF9 in vitro. Reprod Toxicol 2023; 119:108414. [PMID: 37245696 DOI: 10.1016/j.reprotox.2023.108414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Cypermethrin (CYP) has been identified as one kind of endocrine-disrupting chemicals (EDCs) to induce male reproduction damage. This study aimed to investigate the effects and mechanisms of miR-30a-5p on CYP induced apoptosis of TM4 mouse Sertoli cells in vitro. In the present study, 0 μM, 10 μM, 20 μM, 40 μM and 80 μM CYP were used to treat TM4 cells for 24 h. The apoptosis of TM4 cells, the expression level of miR-30a-5p, the protein expressions and the interaction between miR-30a-5p and KLF9 were detected by flow cytometry, quantitative Real-Time PCR, Western blot and luciferase reporter assays. CYP induced apoptosis of TM4 cells, inhibited expression of miR-30a-5p in TM4 cells, and overexpression of miR-30a-5p partially recovered CYP induced cells apoptosis. Furthermore, KLF9 was a potential downstream target of miR-30a-5p predicted by publicly available databases. KLF9 expression level in TM4 cells was significantly elevated after treatment with CYP, and the induction was inhibited by miR-30a-5p mimics transfection. Meanwhile, dual-luciferase reporter assay demonstrated that miR-30a-5p directly targeted KLF9-3'UTR. Moreover, in the presence of CYP, the apoptosis regulator p53 expression was also increased in TM4 cells. Overexpression miR-30a-5p or down-regulation of KLF9 both attenuated the induction of CYP on p53 expression. Overall, the present study demonstrated that miR-30a-5p regulated CYP induced TM4 cells apoptosis by targeting KLF9/p53 axis.
Collapse
Affiliation(s)
- Qi Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jia-Fei Xie
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Ting-Ting Yao
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xu-Xu Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Qian-Wen Guo
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lu-Shan Wang
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue Yu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Li-Chun Xu
- Key Lab of Environment and Health, School of Public Health, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, Jiangsu 221004, China; Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Ramesh V, Suwanmajo T, Krishnan J. Network regulation meets substrate modification chemistry. J R Soc Interface 2023; 20:20220510. [PMID: 36722169 PMCID: PMC9890324 DOI: 10.1098/rsif.2022.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Biochemical networks are at the heart of cellular information processing. These networks contain distinct facets: (i) processing of information from the environment via cascades/pathways along with network regulation and (ii) modification of substrates in different ways, to confer protein functionality, stability and processing. While many studies focus on these factors individually, how they interact and the consequences for cellular systems behaviour are poorly understood. We develop a systems framework for this purpose by examining the interplay of network regulation (canonical feedback and feed-forward circuits) and multisite modification, as an exemplar of substrate modification. Using computational, analytical and semi-analytical approaches, we reveal distinct and unexpected ways in which the substrate modification and network levels combine and the emergent behaviour arising therefrom. This has important consequences for dissecting the behaviour of specific signalling networks, tracing the origins of systems behaviour, inference of networks from data, robustness/evolvability and multi-level engineering of biomolecular networks. Overall, we repeatedly demonstrate how focusing on only one level (say network regulation) can lead to profoundly misleading conclusions about all these aspects, and reveal a number of important consequences for experimental/theoretical/data-driven interrogations of cellular signalling systems.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thapanar Suwanmajo
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
4
|
Park JH, Park SA, Lee YJ, Park HW, Oh SM. PBK attenuates paclitaxel-induced autophagic cell death by suppressing p53 in H460 non-small-cell lung cancer cells. FEBS Open Bio 2020; 10:937-950. [PMID: 32237067 PMCID: PMC7193173 DOI: 10.1002/2211-5463.12855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/05/2020] [Accepted: 03/26/2020] [Indexed: 01/07/2023] Open
Abstract
PDZ‐binding kinase (PBK) has previously been shown to mediate chemoresistance of cancer cells to anticancer drugs. However, it remains unclear how PBK regulates paclitaxel‐induced cancer cell death. Here, we demonstrate that PBK hinders paclitaxel‐mediated autophagic cell death in H460 non‐small‐cell lung cancer cells. PBK knockdown increased apoptosis, autophagy, p53 level, and LC3 puncta upon paclitaxel treatment. Moreover, p53 expression facilitated an increase in the LC3‐II/LC3‐I ratio in response to paclitaxel, and PBK knockdown augmented paclitaxel‐mediated p53 transcriptional activity. Meanwhile, paclitaxel induced PBK‐mediated p53 nuclear export and its subsequent ubiquitination in control cells, but not in PBK knockdown cells. We conclude that PBK hampers paclitaxel‐induced autophagic cell death by suppressing p53, suggesting a potential role of PBK in p53‐mediated H460 cell death.
Collapse
Affiliation(s)
- Jung-Hwan Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang-Ah Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Young-Ju Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea
| | - Hwan-Woo Park
- Department of Cell biology, College of Medicine, Konyang University, Daejeon, Korea
| | - Sang-Muk Oh
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, Korea.,Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Korea
| |
Collapse
|
5
|
Zhu S, Khatun R, Lento C, Sheng Y, Wilson DJ. Enhanced Binding Affinity via Destabilization of the Unbound State: A Millisecond Hydrogen–Deuterium Exchange Study of the Interaction between p53 and a Pleckstrin Homology Domain. Biochemistry 2017; 56:4127-4133. [DOI: 10.1021/acs.biochem.7b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaolong Zhu
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Rahima Khatun
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Yi Sheng
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre
for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
6
|
Yim JH, Yun JM, Kim JY, Lee IK, Nam SY, Kim CS. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells. JOURNAL OF RADIATION RESEARCH 2017; 58:329-340. [PMID: 28122968 PMCID: PMC5440887 DOI: 10.1093/jrr/rrw126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/24/2016] [Accepted: 12/09/2016] [Indexed: 05/24/2023]
Abstract
Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid-binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation.
Collapse
Affiliation(s)
- Ji-Hye Yim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Jung Mi Yun
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Ji Young Kim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - In Kyung Lee
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Seon Young Nam
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| | - Cha Soon Kim
- Radiation Health Institute, Korea Hydro & Nuclear Power Co. Ltd, Seongnam-si, Gyeonggi-do, 13605, Korea
| |
Collapse
|
7
|
Schipp R, Varga J, Bátor J, Vecsernyés M, Árvai Z, Pap M, Szeberényi J. Partial p53-dependence of anisomycin-induced apoptosis in PC12 cells. Mol Cell Biochem 2017; 434:41-50. [PMID: 28432551 DOI: 10.1007/s11010-017-3035-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
The bacterial antibiotic anisomycin is known to induce apoptosis by activating several mitogen-activated protein kinases and by inhibiting protein synthesis. In this study, the influence of p53 protein on the apoptosis-inducing effect of anisomycin was investigated. The effect of protein synthesis-inhibiting concentration of anisomycin on apoptotic events was analyzed using Western blot, DNA fragmentation, and cell viability assays in wild-type PC12 and in mutant p53 protein expressing p143p53PC12 cells. Anisomycin stimulated the main apoptotic pathways in both cell lines, but p143p53PC12 cells showed lower sensitivity to the drug than their wild-type counterparts. Anisomycin caused the activation of the main stress kinases, phosphorylation of the p53 protein and the eukaryotic initiation factor eIF2α, proteolytic cleavage of protein kinase R, Bid, caspase-9 and -3. Furthermore, anisomycin treatment led to the activation of TRAIL and caspase-8, two proteins involved in the extrinsic apoptotic pathway. All these changes were stronger and more sustained in wtPC12 cells. In the presence of the dominant inhibitory p53 protein, p53- dependent genes involved in the regulation of apoptosis may be less transcribed and this can lead to the decrease of apoptotic processes in p143p53PC12 cells.
Collapse
Affiliation(s)
- R Schipp
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Varga
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - J Bátor
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Vecsernyés
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - Z Árvai
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - M Pap
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary
| | - József Szeberényi
- Department of Medical Biology, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary. .,Signal Transduction Research Group, Szentágothai Research Centre, Ifjúság útja 20, Pécs, 7624, Hungary.
| |
Collapse
|
8
|
Abstract
Abstract Although the recent structural studies on polymerases have brought new insights on polymerase fidelity, the role of DNA sequence and structure is not well understood. Here, the analysis of the crystal structures of hotspots for polymerase slippage shows that, in the B- form, these sequences share common structural alterations which may explain the high rate of replication errors. In (CA)(n) tracts, a "Janus-like" structure with shifted base pairs in the major groove but an apparent normal geometry in the minor groove constitutes a molecular decoy which can mislead the polymerases. A model of the rat polymerase β bound to this structure suggests that an altered conformation of the nascent template-primer duplex can interfere with correct nucleotide incorporation by affecting the geometry of the active site and breaking the rules of base pairing while at the same time escaping enzymatic mechanisms of error discrimination scanning for the correct geometry of the minor groove. In contrast, by showing that the A-form greatly attenuates the sequence-dependent structural alterations in hotspots, this study reveals that the A-conformation of the nascent template-primer duplex at the vicinity of the polymerase active site will contribute to fidelity. The A-form may play the role of a structural buffer which preserves the correct geometry of the active site for all sequences. The comparison of the conformation of the nascent template-primer duplex in five available crystal structures of DNA polymerase-DNA complexes shows indeed that polymerase β the least accurate enzyme, is unique in binding to a B-DNA duplex even close to its active site. This model leads to several predictions which are discussed in the light of published experimental data.
Collapse
Affiliation(s)
- Y Timsit
- a Institut de Biologie Physico-Chimique, CNRS-UPR 9080 , 13, rue Pierre et Marie Curie , 75005 , Paris , France
| |
Collapse
|
9
|
Abd-Rabou AA. Calcium, a Cell Cycle Commander, Drives Colon Cancer Cell Diffpoptosis. Indian J Clin Biochem 2016; 32:9-18. [PMID: 28149007 DOI: 10.1007/s12291-016-0562-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
The story of the cell commonder, calcium, reaches into all corners of the cell and controls cell proliferation, differentiation, function, and even death. The calcium-driven eukaryotic revolution is one of the great turning points in the life history, happened about two billion years later when it was converted from a dangerous killer that had to be kept out of cell into the cell master which drives the cell. This review article will take the readers to a tour of tissues chosen to best show the calcium's many faces (proliferator, differentiator, and killer). The reader will first see calcium and its many helpers, such as the calcium-binding signaler protein calmodulin, directing the key events of the cell cycle. Then the tour will move onto the colon to show calcium driving the proliferation of progenitor cells, then the differentiation and ultimately the programmed death of their progeny. Moreover, the reader will learn of the striking disabling and bypassing of calcium-dependent control mechanisms during carcinogenesis. Finally, recommendations should be taken from the underlying mechanisms through which calcium masters the presistance, progression, and even apoptosis of colorectal cancer cells. Thus, this could be of great interest for designing of chemoprevention protocols.
Collapse
Affiliation(s)
- Ahmed A Abd-Rabou
- Hormones Department (Cancer Biology and Nano-Drug Delivery Group), Medical Research Division, National Research Center, Cairo, 12622 Egypt.,Center for Aging and Associated Diseases, Zewail City of Science and Technology, 6th of October, Egypt
| |
Collapse
|
10
|
Dual regulation of energy metabolism by p53 in human cervix and breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3266-78. [PMID: 26434996 DOI: 10.1016/j.bbamcr.2015.09.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/25/2015] [Accepted: 09/30/2015] [Indexed: 12/14/2022]
Abstract
The role of p53 as modulator of OxPhos and glycolysis was analyzed in HeLa-L (cells containing negligible p53 protein levels) and HeLa-H (p53-overexpressing) human cervix cancer cells under normoxia and hypoxia. In normoxia, functional p53, mitochondrial enzyme contents, mitochondrial electrical potential (ΔΨm) and OxPhos flux increased in HeLa-H vs. HeLa-L cells; whereas their glycolytic enzyme contents and glycolysis flux were unchanged. OxPhos provided more than 70% of the cellular ATP and proliferation was abolished by anti-mitochondrial drugs in HeLa-H cells. In hypoxia, both cell proliferations were suppressed, but HeLa-H cells exhibited a significant decrease in OxPhos protein contents, ΔΨm and OxPhos flux. Although glycolytic function was also diminished vs. HeLa-L cells in hypoxia, glycolysis provided more than 60% of cellular ATP in HeLa-H cells. The energy metabolism phenotype of HeLa-H cells was reverted to that of HeLa-L cells by incubating with pifithrin-α, a p53-inhibitor. In normoxia, the energy metabolism phenotype of breast cancer MCF-7 cells was similar to that of HeLa-H cells, whereas p53shRNAMCF-7 cells resembled the HeLa-L cell phenotype. In hypoxia, autophagy proteins and lysosomes contents increased 2-5 times in HeLa-H cells suggesting mitophagy activation. These results indicated that under normoxia p53 up-regulated OxPhos without affecting glycolysis, whereas under hypoxia, p53 down-regulated both OxPhos (severely) and glycolysis (weakly). These p53 effects appeared mediated by the formation of p53-HIF-1α complexes. Therefore, p53 exerts a dual and contrasting regulatory role on cancer energy metabolism, depending on the O₂level.
Collapse
|
11
|
Kumar S, Tomar MS, Acharya A. Activation of p53-dependent/-independent pathways of apoptotic cell death by chelerythrine in a murine T cell lymphoma. Leuk Lymphoma 2015; 56:1846-55. [DOI: 10.3109/10428194.2014.974042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Puszynski K, Gandolfi A, d'Onofrio A. The pharmacodynamics of the p53-Mdm2 targeting drug Nutlin: the role of gene-switching noise. PLoS Comput Biol 2014; 10:e1003991. [PMID: 25504419 PMCID: PMC4263360 DOI: 10.1371/journal.pcbi.1003991] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 10/19/2014] [Indexed: 12/13/2022] Open
Abstract
In this work we investigate, by means of a computational stochastic model, how tumor cells with wild-type p53 gene respond to the drug Nutlin, an agent that interferes with the Mdm2-mediated p53 regulation. In particular, we show how the stochastic gene-switching controlled by p53 can explain experimental dose-response curves, i.e., the observed inter-cell variability of the cell viability under Nutlin action. The proposed model describes in some detail the regulation network of p53, including the negative feedback loop mediated by Mdm2 and the positive loop mediated by PTEN, as well as the reversible inhibition of Mdm2 caused by Nutlin binding. The fate of the individual cell is assumed to be decided by the rising of nuclear-phosphorylated p53 over a certain threshold. We also performed in silico experiments to evaluate the dose-response curve after a single drug dose delivered in mice, or after its fractionated administration. Our results suggest that dose-splitting may be ineffective at low doses and effective at high doses. This complex behavior can be due to the interplay among the existence of a threshold on the p53 level for its cell activity, the nonlinearity of the relationship between the bolus dose and the peak of active p53, and the relatively fast elimination of the drug. P53 is an antitumor gene regulating vital cellular functions such as repair of DNA damage, cellular suicide, and cell proliferation: in many tumors p53 is lowly expressed and/or mutated. Drugs targeting the biomolecular network of p53 are becoming important. The network includes the key proteins Mdm2 and PTEN, whose production is regulated by p53, and which, in turn, enact positive and negative feedbacks on p53. Drug Nutlin, inhibiting the p53 inhibitor Mdm2, might be important for tumors where p53 is underproduced but unmutated. We investigate the cellular mechanism of action of Nutlin. The basic concept of our mathematical model is that the experimentally observed cell-to-cell variability of Nutlin efficacy is caused by the randomness of gene activation/deactivation of Mdmd2 and PTEN. Indeed, the abundance/scarceness of p53 regulates the probability that the relative genes are active or inactive. The model reproduced the experimental cell-specific response to different doses of Nutlin (dose-response curves) in some types of tumor cells. Much clinical research focus on 'metronomic' drug delivery regimens, where instead of giving large doses with long intervals, smaller doses are frequently delivered. In our simulations, dose-splitting of Nutlin produced a response generally worse than the response to a single dose.
Collapse
Affiliation(s)
- Krzysztof Puszynski
- Silesian University of Technology, Institute of Automatic Control, Gliwice, Poland
| | - Alberto Gandolfi
- Istituto di Analisi dei Sistemi ed Informatica "A. Ruberti" - CNR, Rome, Italy
| | - Alberto d'Onofrio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- International Prevention Research Institute, Lyon, France
- * E-mail:
| |
Collapse
|
13
|
Golomb L, Volarevic S, Oren M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett 2014; 588:2571-9. [PMID: 24747423 DOI: 10.1016/j.febslet.2014.04.014] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
Cell proliferation and cell growth are two tightly linked processes, as the proliferation program cannot be executed without proper accumulation of cell mass, otherwise endangering the fate of the two daughter cells. It is therefore not surprising that ribosome biogenesis, a key element in cell growth, is regulated by many cell cycle regulators. This regulation is exerted transcriptionally and post-transcriptionally, in conjunction with numerous intrinsic and extrinsic signals. Those signals eventually converge at the nucleolus, the cellular compartment that is not only responsible for executing the ribosome biogenesis program, but also serves as a regulatory hub, responsible for integrating and transmitting multiple stress signals to the omnipotent cell fate gatekeeper, p53. In this review we discuss when, how and why p53 is activated upon ribosomal biogenesis stress, and how perturbation of this critical regulatory interplay may impact human disease.
Collapse
Affiliation(s)
- Lior Golomb
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sinisa Volarevic
- Department of Molecular Medicine and Biotechnology, School of Medicine, University of Rijeka, Croatia
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Posa JK, Selvaraj S, Sangeetha KN, Baskaran SK, Lakshmi BS. p53 mediates impaired insulin signaling in 3T3-L1 adipocytes during hyperinsulinemia. Cell Biol Int 2014; 38:818-24. [PMID: 24604666 DOI: 10.1002/cbin.10275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 02/04/2014] [Indexed: 12/31/2022]
Abstract
Hyperinsulinemia is being implicated in the development of insulin resistance but remains poorly understood. The present study focuses on p53-mediated impaired insulin signaling by hyperinsulinemia in 3T3-L1 adipocytes. Hyperinsulinemia impairs insulin-stimulated glucose uptake and its cellular signaling in a dose- and time-dependent manner. An increased level of reactive oxygen species (ROS) and stress response signals were observed, and quenching of the ROS by an antioxidant N-acetylcysteine (NAC) did not revert impaired insulin sensitivity. The tumor suppressor p53 has emerged as a crucial factor in the metabolic adaptation of cancer cells under nutritional starvation and is being studied in the development of insulin resistance in adipocytes at physiological level. Interestingly, we observed hyperinsulinemia-enhanced p53 level in a time-dependent manner without exhibiting cytotoxicity. Transient knockdown of p53 partially improved insulin sensitivity revealing a novel link between p53 and insulin signaling in adipocytes. The findings suggest that hyperinsulinemia-induced p53 impairs insulin sensitivity in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Jyothi Kumari Posa
- Tissue culture and Drug discovery Laboratory, Centre for Biotechnology, Anna University, Chennai, 25, India
| | | | | | | | | |
Collapse
|
15
|
Enciso G, Kellogg DR, Vargas A. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint. PLoS Comput Biol 2014; 10:e1003443. [PMID: 24516371 PMCID: PMC3916233 DOI: 10.1371/journal.pcbi.1003443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.
Collapse
Affiliation(s)
- Germán Enciso
- Department of Mathematics, Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Arturo Vargas
- Computational and Applied Mathematics Department, Rice University, Houston, Texas, United States of America
| |
Collapse
|
16
|
Vanillin protects human keratinocyte stem cells against ultraviolet B irradiation. Food Chem Toxicol 2013; 63:30-7. [PMID: 24184596 DOI: 10.1016/j.fct.2013.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 12/13/2022]
Abstract
Ultraviolet-B (UVB) irradiation is one of major factors which induce cellular damages in the epidermis. We investigated protective effects and mechanisms of vanillin, a main constituent of vanilla beans, against UVB-induced cellular damages in keratinocyte stem cells (KSC). Here, vanillin significantly attenuated UVB irradiation-induced cytotoxicity. The vanillin effects were also demonstrated by the results of the senescence-associated β-galactosidase and alkaline comet assays. In addition, vanillin induced production of pro-inflammatory cytokines. Attempts to elucidate a possible mechanism underlying the vanillin-mediated effects revealed that vanillin significantly reduced UVB-induced phosphorylation of ataxia telangiectasia mutated (ATM), serine threonine kinase checkpoint kinase 2 (Chk2), tumor suppressor protein 53 (p53), p38/mitogen-activated protein kinase (p38), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), S6 ribosomal protein (S6RP), and histone 2A family member X (H2A.X). UVB-induced activation of p53 luciferase reporter was also significantly inhibited by vanillin. In addition, while ATM inhibitor had no effect on the vanillin effects, mouse double minute 2 homolog (MDM2) inhibitor significantly attenuated suppressive effects of vanillin on UVB-induced activation of p53 reporter in KSC. Taken together, these findings suggest that vanillin protects KSC from UVB irradiation and its effects may occur through the suppression of downstream step of MDM2 in UVB irradiation-induced p53 activation.
Collapse
|
17
|
Lee J, Shin YK, Song JY, Lee KW. Protective mechanism of morin against ultraviolet B-induced cellular senescence in human keratinocyte stem cells. Int J Radiat Biol 2013; 90:20-8. [DOI: 10.3109/09553002.2013.835502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Role of JNK and p38 MAPK in Taiwanin A-induced cell death. Life Sci 2012; 91:1358-65. [PMID: 23123629 DOI: 10.1016/j.lfs.2012.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/23/2022]
Abstract
AIM The lignan compound Taiwanin A is cytotoxic for human cancer cells. Taiwanin A has been previously shown to damage microtubules, induce mitotic arrest and cause apoptosis in cancer cells. The goal of the current study is to identify intracellular signaling pathways that are involved in Taiwanin A-mediated apoptosis. MAIN METHODS We examined the activation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK), in HepG2 cells after Taiwanin A treatment. The role of MAPK activation in Taiwanin A-induced apoptosis was examined using Western blotting, caspase activity assays combined with specific MAPK inhibitors and shRNA treatment to knockdown JNK. KEY FINDINGS Taiwanin A activated all three MAPKs (ERK, p38 and JNK). Cytotoxicity was blocked by the p38 MAPK inhibitor SB203580 and the JNK inhibitor SP600125 but not by the ERK inhibitor PD98059. A combined treatment of SB203580 and SP600125 showed increased effects on the inhibition of Taiwanin A cytotoxicity, suggesting that both JNK and p38 play a role in Taiwanin A-induced apoptosis. Inhibition of p38 activity reduced Taiwanin A-induced p53 phosphorylation on Ser15. Direct interaction of Taiwanin A-activated p38 and p53 was demonstrated by immunoprecipitation. In addition, inhibition of JNK by SP600125 or silencing of the JNK scaffold protein JIP2 reduced phosphorylation of Bcl-2, which may help to promote anti-apoptotic pathways. SIGNIFICANCE We demonstrated for the first time that two distinct apoptotic pathways, the p38-p53 and JNK-Bcl-2 pathways, were triggered by the anti-microtubule compound Taiwanin A.
Collapse
|
19
|
Analysis of the functional integrity of the p53 tumor-suppressor gene in malignant melanoma. Melanoma Res 2012; 21:380-8. [PMID: 21691232 DOI: 10.1097/cmr.0b013e328347ee04] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Derogation of the p53 pathway is a hallmark in human malignancies but its implication in melanomas remains unclear. p53 is frequently accumulated in melanomas despite protein stabilizing mutations being rare. For a panel of six melanoma cell lines we performed transcript sequence analysis of the entire coding region and determined p53 protein stability and messenger RNA stability by western blot experiments and quantitative reverse-transcription-PCR, respectively. Transcript levels of p53 modifying genes as well as p53 target genes were investigated after ultraviolet irradiation, interferon-α-2b, and chemotherapy (cisplatin or dacarbazine) by quantitative reverse-transcription-PCR. Transcript sequence analysis identified three aberrations in three of six melanomas. Four of six melanomas showed high-constitutive p53 protein levels. p53 transcripts remained stable in four of six melanomas. All p53-expressing melanomas displayed high p53 protein stability. Constitutively, and after ultraviolet irradiation, mouse double min-2 expression was reduced in melanomas. We detected high homeodomain-interacting protein kinase-2 level in melanomas-expressing mutant p53. Most experimental conditions resulted in lower expression of p21, GADD45A, and PUMA, and a higher expression of CDC2 in melanomas. Altogether, accumulation of p53 protein is due to posttranslational modification or aberrant expression of p53 modifiers. p53 is functionally disrupted although the p53 upstream signaling pathway remains inducible.
Collapse
|
20
|
Chemotherapeutic sensitization of leptomycin B resistant lung cancer cells by pretreatment with doxorubicin. PLoS One 2012; 7:e32895. [PMID: 22412944 PMCID: PMC3296751 DOI: 10.1371/journal.pone.0032895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 02/07/2012] [Indexed: 12/26/2022] Open
Abstract
The development of novel targeted therapies has become an important research focus for lung cancer treatment. Our previous study has shown leptomycin B (LMB) significantly inhibited proliferation of lung cancer cells; however, p53 wild type lung cancer cells were resistant to LMB. Therefore, the objective of this study was to develop and evaluate a novel therapeutic strategy to sensitize LMB-resistant lung cancer cells by combining LMB and doxorubicin (DOX). Among the different treatment regimens, pretreatment with DOX (pre-DOX) and subsequent treatment with LMB to A549 cells significantly decreased the 50% inhibitory concentration (IC50) as compared to that of LMB alone (4.4 nM vs. 10.6 nM, P<0.05). Analysis of cell cycle and apoptosis by flow cytometry further confirmed the cytotoxic data. To investigate molecular mechanisms for this drug combination effects, p53 pathways were analyzed by Western blot, and nuclear proteome was evaluated by two dimensional-difference gel electrophoresis (2D-DIGE) and mass spectrometry. In comparison with control groups, the levels of p53, phospho-p53 (ser15), and p21 proteins were significantly increased while phospho-p53 (Thr55) and survivin were significantly decreased after treatments of pre-DOX and LMB (P<0.05). The 2D-DIGE/MS analysis identified that sequestosome 1 (SQSTM1/p62) had a significant increase in pre-DOX and LMB-treated cells (P<0.05). In conclusion, our results suggest that drug-resistant lung cancer cells with p53 wild type could be sensitized to cell death by scheduled combination treatment of DOX and LMB through activating and restoring p53 as well as potentially other signaling pathway(s) involving sequestosome 1.
Collapse
|
21
|
Vesicular stomatitis virus expressing tumor suppressor p53 is a highly attenuated, potent oncolytic agent. J Virol 2011; 85:10440-50. [PMID: 21813611 DOI: 10.1128/jvi.05408-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vesicular stomatitis virus (VSV), a negative-strand RNA rhabdovirus, preferentially replicates in and eradicates transformed versus nontransformed cells and is thus being considered for use as a potential anticancer treatment. The genetic malleability of VSV also affords an opportunity to develop more potent agents that exhibit increased therapeutic activity. The tumor suppressor p53 has been shown to exert potent antitumor properties, which may in part involve stimulating host innate immune responses to malignancies. To evaluate whether VSV expressing p53 exhibited enhanced oncolytic action, the murine p53 (mp53) gene was incorporated into recombinant VSVs with or without a functional viral M gene-encoded protein that could either block (VSV-mp53) or enable [VSV-M(mut)-mp53] host mRNA export following infection of susceptible cells. Our results indicated that VSV-mp53 and VSV-M(mut)-mp53 expressed high levels of functional p53 and retained the ability to lyse transformed versus normal cells. In addition, we observed that VSV-ΔM-mp53 was extremely attenuated in vivo due to p53 activating innate immune genes, such as type I interferon (IFN). Significantly, immunocompetent animals with metastatic mammary adenocarcinoma exhibited increased survival following treatment with a single inoculation of VSV-ΔM-mp53, the mechanisms of which involved enhanced CD49b+ NK and tumor-specific CD8+ T cell responses. Our data indicate that VSV incorporating p53 could provide a safe, effective strategy for the design of VSV oncolytic therapeutics and VSV-based vaccines.
Collapse
|
22
|
Masuishi Y, Arakawa N, Kawasaki H, Miyagi E, Hirahara F, Hirano H. Wild-type p53 enhances annexin IV gene expression in ovarian clear cell adenocarcinoma. FEBS J 2011; 278:1470-83. [DOI: 10.1111/j.1742-4658.2011.08059.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Niemantsverdriet M, de Jong E, Langendijk JA, Kampinga HH, Coppes RP. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53. Radiother Oncol 2011; 97:33-5. [PMID: 20435362 DOI: 10.1016/j.radonc.2010.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/30/2010] [Accepted: 04/05/2010] [Indexed: 11/16/2022]
Abstract
Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.
Collapse
Affiliation(s)
- Maarten Niemantsverdriet
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Banu SK, Stanley JA, Lee J, Stephen SD, Arosh JA, Hoyer PB, Burghardt RC. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53. Toxicol Appl Pharmacol 2011; 251:253-66. [PMID: 21262251 DOI: 10.1016/j.taap.2011.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/08/2011] [Accepted: 01/18/2011] [Indexed: 12/15/2022]
Abstract
Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24h, with or without vitamin C pre-treatment for 24h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.
Collapse
Affiliation(s)
- Sakhila K Banu
- Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Foster JM, Martens L. Bioinformatics challenges in the proteomic analysis of human plasma. Methods Mol Biol 2011; 728:333-347. [PMID: 21468959 DOI: 10.1007/978-1-61779-068-3_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mass spectrometry has become the method of choice for studying proteins in complex mixtures in a qualitative and quantitative fashion. The application of mass spectrometry-based proteomics analyses on plasma has correspondingly been established as an important method for disease-associated biomarker discovery and validation. Yet despite being a readily available human sample, plasma poses several important challenges to the proteomics researcher. With a focus on bioinformatics aspects, this chapter will discuss the problems involved in analyzing plasma proteomics data, along with the scope of solutions available through specialised tools and sophisticated analysis methods.
Collapse
Affiliation(s)
- Joseph M Foster
- EMBL Outstation, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | |
Collapse
|
26
|
Hong JY, Chae MJ, Lee IS, Lee YN, Nam MH, Kim DY, Byun MO, Yoon IS. Phosphorylation-mediated regulation of a rice ABA responsive element binding factor. PHYTOCHEMISTRY 2011; 72:27-36. [PMID: 21055780 DOI: 10.1016/j.phytochem.2010.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 07/26/2010] [Accepted: 10/04/2010] [Indexed: 05/17/2023]
Abstract
OREB1 is a rice ABRE binding factor characterized by the presence of multiple highly-conserved phosphorylation domains (C1, C2, C3, and C4) and two kinase recognition motifs, RXXS/T and S/TXXE/D, within different functional domains. An in vitro kinase assay showed that OREB1 is phosphorylated not only by the SnRK2 kinase, but also by other Ser/Thr protein kinases, such as CaMKII, CKII, and SnRK3. Furthermore, the N-terminal phosphorylation domain C1 was found to be differentially phosphorylated by the SnRK2/SnRK3 kinase and by hyperosmotic/cold stress, suggesting that the C1 domain may function in decoding different signals. The phosphorylation-mediated regulation of OREB1 activity was investigated through mutation of the SnRK2 recognition motif RXXS/T within each phosphorylation module. OREB1 contains a crucial nine-amino acid transactivation domain located near the phosphorylation module C1. Deletion of the C1 domain increased OREB1 activity, whereas mutation of Ser 44, Ser 45, and Ser 48 of the C1 domain to aspartates decreased OREB1 activity. In the C2 domain, a double mutation of Ser 118 and Ser 120 to alanines suppressed OREB1 activity. These findings strongly suggest that selective phosphorylation of the C1 or C2 modules may positively or negatively regulate OREB1 transactivation. In addition, mutation of Ser 385 of the C4 domain to alanines completely abolished the interaction between OREB1 and a rice 14-3-3 protein, GF14d, suggesting that SnRK2-mediated phosphorylation may regulate this interaction. These results indicate that phosphorylation domains of OREB1 are not functionally redundant and regulate at least three different functions, including transactivation activity, DNA binding, and protein interactions. The multisite phosphorylation of OREB1 is likely a key for the fine control of its activity and signal integration in the complex stress signaling network of plant cells.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Bio-Crops Development Division, National Academy of Agricultural Sciences, Suwon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu HF, Chen YL, Yang JS, Yang YY, Liu JY, Hsu SC, Lai KC, Chung JG. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumor xenografts in vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:12999-13005. [PMID: 21082859 DOI: 10.1021/jf103335w] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Capsaicin was reported to inhibit cancer cell growth. The aim of this study was to evaluate the antitumor potential of capsaicin by studying antitumor activity in vitro as well as in vivo. The in vitro studies are to examine the effects of capsaicin on human colon cancer colo 205 cells after exposure to capsaicin. The results showed that capsaicin induced cytotoxic effects in a time- and dose-dependent manner and increased reactive oxygen species (ROS) and Ca(2+) but decreased the level of mitochondrial membrane potential (ΔΨ(m)) in colo 205 cells. Data from Western blotting analysis indicated that the levels of Fas, cytochrome c, and caspases were increased, leading to cell apoptosis. Capsaicin decreased the levels of anti-apoptotic proteins such as Bcl-2 and increased the levels of pro-apoptotic proteins such as Bax. Capsaicin-induced apoptosis in colo 205 cells was also done through the activations of caspase-8, -9 and -3. In vivo studies in immunodeficient nu/nu mice bearing colo 205 tumor xenografts showed that capsaicin effectively inhibited tumor growth. The potent in vitro and in vivo antitumor activities of capsaicin suggest that capsaicin might be developed for the treatment of human colon cancer.
Collapse
Affiliation(s)
- Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Azmi AS, Philip PA, Beck FWJ, Wang Z, Banerjee S, Wang S, Yang D, Sarkar FH, Mohammad RM. MI-219-zinc combination: a new paradigm in MDM2 inhibitor-based therapy. Oncogene 2010; 30:117-26. [PMID: 20818437 PMCID: PMC3000878 DOI: 10.1038/onc.2010.403] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Zinc plays a crucial role in the biology of p53 in that p53 binds to DNA through a structurally complex domain stabilized by zinc atom. The p53 negative regulator MDM2 protein also carries a C-terminal RING domain that coordinates two zinc atoms which are responsible for p53 nuclear export and proteasomal degradation. In this clinically translatable study, we explored the critical role of zinc on p53 re-activation by MDM2-inhibitor MI-219 in colon and breast cancer cells. ZnCl2 enhanced MI-219 activity (MTT, apoptosis and colony formation), and chelation of zinc not only blocked the activity of MI-219, it also suppressed re-activation of the p53 and its downstream effector molecules p21WAF1 and Bax. TPEN, a specific zinc chelator but not Bapta-AM, a calcium chelator, blocked MI-219-induced apoptosis. Nuclear localization is a pre-requisite for proper functioning of p53 and our results confirm that TPEN and not Bapta-AM could abrogate p53 nuclear localization and interfered with p53 transcriptional activation. Addition of zinc suppressed the known p53 feedback MDM2 activation which could be restored by TPEN. Co-immunoprecipitation studies verified that MI-219-mediated MDM2-p53 disruption could be suppressed by TPEN and restored by zinc. As such, single agent therapies that target MDM2 inhibition, without supplemental zinc, may not be optimal in certain patients due to the less recognized mild zinc deficiency among the “at risk population” as in the elderly which are more prone to cancers. Therefore, use of supplemental zinc with MI-219 will benefit the overall efficacy of MDM2 inhibitors and this potent combination warrants further investigation.
Collapse
Affiliation(s)
- A S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Young NL, Plazas-Mayorca MD, Garcia BA. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev Proteomics 2010; 7:79-92. [PMID: 20121478 DOI: 10.1586/epr.09.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Protein post-translational modifications (PTMs) have been widely shown to influence protein-protein interactions, direct subcellular location and transduce a variety of both internal and externally generated signals into cellular/phenotypic outcomes. Mass spectrometry has been a key tool for the elucidation of several types of PTMs in both qualitative and quantitative manners. As large datasets on the proteome-wide level are now being generated on a daily basis, the identification of combinatorial PTM patterns has become feasible. A survey of the recent literature in this area shows that many proteins undergo multiple modifications and that sequential or hierarchal patterns exist on many proteins; the biology of these modification patterns is only starting to be unraveled. This review will outline combinatorial PTM examples in biology, and the mass spectrometry-based techniques and applications utilized in the investigations of these combinatorial PTMs.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
30
|
Abstract
Ebp1, an ErbB3 receptor-binding protein, inhibits cell proliferation and acts as a putative tumor suppressor. Ebp1 translocates into the nucleus and functions as a transcription corepressor for E2F-1. Here, we show that Ebp1 p42 isoform can be sumoylated on both K93 and K298 residues, which mediate its nuclear translocation and is required for its anti-proliferative activity. We find that TLS/FUS, an RNA-binding nuclear protein that is involved in pre- mRNA processing and nucleocytoplasmic shuttling, has Sumo1 E3 ligase activity for Ebp1 p42. Ebp1 directly binds TLS/FUS, which is regulated by genotoxic stress-triggered phosphorylation on Ebp1. Ebp1 sumoylation facilitates its nucleolar distribution and protein stability. Overexpression of TLS enhances Ebp1 sumoylation, while depletion of TLS abolishes Ebp1 sumoylation. Moreover, Unsumoylated Ebp1 mutants fail to suppress E2F-1- regulated transcription, resulting in loss of its anti-proliferation activity. Hence, TLS-mediated sumoylation is required for Ebp1 transcription repressive activity.
Collapse
|
31
|
Rajagopalan S, Sade RS, Townsley FM, Fersht AR. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res 2009; 38:893-906. [PMID: 19933256 PMCID: PMC2817464 DOI: 10.1093/nar/gkp1041] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
p53 maintains genome integrity by initiating the transcription of genes involved in cell-cycle arrest, senescence, apoptosis and DNA repair. The activity of p53 is regulated by both post-translational modifications and protein–protein interactions. p53 that has been phosphorylated at S366, S378 and T387 binds 14-3-3 proteins in vitro. Here, we show that these sites are potential 14-3-3 binding sites in vivo. Epsilon (ε) and gamma (γ) isoforms required phosphorylation at either of these sites for efficient interaction with p53, while for sigma (σ) and tau (τ) these sites are dispensable. Further, σ and τ bound more weakly to p53 C-terminal phosphopeptides than did ε and γ. However, the four isoforms bound tightly to di-phosphorylated p53 C-terminal peptides than did the mono-phosphorylated counterparts. Interestingly, all the isoforms studied transcriptionally activated wild-type p53. σ and τ stabilized p53 levels in cells, while ε and γ stimulated p53-DNA binding activity in vitro. Overall, the results suggest that structurally and functionally similar 14-3-3 isoforms may exert their regulatory potential on p53 through different mechanisms. We discuss the isoform-specific roles of 14-3-3 in p53 stabilization and activation of specific-DNA binding.
Collapse
|
32
|
Two-site phosphorylation of EPRS coordinates multimodal regulation of noncanonical translational control activity. Mol Cell 2009; 35:164-80. [PMID: 19647514 DOI: 10.1016/j.molcel.2009.05.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/19/2009] [Accepted: 05/28/2009] [Indexed: 11/22/2022]
Abstract
Glutamyl-prolyl tRNA synthetase (EPRS) is a component of the heterotetrameric gamma-interferon-activated inhibitor of translation (GAIT) complex that binds 3'UTR GAIT elements in multiple interferon-gamma (IFN-gamma)-inducible mRNAs and suppresses their translation. Here, we elucidate the specific EPRS phosphorylation events that regulate GAIT-mediated gene silencing. IFN-gamma induces sequential phosphorylation of Ser(886) and Ser(999) in the noncatalytic linker connecting the synthetase cores. Phosphorylation of both sites is essential for EPRS release from the parent tRNA multisynthetase complex. Ser(886) phosphorylation is required for the interaction of NSAP1, which blocks EPRS binding to target mRNAs. The same phosphorylation event induces subsequent binding of ribosomal protein L13a and GAPDH and restores mRNA binding. Finally, Ser(999) phosphorylation directs the formation of a functional GAIT complex that binds initiation factor eIF4G and represses translation. Thus, two-site phosphorylation provides structural and functional pliability to EPRS and choreographs the repertoire of activities that regulates inflammatory gene expression.
Collapse
|
33
|
From structure to dynamics: Frequency tuning in the p53–Mdm2 network. J Theor Biol 2009; 258:561-77. [DOI: 10.1016/j.jtbi.2009.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/19/2009] [Accepted: 02/11/2009] [Indexed: 11/19/2022]
|
34
|
Xue Y, Wang S, Feng X. Effect of Metal Ion on the Structural Stability of Tumour Suppressor Protein p53 DNA-Binding Domain. J Biochem 2009; 146:193-200. [DOI: 10.1093/jb/mvp055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Xue Y, Wang S, Feng X. Influence of magnesium ion on the binding of p53 DNA-binding domain to DNA-response elements. J Biochem 2009; 146:77-85. [PMID: 19297420 DOI: 10.1093/jb/mvp048] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recognition and DNA-binding activity of p53 are crucial for its tumour suppressor function. Previous reports have shown that metal ions can affect the specific recognition and DNA-binding activity of p53DBD. Here we firstly report that magnesium ion can bind to the protein and influence its DNA-binding activity. To elucidate the nature and the effect of metal ions in the reaction chemistry, we utilized endogenous tryptophan fluorescence to quantitate the interaction between p53DBD and metal ions. The K(a) value for the binding of Mg(2+) to the protein is 1.88 x 10(3) M(-1). Analysis of the CD data clearly suggested that the binding of magnesium ion induced a subtle conformational change rather than a radical modification of the overall protein architecture. Based on the results of electrophoretic mobility shift assays and fluorescence experiments, we concluded that the binding of Mg(2+) significantly stimulated the binding of the protein to DNA in a sequence-independent manner, which differed from that of zinc ions in a sequence-specific manner. Based on these results and the fact that Mg(2+) exists at relatively high concentration in the cell, we propose that Mg(2+) is one of potential factors to affect or regulate the transactivation of p53.
Collapse
|
36
|
Prep1 directly regulates the intrinsic apoptotic pathway by controlling Bcl-XL levels. Mol Cell Biol 2008; 29:1143-51. [PMID: 19103748 DOI: 10.1128/mcb.01273-08] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Prep1 homeodomain transcription factor is essential in embryonic development. Prep1 hypomorphic mutant mouse (Prep1(i/i)) embryos (embryonic day 9.5) display an increased terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling reaction compared to wild-type (WT) littermates. Prep1(i/i) mouse embryo fibroblasts (MEFs) show an increased basal level of annexin V binding activity, reduction of the mitochondrial-membrane potential, and increased caspase 9 and 3 activation, indicating increased apoptosis. Prep1(i/i) MEFs also respond faster than WT MEFs to genotoxic stress, indicating increased activation of the intrinsic apoptotic pathways. We did not observe an increase in p53 or an abnormal p53 response to apoptotic stimuli. However, hypomorphic MEFs have decreased endogenous levels of antiapoptotic Bcl-X(L) mRNA and protein, and Bcl-x overexpression rescues the defect of Prep1(i/i) MEFs. Using transient transfections and chromatin immunoprecipitation, we identified the Bcl-x promoter as a novel target of Prep1. Thus, Prep1 directly controls mitochondrial homeostasis (and the apoptotic potential) by modulating Bcl-x gene expression.
Collapse
|
37
|
Ganzinelli M, Carrassa L, Crippa F, Tavecchio M, Broggini M, Damia G. Checkpoint kinase 1 down-regulation by an inducible small interfering RNA expression system sensitized in vivo tumors to treatment with 5-fluorouracil. Clin Cancer Res 2008; 14:5131-41. [PMID: 18698031 DOI: 10.1158/1078-0432.ccr-08-0304] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE After DNA damage, checkpoints pathways are activated in the cells to halt the cell cycle, thus ensuring repair or inducing cell death. To better investigate the role of checkpoint kinase 1 (Chk1) in cellular response to different anticancer agents, Chk1 was knocked down in HCT-116 cell line and in its p53-deficient subline by using small interfering RNAs (siRNA). EXPERIMENTAL DESIGN Chk1 was abrogated by transient transfection of specific siRNA against it, and stable tetracycline-inducible Chk1 siRNA clones were obtained transfecting cells with a plasmid expressing two siRNA against Chk1. The validated inducible system was then translated in an in vivo setting by transplanting the inducible clones in nude mice. RESULTS Transient Chk1 down-regulation sensitized HCT-116 cells, p53-/- more than the p53 wild-type counterpart, to DNA-damaging agents 5-fluorouracil (5-FU), doxorubicin, and etoposide treatments, with no modification of Taxol and PS341 cytotoxic activities. Inhibition of Chk1 protein levels in inducible clones on induction with doxycycline correlated with an increased cisplatin and 5-FU activity. Such effect was more evident in a p53-deficient background. These clones were transplanted in nude mice and a clear Chk1 down-regulation was shown in tumor samples of mice given tetracycline in the drinking water by immunohistochemical detection of Chk1 protein. More importantly, an increased 5-FU antitumor activity was found in tumors with the double Chk1 and p53 silencing. CONCLUSIONS These findings corroborate the fact that Chk1 protein is a molecular target to be inhibited in tumors with a defective G1 checkpoint to increase the selectivity of anticancer treatments.
Collapse
Affiliation(s)
- Monica Ganzinelli
- Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR. 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 2008; 36:5983-91. [PMID: 18812399 PMCID: PMC2566891 DOI: 10.1093/nar/gkn598] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of the tumour suppressor p53 on DNA damage involves post-translational modification by phosphorylation and acetylation. Phosphorylation of certain residues is critical for p53 stabilization and plays an important role in DNA-binding activity. The 14-3-3 family of proteins activates the DNA-binding affinity of p53 upon stress by binding to a site in its intrinsically disordered C-terminal domain containing a phosphorylated serine at 378. We have screened various p53 C-terminal phosphorylated peptides for binding to two different isoforms of 14-3-3, epsilon and gamma. We found that phosphorylation at either S366 or T387 caused even tighter binding to 14-3-3. We made by semi-synthesis a tetrameric construct comprised of the tetramerization plus C-terminal domains of p53 that was phosphorylated on S366, S378 and T387. It bound 10 times tighter than did the monomeric counterpart to dimeric 14-3-3. We showed indirectly from binding curves and directly from fluorescence-detection analytical ultracentrifugation that 14-3-3 enhanced the binding of sequence-specific DNA to p53 by causing p53 dimers to form tetramers at lower concentrations. If the in vitro data extrapolate to in vivo, then it is an attractive hypothesis that p53 activity may be subject to control by accessory proteins lowering its tetramer-dimer dissociation constant from its normal value of 120-150 nM.
Collapse
Affiliation(s)
- Sridharan Rajagopalan
- MRC Laboratory of Molecular Biology and MRC Centre for Protein Engineering, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | | | | |
Collapse
|
39
|
Padhan K, Minakshi R, Towheed MAB, Jameel S. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. J Gen Virol 2008; 89:1960-1969. [PMID: 18632968 DOI: 10.1099/vir.0.83665-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The molecular mechanisms governing severe acute respiratory syndrome coronavirus-induced pathology are not fully understood. Virus infection and some individual viral proteins, including the 3a protein, induce apoptosis. However, the cellular targets leading to 3a protein-mediated apoptosis have not been fully characterized. This study showed that the 3a protein modulates the mitochondrial death pathway in two possible ways. Activation of caspase-8 through extrinsic signal(s) caused Bid activation. In the intrinsic pathway, there was activation of caspase-9 and cytochrome c release from the mitochondria. This was the result of increased Bax oligomerization and higher levels of p53 in 3a protein-expressing cells, which depended on the activation of p38 MAP kinase (MAPK) in these cells. For p38 activation and apoptosis induction, the 3a cytoplasmic domain was sufficient. In direct Annexin V staining assays, the 3a protein-expressing cells showed increased apoptosis that was attenuated with the p38 MAPK inhibitor SB203580. A block in nuclear translocation of the STAT3 transcription factor in cells expressing the 3a protein was also observed. These results have been used to present a model of 3a-mediated apoptosis.
Collapse
Affiliation(s)
- Kartika Padhan
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Rinki Minakshi
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Mohammad Aatif Bin Towheed
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Shahid Jameel
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| |
Collapse
|
40
|
Puszyński K, Hat B, Lipniacki T. Oscillations and bistability in the stochastic model of p53 regulation. J Theor Biol 2008; 254:452-65. [PMID: 18577387 DOI: 10.1016/j.jtbi.2008.05.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 05/27/2008] [Accepted: 05/27/2008] [Indexed: 01/21/2023]
Abstract
The p53 regulatory pathway controls cell responses, which include cell cycle arrest, DNA repair, apoptosis and cellular senescence. We propose a stochastic model of p53 regulation, which is based on two feedback loops: the negative, coupling p53 with its immediate downregulator Mdm2, and the positive, which involves PTEN, PIP3 and Akt. Existence of the negative feedback assures homeostasis of healthy cells and oscillatory responses of DNA-damaged cells, which are persistent when DNA repair is inefficient and the positive feedback loop is broken. The positive feedback destroys the negative coupling between Mdm2 and p53 by sequestering most of Mdm2 in cytoplasm, so it may no longer prime the nuclear p53 for degradation. It works as a clock, giving the cell some time for DNA repair. However, when DNA repair is inefficient, the active p53 rises to a high level and triggers transcription of proapoptotic genes. As a result, small DNA damage may be repaired and the cell may return to its initial "healthy" state, while the extended damage results in apoptosis. The stochasticity of p53 regulation, introduced at the levels of gene expression, DNA damage and repair, leads to high heterogeneity of cell responses and causes cell population split after irradiation into subpopulations of apoptotic and surviving cells, with fraction of apoptotic cells growing with the irradiation dose.
Collapse
Affiliation(s)
- Krzysztof Puszyński
- Institute of Automatic Control, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | | | | |
Collapse
|
41
|
Cohen M, Wuillemin C, Bischof P. Trophoblastic p53 is stabilised by a cis–trans isomerisation necessary for the formation of high molecular weight complexes involving the N-terminus of p53. Biochimie 2008; 90:855-62. [DOI: 10.1016/j.biochi.2008.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 02/04/2008] [Indexed: 10/22/2022]
|
42
|
Lin T, Mak N, Yang M. MAPK regulate p53-dependent cell death induced by benzo[a]pyrene: Involvement of p53 phosphorylation and acetylation. Toxicology 2008; 247:145-53. [DOI: 10.1016/j.tox.2008.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 11/17/2022]
|
43
|
Meiller A, Alvarez S, Drané P, Lallemand C, Blanchard B, Tovey M, May E. p53-dependent stimulation of redox-related genes in the lymphoid organs of gamma-irradiated--mice identification of Haeme-oxygenase 1 as a direct p53 target gene. Nucleic Acids Res 2007; 35:6924-34. [PMID: 17933770 PMCID: PMC2175302 DOI: 10.1093/nar/gkm824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent data showed that p53 stimulates the expression of genes encoding not only pro- but also antioxidant enzymes. It was suggested that antioxidant genes could be induced under physiologic levels of stress while the prooxidant ones respond to higher level of stress. Results presented in this article illustrate an additional degree of complexity. We show that the expression of Haeme-oxygenase 1 (HO-1), a stress-inducible gene that codes for an enzyme having antioxidant properties, is stimulated in a p53-dependent manner in the thymus and spleen of irradiated mice. We prove that HO-1 is a direct p53 target gene by showing that the p53RE identified within human and mouse genes is specifically bound by p53. The threshold of irradiation dose required to induce a significant response of HO-1 in the lymphoid organs of the irradiated mice is higher than that for Waf1/p21 that encodes an universal inhibitor of cell cycle. Moreover, induction of HO-1 occurs later than that of Waf1/p21. Finally, the higher stimulation of HO-1 is reached when Waf1/p21 stimulation starts to decrease.
Collapse
Affiliation(s)
- Anne Meiller
- Commissariat à l'Energie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), UMR217, route du Panorama BP6, 92265 Fontenay-aux-Roses Cedex and CNRS FRE2937, Institut André Lwoff, 7, rue Guy Moquet, BP8, 94801 Villejuif Cedex, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Bain P, Shaw G, Patel B. Induction of p53-regulated gene expression in human cell lines exposed to the cyanobacterial toxin cylindrospermopsin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1687-93. [PMID: 17763087 DOI: 10.1080/15287390701434877] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that induces a range of genotoxic indicators in a variety of models. The possible involvement of the tumor suppressor protein p53 in cylindrospermopsin-induced gene expression was examined in cultured human dermal fibroblasts and the human hepatocellular carcinoma cell line HepG2. After 6 h of exposure to CYN, concentration-dependent increases in mRNA levels were observed for the p53 target genes CDKN1A, GADD45alpha, BAX, and MDM2, indicating an early activation of p53. After 24 h, relative mRNA levels for these genes remained elevated. Accumulation of p53 protein occurred after longer exposures in the HepG2-derived cell line C3A. Data suggest that cylindrospermopsin induces stress responses that result in the activation of the p53 transcription factor.
Collapse
Affiliation(s)
- Peter Bain
- School of Biomolecular and Biomedical Sciences, Griffith University, Nathan, Queensland, Australia.
| | | | | |
Collapse
|
45
|
Valbuena A, Suárez-Gauthier A, López-Rios F, López-Encuentra A, Blanco S, Fernández PL, Sánchez-Céspedes M, Lazo PA. Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer 2007; 58:303-9. [PMID: 17689819 DOI: 10.1016/j.lungcan.2007.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/21/2007] [Accepted: 06/25/2007] [Indexed: 11/26/2022]
Abstract
Human VRK1 (vaccinia-related kinase 1) is a novel serine-threonine kinase that regulates several transcription factors, including p53, ATF2 and c-Jun; and its loss results in defects of cell proliferation. VRK1 stabilizes p53 and the accumulated p53 downregulates VRK1 forming an autoregulatory loop. Wild-type p53, but not mutant p53, was able to downregulate VRK1 in the A549 lung carcinoma cell line. VRK1 expression has been studied in human lung carcinomas. VRK1 protein level was significantly higher in squamous cell lung carcinomas than in adenocarcinomas, and inversely correlated with p16. Tumours with p53 mutations have a positive trend with those having very high levels of VRK1 protein, particularly in squamous cell lung carcinomas. These data indicate that the VRK1-p53 autoregulatory loop was not functional in a group of lung carcinomas. The accumulation of VRK1 in tumours with mutant p53 could result in stimulation of other signalling pathways that can contribute to tumour growth and progression in addition to those resulting from loss of p53 function.
Collapse
Affiliation(s)
- Alberto Valbuena
- Programa de Oncología Translacional, Instituto de Biología Molecular y Celular del Cáncer, CSIC, Universidad de Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Albitar L, Carter MB, Davies S, Leslie KK. Consequences of the loss of p53, RB1, and PTEN: Relationship to gefitinib resistance in endometrial cancer. Gynecol Oncol 2007; 106:94-104. [PMID: 17490733 DOI: 10.1016/j.ygyno.2007.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/22/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022]
Abstract
OBJECTIVE These studies demonstrate how loss of function mutations or downregulation of key tumor suppressors missing from type I and type II endometrial cancer cells contributes to carcinogenesis and to resistance to the EGFR inhibitor gefitinib (ZD1839). METHODS Cell models devoid of tumor suppressors PTEN and RB1 or PTEN were studied. PTEN, RB1 and p53 expression was reinstated, and the effects on cell cycle, apoptosis, and cell cycle regulators were evaluated. RESULTS In Ishikawa H cells that model type I endometrial cancer in the loss of PTEN and RB1, re-expressing PTEN and RB1 increased the apoptotic and G1 phases and decreased the S and G2-M phases, which further sensitize the cells to gefitinib. Expressing p53 in Hec50co that model type II tumors by loss of this tumor suppressor arrested cells at the G1-S checkpoint, and apoptosis was also induced. Yet this did not improve sensitivity to gefitinib. Modulation of the cell cycle regulators responsible for these changes is explored, and a potential new therapeutic target, MDM2, is identified. CONCLUSION The downregulation of p53 expression in type II Hec50co cells is linked to gefitinib resistance. In addition, the overexpression of MDM2, the principal factor that inhibits p53 function also occurs in these resistant cells. MDM2 phosphorylation is only partially blocked by gefitinib, and high MDM2 expression may relate to drug resistance.
Collapse
Affiliation(s)
- Lina Albitar
- The Reproductive Molecular Biology Laboratory, Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, The University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | | | | | | |
Collapse
|
47
|
Patwardhan P, Miller WT. Processive phosphorylation: mechanism and biological importance. Cell Signal 2007; 19:2218-26. [PMID: 17644338 PMCID: PMC2034209 DOI: 10.1016/j.cellsig.2007.06.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/31/2007] [Accepted: 06/12/2007] [Indexed: 01/13/2023]
Abstract
Recent proteomic data indicate that a majority of the phosphorylated proteins in a eucaryotic cell contain multiple sites of phosphorylation. In many signaling events, a single kinase phosphorylates multiple sites on a target protein. Processive phosphorylation occurs when a protein kinase binds once to a substrate and phosphorylates all of the available sites before dissociating. In this review, we discuss examples of processive phosphorylation by serine/threonine kinases and tyrosine kinases. We describe current experimental approaches for distinguishing processive from non-processive phosphorylation. Finally, we contrast the biological situations that are suited to regulation by processive and non-processive phosphorylation.
Collapse
Affiliation(s)
- Parag Patwardhan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
48
|
Chignola R, Del Fabbro A, Pellegrina CD, Milotti E. Ab initio phenomenological simulation of the growth of large tumor cell populations. Phys Biol 2007; 4:114-33. [PMID: 17664656 DOI: 10.1088/1478-3975/4/2/005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this way we obtain growth curves that match quite well those observed in vitro with human leukemia cell lines. The model is strongly constrained and returns results that can be directly compared with actual experiments, because it uses parameter values in narrow ranges estimated from experimental data, and in perspective we hope to utilize it to develop in silico studies of the growth of very large tumor cell populations (10(6) cells or more) and to support experimental research. In particular, the program is used here to make predictions on the behavior of cells grown in a glucose-poor medium: these predictions are confirmed by experimental observation.
Collapse
Affiliation(s)
- Roberto Chignola
- Dipartimento Scientifico e Tecnologico, Università di Verona, Verona, Italy.
| | | | | | | |
Collapse
|
49
|
Aneja R, Ghaleb AM, Zhou J, Yang VW, Joshi HC. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer Res 2007; 67:3862-70. [PMID: 17440101 PMCID: PMC3757339 DOI: 10.1158/0008-5472.can-06-4282] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously discovered the naturally occurring antitussive alkaloid noscapine as a tubulin-binding agent that attenuates microtubule dynamics and arrests mammalian cells at mitosis via activation of the c-Jun NH(2)-terminal kinase pathway. It is well established that the p53 protein plays a crucial role in the control of tumor cell response to chemotherapeutic agents and DNA-damaging agents; however, the relationship between p53-driven genes and drug sensitivity remains controversial. In this study, we compared chemosensitivity, cell cycle distribution, and apoptosis on noscapine treatment in four cell lines derived from the colorectal carcinoma HCT116 cells: p53(+/+) (p53-wt), p53(-/-) (p53-null), p21(-/-) (p21-null), and BAX(-/-) (BAX-null). Using these isogenic variants, we investigated the roles of p53, BAX, and p21 in the cellular response to treatment with noscapine. Our results show that noscapine treatment increases the expression of p53 over time in cells with wild-type p53 status. This increase in p53 is associated with an increased apoptotic BAX/Bcl-2 ratio consistent with increased sensitivity of these cells to apoptotic stimuli. Conversely, loss of p53 and p21 alleles had a counter effect on both BAX and Bcl-2 expression and the p53-null and p21-null cells were significantly resistant to the antiproliferative and apoptotic effects of noscapine. All but the p53-null cells displayed p53 protein accumulation in a time-dependent manner on noscapine treatment. Interestingly, despite increased levels of p53, p21-null cells were resistant to apoptosis, suggesting a proapoptotic role of p21 and implying that p53 is a necessary but not sufficient condition for noscapine-mediated apoptosis.
Collapse
Affiliation(s)
- Ritu Aneja
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Amr M. Ghaleb
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Vincent W. Yang
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Harish C. Joshi
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
50
|
Morton JP, Kantidakis T, White RJ. RNA polymerase III transcription is repressed in response to the tumour suppressor ARF. Nucleic Acids Res 2007; 35:3046-52. [PMID: 17439968 PMCID: PMC1888803 DOI: 10.1093/nar/gkm208] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The tumour suppressor protein ARF provides a defence mechanism against hyperproliferative stresses that can result from the aberrant activation of oncogenes. Accordingly, ARF is silenced or deleted in many human cancers. Activation of ARF can arrest growth and cell cycle progression, or trigger apoptosis. A principle mediator of these effects is p53, which ARF stabilizes by binding and inhibiting MDM2. However, ARF has additional targets and remains able to block growth in the absence of p53, albeit less efficiently. For example, ARF can suppress rRNA production in a p53-independent manner. We have found that the synthesis of tRNA by RNA polymerase III is also inhibited in response to ARF. However, in contrast to its effects on rRNA synthesis, ARF is unable to inhibit tRNA gene transcription when p53 is ablated. These results add to the growing list of cellular changes that can be triggered by ARF induction.
Collapse
Affiliation(s)
- Jennifer P. Morton
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ and Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Theodoros Kantidakis
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ and Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Robert J. White
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, Glasgow G12 8QQ and Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- *To whom correspondence should be addressed. +44 141 330 3953+44 141 942 6521
| |
Collapse
|