1
|
Krivopalov S, Yushkov B, Sarapultsev A. Wireless EEG Recording of Audiogenic Seizure Activity in Freely Moving Krushinsky-Molodkina Rats. Biomedicines 2024; 12:946. [PMID: 38790907 PMCID: PMC11117987 DOI: 10.3390/biomedicines12050946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigates audiogenic epilepsy in Krushinsky-Molodkina (KM) rats, questioning the efficacy of conventional EEG techniques in capturing seizures during animal restraint. Using a wireless EEG system that allows unrestricted movement, our aim was to gather ecologically valid data. Nine male KM rats, prone to audiogenic seizures, received implants of wireless EEG transmitters that target specific seizure-related brain regions. These regions included the inferior colliculus (IC), pontine reticular nucleus, oral part (PnO), ventrolateral periaqueductal gray (VLPAG), dorsal area of the secondary auditory cortex (AuD), and motor cortex (M1), facilitating seizure observation without movement constraints. Our findings indicate that targeted neural intervention via electrode implantation significantly reduced convulsive seizures in approximately half of the subjects, suggesting therapeutic potential. Furthermore, the amplitude of brain activity in the IC, PnO, and AuD upon audiogenic stimulus onset significantly influenced seizure severity and nature, highlighting these areas as pivotal for epileptic propagation. Severe cases exhibited dual waves of seizure generalization, indicative of intricate neural network interactions. Distinctive interplay between specific brain regions, disrupted during convulsive activity, suggests neural circuit reconfiguration in response to escalating seizure intensity. These discoveries challenge conventional methodologies, opening avenues for novel approaches in epilepsy research and therapeutic interventions.
Collapse
Affiliation(s)
- Sergey Krivopalov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| | - Boris Yushkov
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
- GAUZ SO Institute for Medical Cell Technologies, 620026 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
2
|
Rodent Models of Audiogenic Epilepsy: Genetic Aspects, Advantages, Current Problems and Perspectives. Biomedicines 2022; 10:biomedicines10112934. [PMID: 36428502 PMCID: PMC9687921 DOI: 10.3390/biomedicines10112934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Animal models of epilepsy are of great importance in epileptology. They are used to study the mechanisms of epileptogenesis, and search for new genes and regulatory pathways involved in the development of epilepsy as well as screening new antiepileptic drugs. Today, many methods of modeling epilepsy in animals are used, including electroconvulsive, pharmacological in intact animals, and genetic, with the predisposition for spontaneous or refractory epileptic seizures. Due to the simplicity of manipulation and universality, genetic models of audiogenic epilepsy in rodents stand out among this diversity. We tried to combine data on the genetics of audiogenic epilepsy in rodents, the relevance of various models of audiogenic epilepsy to certain epileptic syndromes in humans, and the advantages of using of rodent strains predisposed to audiogenic epilepsy in current epileptology.
Collapse
|
3
|
Liu X, Huang H, Snutch TP, Cao P, Wang L, Wang F. The Superior Colliculus: Cell Types, Connectivity, and Behavior. Neurosci Bull 2022; 38:1519-1540. [PMID: 35484472 DOI: 10.1007/s12264-022-00858-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022] Open
Abstract
The superior colliculus (SC), one of the most well-characterized midbrain sensorimotor structures where visual, auditory, and somatosensory information are integrated to initiate motor commands, is highly conserved across vertebrate evolution. Moreover, cell-type-specific SC neurons integrate afferent signals within local networks to generate defined output related to innate and cognitive behaviors. This review focuses on the recent progress in understanding of phenotypic diversity amongst SC neurons and their intrinsic circuits and long-projection targets. We further describe relevant neural circuits and specific cell types in relation to behavioral outputs and cognitive functions. The systematic delineation of SC organization, cell types, and neural connections is further put into context across species as these depend upon laminar architecture. Moreover, we focus on SC neural circuitry involving saccadic eye movement, and cognitive and innate behaviors. Overall, the review provides insight into SC functioning and represents a basis for further understanding of the pathology associated with SC dysfunction.
Collapse
Affiliation(s)
- Xue Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongren Huang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Peng Cao
- National Institute of Biological Sciences, Beijing, 100049, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Feng Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Revishchin AV, Solus GM, Poletaeva II, Pavlova GV. Audiogenic Epilepsy and Structural Features of Superior Colliculus in KM Rats. DOKL BIOCHEM BIOPHYS 2018. [PMID: 29536310 DOI: 10.1134/s1607672918010155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using immunoblotting, we showed that in rats of audiogenic epilepsy (AE) prone strain (Krushinsky- Molodkina, KM) the superior colliculus tissue (SC) contains significantly less quantity of glial neurotrophic factor (GDNF), beta-tubulin and actin in comparison to the same brain region in "0" rats, nonprone to AE. This fact led to the suggestion that the histological structure of the SC in KM rats could differ significantly from that of the "0" strain. Using neuromorphologу technique, we demonstrated that the total number of SC cells, as well as the number of neurons were significantly less in KM rats than in the "0" strain rats. Particularly strong differences were found in the deep layers of SC, the area of terminals from IC. Further studies of the midbrain structures, will help to identify the novel aspects of neural networks, involved in the genesis of AE in rats of KM strain.
Collapse
Affiliation(s)
- A V Revishchin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - G M Solus
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - I I Poletaeva
- Faculty of Biology, Moscow State University, Moscow, 119992, Russia
| | - G V Pavlova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
5
|
Ribak CE. An abnormal GABAergic system in the inferior colliculus provides a basis for audiogenic seizures in genetically epilepsy-prone rats. Epilepsy Behav 2017; 71:160-164. [PMID: 25812940 PMCID: PMC4580487 DOI: 10.1016/j.yebeh.2015.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 11/27/2022]
Abstract
In this review of neuroanatomical studies of the genetically epilepsy-prone rat (GEPR), three main topics will be covered. First, the number of GABAergic neurons and total neurons in the inferior colliculus of GEPRs will be compared to those of the nonepileptic Sprague-Dawley rat. Next, the number of small neurons in the inferior colliculus will be described in both developmental and genetic analyses of GEPRs and their backcrosses. Last, results from two types of studies on the propagation pathways for audiogenic seizures in GEPRs will be shown. Together, these studies demonstrate a unique GABAergic, small neuron defect in the inferior colliculus of GEPRs that may play a vital role in the initiation and spread of seizure activity during audiogenic seizures. This article is part of a Special Issue entitled "Genetic and Reflex Epilepsies, Audiogenic Seizures and Strains: From Experimental Models to the Clinic".
Collapse
Affiliation(s)
- Charles E. Ribak
- Department of Anatomy and Neurobiology School of Medicine University of California at Irvine Irvine, CA 92697-1275 Tel. 949-388-7090
| |
Collapse
|
6
|
Kommajosyula SP, Randall ME, Brozoski TJ, Odintsov BM, Faingold CL. Specific subcortical structures are activated during seizure-induced death in a model of sudden unexpected death in epilepsy (SUDEP): A manganese-enhanced magnetic resonance imaging study. Epilepsy Res 2017. [PMID: 28646692 DOI: 10.1016/j.eplepsyres.2017.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) is a major concern for patients with epilepsy. In most witnessed cases of SUDEP generalized seizures and respiratory failure preceded death, and pre-mortem neuroimaging studies in SUDEP patients observed changes in specific subcortical structures. Our study examined the role of subcortical structures in the DBA/1 mouse model of SUDEP using manganese-enhanced magnetic resonance imaging (MEMRI). These mice exhibit acoustically-evoked generalized seizures leading to seizure-induced respiratory arrest (S-IRA) that results in sudden death unless resuscitation is rapidly instituted. MEMRI data in the DBA/1 mouse brain immediately after acoustically-induced S-IRA were compared to data in C57 (control) mice that were exposed to the same acoustic stimulus that did not trigger seizures. The animals were anesthetized and decapitated immediately after seizure in DBA/1 mice and after an equivalent time in control mice. Comparative T1 weighted MEMRI images were evaluated using a 14T MRI scanner and quantified. We observed significant increases in activity in DBA/1 mice as compared to controls at previously-implicated auditory (superior olivary complex) and sensorimotor-limbic [periaqueductal gray (PAG) and amygdala] networks and also in structures in the respiratory network. The activity at certain raphe nuclei was also increased, suggesting activation of serotonergic mechanisms. These data are consistent with previous findings that enhancing the action of serotonin prevents S-IRA in this SUDEP model. Increased activity in the PAG and the respiratory and raphe nuclei suggest that compensatory mechanisms for apnea may have been activated by S-IRA, but they were not sufficient to prevent death. The present findings indicate that changes induced by S-IRA in specific subcortical structures in DBA/1 mice are consistent with human SUDEP findings. Understanding the changes in brain activity during seizure-induced death in animals may lead to improved approaches directed at prevention of human SUDEP.
Collapse
Affiliation(s)
- Srinivasa P Kommajosyula
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Marcus E Randall
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Thomas J Brozoski
- Department of Surgery/Otolaryngology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | - Boris M Odintsov
- Beckman Institute, University of Illinois Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, United States
| | - Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States.
| |
Collapse
|
7
|
Kadiyala SB, Papandrea D, Tuz K, Anderson TM, Jayakumar S, Herron BJ, Ferland RJ. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity. Epilepsy Res 2014; 109:183-96. [PMID: 25524858 DOI: 10.1016/j.eplepsyres.2014.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 08/01/2014] [Accepted: 11/13/2014] [Indexed: 11/30/2022]
Abstract
Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time.
Collapse
Affiliation(s)
- Sridhar B Kadiyala
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Dominick Papandrea
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Karina Tuz
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Tara M Anderson
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Sachidhanand Jayakumar
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - Bruce J Herron
- Wadsworth Center, Albany, NY 12201, USA; Department of Biomedical Sciences, School of Public Health, SUNY Albany, Albany, NY 12201, USA
| | - Russell J Ferland
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA; Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Neurology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
8
|
de Freitas RL, de Oliveira RC, de Oliveira R, Paschoalin-Maurin T, de Aguiar Corrêa FM, Coimbra NC. The role of dorsomedial and ventrolateral columns of the periaqueductal gray matter and in situ 5-HT₂A and 5-HT₂C serotonergic receptors in post-ictal antinociception. Synapse 2013; 68:16-30. [PMID: 23913301 DOI: 10.1002/syn.21697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/08/2013] [Accepted: 06/25/2013] [Indexed: 12/22/2022]
Abstract
The periaqueductal gray matter (PAG) consists in a brainstem structure rich in 5-hydroxytryptamine (5-HT) inputs related to the modulation of pain. The involvement of each of the serotonergic receptor subtypes found in PAG columns, such as the dorsomedial (dmPAG) and the ventrolateral (vlPAG) columns, regarding post-ictal antinociception have not been elucidated. The present work investigated the participation of the dmPAG and vlPAG columns in seizure-induced antinociception. Specifically, we studied the involvement of serotonergic neurotransmission in these columns on antinociceptive responses that follow tonic-clonic epileptic reactions induced by pentylenetetrazole (PTZ), an ionophore GABA-mediated Cl(-) influx antagonist. Microinjections of cobalt chloride (1.0 mM CoCl2 /0.2 µL) into the dmPAG and vlPAG caused an intermittent local synaptic inhibition and decreased post-ictal antinociception that had been recorded at various time points after seizures. Pretreatments of the dmPAG or the vlPAG columns with the nonselective serotonergic receptors antagonist methysergide (5.0 µg/0.2 µL) or intramesencephalic microinjections of ketanserin (5.0 µg/0.2 µL), a serotonergic antagonist with more affinity to 5-HT2A/2C receptors, decreased tonic-clonic seizure-induced antinociception. Both dmPAG and vlPAG treatment with either the 5-HT2A receptor selective antagonist R-96544 (10 nM/0.2 µL), or the 5-HT2C receptors selective antagonist RS-102221 (0.15 µg/0.2 µL) also decrease post-ictal antinociception. These findings suggest that serotonergic neurotransmission, which recruits both 5-HT2A and 5-HT2C serotonergic receptors in dmPAG and vlPAG columns, plays a critical role in the elaboration of post-ictal antinociception.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (USP), Av. dos Bandeirantes, 3900, Ribeirão Preto (SP), 14049-900, Brazil; Institute for Neuroscience and Behavior (INeC), Av. do Café, S/N, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Behavioral and EEG effects of GABAergic manipulation of the nigro-tectal pathway in the Wistar audiogenic rat (WAR) strain II: an EEG wavelet analysis and retrograde neuronal tracer approach. Epilepsy Behav 2012; 24:391-8. [PMID: 22704998 DOI: 10.1016/j.yebeh.2012.04.133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 04/21/2012] [Indexed: 11/23/2022]
Abstract
The role of the substantia nigra pars reticulata (SNPr) and superior colliculus (SC) network in rat strains susceptible to audiogenic seizures still remain underexplored in epileptology. In a previous study from our laboratory, the GABAergic drugs bicuculline (BIC) and muscimol (MUS) were microinjected into the deep layers of either the anterior SC (aSC) or the posterior SC (pSC) in animals of the Wistar audiogenic rat (WAR) strain submitted to acoustic stimulation, in which simultaneous electroencephalographic (EEG) recording of the aSC, pSC, SNPr and striatum was performed. Only MUS microinjected into the pSC blocked audiogenic seizures. In the present study, we expanded upon these previous results using the retrograde tracer Fluorogold (FG) microinjected into the aSC and pSC in conjunction with quantitative EEG analysis (wavelet transform), in the search for mechanisms associated with the susceptibility of this inbred strain to acoustic stimulation. Our hypothesis was that the WAR strain would have different connectivity between specific subareas of the superior colliculus and the SNPr when compared with resistant Wistar animals and that these connections would lead to altered behavior of this network during audiogenic seizures. Wavelet analysis showed that the only treatment with an anticonvulsant effect was MUS microinjected into the pSC region, and this treatment induced a sustained oscillation in the theta band only in the SNPr and in the pSC. These data suggest that in WAR animals, there are at least two subcortical loops and that the one involved in audiogenic seizure susceptibility appears to be the pSC-SNPr circuit. We also found that WARs presented an increase in the number of FG+ projections from the posterior SNPr to both the aSC and pSC (primarily to the pSC), with both acting as proconvulsant nuclei when compared with Wistar rats. We concluded that these two different subcortical loops within the basal ganglia are probably a consequence of the WAR genetic background.
Collapse
|
10
|
Felippotti TT, de Freitas RL, Coimbra NC. Endogenous opioid peptide-mediated neurotransmission in central and pericentral nuclei of the inferior colliculus recruits μ1-opioid receptor to modulate post-ictal antinociception. Neuropeptides 2012; 46:39-47. [PMID: 22104092 DOI: 10.1016/j.npep.2011.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aim of the present work was to investigate the involvement of the μ1-endogenous opioid peptide receptor-mediated system in post-ictal antinociception. METHODS Antinociceptive responses were determined by the tail-flick test after pre-treatment with the selective μ1-opioid receptor antagonist naloxonazine, peripherally or centrally administered at different doses. RESULTS Peripheral subchronic (24 h) pre-treatment with naloxonazine antagonised the antinociception elicited by tonic-clonic seizures. Acute (10 min) pre-treatment, however, did not have the same effect. In addition, microinjections of naloxonazine into the central, dorsal cortical and external cortical nuclei of the inferior colliculus antagonised tonic-clonic seizure-induced antinociception. Neither acute (10-min) peripheral pre-treatment with naloxonazine nor subchronic intramesencephalic blockade of μ1-opioid receptors resulted in consistent statistically significant differences in the severity of tonic-clonic seizures shown by Racine's index (1972), although the intracollicular specific antagonism of μ1-opioid receptor decreased the duration of seizures. CONCLUSION μ1-Opioid receptors and the inferior colliculus have been implicated in several endogenous opioid peptide-mediated responses such as antinociception and convulsion. The present findings suggest the involvement of μ1-opiate receptors of central and pericentral nuclei of the inferior colliculus in the modulation of tonic-clonic seizures and in the organisation of post-ictal antinociception.
Collapse
Affiliation(s)
- Tatiana Tocchini Felippotti
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, School of Medicine of Ribeirão Preto of the University of São Paulo (FMRP-USP), Av. dos Bandeirantes, 3900, Ribeirão Preto, SP 14049-900, Brazil
| | | | | |
Collapse
|
11
|
Rossetti F, Rodrigues MCA, de Oliveira JAC, Garcia-Cairasco N. Behavioral and EEG effects of GABAergic manipulation of the nigrotectal pathway in the Wistar audiogenic rat strain. Epilepsy Behav 2011; 22:191-9. [PMID: 21820967 DOI: 10.1016/j.yebeh.2011.06.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 10/17/2022]
Abstract
The superior colliculus (SC), substantia nigra pars reticulata (SNPr), and striatum have been characterized as important structures involved in the modulation of seizure activity. In the current study, bicuculline (GABA(A) antagonist) and muscimol (GABA(A) agonist) were microinjected into the deep layers of either the anterior SC (aSC) or posterior SC (pSC) of genetically developed Wistar audiogenic rats. Behavior and EEG activity were studied simultaneously. Only muscimol microinjected into the pSC had behavioral and EEG anticonvulsant effects in Wistar audiogenic rats, eliciting EEG oscillation changes in both SNPr and pSC, primarily during tonic seizures. The SC of Wistar audiogenic rats thus comprises two functionally different subregions, pSC and aSC, defined by distinct behavioral and EEG features. The pSC has proconvulsant audiogenic seizure activity in Wistar audiogenic rats. Our data suggest that this phenomenon may be a consequence of the genetic selection of the Wistar audiogenic rat strain.
Collapse
Affiliation(s)
- Franco Rossetti
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
12
|
Serotonergic neurotransmission in the dorsal raphe nucleus recruits in situ 5-HT2A/2C receptors to modulate the post-ictal antinociception. Exp Neurol 2008; 213:410-8. [DOI: 10.1016/j.expneurol.2008.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 12/28/2022]
|
13
|
Najm IM, Tilelli CQ, Oghlakian R. Pathophysiological mechanisms of focal cortical dysplasia: a critical review of human tissue studies and animal models. Epilepsia 2007; 48 Suppl 2:21-32. [PMID: 17571350 DOI: 10.1111/j.1528-1167.2007.01064.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cortical dysplasia (CD, also known as malformations of cortical development) are the pathological substrates in a large percentage of patients with pharmacoresistant epilepsy who may be amenable to surgical treatment. Therefore, research on the mechanisms of dysplastic lesion formation and epileptogenicity is of paramount importance for the prevention, detection, and treatment of CD-induced epilepsy. The purpose of this review is to discuss and critically evaluate the current state and results of human tissue experimentation (focusing on reported results of studies done on neocortical dysplastic tissue resected from patients with pharmacoresistant epilepsy), and to discuss some of the concerns related to research that uses surgically resected epileptic human tissue. The use of better animal models of CD as a tool toward the better understanding of the mechanisms of pathogenesis, epileptogenesis, and epileptogenicity of dysplastic lesions will be reviewed from the perspective of their usefulness in a model of translational research that should ultimately result in better diagnostic and therapeutic techniques of CD.
Collapse
Affiliation(s)
- Imad M Najm
- Cleveland Clinic Epilepsy Center Head, Section of Adult Epilepsy and Clinical Neurophysiology, 9500 Euclid Avenue, S51, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
14
|
Fuentes-Santamaría V, Alvarado JC, Herranz AS, García-Atarés N, López DE. Morphologic and neurochemical alterations in the superior colliculus of the genetically epilepsy-prone hamster (GPG/Vall). Epilepsy Res 2007; 75:206-19. [PMID: 17628427 DOI: 10.1016/j.eplepsyres.2007.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 06/04/2007] [Accepted: 06/07/2007] [Indexed: 01/29/2023]
Abstract
The GPG/Vall hamster is an animal model that exhibits seizures in response to sound stimulation. Since the superior colliculus (SC) is implicated in the neuronal network of audiogenic seizures (AGS) in other forms of AGS, this study evaluated seizure-related anatomical or neurochemical abnormalities in the SC of the GPG/Vall hamster. This involved calbindin (CB) and parvalbumin (PV) immunohistochemistry, densitometric analysis and high performance liquid chromatography in the superficial and deep layers of the SC in control and epileptic animals. Compared to control animals, a reduction in SC volume and a hypertrophy of neurons located in the deep layers of the SC were observed in the epileptic hamster. Although, analysis of CB-immunohistochemistry in the superficial layers did not show differences between groups, analysis of PV-immunostaining in the deep SC revealed an increase in the mean gray level within immunostained neurons as well as a decreased immunostained neuropil in the GPG/Vall hamster as compared to control animals. These alterations were accompanied by a decrease in the levels of GABA and increased levels of taurine in the epileptic animal. These data indicate that the deep SC of the GPG/Vall hamster is structurally abnormal; suggesting its involvement in the neuronal network for AGS.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Moraes MFD, Mishra PK, Jobe PC, Garcia-Cairasco N. An electrographic analysis of the synchronous discharge patterns of GEPR-9s generalized seizures. Brain Res 2005; 1046:1-9. [PMID: 15885667 DOI: 10.1016/j.brainres.2005.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 03/03/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
Previous results from our Laboratory have shown a synchronous discharge pattern (less than 1 ms apart) in monopolar recordings from electrodes placed in the cortex, inferior colliculus, and medulla of seizing GEPR-9s. However, the wave morphology of the ictal EEG is quite different for electrodes placed in different anatomical structures. These results lead us to hypothesize that wave morphology was indicative of neural circuitry involved in the GEPR9 seizure and that volume conduction was accounting for synchronous epileptiform EEG pattern. We decided to approach the problem by using a set of two experiments. Experiment 1: Perform a complete precollicular transection in GEPR-9s before inducing seizure in order to observe changes in EEG morphology after forebrain circuitry removal. Experiment 2: A novel methodological approach using a three-dimensional bipolar array enabled the reconstruction of a vector indicative of to which direction is voltage increasing. Such time-varying vector is indicative of the source direction of the high-amplitude epileptiform EEG signal. By placing such an array of electrodes, used to record the 3 bipolar EEGs, in the forebrain, midbrain, and hindbrain, we were able to use a simple intersection method to infer source localization. Our results suggest that the slow wave component of the GEPR9 epileptiform ictal EEG pattern is associated with a midbrain-forebrain circuit while the spike component is associated with a midbrain-hindbrain substrate. These results are supported by experiment 1 in which only the spike component of EEG remained after the precollicular transection.
Collapse
Affiliation(s)
- M F D Moraes
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, 61656-1649, USA
| | | | | | | |
Collapse
|
17
|
Fonseca AGAR, Santos RAS, Moraes MFD, Leite MF, Doretto MC. Vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs. Brain Res 2005; 1038:32-40. [PMID: 15748870 DOI: 10.1016/j.brainres.2004.12.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/16/2004] [Accepted: 12/17/2004] [Indexed: 11/30/2022]
Abstract
The Wistar Audiogenic Rat (WAR) is a genetic model of reflex epilepsy with seizures induced by high-intensity sound stimulation (120 dB SPL). In spite of the known neural substrates involved in WAR seizure phenotype, neuroendocrine hypothalamic neurons were never investigated. In this work, AVP immunohistochemistry in the hypothalamus and radioimmunoassay (RIA) in plasma and in hypothalamic and hypophysial tissues were performed on both controls and WARs in order to evaluate the dynamics of AVP release due to seizure induction. Susceptible animals (WARs) displayed at least tonic-clonic convulsions followed by clonic spasms, while resistant Wistar rats (R) had no convulsive behavior. Animals were sacrificed at 3 instances: basal condition (without stimulus) and at 3 and 10 min after sound stimulation. For the immunohistochemistry AVP study, brains were harvested and processed by the avidin-biotin-peroxidase detection method. Optic densitometry was used for quantifying AVP labeling in supraoptic (SON) and paraventricular (PVN) hypothalamic nuclei. SON presented higher densitometry levels (%D--relative to background) for both WARs and R when compared to PVN. Nevertheless, both nuclei presented a marked decrease, referenced to basal levels, in %D for WARs at 3 min (approximately 35%) against a discrete change for R (approximately 90%). RIA results were significantly higher in the hypophysis of WARs when compared to R rats, at 3 min. Also, at 3 min, plasma AVP in WARs (89.32 +/- 24.81 pg/mL) were higher than in R (12.01 +/- 2.39 pg/mL). We conclude, based on the AVP releasing profiles, that vasopressinergic hypothalamic neurons are recruited during the audiogenic seizure of WARs.
Collapse
Affiliation(s)
- A G A R Fonseca
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Avenue, Antonio Carlos, 6627, CEP 31270-901-Campus Pampulha Belo Horizonte MG, Brazil
| | | | | | | | | |
Collapse
|
18
|
Raisinghani M, Faingold CL. Neurons in the amygdala play an important role in the neuronal network mediating a clonic form of audiogenic seizures both before and after audiogenic kindling. Brain Res 2005; 1032:131-40. [PMID: 15680951 DOI: 10.1016/j.brainres.2004.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2004] [Indexed: 11/21/2022]
Abstract
Previous studies showed that neuronal network nuclei for behaviorally different forms of audiogenic seizure (AGS) exhibit similarities and important differences. The amygdala is involved differentially in tonic AGS as compared to clonic AGS networks. The role of the lateral amygdala (LAMG) undergoes major changes after AGS repetition (AGS kindling) in tonic forms of AGS. The present study examined the role of LAMG in a clonic form of AGS [genetically epilepsy-prone rats (GEPR-3s)] before and after AGS kindling using bilateral microinjection and chronic neuronal recordings. AGS kindling in GEPR-3s results in facial and forelimb (F&F) clonus, and this behavior could be blocked following bilateral microinjection of a NMDA antagonist (2-amino-7-phosphonoheptanoate) without affecting generalized clonus. Higher AP7 doses blocked both generalized clonus and F&F clonus. LAMG neurons in GEPR-3s exhibited only onset type neuronal responses both before and after AGS kindling, unlike LAMG neurons in normal rats and a tonic form of AGS. A significantly greater LAMG neuronal firing rate occurred after AGS kindling at high acoustic intensities. The latency of LAMG neuronal firing increased significantly after AGS kindling. Burst firing occurred during wild running and generalized clonic behaviors before and after AGS kindling. Burst firing also occurred during F&F clonus after AGS kindling. These findings indicate that LAMG neurons play a critical role in the neuronal network for generalized clonus as well as F&F clonus in GEPR-3s, both before and after AGS kindling, which contrasts markedly with the role of LAMG in tonic AGS.
Collapse
MESH Headings
- 2-Amino-5-phosphonovalerate/analogs & derivatives
- 2-Amino-5-phosphonovalerate/pharmacology
- Acoustic Stimulation/methods
- Action Potentials/drug effects
- Action Potentials/physiology
- Action Potentials/radiation effects
- Amygdala/cytology
- Animals
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Behavior, Animal/radiation effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Dose-Response Relationship, Radiation
- Epilepsy, Reflex/genetics
- Epilepsy, Reflex/physiopathology
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Kindling, Neurologic/physiology
- Male
- Microinjections/methods
- Nerve Net/physiology
- Neurons/drug effects
- Neurons/physiology
- Neurons/radiation effects
- Rats
- Rats, Mutant Strains
- Time Factors
Collapse
Affiliation(s)
- Manish Raisinghani
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, United States
| | | |
Collapse
|
19
|
de Freitas RL, de Oliveira RC, de Carvalho AD, Felippotti TT, Bassi GS, Elias-Filho DH, Coimbra NC. Role of muscarinic and nicotinic cholinergic receptors in an experimental model of epilepsy-induced analgesia. Pharmacol Biochem Behav 2004; 79:367-76. [PMID: 15501314 DOI: 10.1016/j.pbb.2004.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2004] [Revised: 08/15/2004] [Accepted: 08/16/2004] [Indexed: 01/11/2023]
Abstract
The blockade of GABA-mediated Cl(-) influx with pentylenetetrazol (PTZ) was used in the present work to induce seizures in animals. The neurotransmission in the postictal period has been the focus of many studies, and there is evidence suggesting antinociceptive mechanisms following tonic-clonic seizures in both animals and men. The aim of this work was to study the involvement of acetylcholine in the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). Analgesia was measured by the tail-flick test in eight albino Wistar rats per group. Convulsions were followed by significant increases in tail-flick latencies (TFLs) at least for 120 min of the postictal period. Peripheral administration of atropine (0.25, 1 and 4 mg/kg) caused a significant dose-dependent decrease in the TFL in seizing animals, as compared to controls. These data were corroborated by peripheral administration of mecamylamine, a nicotinic cholinergic receptor blocker, at the same doses (0.25, 1 and 4 mg/kg) used for the muscarinic cholinergic receptor antagonist. The recruitment of the muscarinic receptor was made 10 min postconvulsions and in subsequent periods of postictal analgesia, whereas the involvement of the nicotinic cholinergic receptor was implicated only after 30 min postseizures. The cholinergic antagonists caused a minimal reduction in body temperature, but did not impair baseline TFL, spontaneous exploration or motor coordination in the rotarod test at the maximal dose of 4 mg/kg. These results indicate that acetylcholine may be involved as a neurotransmitter in postictal analgesia.
Collapse
Affiliation(s)
- Renato Leonardo de Freitas
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, Avenida dos Bandeirantes, 3900, Ribeirão Preto (SP), Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Faingold CL, Knapp DJ, Chester JA, Gonzalez LP. Integrative Neurobiology of the Alcohol Withdrawal Syndrome???From Anxiety to Seizures. Alcohol Clin Exp Res 2004; 28:268-78. [PMID: 15112934 DOI: 10.1097/01.alc.0000113421.41962.8d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This article represents the proceedings of a symposium presented at the 2003 Research Society on Alcoholism meeting in Ft. Lauderdale, Florida, organized and chaired by Carl L. Faingold. The presentations were (1) Overview, by Carl L. Faingold; (2) Stress, Multiple Alcohol Withdrawals, and Anxiety, by Darin Knapp; (3) Relationship Between Genetic Differences in Alcohol Drinking and Alcohol Withdrawal, by Julia Chester; (4) Neuronal Mechanisms in the Network for Alcohol Withdrawal Seizures: Modulation by Excitatory Amino Acid Receptors, by Carl L. Faingold; and (5) Treatment of Acute Alcohol Withdrawal and Long-Lasting Alterations in Hippocampal Neuronal Networks, by Larry P. Gonzalez. The presentations emphasized the importance of using intact behaving animals to advance the understanding of the human alcohol withdrawal syndrome. This involves applying and amplifying the neurophysiological and neurotransmitter findings observed in vitro to the network-based neurobiological mechanisms that are involved in several important aspects of the specific behaviors observed clinically. The symposium provided evidence that the organizational aspects of neuronal networks in the intact nervous system add another nexus for the action of alcohol and drugs to treat alcohol withdrawal that may not be readily studied in isolated neural elements used in in vitro approaches.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA.
| | | | | | | |
Collapse
|
21
|
Faingold CL. Emergent properties of CNS neuronal networks as targets for pharmacology: application to anticonvulsant drug action. Prog Neurobiol 2004; 72:55-85. [PMID: 15019176 DOI: 10.1016/j.pneurobio.2003.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 11/19/2003] [Indexed: 01/13/2023]
Abstract
CNS drugs may act by modifying the emergent properties of complex CNS neuronal networks. Emergent properties are network characteristics that are not predictably based on properties of individual member neurons. Neuronal membership within networks is controlled by several mechanisms, including burst firing, gap junctions, endogenous and exogenous neuroactive substances, extracellular ions, temperature, interneuron activity, astrocytic integration and external stimuli. The effects of many CNS drugs in vivo may critically involve actions on specific brain loci, but this selectivity may be absent when the same neurons are isolated from the network in vitro where emergent properties are lost. Audiogenic seizures (AGS) qualify as an emergent CNS property, since in AGS the acoustic stimulus evokes a non-linear output (motor convulsion), but the identical stimulus evokes minimal behavioral changes normally. The hierarchical neuronal network, subserving AGS in rodents is initiated in inferior colliculus (IC) and progresses to deep layers of superior colliculus (DLSC), pontine reticular formation (PRF) and periaqueductal gray (PAG) in genetic and ethanol withdrawal-induced AGS. In blocking AGS, certain anticonvulsants reduce IC neuronal firing, while other agents act primarily on neurons in other AGS network sites. However, the NMDA receptor channel blocker, MK-801, does not depress neuronal firing in any network site despite potently blocking AGS. Recent findings indicate that MK-801 actually enhances firing in substantia nigra reticulata (SNR) neurons in vivo but not in vitro. Thus, the MK-801-induced firing increases in SNR neurons observed in vivo may involve an indirect effect via disinhibition, involving an action on the emergent properties of this seizure network.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
22
|
Osaki MY, Castellan-Baldan L, Calvo F, Carvalho AD, Felippotti TT, de Oliveira R, Ubiali WA, Paschoalin-Maurin T, Elias-Filho DH, Motta V, da Silva LA, Coimbra NC. Neuroanatomical and neuropharmacological study of opioid pathways in the mesencephalic tectum: effect of μ1- and κ-opioid receptor blockade on escape behavior induced by electrical stimulation of the inferior colliculus. Brain Res 2003; 992:179-92. [PMID: 14625057 DOI: 10.1016/j.brainres.2003.08.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Deep layers of the superior colliculus (DLSC), the dorsal and ventral periaqueductal gray matter (PAG), and inferior colliculus (IC) are midbrain structures involved in the generation of defensive behavior. beta-Endorphin and Leu-enkephalin are some neurotransmitters that may modulate such behavior in mammals. Light microscopy immunocytochemistry with streptavidin method was used for the localization of the putative cells of defensive behavior with antibodies for endogenous opioids in rat brainstem. Midbrain structures showed positive neurons to beta-endorphin and Leu-enkephalin in similar distributions in the experimental animals, but we also noted the presence of varicose fibers positive to endogenous opioids in the PAG. Neuroanatomical techniques showed varicose fibers from the central nucleus of the inferior colliculus to ventral aspects of the PAG, at more caudal levels. Naloxonazine and nor-binaltorphimine, competitive antagonists that block mu(1)- and kappa-opioid receptors, were then used in the present work to investigate the involvement of opioid peptide neural system in the control of the fear-induced reactions evoked by electrical stimulation of the neural substrates of the inferior colliculus. The fear-like responses were measured by electrical stimulation of the central nucleus of the inferior colliculus, eliciting the escape behavior, which is characterized by vigorous running and jumping. Central administration of opioid antagonists (2.5 microg/0.2 microl and 5.0 microg/0.2 microl) was performed in non-anesthetized animals (Rattus norvegicus), and the behavioral manifestations of fear were registered after 10 min, 2 h, and 24 h of the pretreatment. Naloxonazine caused an increase of the defensive threshold, as compared to control, suggesting an antiaversive effect of the antagonism on mu(1)-opioid receptor. This finding was corroborated with central administration of nor-binaltorphimine, which also induced a decrease of the fear-like responses evoked by electrical stimulation of the inferior colliculus, since the threshold of the escape behavior was increased 2 and 24 h after the blockade of kappa-opioid receptor. These results indicate that endogenous opioids may be involved in the modulation of fear in the central nucleus of the inferior colliculus. Although the acute treatment (after 10 min) of both naloxonazine and nor-binaltorphimine causes nonspecific effect on opioid receptors, we must consider the involvement of mu(1)- and kappa-opioid receptors in the antiaversive influence of the opioidergic interneurons in the dorsal mesencephalon, at caudal level, after chronic (2-24 h) treatment of these opioid antagonists. The neuroanatomical study of the connections between the central nucleus of the inferior colliculus and the periaqueductal gray matter showed neuronal fibers with varicosities and with terminal bottons, both in the pericentral nucleus of the inferior colliculus and in ventral and dorsal parts of caudal aspects of the periaqueductal gray matter.
Collapse
MESH Headings
- Animals
- Biotin/analogs & derivatives
- Biotin/pharmacology
- Dextrans/pharmacology
- Dose-Response Relationship, Drug
- Electric Stimulation
- Escape Reaction/drug effects
- Escape Reaction/physiology
- Fear/drug effects
- Fear/physiology
- Inferior Colliculi/drug effects
- Inferior Colliculi/physiology
- Male
- Naloxone/analogs & derivatives
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Opioid Peptides/metabolism
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/physiology
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Wistar
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- M Y Osaki
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, Avenida dos Bandeirantes, 3900, SP, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McLean MJ, Engström S, Holcomb RR, Sanchez D. A static magnetic field modulates severity of audiogenic seizures and anticonvulsant effects of phenytoin in DBA/2 mice. Epilepsy Res 2003; 55:105-16. [PMID: 12948620 DOI: 10.1016/s0920-1211(03)00109-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RATIONALE In a search for potential supplements or alternatives to the pharmacological treatment of epilepsy, we examined the effects of static magnetic fields on audiogenic seizures of DBA/2 mice. METHODS Two strains of DBA/2 mice were subjected to auditory stimulation that resulted sequentially in wild running, loss of righting, clonus, tonic hindlimb extension, and death in 80-95% of animals in different experiments. The incidence of seizure stages in groups of animals pretreated with a static magnetic field, phenytoin (PHT) or both was compared to the incidence in sham-exposed control mice. RESULTS Depending on magnetic flux density and duration of exposure to the field, seizure severity decreased significantly, but not completely, in both strains. However, incidence of five seizure stages was reduced in one strain, with about half of the mice seizure free. Two seizure stages (tonic hindlimb extension and death) were reduced significantly in the other. Magnetic field pretreatment potentiated the effect of PHT. Clonic seizures refractory to PHT or magnetic field pretreatment in DBA/2J mice responded to pretreatment with a combination of PHT and the magnetic field. CONCLUSIONS A static magnetic field had some anticonvulsant effects when employed alone. More robust effects were seen in combination with PHT. Further testing of magnetic fields for anticonvulsant effects and elucidation of mechanisms of action seem to be warranted.
Collapse
Affiliation(s)
- M J McLean
- Department of Neurology, Vanderbilt University Medical Center, 2100 Pierce Avenue, 351 MCS, Nashville, TN 37212, USA.
| | | | | | | |
Collapse
|
24
|
Raisinghani M, Faingold CL. Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures. Brain Res 2003; 967:113-22. [PMID: 12650972 DOI: 10.1016/s0006-8993(02)04232-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparative studies of neuronal networks that subserve convulsions in closely-related epilepsy models are revealing instructive data about the pathophysiological mechanisms that govern these networks. Studies of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPRs) and related forms of AGS demonstrate important network similarities and differences. Two substrains of GEPRs exist, GEPR-9s, exhibiting tonic AGS, and GEPR-3s, exhibiting clonic AGS. The neuronal network for tonic AGS resides exclusively in brainstem nuclei, but forebrain sites, including the amygdala (AMG), are recruited after repetitive AGS induction. The neuronal network for clonic AGS remains to be investigated. The present study examined the neuronal network for clonic AGS in GEPR-3s by microinjecting a competitive NMDA receptor antagonist, D,L-2-amino-7-phosphonoheptanoic acid (AP7), into the central nucleus of inferior colliculus (ICc), deep layers of superior colliculus (DLSC), periaqueductal grey (PAG), or caudal pontine reticular formation (cPRF), which are implicated in tonic AGS networks. Microinjections into AMG and perirhinal cortex (PRh), which are not implicated in AGS, were also done. AGS in GEPR-3s were blocked reversibly after microinjections into ICc, DLSC, PAG or cPRF. However, AGS were also blocked by AP7 in AMG but not PRh. The sites in which AP7 blocks AGS are implicated as requisite components of the clonic AGS network, and these data support a critical role for NMDA receptors in clonic AGS modulation. The brainstem nuclei of the clonic AGS network are identical to those subserving tonic AGS. However, the requisite involvement of AMG in the clonic AGS network, which is not seen in tonic AGS, is surprising and suggests important mechanistic differences between clonic and tonic forms of AGS.
Collapse
Affiliation(s)
- Manish Raisinghani
- Department of Pharmacology, Southern Illinois University, School of Medicine, P.O. Box 19629, Springfield 62794-9629, USA
| | | |
Collapse
|
25
|
Ishida Y, Nakahara D, Hashiguchi H, Nakamura M, Ebihara K, Takeda R, Nishimori T, Niki H. Fos expression in GABAergic cells and cells immunopositive for NMDA receptors in the inferior and superior colliculi following audiogenic seizures in rats. Synapse 2002; 46:100-7. [PMID: 12211088 DOI: 10.1002/syn.10129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Given the evidence that the inferior colliculus (IC) and superior colliculus (SC) seem to play key roles in connecting auditory pathways and seizure output pathways in the neuronal network for audiogenic seizures (AS) in rats, we examined Fos activation in GABAergic cells and cells immunopositive for glutamate N-methyl-D-aspartate (NMDA) receptors in the IC and SC following AS using the double-labeling procedure. Generalized tonic-clonic seizures (GTCS), which developed as an advanced form of AS in some of the susceptible rats, induced an increase in Fos expression in three IC substructures-the dorsal cortex of IC (DCIC), central nucleus of IC (CIC), and external cortex of IC (ECIC)-and in one SC substructure, the deep gray layer of SC (DpG). Compared with the rats showing GTCS, rats exhibiting wild running (WR) without proceeding to GTCS showed a different pattern of AS-induced Fos expression. The DpG in the WR animals showed no significant increase in the levels of Fos-like immunoreactivity. The degrees of Fos activation that occurred in GABAergic cells and cells immunopositive for NMDA receptors were similar in the DCIC, CIC, ECIC, and DpG following AS. These results suggest that Fos activation in the DpG is involved in the development from WR to GTCS in AS-susceptible rats. They also provide some evidence that some GABAergic neurons in the IC and SC and glutamatergic afferents (via NMDA receptors) to these structures are activated by AS.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, Kiyotake-cho, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kwan P, Sills GJ, Butler E, Gant TW, Meldrum BS, Brodie MJ. Regional expression of multidrug resistance genes in genetically epilepsy-prone rat brain after a single audiogenic seizure. Epilepsia 2002; 43:1318-23. [PMID: 12423380 DOI: 10.1046/j.1528-1157.2002.156702.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE The multidrug resistance (mdr) gene family encodes the drug transport macromolecule P-glycoprotein (P-gp), which contributes to the functionality of the blood-brain barrier. Recent evidence suggests that P-gp-mediated drug extrusion may play a facilitatory role in refractory epilepsy. We investigated the regional expression of mdr genes in genetically epilepsy-prone rat (GEPR) brain after a single audiogenic seizure. METHODS Three groups of adult male GEPRs (n = 5/group) were exposed to a seizure-inducing audiogenic stimulus and killed at 4 h, 24 h, and 7 days thereafter. A further group (n = 5) served as a stimulus-naïve control. Expression of mdr1a and mdr1b in distinct anatomic brain regions (cortex, midbrain, pons/medulla, hippocampus) was determined by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) in the presence of competitive internal standards. RESULTS When compared with control, mdr1a expression in cortex and midbrain was significantly (p < 0.05) increased at 24 h after a single audiogenic seizure. Cortical mdr1a expression remained elevated at 7 days after stimulus. In contrast, mdr1a expression in pons/medulla and hippocampus was unchanged. The mdr1b isoform was quantifiable in hippocampus alone and not influenced by seizure activity. CONCLUSIONS These findings suggest that acute seizures in the GEPR can induce the expression of mdr genes. The pattern of increased expression appears to follow the anatomic pathway of audiogenic seizures in these animals, with initiation in the midbrain and propagation to the cortex. Further studies are required to investigate the effects of recurrent seizure activity and to characterise mdr expression in other experimental seizure models.
Collapse
Affiliation(s)
- Patrick Kwan
- Epilepsy Unit, University Department of Medicine and Therapeutics, Western Infirmary, Glasgow, Scotland
| | | | | | | | | | | |
Collapse
|
27
|
Nail-Boucherie K, Lê-Pham BT, Marescaux C, Depaulis A. Suppression of absence seizures by electrical and pharmacological activation of the caudal superior colliculus in a genetic model of absence epilepsy in the rat. Exp Neurol 2002; 177:503-14. [PMID: 12429195 DOI: 10.1006/exnr.2002.7997] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation of the superior colliculus has been shown to reproduce the antiepileptic effect of the inhibition of the substantia nigra reticulata. A circuit involving neurons of the caudal deep layers of the superior colliculus has been suggested to control brain stem convulsive seizures. The present study was designed to examine whether a similar circuit is also involved in the control of absence seizures. For this, activation of either the rostral or caudal parts of the deep and intermediate layers of the superior colliculus was applied in a genetic model of absence seizures in the rat (GAERS). Single-shock (5 s) electrical stimulation of the rostral and caudal superior colliculus interrupted ongoing spike-and-wave discharges at an intensity (antiepileptic threshold) significantly lower than the intensity inducing behavioral effects. At this intensity, no interruption of licking behavior was observed in water-deprived rats. Repeated stimulations (5 s on/5 s off) at the antiepileptic threshold reduced absence seizures only during the first 10 min. Bilateral microinjection of a GABA antagonist (picrotoxin, 33 pmol/side) significantly suppressed spike-and-wave discharges when applied in the caudal aspect of the superior colliculus. This antiepileptic effect appears dissociated from an anxiogenic effect, as tested in an elevated plus maze test. Finally, bilateral injection of picrotoxin (33 pmol/side) appeared more effective in the superficial and intermediate layers of the caudal superior colliculus, whereas such injections had only weak effects on absence seizures when applied in the deep layers. These results suggest that a specific population of neurons located in the intermediate and superficial layers of the caudal superior colliculus is involved in the inhibitory control of absence seizures. It may constitute an important relay for the control of absence seizures by the basal ganglia via the substantia nigra reticulata.
Collapse
Affiliation(s)
- K Nail-Boucherie
- Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, INSERM U. 398, Faculté de Médecine, Strasbourg, France
| | | | | | | |
Collapse
|
28
|
Garcia-Cairasco N. A critical review on the participation of inferior colliculus in acoustic-motor and acoustic-limbic networks involved in the expression of acute and kindled audiogenic seizures. Hear Res 2002; 168:208-22. [PMID: 12117522 DOI: 10.1016/s0378-5955(02)00371-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The main goal of this article is to review the key role that the inferior colliculus plays in the expression of acoustic-motor and acoustic-limbic integration involved, respectively, in acute and chronic audiogenic seizures. In order to put this in context, we will review the behavioral characterization of acute and chronic audiogenic seizures, neuroanatomical substrates, neurochemistry, neuropharmacology, electrophysiology, as well as the cellular and molecular mechanisms involved in their expression. Secondly, we will also correlate our results, collected from audiogenic seizures susceptible rats, before and after the genetic selection of our own audiogenic susceptible strain, and from those sensitized by lesions or drug microinjections, with those pertinent from the international literature. In brief, genetic or sensitized animals express acute audiogenic seizures as a wild running behavior preceding the onset of tonic-clonic seizures. The latter can have several presentations including opistotonus and fore- and hindlimb tonic hyperextensions, followed by clonic convulsions of fore- and hindlimbs. Chronic (kindled) audiogenic seizures change this behavioral expression, with similar patterns such as those present in temporal lobe epileptic seizures, intermingled with the original audiogenic seizure pattern, which is known to be dependent on brainstem networks.
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 SP, Ribeirão Preto, Brazil.
| |
Collapse
|
29
|
Abstract
gamma-Aminobutyric acid (GABA), acting at GABA(A) receptors, mediates inhibition in inferior colliculus (IC) central nucleus (ICc) neurons and plays a prominent role in mediating acoustically evoked non-monotonicity, offset inhibition, and binaural inhibition, and is also important in tonic inhibition. The IC plays an important role in a number of pathophysiological conditions that involve hearing, including tinnitus, age-related hearing loss, and audiogenic seizures (AGS). AGS are a major form of rodent neurological disorder that can be genetically mediated and can also be readily induced in both young and mature animals. A deficit in GABA-mediated inhibition in IC neurons has been shown to be a critical mechanism in genetic and induced forms of AGS. Thus, both endogenously evoked GABA-mediated inhibition and exogenously applied GABA are reduced in efficacy in IC neurons of rats that are susceptible to AGS. GABA-mediated inhibition in IC neurons is significantly more easily blocked by a GABA(A) antagonist in genetic and induced forms of AGS in vivo and in vitro. AGS can be induced in normal animals by treatments that reduce the effectiveness of GABA in the IC. Glutamate-mediated excitation is a critical element of neurotransmission in IC neurons, and excessive activation of glutamate receptors in the IC is also strongly implicated as the other major mechanism in the pathophysiology of AGS. These neurotransmitter abnormalities result in excessive firing of ICc neurons that acts as the critical initiation mechanism for triggering seizures in response to intense acoustic stimuli.
Collapse
Affiliation(s)
- Carl L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| |
Collapse
|
30
|
Illing RB, Michler SA, Kraus KS, Laszig R. Transcription factor modulation and expression in the rat auditory brainstem following electrical intracochlear stimulation. Exp Neurol 2002; 175:226-44. [PMID: 12009775 DOI: 10.1006/exnr.2002.7895] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal activity in sensory organs elicited by adequate or electrical stimulation not only invokes fast electrical responses but may also trigger complex molecular changes inside central neurons. Following electrical intracochlear stimulation with a cochlear implant under urethane anesthesia, we observed changes in the phosphorylation state of the cAMP response element binding protein (CREB) and the expression of the immediate-early genes c-fos and egr-1, molecules known to act as transcription factors, in a tonotopically precise pattern in central auditory neurons. These neurons resided in the posteroventral and anteroventral cochlear nucleus, the dorsal cochlear nucleus, the lateral superior olive, the medial nucleus of the trapezoid body, the dorsal and ventral nucleus of the lateral lemniscus, and the central nucleus of the inferior colliculus. Moreover, effects of electrical stimulation were identified in the medial vestibular nucleus and the lateral parabrachial nucleus. Regionally, CREB was dephosphorylated wherever immediate-early gene expression went up. These massive stimulation-dependent modulations of transcription factors in the ascending auditory system are indicative of ongoing changes that modify the chemistry and structure of the affected cells and, consequently, their response characteristics to subsequent stimulation of the inner ear.
Collapse
Affiliation(s)
- Robert-Benjamin Illing
- Neurobiological Research Laboratory, Department of Otorhinolaryngology, University of Freiburg, Killianstrasse 5, Freiburg, D-79106, Germany.
| | | | | | | |
Collapse
|
31
|
Yang L, Long C, Faingold CL. Neurons in the deep layers of superior colliculus are a requisite component of the neuronal network for seizures during ethanol withdrawal. Brain Res 2001; 920:134-41. [PMID: 11716819 DOI: 10.1016/s0006-8993(01)03048-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ethanol withdrawal (ETX) in ethanol-dependent animals and humans often results in seizure susceptibility. The deep layers of superior colliculus (DLSC) are proposed to be involved in the neuronal networks of several types of seizures. In rodents, ETX results in susceptibility to audiogenic seizures (AGS), and the DLSC are implicated as a critical component of the seizure network in a genetic form of AGS. Ethanol inhibits NMDA receptors, and the binding at these receptors is increased during ETX in certain brain regions. Therefore, the effect of focal microinjection into DLSC of a competitive NMDA receptor antagonist, DL-2-amino-7-phosphonoheptanoic acid (AP7) on ETX seizures was examined. AP7 (2 and 5 nmol/side) microinjected bilaterally into DLSC suppressed AGS, supporting a critical role of the DLSC in the AGS network during ETX. DLSC neuronal firing changes in behaving rats were subsequently examined, using chronically implanted microwire electrodes. Acoustically-evoked DLSC firing was significantly suppressed during ethanol intoxication and during ETX. However, DLSC neurons began firing tonically 1-2 s before the onset of the wild running behavior of AGS. Acoustically-evoked DLSC firing was suppressed during post-ictal depression with recovery beginning as the righting reflex returned. These data support a requisite role of the DLSC in AGS during ETX. These neuronal firing changes suggest an important role of DLSC neurons in generation of the wild running phase of AGS during ETX, which may be a general pathophysiological mechanism and a critical event in the initiation of wild running, since a similar pattern was seen previously in a genetic form of AGS.
Collapse
Affiliation(s)
- L Yang
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | | | | |
Collapse
|
32
|
Deransart C, Lê-Pham BT, Hirsch E, Marescaux C, Depaulis A. Inhibition of the substantia nigra suppresses absences and clonic seizures in audiogenic rats, but not tonic seizures: evidence for seizure specificity of the nigral control. Neuroscience 2001; 105:203-11. [PMID: 11483312 DOI: 10.1016/s0306-4522(01)00165-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
GABAergic inhibition of the substantia nigra pars reticulata has been shown to suppress seizures in most models of epilepsy involving forebrain networks, such as absences or clonic seizures. No such antiepileptic effects were observed, however, in genetically audiogenic rats exhibiting tonic seizures generated in the brainstem. This suggests a constitutive dysfunction of the nigral GABAergic neurotransmission in this strain of rat or a selective action of the nigral control on specific networks. In the present study, we first confirmed that bilateral injection of muscimol (700 pmol/side) in the substantia nigra had no effect in Wistar rats with audiogenic seizures (Wistar AS). [3H]Muscimol autoradiography suggested a 40% reduced density of GABA(A) receptors in the substantia nigra of Wistar AS, whereas no change was observed in the cortex and the superior colliculus (superficial and intermediate layers), as compared to control animals. In Wistar AS where 40 repetitions of audiogenic stimulations progressively induced generalised convulsive seizures with both tonic and clonic components, bilateral injection of muscimol (350 pmol/side) in the substantia nigra suppressed the clonic component but had no effect on tonic seizures. In hybrid rats issued from cross-breeding between Wistar AS and rats with spontaneous absence seizures, bilateral injection of muscimol (18 pmol/side) in the substantia nigra abolished cortical spike-and-wave discharges, but had no effect on tonic audiogenic seizures at doses up to 700 pmol/side. These results show that despite a decreased number of GABA(A) receptors in the substantia nigra, inhibition of this structure in Wistar AS still leads to inhibition of seizures involving forebrain structures. These results confirm that GABAergic inhibition of the substantia nigra has antiepileptic effects through the control of forebrain circuits. They suggest that this control mechanism has no inhibitory effect on circuits underlying audiogenic tonic seizures.
Collapse
Affiliation(s)
- C Deransart
- Klinikum der Albert-ludwigs-Universität, Neurozentrum, Freiburg-im-Breisgau, Germany
| | | | | | | | | |
Collapse
|
33
|
Coimbra NC, Freitas RL, Savoldi M, Castro-Souza C, Segato EN, Kishi R, Weltson A, Resende GC. Opioid neurotransmission in the post-ictal analgesia: involvement of mu(1)-opioid receptor. Brain Res 2001; 903:216-21. [PMID: 11382405 DOI: 10.1016/s0006-8993(01)02366-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pentylenetetrazol (PTZ), a non-competitive antagonist that blocks GABA-mediated Cl(-) flux, was used in the present work to induce seizures in animals. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significative increase in the tail-flick latencies (TFL), for at least 120 min of the post-ictal period. Peripheral administration of naltrexone (5 mg/kg, 10 mg/kg and 20 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. These data were corroborated with peripheral administration of naloxonazine (10 mg/kg and 20 mg/kg), a mu(1)-opioid blocker, in the same doses used for non-specific antagonist. These results indicate that endogenous opioids may be involved in the post-ictal analgesia. The involvement of mu(1)-opioid receptor was also considered.
Collapse
Affiliation(s)
- N C Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Avenida dos Bandeirantes, 3900, Ribeirão Preto (SP), Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sakamoto T, Niki H. Acoustic priming lowers the threshold for electrically induced seizures in mice inferior colliculus, but not in the deep layers of superior colliculus. Brain Res 2001; 898:358-63. [PMID: 11306023 DOI: 10.1016/s0006-8993(01)02163-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice become highly susceptible to audiogenic seizures (AGS) after exposing them to an intense noise in their early life (priming). To elucidate the brain mechanisms for this priming effect of AGS, we compared the threshold current intensities inducing AGS syndromes between primed (n=88) and non-primed (n=84) mice by electrically stimulating the central nucleus and external cortex of the inferior colliculus (CIC and ECIC), and the deep layers of the superior colliculus (DLSC). The threshold for wild running was significantly lower for the primed mice than for the control mice in the case of the CIC and ECIC, but not the DLSC. The current intensity for inducing clonic seizure was lower for the primed mice than for the control mice in the case of the ECIC. These results show that the inferior colliculus (IC) plays an important role in the priming effect of AGS in mice, but that the DLSC does not.
Collapse
Affiliation(s)
- T Sakamoto
- Laboratory for Neurobiology of Emotion, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-City, 351-0198, Saitama, Japan.
| | | |
Collapse
|
35
|
Coimbra NC, Castro-Souza C, Segato EN, Nora JE, Herrero CF, Tedeschi-Filho W, Garcia-Cairasco N. Post-ictal analgesia: involvement of opioid, serotoninergic and cholinergic mechanisms. Brain Res 2001; 888:314-320. [PMID: 11150491 DOI: 10.1016/s0006-8993(00)03103-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neural mechanisms involved in post-ictal analgesia remain to be elucidated. Pentylenetetrazol (PTZ) is used experimentally to induce seizure in animal subjects. This non-competitive antagonist blocks GABA-mediated Cl(-) flux. The aim of this work is to study the neurochemical basis of the antinociception induced by convulsions elicited by peripheral administration of PTZ (64 mg/kg). The analgesia was measured by the tail-flick test, in eight rats per group. Convulsions were followed by significant increase in the tail-flick latencies (TFL), at least for 30 min of the post-ictal period. Peripheral administration of naloxone (5 mg/kg and 10 mg/kg), atropine (1 mg/kg and 5 mg/kg), methysergide (1 mg/kg and 5 mg/kg) and ketanserine (1 mg/kg and 2 mg/kg) caused a significant decrease in the TFL in seizing animals, as compared to controls. However, while naloxone antagonized analgesia 15 and 25 min post convulsions, the other drugs caused a blockade of the post-ictal analgesia in a relatively greater period of time. These results indicate that endogenous opioids, serotonin and acetylcholine may be involved in post-ictal analgesia.
Collapse
Affiliation(s)
- N C Coimbra
- Laboratório de Neuroanatomia e Neuropsicobiologia, Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), 14049-900, (SP), Ribeirão Preto, Brazil.
| | | | | | | | | | | | | |
Collapse
|
36
|
Chakravarty DN, Faingold CL. Differential roles in the neuronal network for audiogenic seizures are observed among the inferior colliculus subnuclei and the amygdala. Exp Neurol 1999; 157:135-41. [PMID: 10222116 DOI: 10.1006/exnr.1999.7047] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inferior colliculus (IC) is established as the initiation site within the neuronal network for audiogenic seizures (AGS), but the relative importance of the IC subnuclei in AGS is controversial. The lateral and basolateral subdivisions of the amygdala are implicated in the expansion of the AGS network that occurs during AGS kindling. However, the role of the amygdala in the AGS network in nonkindled AGS is unknown. NMDA receptors are implicated in modulation of AGS and in neurotransmission in both the IC and amygdala. Therefore, changes in AGS severity in genetically epilepsy-prone rats (GEPR-9s) were examined after bilateral focal microinjection into IC subnuclei or lateral/basolateral subdivisions of the amygdala of a competitive NMDA receptor antagonist, 3-((+)-2-carboxypiperazine-4-yl)propyl-1-phosphonic acid (CPP). Blockade of AGS in IC central nucleus (ICc) and external cortex (ICx) was observed at identical doses of CPP, but these doses were ineffective in IC dorsal cortex (ICd). Microinjection of CPP into the amygdala did not produce significant changes in AGS severity except at doses 20 times those effective in IC. The latter data contrast with the anticonvulsant effects of amygdala microinjections on seizure severity in kindled AGS reported previously. The present data in concord with neuronal recording studies of these nuclei suggest that the ICc is the most critical site in AGS initiation, the ICx in propagation, and that the ICd plays a lesser role in the AGS network. The amygdala does not appear to play a requisite role in the neuronal network for AGS in animals that have not been subjected to AGS kindling.
Collapse
Affiliation(s)
- D N Chakravarty
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629, USA
| | | |
Collapse
|
37
|
N'Gouemo P, Faingold CL. The periaqueductal grey is a critical site in the neuronal network for audiogenic seizures: modulation by GABA(A), NMDA and opioid receptors. Epilepsy Res 1999; 35:39-46. [PMID: 10232793 DOI: 10.1016/s0920-1211(98)00128-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nuclei comprising the neuronal network for audiogenic seizures (AGS) are located primarily in the brainstem. Previous studies suggested a role for the periaqueductal grey (PAG) in the AGS network. The present study evaluated this possibility in genetically-epilepsy prone rats (GEPR-9s) by examining the effects of bilateral focal microinjection of a competitive NMDA receptor antagonist (DL-2-amino-7-phosphonoheptanoic acid (AP7), 1 and 5 nmol/side), a GABA(A) agonist (gaboxedol (THIP), 10 and 15 nmol) or an opioid peptide receptor antagonist (naloxone, 5 nmol) into PAG, based on the proposed role of these receptors in PAG neurotransmission. Blockade of NMDA receptors by AP7 (both doses) or activation of GABA(A) receptors with THIP (15 nmol/side) in the PAG suppressed AGS susceptibility. Naloxone displayed a seizure-suppressant effect that was delayed and incomplete. The seizure suppressant effect of AP7 or naloxone, unlike THIP, was observed at doses that did not produce motor quiescence. These data suggest that the PAG is a requisite nucleus in the neuronal network for AGS in GEPR-9s and that GABA(A), opioid peptide and NMDA receptors in the PAG modulate AGS propagation.
Collapse
Affiliation(s)
- P N'Gouemo
- Department of Pharmacology Southern Illinois University School of Medicine, Springfield 62794-9629, USA
| | | |
Collapse
|
38
|
Simler S, Vergnes M, Marescaux C. Spatial and temporal relationships between C-Fos expression and kindling of audiogenic seizures in Wistar rats. Exp Neurol 1999; 157:106-19. [PMID: 10222113 DOI: 10.1006/exnr.1999.7036] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a strain of Wistar rats selected in our laboratory, audiogenic seizures (AS), characterized by a wild running phase followed by a tonic seizure, can be elicited by exposure to sound. In these animals repeated daily stimulations induce permanent changes which reflect the extension of seizure activity from the brainstem to the forebrain. C-Fos immunoreactivity was used to further characterize the sound-susceptibility of the strain and to specify the spatiotemporal relationships between c-Fos expression and development of AS kindling. AS susceptible rats appeared to be more sensitive to a subthreshold sound as compared to controls. Sound-evoked wild running induced a similar pattern of c-Fos as a full AS in naive rats, confirming the epileptic nature of this early component. AS-induced c-Fos labeling in the auditory pathways of the brainstem extended to the forebrain with repetition of AS and marked increases in c-Fos expression sequentially occurred in the amygdala and perirhinal cortex, followed by the frontoparietal cortex, the piriform cortex, and finally the hippocampus and entorhinal cortex. These results show that the kindled AS preferentially propagate from the brainstem, through the amygdala and the perirhinal cortex, to the motor cortex, with the piriform cortex and hippocampus as secondary targets. No more c-Fos expression was detected 24 h after an AS. A down-regulation of cortical c-Fos induction was observed 1 and 2 days after daily exposure to kindled AS, with full recovery of c-Fos expression after a 5-day seizure-free period. This suggests a regulatory function of c-Fos expression in development of kindling.
Collapse
Affiliation(s)
- S Simler
- Faculté de Médecine, INSERM U 398, 11 rue Humann, Strasbourg Cedex, 67085, France
| | | | | |
Collapse
|
39
|
Faingold C, Casebeer D. Modulation of the audiogenic seizure network by noradrenergic and glutamatergic receptors of the deep layers of superior colliculus. Brain Res 1999; 821:392-9. [PMID: 10064826 DOI: 10.1016/s0006-8993(99)01101-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recent studies suggest that the deep layers of superior colliculus (DLSC) play a role in the network for audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPR-9s). The present study examined the role of glutamatergic and noradrenergic receptors in DLSC in modulation of AGS susceptibility. The study examined effects of a competitive NMDA receptor antagonist [dl-2-amino-7-phosphonoheptanoic acid (AP7)] or an alpha1 noradrenergic agonist (phenylephrine) focally microinjected into DLSC as compared to effects in the inferior colliculus (IC) and pontine reticular formation (PRF), which are major established components of the AGS network. The results demonstrated that blockade of NMDA receptors in DLSC suppressed AGS susceptibility. AP7 microinjection was effective at relatively low doses in IC, but required higher doses in DLSC and PRF. The DLSC was relatively more sensitive to seizure reduction by the alpha1 noradrenergic agonist as compared to the IC and PRF. The anticonvulsant effect of AP7 was longer-lasting than phenylephrine in the DLSC and IC but not in the PRF. These data suggest that neurons in the DLSC are a requisite component for the neuronal network for AGS in GEPR-9s and that NMDA and alpha1 adrenoreceptors in this site may play important roles in the modulation of AGS propagation. The relatively greater sensitivity of DLSC to phenylephrine as compared to IC and PRF indicates that norepinephrine may be more important in the modulation of AGS in DLSC, which contrasts to the role of glutamate modulation. These data support recent neuronal recording data, which indicate that DLSC neurons play a critical role in AGS.
Collapse
Affiliation(s)
- C Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | | |
Collapse
|
40
|
Ryu JR, Jobe PC, Milbrandt JC, Mishra PK, Clough RW, Browning RA, Dailey JW, Seo DO, Ko KH. Morphological deficits in noradrenergic neurons in GEPR-9s stem from abnormalities in both the locus coeruleus and its target tissues. Exp Neurol 1999; 156:84-91. [PMID: 10192779 DOI: 10.1006/exnr.1998.7003] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epileptic condition of the genetically epilepsy-prone rat (GEPR) appears to be caused partially by deficiencies in the locus coeruleus (LC) innervation of the superior colliculus (SC). Previous studies provide quantitative documentation of noradrenergic morphological deficits in the moderately epileptic GEPR-3. The present findings extend these studies by applying cell culture methodology to assessments of the severely epileptic GEPR-9. Our data show that total neurite length, the number of neurite branch points per cell, the cross-sectional area of cell bodies, and the cell perimeter are deficient in noradrenergic neurons in LC + SC cocultures derived exclusively from GEPR-9s compared to analogous cocultures obtained solely from nonepileptic control rats. Partial restoration of LC neuron morphology toward normal occurs when the GEPR-9 SC component of the coculture is replaced with nonepileptic control SC. Finally, when the GEPR-9 SC is cocultured with the control LC, a partial morphological deficit occurs in the otherwise normal noradrenergic neurons. However, the magnitude of this deficit is less than that observed in noradrenergic neurons of the GEPR-9 LC cocultured with the control SC. These data support the hypothesis that the developmental deficiencies of noradrenergic neurons of the GEPR-9 are derived from two sources, the LC and its target tissue, in this case, the SC. Also, intrinsic abnormalities of the LC appear to make a more pronounced contribution to the noradrenergic deficits than do those which reside in the SC.
Collapse
Affiliation(s)
- J R Ryu
- College of Pharmacy, Seoul National University, San 56-1, Shillim-dong, Seoul, Kwanak-ku, 151-742, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Browning RA, Wang C, Nelson DK, Jobe PC. Effect of precollicular transection on audiogenic seizures in genetically epilepsy-prone rats. Exp Neurol 1999; 155:295-301. [PMID: 10072305 DOI: 10.1006/exnr.1998.6981] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated that generalized tonic-clonic seizures (GTCS) consisting of running/bouncing clonic and tonic extension can still be elicited in rats after brain transections which separate forebrain from brain stem, showing that forebrain circuitry is not required for GTCS. Inasmuch as sound-induced generalized tonic-clonic seizures in rodents are characterized by running-bouncing clonic and tonic convulsions, we have hypothesized that these are brain stem seizures that can occur independently of the forebrain. To test this hypothesis, we examined the response of two strains of genetically epilepsy-prone rats (GEPR-3s and GEPR-9s) to seizure-evoking auditory stimuli 3 h after a precollicular transection or sham surgery performed under ether anesthesia. In addition, the effect of a precollicular transection on audiogenic seizures was evaluated in normal rats made susceptible to such seizures by infusing NMDA into the inferior colliculus. Following the transection 58% of GEPR-9s displayed a sound-induced tonic-clonic convulsion and the remaining 42% exhibited a sound-induced seizure when subjected to stimulation 5 min after a subconvulsant dose of pentylenetetrazol (PTZ). While sham surgery and the precollicular transection both reduced sound-induced seizure severity in GEPR-3s, the full seizure response could be elicited by sound stimulation following a subconvulsant dose of PTZ. Moreover, the audiogenic seizures in normal rats rendered susceptible by NMDA were unaltered by the precollicular transection. These findings show that the anatomical circuitry required for generalized tonic-clonic seizures evoked by sound stimulation in rodents resides within the brain stem.
Collapse
Affiliation(s)
- R A Browning
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, 62901, USA
| | | | | | | |
Collapse
|
42
|
Faingold CL, Randall ME. Neurons in the deep layers of superior colliculus play a critical role in the neuronal network for audiogenic seizures: mechanisms for production of wild running behavior. Brain Res 1999; 815:250-8. [PMID: 9878768 DOI: 10.1016/s0006-8993(98)01136-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recent investigations suggest that the deep layers of superior colliculus (DLSC) play a role in the neuronal network for audiogenic seizures (AGS). The present study examined DLSC neuronal firing and convulsive behavior simultaneously in freely-moving genetically epilepsy-prone rats (GEPR-9s) using chronically implanted microwire electrodes. An abrupt onset of acoustically-evoked firing at approximately 80-90 dB was observed in DLSC neurons of GEPR-9s, which was significantly above the normal threshold. DLSC neurons began to exhibit rapid tonic burst firing 1-2 s prior to the onset of the wild running behavior at the beginning of AGS. As the tonic phase of the seizure began, DLSC firing ceased, and only returned towards normal following post-ictal depression. These neuronal mechanisms may be relevant to other seizure models in which the DLSC is implicated. The temporal pattern of neuronal firing during AGS is specific to DLSC and differs markedly from those observed elsewhere in the AGS neuronal network. The temporal firing pattern suggests that the DLSC plays a primary role in the generation of the wild running phase of AGS. Previous studies indicate that the inferior colliculus is dominant during AGS initiation, and the pontine reticular formation is dominant during the tonic extension phase of AGS. Taken together these data suggest that the neurons in the neuronal network undergo a dominance shift as each specific convulsive behavior of AGS is elaborated.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, P.O. Box 19629, Southern Illinois University School of Medicine, Springfield, IL 62794-9629, USA.
| | | |
Collapse
|
43
|
Faingold CL, N'Gouemo P, Riaz A. Ethanol and neurotransmitter interactions--from molecular to integrative effects. Prog Neurobiol 1998; 55:509-35. [PMID: 9670216 DOI: 10.1016/s0301-0082(98)00027-6] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is extensive evidence that ethanol interacts with a variety of neurotransmitters. Considerable research indicates that the major actions of ethanol involve enhancement of the effects of gamma-aminobutyric acid (GABA) at GABAA receptors and blockade of the NMDA subtype of excitatory amino acid (EAA) receptor. Ethanol increases GABAA receptor-mediated inhibition, but this does not occur in all brain regions, all cell types in the same region, nor at all GABAA receptor sites on the same neuron, nor across species in the same brain region. The molecular basis for the selectivity of the action of ethanol on GaBAA receptors has been proposed to involve a combination of benzodiazepine subtype, beta 2 subunit, and a splice variant of the gamma 2 subunit, but substantial controversy on this issue currently remains. Chronic ethanol administration results in tolerance, dependence, and an ethanol withdrawal (ETX) syndrome, which are mediated, in part, by desensitization and/or down-regulation of GABAA receptors. This decrease in ethanol action may involve changes in subunit expression in selected brain areas, but these data are complex and somewhat contradictory at present. The sensitivity of NMDA receptors to ethanol block is proposed to involve the NMDAR2B subunit in certain brain regions, but this subunit does not appear to be the sole determinant of this interaction. Tolerance to ethanol results in enhanced EAA neurotransmission and NMDA receptor upregulation, which appears to involve selective increases in NMDAR2B subunit levels and other molecular changes in specific brain loci. During ETX a variety of symptoms are seen, including susceptibility to seizures. In rodents these seizures are readily triggered by sound (audiogenic seizures). The neuronal network required for these seizures is contained primarily in certain brain stem structures. Specific nuclei appear to play a hierarchical role in generating each stereotypical behavioral phases of the convulsion. Thus, the inferior colliculus acts to initiate these seizures, and a decrease in effectiveness of GABA-mediated inhibition in these neurons is a major initiation mechanism. The deep layers of superior colliculus are implicated in generation of the wild running behavior. The pontine reticular formation, substantia nigra and periaqueductal gray are implicated in generation of the tonic-clonic seizure behavior. The mechanisms involved in the recruitment of neurons within each network nucleus into the seizure circuit have been proposed to require activation of a critical mass of neurons. Achievement of critical mass may involve excess EAA-mediated synaptic neurotransmission due, in part, to upregulation as well as other phenomena, including volume (non-synaptic diffusion) neurotransmission. Effects of ETX on receptors observed in vitro may undergo amplification in vivo to allow the excess EAA action to be magnified sufficiently to produce synchronization of neuronal firing, allowing participation of the nucleus in seizure generation. GABA-mediated inhibition, which normally acts to limit excitation, is diminished in effectiveness during ETX, and further intensifies this excitation.
Collapse
Affiliation(s)
- C L Faingold
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62794-1222, USA
| | | | | |
Collapse
|
44
|
Carr JA, Carpenter AM, D'Souza MM, Elmore AR, Lovering AT, Reigel CE. Alterations in brain and pituitary beta-endorphin content in genetically epilepsy-prone rats. Epilepsy Res 1998; 31:113-22. [PMID: 9714502 DOI: 10.1016/s0920-1211(98)00019-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We measured beta-endorphin concentrations in the anterior and neurointermediate lobes of the pituitary gland and in microdissected brain regions of moderate-seizure genetically epilepsy-prone rats (GEPR-3), severe-seizure GEPR-9s and Sprague-Dawley non-epileptic control rats. Plasma concentrations of beta-endorphin and beta-melanocyte-stimulating hormone (alpha-MSH) were also measured as indicators of pituitary POMC-peptide secretion. Concentrations of beta-endorphin in the anterior lobe of GEPR-3s were 53% higher compared to controls and 57% higher compared to GEPR-9s. There were no differences in neurointermediate lobe beta-endorphin concentrations between control and either GEPR strain. Plasma beta-endorphin concentrations were significantly lower in GEPR-9s than controls. Plasma levels of alpha-MSH did not differ between control and GEPRs. In the hypothalamus of GEPR-9s beta-endorphin concentrations in the arcuate nucleus were significantly greater than in GEPR-3s. Concentrations of beta-endorphin in the central amygdala of GEPR-9s were two- to threefold greater than in control or GEPR-3s. Beta-Endorphin concentrations in the central gray of GEPR-3s were 58% lower than control or GEPR-9s. These data suggest that anterior lobe beta-endorphin secretion is reduced in GEPR-9s. Furthermore, brain endorphinergic pathways appear to be differentially altered in GEPR-3s and GEPR-9s. Alterations in pituitary beta-endorphin secretion and brain endorphinergic systems may contribute to seizure susceptibility in GEPRs and to differences in seizure severity between GEPR-3s and GEPR-9s.
Collapse
Affiliation(s)
- J A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock 79409-3131, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Yan QS, Dailey JW, Steenbergen JL, Jobe PC. Anticonvulsant effect of enhancement of noradrenergic transmission in the superior colliculus in genetically epilepsy-prone rats (GEPRs): a microinjection study. Brain Res 1998; 780:199-209. [PMID: 9507130 DOI: 10.1016/s0006-8993(97)01139-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An expanding body of data has indicated that the seizure prone state in genetically epilepsy-prone rats (GEPRs) is partially caused by deficits in central nervous system noradrenergic transmission. Several lines of evidence suggest that the noradrenergic terminals in the superior colliculus (SC) may act as determinants of seizure predisposition in the GEPR. In order to assess the role of the noradrenergic transmission in the SC in the regulation of seizure severity, several drugs with different mechanisms of enhancing noradrenergic transmission were bilaterally microinfused into the SC of GEPR-9s (severe seizure GEPRs). The rats were tested for audiogenic seizure intensity at 0.25, 1, 2, 3, and 4 h after treatments. Bilateral infusion of vehicle produced no reduction in the severity of the audiogenic seizure. Desipramine (2, 4, 8 micrograms/side), nisoxetine (2, 4, 8 micrograms/side), and idazoxan (0.25, 1, 4 micrograms/side) all decreased the seizure severity in a dose-dependent fashion. Significant decreases in the seizure severity were also observed after administration of methoxamine (0.15 microgram/side) or phenylephrine (0.15 microgram/side). Pretreatment with prazosin (1 microgram/side) significantly diminished the anticonvulsant effectiveness of methoxamine and nisoxetine while prazosin, by itself, had no effects on the seizure intensity. These results suggest that noradrenergic transmission in the SC may be involved in the seizure regulation in GEPR-9s, and that this regulation may be mediated, at least in part, through alpha 1 receptors.
Collapse
Affiliation(s)
- Q S Yan
- Department of Biomedical and Therapeutic Sciences, University of Illinois College of Medicine at Peoria, IL 61656, USA.
| | | | | | | |
Collapse
|
46
|
Abstract
Immunocytochemistry was used to study the distribution of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subtypes in the inferior colliculus (IC) of genetically epilepsy-prone rats (GEPR-9s) and normal Sprague-Dawley (SD) rats. The analysis was conducted using 3 antibodies specific for glutamate receptor subtypes, GluR 1, GluR 2/3, and GluR 4. Light microscopy showed that immunostaining of the IC was most dense with the GluR 2/3 antibody for both strains of animals. The amount of GluR 2/3 immunolabeling was similar for sound-stimulated GEPR-9s, seizure-naive GEPR-9s, and SD rats. The electron microscopy of GluR 2/3 in the IC revealed immunoreaction products associated with the postsynaptic densities of asymmetric synapses. The thin sections had comparable amounts of reaction product in dendrites or dendritic spines for both strains. Since the distribution and quantity of AMPA receptors in the IC of GEPR-9s and SD rats are similar, our results indicate that altered AMPA receptors are probably not the primary cause of seizure initiation in GEPR-9s.
Collapse
Affiliation(s)
- W C Gaza
- Department of Anatomy and Neurobiology, University of California at Irvine, 92697, USA
| | | |
Collapse
|