1
|
Song H, Bae Y, Jeon E, Kwon Y, Joh S. Multiplex PCR analysis of virulence genes and their influence on antibiotic resistance in Enterococcus spp. isolated from broiler chicken. J Vet Sci 2019; 20:e26. [PMID: 31161744 PMCID: PMC6538522 DOI: 10.4142/jvs.2019.20.e26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 01/27/2023] Open
Abstract
Enterococcus spp. are opportunistic pathogens that cause lameness in broiler chickens, resulting in serious economic losses worldwide. Virulence of Enterococcus spp. is associated with several putative virulence genes including fsr, efm, esp, cylA, cad1, ace, gelE, and asa1. In this study, multiplex polymerase chain reaction (PCR) for the simultaneous detection of these virulence genes in Enterococcus spp. was developed, and detection limits for E. faecium, E. faecalis, and E. hirae were 64.0 pg/µL, 320.0 pg/µL, and 1.6 ng/µL DNA, respectively. Among 80 Enterococcus isolates tested, efm and cad1 were detected in all 26 E. faecium samples, and only cad1 was observed in E. hirae. Additionally, the presence of virulence genes in 25 E. faecalis isolates were 100% for cad1, 88.0% for gelE, 64.0% for fsr, 44.0% for asa1, 16.0% for cylA, and 4.0% for esp. No virulence genes were found in E. gallinarum isolates. A total of 49 isolates were resistant to tigecycline and to at least 2 different classes of antibiotics. The most prevalent resistance was to ciprofloxacin (73.5%), quinupristin/dalfopristin (55.1%), and tetracycline (49.0%). No strains were resistant to vancomycin or linezolid. This is the first multiplex PCR assay to simultaneously detect eight virulence genes in Enterococcus spp., and the method provides diagnostic value for accurate, rapid, and convenient detection of virulence genes. Additionally, we report the prevalence of virulence genes and antimicrobial resistance in Enterococcus isolates from commercial broiler chickens suffering lameness.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - YouChan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - EunJi Jeon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - YongKuk Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea
| | - SeongJoon Joh
- Avian Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea.
| |
Collapse
|
2
|
WU X, HOU S, ZHANG Q, MA Y, ZHANG Y, KAN W, ZHAO X. Prevalence of virulence and resistance to antibiotics in pathogenic enterococci isolated from mastitic cows. J Vet Med Sci 2016; 78:1663-1668. [PMID: 27476730 PMCID: PMC5138418 DOI: 10.1292/jvms.15-0718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/12/2016] [Indexed: 11/22/2022] Open
Abstract
The prevalence of enterococci was examined in 280 milk samples collected from dairy cattle diagnosed with mastitis in three provinces of western China. Sixty strains of enterococci were isolated, and the species were determined based on their biochemical characters and 16S rRNA sequences. Resistance to seven antibiotic agents, frequency of seven virulence genes and pathogenicity in Kunming mice were tested to evaluate biological risks. The correlation between the number of virulence genes and pathogenicity in Kunming mice was also evaluated. The 60 isolates were allocated to Enterococcus hirae (68.3%), E. faecium (25.0%), E. mundtii (3.3%) and E. durans (3.3%). A total of 83.3% of the isolates were resistant to penicillin, whereas 15.0% were resistant to ampicillin, 15.0% to vancomycin, 6.7% to tetracycline and 25.0% to ciprofloxacin. Moreover, isolates exhibited 50.0% and 21.7% resistance to high levels of gentamycin and streptomycin, respectively. The gene asa1 was detected in all enterococcal isolates, whereas 66.7% of strains harbored three or more virulence factors and 56.7% were asa1-ccf-gelE-positive. In pathogenicity tests, isolates harboring numerous virulence factors did not show greater invasiveness than isolates harboring fewer virulence traits against Kunming mice. In conclusion, the number of virulence factors does not appear to predict the risk of enterococcal infection. Isolates were commonly resistant to penicillin and sporadically to ampicillin and vancomycin. These results suggest that the use of gentamycin, streptomycin and ciprofloxacin against enterococci should be avoided in mastitic cows. Additionally, the results demonstrate that the majority of isolates are sensitive to tetracycline.
Collapse
Affiliation(s)
- Xiaohu WU
- College of Veterinary Medicine, Gansu Agricultural
University, No. 1, Yingmen county, Anning district, Lanzhou 730070, China
| | - Shubao HOU
- College of Veterinary Medicine, Gansu Agricultural
University, No. 1, Yingmen county, Anning district, Lanzhou 730070, China
| | - Quanwei ZHANG
- College of Life Science & Technology, Gansu Agricultural
University, No. 1, Yingmen county, Anning district, Lanzhou 730070, China
| | - Youji MA
- College of Animal Science & Technology, Gansu
Agricultural University, No. 1, Yingmen county, Anning district, Lanzhou 730070,
China
| | - Yong ZHANG
- College of Veterinary Medicine, Gansu Agricultural
University, No. 1, Yingmen county, Anning district, Lanzhou 730070, China
| | - Wei KAN
- No. 498, Helanshanxilu, Department of Agriculture and
Husbandry, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingxu ZHAO
- College of Veterinary Medicine, Gansu Agricultural
University, No. 1, Yingmen county, Anning district, Lanzhou 730070, China
| |
Collapse
|
3
|
Kommineni S, Kristich CJ, Salzman NH. Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes 2016; 7:512-517. [PMID: 27624536 PMCID: PMC5153615 DOI: 10.1080/19490976.2016.1233089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/19/2016] [Accepted: 08/28/2016] [Indexed: 02/03/2023] Open
Abstract
Recently, our laboratory demonstrated that bacteriocins produced by commensal enterococci provide an advantage in niche maintenance in the highly competitive environment of the gastrointestinal (GI) tract. Bacterial production of bacteriocins is a conserved defense strategy to help establish an ecological niche. Bacteriocin-encoding genes in enterococci are often carried on mobile genetic elements, including conjugative plasmids, enabling the transfer of such traits to other community members in a shared niche. Use of a novel mouse model for enterococcal colonization of the GI tract allowed us to investigate enterococcal dynamics and the role of enterococcal bacteriocins in the mouse GI tract. We examined the role of bacteriocin-21, carried on the pPD1 plasmid, in enterococcal colonization of the gut. We discovered that Enterococcus faecalis (EF) harboring pPD1 effectively colonizes the GI tract by using Bac-21 to eliminate its competition. In our study, we also present evidence for active conjugation in the GI tract, a strategy EF uses to enhance the number of bacteriocin producers in a given niche and eliminate bacteriocin-susceptible populations. Using an engineered strain of EF that is capable of producing Bac-21 but impaired in its conjugation ability, we were able to reduce pre-existing colonization by vancomycin-resistant enterococci in the mouse gut. Thus, our results suggest a novel therapeutic strategy to de-colonize antibiotic-resistant enterococci from the GI tract of patients and thereby prevent the emergence of resistant enterococcal infections that are otherwise difficult, or impossible, to treat.
Collapse
Affiliation(s)
- Sushma Kommineni
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Christopher J. Kristich
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| | - Nita H. Salzman
- Department of Pediatrics, Children's
Research Institute, Medical College of Wisconsin, Milwaukee, WI,
United States
- Department of Microbiology and Molecular
Genetics, Medical College of Wisconsin, Milwaukee, WI, United
States
| |
Collapse
|
4
|
Abstract
Gram-positive bacteria are leading causes of many types of human infection, including pneumonia, skin and nasopharyngeal infections, as well as urinary tract and surgical wound infections among hospitalized patients. These infections have become particularly problematic because many of the species causing them have become highly resistant to antibiotics. The role of mobile genetic elements, such as plasmids, in the dissemination of antibiotic resistance among Gram-positive bacteria has been well studied; less well understood is the role of mobile elements in the evolution and spread of virulence traits among these pathogens. While these organisms are leading agents of infection, they are also prominent members of the human commensal ecology. It appears that these bacteria are able to take advantage of the intimate association between host and commensal, via virulence traits that exacerbate infection and cause disease. However, evolution into an obligate pathogen has not occurred, presumably because it would lead to rejection of pathogenic organisms from the host ecology. Instead, in organisms that exist as both commensal and pathogen, selection has favored the development of mechanisms for variability. As a result, many virulence traits are localized on mobile genetic elements, such as virulence plasmids and pathogenicity islands. Virulence traits may occur within a minority of isolates of a given species, but these minority populations have nonetheless emerged as a leading problem in infectious disease. This chapter reviews virulence plasmids in nonsporulating Gram-positive bacteria, and examines their contribution to disease pathogenesis.
Collapse
|
5
|
Carlos A, Semedo-Lemsaddek T, Barreto-Crespo M, Tenreiro R. Transcriptional analysis of virulence-related genes in enterococci from distinct origins. J Appl Microbiol 2010; 108:1563-75. [DOI: 10.1111/j.1365-2672.2009.04551.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Roux A, Payne SM, Gilmore MS. Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 2009; 6:115-24. [PMID: 19683678 DOI: 10.1016/j.chom.2009.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 01/10/2023]
Abstract
Bacterial-sensing circuits may be triggered by molecules originating from the environment (e.g., nutrients and chemoattractants). Bacteria also actively probe the environment for information by releasing molecular probes to measure conditions beyond the cell surface: a process known as telesensing. Perceiving the environment beyond is achieved by sensing environmentally induced changes in those probes, as occurs when a siderophore chelates an iron atom or a quorum-sensing signal is inactivated by a specific enzyme or adsorbent. This information, captured by chemical and physical changes induced in specifically produced molecules transiting through the environment, enables bacteria to mount a contextually appropriate response.
Collapse
Affiliation(s)
- Agnès Roux
- Schepens Eye Research Institute, Boston, MA 02114, USA
| | | | | |
Collapse
|
7
|
Clewell DB. Properties of Enterococcus faecalis plasmid pAD1, a member of a widely disseminated family of pheromone-responding, conjugative, virulence elements encoding cytolysin. Plasmid 2007; 58:205-27. [PMID: 17590438 DOI: 10.1016/j.plasmid.2007.05.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 05/02/2007] [Accepted: 05/12/2007] [Indexed: 11/23/2022]
Abstract
The 60-kb pAD1 represents a large and widely disseminated family of conjugative, pheromone-responding, virulence plasmids commonly found in clinical isolates of Enterococcus faecalis. It encodes a hemolysin/bacteriocin (cytolysin) shown to contribute to virulence in animal models, and the related bacteriocin is active against a wide variety of Gram-positive bacteria. This review summarizes what is currently known about the molecular biology of pAD1, including aspects of its cytolytic, UV-resistance, replication, maintenance, and conjugative properties.
Collapse
Affiliation(s)
- Don B Clewell
- Department of Biologic and Materials Sciences, School of Dentistry, The University of Michigan, Ann Arbor, MI 48109-1078, USA.
| |
Collapse
|
8
|
Abriouel H, Lucas R, Ben Omar N, Valdivia E, Maqueda M, Martínez-Cañamero M, Gálvez A. Enterocin AS-48RJ: a variant of enterocin AS-48 chromosomally encoded by Enterococcus faecium RJ16 isolated from food. Syst Appl Microbiol 2005; 28:383-97. [PMID: 16094865 DOI: 10.1016/j.syapm.2005.01.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacteriocinogenic strain RJ16 isolated from goat cheese has been identified as Enterococcusfaecium by species-specific PCR, DNA-rRNA hybridization and rDNA sequencing. Purified bacteriocin from strain RJ16 is a carboxypeptidase A-resistant peptide with a molecular mass (7125 Da) very close to the cyclic peptide enterocin AS-48. Bacteriocin from strain RJ16 and AS-48 show identical antibacterial spectra, although the former is slightly less active on strains of Listeria monocytogenes and Bacillus cereus. Producer strains show cross-immunity. PCR amplification of total DNA from strain RJ16 with primers for the AS-48 structural gene and sequencing of the amplified fragment revealed an almost identical sequence (99.5%), except for a single mutation that predicts the change of Glu residue at position 20 of AS-48 to Val. Therefore, bacteriocin produced by E. faecium RJ16 should be considered a variant of AS-48, which we call AS-48RJ. PCR amplification revealed that strain RJ16 contains the complete as-48. gene cluster. Hybridization with probes for as-48 gene cluster revealed a chromosomal location of as-48 genes in strain RJ16, being the first example of a chromosomal location of this bacteriocin trait. Strain RJ16 produced enzymes of interest in food processing (esterase, esterase lipase and phytase activities), and did not decarboxylate amino acids precursors for biogenic amines. Strain RJ16 did not exhibit haemolytic or gelatinase activities, and PCR amplification revealed the lack of genes encoding for known virulence determinants (aggregation substance, collagen adhesin, enterococcal surface protein, endocarditis antigens, as well as haemolysin and gelatinase production). Strain RJ16 was resistant to ciprofloxacin (MIC > 2 mgl(-1)) and levofloxacin (MIC > 4 mgl(-1)) and showed intermediate resistance to nitrofurantoin and erythromycin, but was sensitive to ampicillin, penicillin, streptomycin, gentamicin, rifampicin, chloramphenicol, tetracycline, quinupristin/dalfopristin, vancomycin and teicoplanin. Altogether, results from this study suggest that this broad-spectrum bacteriocin-producing strain may have a potential use in food preservation.
Collapse
Affiliation(s)
- Hikmate Abriouel
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | | | | | | | | | | | | |
Collapse
|
9
|
Feizabadi MM, Asadi S, Zohari M, Gharavi S, Etemadi G. Genetic characterization of high-level gentamicin-resistant strains of Enterococcus faecalis in Iran. Can J Microbiol 2005; 50:869-72. [PMID: 15644902 DOI: 10.1139/w04-069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The prevalence of resistance to high levels of gentamicin among 182 isolates of Enterococcus faecalis from 2 Iranian hospitals was 42%. Gentamicin resistance was associated with conjugative plasmids (>70 kb) in most strains. Fingerprinting using EcoRI and HindIII showed genetic variation among these plasmids and gave evidence of nosocomial outbreaks and persistence of infection in different wards of the study hospitals, as well as transfer of plasmids between genetically diverse isolates. Using EcoRI, hospital-based specific plasmid fingerprints were detected for the isolates that had previously proved to be unrelated by multilocus enzyme electrophoresis, suggesting the persistence of related plasmids at each hospital, though minor changes in these related plasmids could be detected with HindIII.
Collapse
|
10
|
Cocconcelli PS, Cattivelli D, Gazzola S. Gene transfer of vancomycin and tetracycline resistances among Enterococcus faecalis during cheese and sausage fermentations. Int J Food Microbiol 2003; 88:315-23. [PMID: 14597004 DOI: 10.1016/s0168-1605(03)00194-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the frequency of transfer of two mobile genetic elements coding for virulence determinants and antibiotic resistance factors, into food associated enterococci during fermentation processes. First, the transfer of the pheromone-inducible pCF10 plasmid, carrying tetracycline resistance and aggregation substance (AS) as virulence factor, between clinical and food strains of Enterococcus faecalis, was investigated in models of cheese and fermented sausage. The experiments demonstrated that even in the absence of selective tetracycline pressure, plasmid pCF10 was transferred from E. faecalis OG1rf cells to food strain E. faecalis BF3098c and that the plasmid subsequently persisted in these environments. Very high frequency of transfer was observed in sausage (10(-3)/recipient) if compared to cheese (10(-6)) and plate mating (10(-4)). Transconjugants were subsequently verified by PCR. The second transmissible element was the plasmid harbouring the vancomycin resistance (VanA phenotype) from E. faecalis A256. The transfer of this antibiotic resistance to a food strain of E. faecalis was studied in vitro and in food models. Although the transfer of vancomycin resistance was achieved in all the environments, the highest conjugation frequencies were observed during the ripening of fermented sausages, reaching 10(-3) transconjugants/recipient cell. PCR confirmed the transfer of the VanA genotype into a food associated Enterococcus strain. This study showed that even in the absence of selective pressure, mobile genetic elements carrying antibiotic resistance and virulence determinants can be transferred at high frequency to food associated enterococci during cheese and sausage fermentation.
Collapse
Affiliation(s)
- Pier Sandro Cocconcelli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, I-29100 Piacenza, Italy.
| | | | | |
Collapse
|
11
|
Feizabadi MM, Aliahmadi A, Mobasheri F, Asgharzadeh A, Asadi S, Etemadi G. Phenotypic characteristics and population genetics ofEnterococcus faecaliscultured from patients in Tehran during 2000–2001. Can J Microbiol 2003; 49:645-9. [PMID: 14663499 DOI: 10.1139/w03-082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conventional bacteriology techniques were used to identify enterococci isolates cultured from patients at different hospitals in Tehran during 2000–2001. The identification was confirmed using species-specific PCR targeting the D-alanyl-D-alanine ligase gene. A total of 59 isolates of Enterococcus faecalis were identified. The rates of resistance to different antibiotics were in the following order: penicillin 84%, ciprofloxacin 42%, high-level gentamicin 30%, nitrofurantoin 14%, imipenem 4%, and chloramphenicol 2%. Resistance to ampicillin was found to be rare among the Iranian isolates of E. faecalis. Multi-locus enzyme electrophoresis was then used to analyze the strains. Forty-five electrophoretic types were obtained when 10 enzyme loci were screened. Although the collection of bacterial isolates was limited in time and location, considerable heterogeneity was found. Analysis of strains for linkage disequilibrium demonstrated that the studied population is not clonal, since the index of association was not significantly different from zero (Ia= 0.0296). Enterococcus faecalis isolates recovered from patients in Tehran were genetically diverse and seemed to possess a high potential for genetic recombinations, though none were resistant to vancomycin.Key words: Enterococcus faecalis, population genetics, MEE analysis, nosocomial infections.
Collapse
|
12
|
Kies S, Vuong C, Hille M, Peschel A, Meyer C, Götz F, Otto M. Control of antimicrobial peptide synthesis by the agr quorum sensing system in Staphylococcus epidermidis: activity of the lantibiotic epidermin is regulated at the level of precursor peptide processing. Peptides 2003; 24:329-38. [PMID: 12732329 DOI: 10.1016/s0196-9781(03)00046-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The accessory gene regulator (agr) quorum sensing system in staphylococci is responsible for the regulation of surface proteins and exoproteins, including many virulence factors in the pathogenic species Staphylococcus aureus and S. epidermidis. Strain S. epidermidis Tü3298 produces the lantibiotic epidermin. An isogenic agr deletion mutant of this strain showed a strong reduction of epidermin production. Detailed analysis of the impact of agr on epidermin biosynthesis revealed that agr does not interfere with the transcription of epidermin biosynthetic genes, but controls the extracellular processing of the N-terminal leader peptide by the EpiP protease.
Collapse
Affiliation(s)
- Stefanie Kies
- Mikrobielle Genetik, Universität Tübingen Waldhäuserstr 70/8, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|