1
|
Blue-Lahom TC, Jones SK, Davis KM. Bioinformatic and biochemical analysis uncovers novel activity in the 2-ER subfamily of OYEs. RSC Chem Biol 2025:d4cb00289j. [PMID: 39867842 PMCID: PMC11759058 DOI: 10.1039/d4cb00289j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Members of the old yellow enzyme (OYE) family utilize a flavin mononucleotide cofactor to catalyze the asymmetric reduction of activated alkenes. The 2-enoate reductase (2-ER) subfamily are of particular industrial relevance as they can reduce α/β alkenes near electron-withdrawing groups. While the broader OYE family is being extensively explored for biocatalytic applications, oxygen sensitivity and poor expression yields associated with the presence of an Fe/S cluster in 2-ERs have hampered their characterization. Herein, we explore the use of pseudo-anaerobic preparation as a route to more widespread study of these enzymes and apply bioinformatics approaches to identify a subset of 2-ERs containing unusual mutations in both a key catalytic residue and the Fe/S cluster-binding motif. Biochemical analysis of a representative member from Burkholderia insecticola (OYEBi) reveals novel N-methyl-proline demethylation activity, which we hypothesize may play a role in osmotic stress regulation based on genomic neighborhood analysis.
Collapse
Affiliation(s)
| | - Stacey K Jones
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | |
Collapse
|
2
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
3
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. Nat Commun 2024; 15:3574. [PMID: 38678027 PMCID: PMC11055893 DOI: 10.1038/s41467-024-48030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that other CDO-like enzymes are likely enzyme filaments. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Tobias W Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Ji A, Zheng X, Yang W, Chen M, Ma A, Liu Y, Wei X. Transcriptome analysis reveals the underlying mechanism for over-accumulation of alkaline protease in Bacillus licheniformis. J Appl Microbiol 2024; 135:lxad319. [PMID: 38159929 DOI: 10.1093/jambio/lxad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
AIMS Bacillus licheniformis AQ is an industrial strain with high production of alkaline protease (AprE), which has great industrial application value. However, how to regulate the production of AprE in the process of industrial fermentation is still not completely clear. Therefore, it is important to understand the metabolic process of AprE production in the industrial fermentation medium. METHODS AND RESULTS In this study, transcriptome sequencing of the whole fermentation course was performed to explore the synthesis and regulation mechanism of AprE in B. licheniformis AQ. During the fermentation process, the AprE got continuously accumulated, reaching a peak of 42 020 U/mL at the fermentation endpoint (48 h). Meanwhile, the highly expressed genes were observed. Compared with the fermentation endpoint, there were 61 genes in the intersection of differentially expressed genes, functioning as catabolic processes, peptidases and inhibitors, chaperones, and folding catalysts. Furthermore, the protein-protein interactions network of AprE was constructed. CONCLUSION This study provides important transcriptome information for B. licheniformis AQ and potential molecular targets for further improving the production of AprE.
Collapse
Affiliation(s)
- Anying Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianliang Zheng
- AngelYeast Co., Ltd, Yichang 443003, China
- Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang 443003, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wei Yang
- GeneMind Biosciences Company Limited, Shenzhen 518001, China
| | - Ming Chen
- AngelYeast Co., Ltd, Yichang 443003, China
- Hubei Provincial Key Laboratory of Yeast Function, Yichang 443003, China
- National Key Laboratory of Agricultural Microbiology, Yichang 443003, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongfeng Liu
- GeneMind Biosciences Company Limited, Shenzhen 518001, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Ruan S, Li Y, Lu F, Liu X, Zhou A, Ma H. Low-intensity ultrasound-assisted adaptive laboratory evolution of Bacillus velezensis for enhanced production of peptides. ULTRASONICS SONOCHEMISTRY 2024; 103:106805. [PMID: 38354424 PMCID: PMC10876604 DOI: 10.1016/j.ultsonch.2024.106805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/06/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
This work aimed to explore low-intensity ultrasound-assisted adaptive laboratory evolution (US-ALE) of Bacillus velezensis and fermentation performance of mutant strains were investigated by nitrogen transformation metabolism. Results showed ultrasound accelerated the process of adaptive evolution and enhanced cell dry weight, amylase and protease activity of mutant strains, accompanied with the improved transformation abilities of NO-3-N to NH4+-N. Compared with original strain, the total peptide-N, peptide-N (<3 kDa) and autolytic peptide-N of mutant strains increased by the maximum 23.17%, 66.07% and 30.30%, respectively, based on ideal fermentation medium. According to the actual liquid-state fermentation of soybean meal and corn gluten meal with mutant strains, the highest peptide yields of 50.63% and 23.67% were noticed in mutant strain US-ALE-BV3, accompanied with the improved amino acid composition by bacterial autolysis technology. Thus, this study showed that low-intensity ultrasound could accelerate the process of adaptive evolution and US-ALE will provide more possibilities for modifying fermentation strains.
Collapse
Affiliation(s)
- Siyu Ruan
- College of Tea and Food Science Technology, Jiangsu Polytechnic College of Agriculture and Forestry, 19 Wenchangdong Road, Jurong, Jiangsu 212400, PR China
| | - Yunliang Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Feng Lu
- Medical Enzyme Engineering Center, CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, PR China
| | - Xiaoshuang Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anqi Zhou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
6
|
Andreas MP, Giessen TW. Cyclodipeptide oxidase is an enzyme filament. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559410. [PMID: 37808672 PMCID: PMC10557607 DOI: 10.1101/2023.09.25.559410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Modified cyclic dipeptides represent a widespread class of secondary metabolites with diverse pharmacological activities, including antibacterial, antifungal, and antitumor. Here, we report the structural characterization of the Streptomyces noursei enzyme AlbAB, a cyclodipeptide oxidase (CDO) carrying out α,β-dehydrogenations during the biosynthesis of the antibiotic albonoursin. We show that AlbAB is a megadalton heterooligomeric enzyme filament containing covalently bound flavin mononucleotide cofactors. We highlight that AlbAB filaments consist of alternating dimers of AlbA and AlbB and that enzyme activity is crucially dependent on filament formation. We show that AlbA-AlbB interactions are highly conserved suggesting that all CDO-like enzymes are likely enzyme filaments. Our work represents the first structural characterization of a CDO. As CDOs have been employed in the structural diversification of cyclic dipeptides, our results will be useful for future applications of CDOs in biocatalysis and chemoenzymatic synthesis.
Collapse
Affiliation(s)
- Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Sevak P, Pushkar B, Mazumdar S. Mechanistic evaluation of chromium bioremediation in Acinetobacter junii strain b2w: A proteomic approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116978. [PMID: 36521220 DOI: 10.1016/j.jenvman.2022.116978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Growing industrialization and unchecked release of industrial waste, including heavy metals have resulted in disastrous effects on environment. Considering the problem of heavy metal pollution, the present research was designed to study the bioremediation of chromium, a highly toxic and prominent heavy metal pollutant by Acinetobacter junii strain b2w isolated from the Mithi river, Mumbai, India. The bacterial isolate could grow without affecting its growth kinetics up to a concentration of 200 ppm of chromium and showed resistance towards 400 ppm of chromium. It was able to bioremediate 83.06% of total chromium and reduces 98.24% of Cr6+ to C3+ at a concentration of 10 ppm of chromium. The bacterial isolate could grow well at a wide pH range from 5 to 9, salinity of up to 3.5% and could also tolerate heavy metals such as Cd, Zn, As, Hg, Pb and Cu. Thus, indicating its possible on-ground applicability for bioremediation of chromium. Acinetobacter junii bioaccumulate chromium without disrupting the cell integrity and biosorption. However, chromium alters the functional groups on bacterial cell surface and led to decrease in sulfate-containing molecules. Further, the protein expression study has revealed that Cr significantly up-regulates proteins broadly classified under envelope stress responses, oxidative stress responses, energy metabolism and quorum sensing and growth regulator. The possible mechanisms of Cr detoxification in Acinetobacter junii strain b2w could be reduction, bioaccumulation and efflux along with neutralization of oxidative stress generated by Cr. Thus, based on bacterial bioremediation potential and its molecular response, it can be proposed that the isolated Acinetobacter junii has potential applicability for chromium bioremediation.
Collapse
Affiliation(s)
- Pooja Sevak
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai, 400098, Maharashtra, India.
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, 400005, Maharashtra, India
| |
Collapse
|
8
|
Characterization of ampicillin-resistant genes in Vibrio parahaemolyticus. Microb Pathog 2022; 168:105573. [PMID: 35588966 DOI: 10.1016/j.micpath.2022.105573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/29/2022]
Abstract
Vibrio parahaemolyticus is strongly resistant to ampicillin (AMP). In this study, AMP-resistant genes in V. parahaemolyticus ATCC33846 were characterized. Transcriptomic analysis of V. parahaemolyticus exposed to AMP revealed 4608 differentially transcribed genes, including 670 significantly up-regulated genes and 655 significantly down-regulated genes. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, significantly modulated genes in ATCC33846 under AMP stimulation were observed in the following categories: microbial metabolism in diverse environments, metabolic pathways, bacterial secretion system, citrate cycle, biofilm formation, oxidative phosphorylation, ribosome, citrate cycle, pyruvate metabolism, carbon metabolism, nitrogen metabolism, fatty acid metabolism and tryptophan metabolism. The genes VPA0510, VPA0252, VPA0699, VPA0768, VPA0320, VP0636, VPA1096, VPA0947 and VP1775 were significantly up-regulated at the similar level to blaA in V. parahaemolyticus under AMP stimulation, and their overexpression in V. parahaemolyticus could increase its resistance to AMP. These results indicate that AMP has a global influence on V. parahaemolyticus cells. The findings would provide new insights into the resistant mechanism of V. parahaemolyticus to AMP, which would be helpful for developing novel drugs for treating V. parahaemolyticus infection.
Collapse
|
9
|
Yokoyama H, Kamei N, Konishi K, Hara K, Ishikawa Y, Matsui I, Forterre P, Hashimoto H. Structural basis for peptide recognition by archaeal oligopeptide permease A. Proteins 2022; 90:1434-1442. [DOI: 10.1002/prot.26324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences Tokyo University of Science Noda Chiba Japan
| | - Nanami Kamei
- School of Pharmaceutical Sciences University of Shizuoka Suruga‐ku Shizuoka Japan
| | - Keijiro Konishi
- School of Pharmaceutical Sciences University of Shizuoka Suruga‐ku Shizuoka Japan
| | - Kodai Hara
- School of Pharmaceutical Sciences University of Shizuoka Suruga‐ku Shizuoka Japan
| | - Yoshinobu Ishikawa
- School of Pharmaceutical Sciences University of Shizuoka Suruga‐ku Shizuoka Japan
| | - Ikuo Matsui
- Biomedical Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki Japan
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), Microbiology Department CEA, CNRS, Université Paris‐Sud, Université Paris‐Saclay Paris France
| | - Hiroshi Hashimoto
- School of Pharmaceutical Sciences University of Shizuoka Suruga‐ku Shizuoka Japan
| |
Collapse
|
10
|
Ultrasonic modification on fermentation characteristics of Bacillus varieties: Impact on protease activity, peptide content and its correlation coefficient. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Yokoyama H, Kamei N, Konishi K, Hara K, Ishikawa Y, Matsui I, Forterre P, Hashimoto H. Preparation, Crystallization, and X-ray Data Collection of Archaeal Oligopeptide Permease A. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521070221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Romero PE, Calla-Quispe E, Castillo-Vilcahuaman C, Yokoo M, Fuentes-Rivera HL, Ramirez JL, Ampuero A, Ibáñez AJ, Wong P. From the Andes to the desert: 16S rRNA metabarcoding characterization of aquatic bacterial communities in the Rimac river, the main source of water for Lima, Peru. PLoS One 2021; 16:e0250401. [PMID: 33886647 PMCID: PMC8061919 DOI: 10.1371/journal.pone.0250401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
The Rimac river is the main source of water for Lima, Peru's capital megacity. The river is constantly affected by different types of contamination including mine tailings in the Andes and urban sewage in the metropolitan area. In this work, we aim to produce the first characterization of aquatic bacterial communities in the Rimac river using a 16S rRNA metabarcoding approach which would be useful to identify bacterial diversity and potential understudied pathogens. We report a lower diversity in bacterial communities from the Lower Rimac (Metropolitan zone) in comparison to other sub-basins. Samples were generally grouped according to their geographical location. Bacterial classes Alphaproteobacteria, Bacteroidia, Campylobacteria, Fusobacteriia, and Gammaproteobacteria were the most frequent along the river. Arcobacter cryaerophilus (Campylobacteria) was the most frequent species in the Lower Rimac while Flavobacterium succinicans (Bacteroidia) and Hypnocyclicus (Fusobacteriia) were the most predominant in the Upper Rimac. Predicted metabolic functions in the microbiota include bacterial motility and quorum sensing. Additional metabolomic analyses showed the presence of some insecticides and herbicides in the Parac-Upper Rimac and Santa Eulalia-Parac sub-basins. The dominance in the Metropolitan area of Arcobacter cryaerophilus, an emergent pathogen associated with fecal contamination and antibiotic multiresistance, that is not usually reported in traditional microbiological quality assessments, highlights the necessity to apply next-generation sequencing tools to improve pathogen surveillance. We believe that our study will encourage the integration of omics sciences in Peru and its application on current environmental and public health issues.
Collapse
Affiliation(s)
- Pedro E Romero
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Peru, Lima, Peru
| | - Camila Castillo-Vilcahuaman
- Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mateo Yokoo
- Departamento de Ciencias de la Medicina, Facultad de Medicina Humana, Universidad de Piura, Lima, Peru
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Peru, Lima, Peru
| | - Jorge L Ramirez
- Departamento de Biología Celular y Genética, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - André Ampuero
- Departamento de Malacología y Carcinología, Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Alfredo J Ibáñez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Peru, Lima, Peru
| | - Paolo Wong
- Departamento de Ciencias de la Medicina, Facultad de Medicina Humana, Universidad de Piura, Lima, Peru
| |
Collapse
|
13
|
Kumari S, Kumar M, Gaur NA, Prasad R. Multiple roles of ABC transporters in yeast. Fungal Genet Biol 2021; 150:103550. [PMID: 33675986 DOI: 10.1016/j.fgb.2021.103550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/29/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
The ATP binding cassette (ABC) transporters, first discovered as high-affinity nutrient importers in bacteria, rose to prominence when their ability to confer multidrug resistance (MDR) to cancer cells was realized. The most characterized human permeability glycoprotein (P-gp) is a dominant exporter of anti-cancer drugs and its overexpression is directly linked to MDR. The overexpression of drug efflux pumps belonging to the ABC superfamily is also a frequent cause of resistance to antifungals. Fungi has a battery of ABC proteins, but in variable numbers and at different subcellular locations. These proteins perform many critical functions, from serving as gatekeepers for xenobiotic cleansing to translocating various structurally unrelated cargoes, including lipids, fatty acids, ions, peptides, sterols, metabolites and toxins. Their emerging additional roles in cellular physiology and virulence call for attention to analyze and re-examine their divergent functions in yeast. In brief, this review traces the history of ABC transporters in yeast and discusses their typical physiological functions that go beyond their well-known role as antifungal drug efflux pumps.
Collapse
Affiliation(s)
- Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Mohit Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| | - Rajendra Prasad
- Amity Institute of Integrative Science and Health, Amity Institute of Biotechnology, Amity University Gurgaon, 122413 Haryana, India.
| |
Collapse
|
14
|
Kumar R, Register K, Christopher-Hennings J, Moroni P, Gioia G, Garcia-Fernandez N, Nelson J, Jelinski MD, Lysnyansky I, Bayles D, Alt D, Scaria J. Population Genomic Analysis of Mycoplasma bovis Elucidates Geographical Variations and Genes associated with Host-Types. Microorganisms 2020; 8:microorganisms8101561. [PMID: 33050495 PMCID: PMC7650767 DOI: 10.3390/microorganisms8101561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Among more than twenty species belonging to the class Mollecutes, Mycoplasma bovis is the most common cause of bovine mycoplasmosis in North America and Europe. Bovine mycoplasmosis causes significant economic loss in the cattle industry. The number of M. bovis positive herds recently has increased in North America and Europe. Since antibiotic treatment is ineffective and no efficient vaccine is available, M. bovis induced mycoplasmosis is primarily controlled by herd management measures such as the restriction of moving infected animals out of the herds and culling of infected or shedders of M. bovis. To better understand the population structure and genomic factors that may contribute to its transmission, we sequenced 147 M. bovis strains isolated from four different countries viz. USA (n = 121), Canada (n = 22), Israel (n = 3) and Lithuania (n = 1). All except two of the isolates (KRB1 and KRB8) were isolated from two host types i.e., bovine (n = 75) and bison (n = 70). We performed a large-scale comparative analysis of M. bovis genomes by integrating 103 publicly available genomes and our dataset (250 total genomes). Whole genome single nucleotide polymorphism (SNP) based phylogeny using M.agalactiae as an outgroup revealed that M. bovis population structure is composed of five different clades. USA isolates showed a high degree of genomic divergence in comparison to the Australian isolates. Based on host of origin, all the isolates in clade IV was of bovine origin, whereas majority of the isolates in clades III and V was of bison origin. Our comparative genome analysis also revealed that M. bovis has an open pangenome with a large breadth of unexplored diversity of genes. The function based analysis of autogenous vaccine candidates (n = 10) included in this study revealed that their functional diversity does not span the genomic diversity observed in all five clades identified in this study. Our study also found that M. bovis genome harbors a large number of IS elements and their number increases significantly (p = 7.8 × 10−6) as the genome size increases. Collectively, the genome data and the whole genome-based population analysis in this study may help to develop better understanding of M. bovis induced mycoplasmosis in cattle.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar 824234, India
| | - Karen Register
- USDA/ARS/National Animal Disease Center, Ruminant Diseases & Immunology Research Unit, Ames, IA 50010, USA;
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Paolo Moroni
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
- Dipartimento di Medicina Veterinaria, Via dell’Università, Università degli Studi di Milano, 6, 26900 Lodi LO, Italy
| | - Gloria Gioia
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA; (P.M.); (G.G.)
| | - Nuria Garcia-Fernandez
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
| | - Julia Nelson
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
| | - Murray D. Jelinski
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Inna Lysnyansky
- Division of Avian Diseases, Kimron Veterinary Institute, Beit Dagan 50250, Israel;
| | - Darrell Bayles
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - David Alt
- USDA/ARS/National Animal Disease Center, Infectious Bacterial Diseases Research Unit, Ames, IA 50010, USA; (D.B.); (D.A.)
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; (R.K.); (J.C.-H.); (N.G.-F.); (J.N.)
- South Dakota Center for Biologics Research and Commercialization, Brookings, SD 57007, USA
- Correspondence:
| |
Collapse
|
15
|
Ruan S, Luo J, Li Y, Wang Y, Huang S, Lu F, Ma H. Ultrasound-assisted liquid-state fermentation of soybean meal with Bacillus subtilis: Effects on peptides content, ACE inhibitory activity and biomass. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Masulis IS, Sukharycheva NA, Kiselev SS, Andreeva ZS, Ozoline ON. Between computational predictions and high-throughput transcriptional profiling: in depth expression analysis of the OppB trans-membrane subunit of Escherichia coli OppABCDF oligopeptide transporter. Res Microbiol 2020; 171:55-63. [PMID: 31704256 DOI: 10.1016/j.resmic.2019.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/16/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Bacterial oligopeptide transporters encoded by arrays of opp genes are implicated in a wide variety of physiological functions including nutrient acquisition, cell-to-cell communication, host-pathogen interaction. Combining the five opp genes in one oppABCDF operon of Escherichia coli assumes unified principle of their transcriptional regulation, which should provide a comparable amounts of translated products. This, however, contradicts the experimentally detected disproportion in the abundance of periplasmic OppA and the trans-membrane subunits OppB and OppC. As a first step towards understanding differential regulation of intraoperonic genes we examined genomic region proximal to oppB for its competence to initiate RNA synthesis using in silico promoter predictions, data of high-throughput RNA sequencing and targeted transcription assay. A number of transcription start sites (TSSs), whose potency depends on the presence of cationic oligopeptide protamine in cultivation medium, was found at the end of oppA and in the early coding part of oppB. We also show that full-size OppB conjugated with EGFP is produced under the control of its own genomic regulatory region and may be detected in analytical quantities of bacterial cell culture.
Collapse
Affiliation(s)
- Irina S Masulis
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation.
| | - Natalia A Sukharycheva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Sergey S Kiselev
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Zaira Sh Andreeva
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| | - Olga N Ozoline
- Department of Functional Genomics and Cellular Stress, Institute of Cell Biophysics Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation
| |
Collapse
|
17
|
Carvalho TP, Ribeiro NQ, Mol JP, Costa FB, Eckstein C, Paula NF, Paixão TA, Santos RL. Pathogenic potential of Brucella ovis field isolates with different genotypic profile and protection provided by the vaccine strain B. ovis ΔabcBA against B. ovis field isolates in mice. PESQUISA VETERINARIA BRASILEIRA 2020. [DOI: 10.1590/1678-5150-pvb-6481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT: Brucella ovis causes economic and reproductive losses in sheep herds. The goal of this study was to characterize infection with B. ovis field isolates in a murine model, and to evaluate protection induced by the candidate vaccine strain B. ovis ΔabcBA in mice challenged with these field isolates. B. ovis field strains were able to colonize and cause lesions in the liver and spleen of infected mice. After an initial screening, two strains were selected for further characterization (B. ovis 94 AV and B. ovis 266 L). Both strains had in vitro growth kinetics that was similar to that of the reference strain B. ovis ATCC 25840. Vaccination with B. ovis ΔabcBA encapsulated with 1% alginate was protective against the challenge with field strains, with the following protection indexes: 0.751, 1.736, and 2.746, for mice challenged with B. ovis ATCC25840, B. ovis 94 AV, and B. ovis 266 L, respectively. In conclusion, these results demonstrated that B. ovis field strains were capable of infecting and inducing lesions in experimentally infected mice. The attenuated vaccine strain B. ovis ΔabcBA induced protection in mice challenged with different B. ovis field isolates, resulting in higher protection indexes against more pathogenic strains.
Collapse
|
18
|
Molecular Basis of Unexpected Specificity of ABC Transporter-Associated Substrate-Binding Protein DppA from Helicobacter pylori. J Bacteriol 2019; 201:JB.00400-19. [PMID: 31358613 DOI: 10.1128/jb.00400-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.
Collapse
|
19
|
Palud A, Scornec H, Cavin JF, Licandro H. New Genes Involved in Mild Stress Response Identified by Transposon Mutagenesis in Lactobacillus paracasei. Front Microbiol 2018; 9:535. [PMID: 29662477 PMCID: PMC5890138 DOI: 10.3389/fmicb.2018.00535] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/08/2018] [Indexed: 01/13/2023] Open
Abstract
Lactic acid bacteria (LAB) are associated with various plant, animal, and human niches and are also present in many fermented foods and beverages. Thus, they are subjected to several stress conditions and have developed advanced response mechanisms to resist, adapt, and grow. This work aimed to identify the genes involved in some stress adaptation mechanisms in LAB. For this purpose, global reverse genetics was applied by screening a library of 1287 Lactobacillus paracasei transposon mutants for mild monofactorial stresses. This library was submitted independently to heat (52°C, 30 min), ethanol (170 g.L−1, 30 min), salt (NaCl 0.8 M, 24 h), acid (pH 4.5, 24 h), and oxidative (2 mM H2O2, 24 h) perturbations which trigger mild monofactorial stresses compatible with bacterial adaptation. Stress sensitivity of mutants was determined either by evaluating viability using propidium iodide (PI) staining, or by following growth inhibition through turbidity measurement. The screening for heat and ethanol stresses lead respectively to the identification of 63 and 27 genes/putative promoters whose disruption lead to an increased sensitivity. Among them, 14 genes or putative promoters were common for both stresses. For salt, acid and oxidative stresses, respectively 8, 6, and 9 genes or putative promoters were identified as essential for adaptation to these unfavorable conditions, with only three genes common to at least two stresses. Then, RT-qPCR was performed on selected stress response genes identified by mutant screenings in order to evaluate if their expression was modified in response to stresses in the parental strain. Eleven genes (membrane, transposase, chaperone, nucleotide and carbohydrate metabolism, and hypothetical protein genes) were upregulated during stress adaptation for at least two stresses. Seven genes, encoding membrane functions, were upregulated in response to a specific stress and thus could represent potential transcriptomic biomarkers. The results highlights that most of the genes identified by global reverse genetics are specifically required in response to one stress and that they are not differentially transcribed during stress in the parental strain. Most of these genes have not been characterized as stress response genes and provide new insights into the adaptation of lactic acid bacteria to their environment.
Collapse
Affiliation(s)
- Aurore Palud
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Hélène Scornec
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Jean-François Cavin
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Hélène Licandro
- Université de Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| |
Collapse
|
20
|
Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen 2017; 6. [PMID: 28714216 PMCID: PMC5635161 DOI: 10.1002/mbo3.511] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023] Open
Abstract
Vibrio alginolyticus has been associated with several diseases of cultivated marine animals, and has led to considerable economic losses. The oligopeptide permease (Opp) has been proven to play a variety of important roles in nutrition and virulence in several bacteria. In our previous research, the opp gene cluster was identified in Vibrio alginolyticus with transcriptome sequence, which also indicated that the Opp system might play roles in the regulation of adhesion. In this study, the relationship between V. alginolyticus virulence and the opp gene cluster was determined using gene silencing followed by RT‐qPCR, in vitro adhesion assay, growth curves detection in the presence of glutathione (GSH) as a toxic substrate, hemolysis assay, biofilm assay, and artificial infection. Silencing these genes led to deficiencies in adhesion, peptide internalization, biofilm production, hemolytic activity, and virulence. The expression levels of hapr, hapa, tlh, and hlya, which are important genes closely related to the hemolytic activity of Vibrio, were significantly downregulated in all of the RNAi groups. Furthermore, the expression of oppA, oppB, oppC, oppD, and oppF was significantly influenced by temperature, starvation, and pH. These results indicate that (1) oppABCDF contributed in multistep of V. alginolyticus pathogenesis, including adhesion, biofilm production, and hemolytic activity; (2) oppABCDF was sensitive to different temperatures, changes in pH, and increased starvation time.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
21
|
A New Natural Product Analog of Blasticidin S Reveals Cellular Uptake Facilitated by the NorA Multidrug Transporter. Antimicrob Agents Chemother 2017; 61:AAC.02635-16. [PMID: 28373194 DOI: 10.1128/aac.02635-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/29/2017] [Indexed: 01/27/2023] Open
Abstract
The permeation of antibiotics through bacterial membranes to their target site is a crucial determinant of drug activity but in many cases remains poorly understood. During screening efforts to discover new broad-spectrum antibiotic compounds from marine sponge samples, we identified a new analog of the peptidyl nucleoside antibiotic blasticidin S that exhibited up to 16-fold-improved potency against a range of laboratory and clinical bacterial strains which we named P10. Whole-genome sequencing of laboratory-evolved strains of Staphylococcus aureus resistant to blasticidin S and P10, combined with genome-wide assessment of the fitness of barcoded Escherichia coli knockout strains in the presence of the antibiotics, revealed that restriction of cellular access was a key feature in the development of resistance to this class of drug. In particular, the gene encoding the well-characterized multidrug efflux pump NorA was found to be mutated in 69% of all S. aureus isolates resistant to blasticidin S or P10. Unexpectedly, resistance was associated with inactivation of norA, suggesting that the NorA transporter facilitates cellular entry of peptidyl nucleosides in addition to its known role in the efflux of diverse compounds, including fluoroquinolone antibiotics.
Collapse
|
22
|
Lambert B, Dassanayake M, Oh DH, Garrett SB, Lee SY, Pettis GS. A novel phase variant of the cholera pathogen shows stress-adaptive cryptic transcriptomic signatures. BMC Genomics 2016; 17:914. [PMID: 27842489 PMCID: PMC5109742 DOI: 10.1186/s12864-016-3233-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/01/2016] [Indexed: 02/01/2023] Open
Abstract
Background In a process known as phase variation, the marine bacterium and cholera pathogen Vibrio cholerae alternately expresses smooth or rugose colonial phenotypes, the latter being associated with advanced biofilm architecture and greater resistance to ecological stress. To define phase variation at the transcriptomic level in pandemic V. cholerae O1 El Tor strain N16961, we compared the RNA-seq-derived transcriptomes among the smooth parent N16961, its rugose derivative (N16961R) and a smooth form obtained directly from the rugose at high frequencies consistent with phase variation (N16961SD). Results Differentially regulated genes which clustered into co-expression groups were identified for specific cellular functions, including acetate metabolism, gluconeogenesis, and anaerobic respiration, suggesting an important link between these processes and biofilm formation in this species. Principal component analysis separated the transcriptome of N16961SD from the other phase variants. Although N16961SD was defective in biofilm formation, transcription of its biofilm-related vps and rbm gene clusters was nevertheless elevated as judged by both RNA-seq and RT-qPCR analyses. This transcriptome signature was shared with N16961R, as were others involving two-component signal transduction, chemotaxis, and c-di-GMP synthesis functions. Conclusions Precise turnarounds in gene expression did not accompany reversible phase transitions (i.e., smooth to rugose to smooth) in the cholera pathogen. Transcriptomic signatures consisting of up-regulated genes involved in biofilm formation, environmental sensing and persistence, chemotaxis, and signal transduction, which were shared by N16961R and N16961SD variants, may implicate a stress adaptation in the pathogen that facilitates transition of the N16961SD smooth form back to rugosity should environmental conditions dictate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bliss Lambert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Maheshi Dassanayake
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| | - Dong-Ha Oh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Shana B Garrett
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Sang-Yeol Lee
- Division of Applied Life Science, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Gregg S Pettis
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA.
| |
Collapse
|
23
|
Garai P, Chandra K, Chakravortty D. Bacterial peptide transporters: Messengers of nutrition to virulence. Virulence 2016; 8:297-309. [PMID: 27589415 DOI: 10.1080/21505594.2016.1221025] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacteria possess numerous peptide transporters for importing peptides as nutrients. However, these peptide transporters are now consistently reported to play a role in the virulence of various bacterial pathogens. Their ability to transport peptides has implications in antibacterial therapy as well. Therefore, it would be instrumental to have complete knowledge about the role of peptide transporters in mediating this cross connection between metabolism and pathogenesis. Studies on various peptide transporters in bacterial pathogens have improved our understanding of this field. In this review, we have given an overview of the functioning of bacterial peptide transporters and their contribution in virulence of major bacterial pathogens.
Collapse
Affiliation(s)
- Preeti Garai
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Kasturi Chandra
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Dipshikha Chakravortty
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| |
Collapse
|
24
|
Wang Y, Chen L, Zhang W. Proteomic and metabolomic analyses reveal metabolic responses to 3-hydroxypropionic acid synthesized internally in cyanobacterium Synechocystis sp. PCC 6803. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:209. [PMID: 27757169 PMCID: PMC5053081 DOI: 10.1186/s13068-016-0627-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 09/27/2016] [Indexed: 05/21/2023]
Abstract
BACKGROUND 3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. In our previous study, the biosynthetic pathway of 3-HP was constructed and optimized in cyanobacterium Synechocystis sp. PCC 6803, which led to 3-HP production directly from CO2 at a level of 837.18 mg L-1 (348.8 mg/g dry cell weight). As the production and accumulation of 3-HP in cells affect cellular metabolism, a better understanding of cellular responses to 3-HP synthesized internally in Synechocystis will be important for further increasing 3-HP productivity in cyanobacterial chassis. RESULTS Using a engineered 3-HP-producing SM strain, in this study, the cellular responses to 3-HP internally produced were first determined using a quantitative iTRAQ-LC-MS/MS proteomics approach and a LC-MS-based targeted metabolomics. A total of 2264 unique proteins were identified, which represented about 63 % of all predicted protein in Synechocystis in the proteomic analysis; meanwhile intracellular abundance of 24 key metabolites was determined by a comparative metabolomic analysis of the 3-HP-producing strain SM and wild type. Among all identified proteins, 204 proteins were found up-regulated and 123 proteins were found down-regulated, respectively. The proteins related to oxidative phosphorylation, photosynthesis, ribosome, central carbon metabolism, two-component systems and ABC-type transporters were up-regulated, along with the abundance of 14 metabolites related to central metabolism. The results suggested that the supply of ATP and NADPH was increased significantly, and the precursor malonyl-CoA and acetyl-CoA may also be supplemented when 3-HP was produced at a high level in Synechocystis. Confirmation of proteomic and metabolomic results with RT-qPCR and gene-overexpression strains of selected genes was also conducted, and the overexpression of three transporter genes putatively involved in cobalt/nickel, manganese and phosphate transporting (i.e., sll0385, sll1598 and sll0679) could lead to an increased 3-HP production in Synechocystis. CONCLUSIONS The integrative analysis of up-regulated proteome and metabolome data showed that to ensure the high-efficient production of 3-HP and the normal growth of Synechocystis, multiple aspects of cells metabolism including energy, reducing power supply, central carbon metabolism, the stress responses and protein synthesis were enhanced in Synechocystis. The study provides an important basis for further engineering cyanobacteria for high 3-HP production.
Collapse
Affiliation(s)
- Yunpeng Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, People’s Republic of China
| |
Collapse
|
25
|
Garai P, Lahiri A, Ghosh D, Chatterjee J, Chakravortty D. Peptide utilizing carbon starvation gene yjiY is required for flagella mediated infection caused by Salmonella. MICROBIOLOGY-SGM 2015; 162:100-116. [PMID: 26497384 DOI: 10.1099/mic.0.000204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptide metabolism forms an important part of the metabolic network of Salmonella and to acquire these peptides the pathogen possesses a number of peptide transporters. While various peptide transporters known in Salmonella are well studied, very little is known about the carbon starvation (cst) genes, cstA and yjiY, which are also predicted to be involved in peptide metabolism. We investigated the role of these genes in the metabolism and pathogenesis of Salmonella and demonstrated for the first time that cst genes actually participate in transport of specific peptides in Salmonella. Further, we established that the carbon starvation gene yjiY affects the expression of flagella leading to poor adhesion of the bacterium to host cells. In contrast with the previously reported role of the gene cstA in virulence of Salmonella in C. elegans, we showed that yjiY is required for successful colonization of Salmonella in the mouse gut. Thus, cst genes not only contribute to the metabolism of Salmonella but also influence its virulence.
Collapse
Affiliation(s)
- Preeti Garai
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Amit Lahiri
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Dipan Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
26
|
Li B, Wang L, Ibrahim M, Ge M, Wang Y, Mannan S, Asif M, Sun G. Membrane protein profiling of Acidovorax avenae subsp. avenae under various growth conditions. Arch Microbiol 2015; 197:673-82. [PMID: 25763989 DOI: 10.1007/s00203-015-1100-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/01/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
Abstract
Membrane proteins (MPs) of plant pathogenic bacteria have been reported to be able to regulate many essential cellular processes associated with plant disease. The aim of the current study was to examine and compare the expression of MPs of the rice bacterial pathogen Acidovorax avenae subsp. avenae strain RS-1 under Luria-Bertani (LB) medium, M9 medium, in vivo rice plant conditions and leaf extract (LE) medium mimicking in vivo plant condition. Proteomic analysis identified 95, 72, 75, and 87 MPs under LB, in vivo, M9 and LE conditions, respectively. Among them, six proteins were shared under all tested growth conditions designated as abundant class of proteins. Twenty-six and 21 proteins were expressed uniquely under in vivo versus LB medium and LE versus M9 medium, respectively, with 17 proteins common among these uniquely induced proteins. Moreover, most of the shared proteins are mainly related to energy metabolism, transport of small molecules, protein synthesis and secretion as well as virulence such as NADH, OmpA, secretion proteins. Therefore, the result of this study not only suggests that it may be an alternate method to analyze the in vivo expression of proteins by using LE medium to mimic plant conditions, but also reveals that the two sets of differentially expressed MPs, in particular the common MPs between them, might be important in energy metabolism, stress response and virulence of A. avenae subsp. avenae strain RS-1.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li F, Liang J, Wang W, Zhou X, Deng Z, Wang Z. Analysis of Streptomyces coelicolor membrane proteome using two-dimensional native/native and native/sodium dodecyl sulfate gel electrophoresis. Anal Biochem 2014; 465:148-55. [DOI: 10.1016/j.ab.2014.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
|
28
|
Barketi-Klai A, Monot M, Hoys S, Lambert-Bordes S, Kuehne SA, Minton N, Collignon A, Dupuy B, Kansau I. The flagellin FliC of Clostridium difficile is responsible for pleiotropic gene regulation during in vivo infection. PLoS One 2014; 9:e96876. [PMID: 24841151 PMCID: PMC4026244 DOI: 10.1371/journal.pone.0096876] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/12/2014] [Indexed: 01/09/2023] Open
Abstract
Clostridium difficile is the main agent responsible for hospital acquired antibiotic associated diarrhoea. In recent years, epidemic strains have emerged causing more severe infections. Whilst C. difficile has two major virulence factors, toxins TcdA and TcdB, it is generally accepted that other virulence components of the bacterium contribute to disease. Previously, it has been suggested that flagella expression from pathogenic bacteria might be implicated in virulence. In a recent study, we observed an increased mortality in a gnotobiotic mouse model when animals were colonized with an isogenic fliC mutant constructed in the PCR-ribotype 027 (B1/NAP1) strain R20291, while animals survived when colonized by the parental strain or after colonization by other high-toxin-producing C. difficile strains. To understand the reasons for this increased virulence, we compared the global gene expression profiles between the fliC-R20291 mutant and its parental strain using an in vitro and in vivo transcriptomic approach. The latter made use of the gnotobiotic mouse model. Interestingly, in the fliC mutant, we observed considerable up-regulation of genes involved in mobility, membrane transport systems (PTS, ABC transporters), carbon metabolism, known virulence factors and sporulation. A smaller but significant up-regulation of genes involved in cell growth, fermentation, metabolism, stress and antibiotic resistance was also apparent. All of these genes may be associated with the increased virulence of the fliC-R20921 mutant. We confirmed that the fliC mutation is solely responsible for the observed changes in gene expression in the mutant strain since expression profiles were restored to that of the wild-type strain in the fliC-complemented strain. Thus, the absence of FliC is directly or indirectly involved in the high mortality observed in the fliC mutant infected animals. Therefore, we provide the first evidence that when the major structural component of the flagellum is neutralized, deregulation of gene expression can occur during infection.
Collapse
Affiliation(s)
- Amira Barketi-Klai
- Faculté de Pharmacie, EA4043, Université Paris Sud, Châtenay-Malabry, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Sandra Hoys
- Faculté de Pharmacie, EA4043, Université Paris Sud, Châtenay-Malabry, France
| | | | - Sarah A. Kuehne
- Clostridia Research Group, Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel Minton
- Clostridia Research Group, Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Anne Collignon
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Imad Kansau
- Faculté de Pharmacie, EA4043, Université Paris Sud, Châtenay-Malabry, France
- * E-mail:
| |
Collapse
|
29
|
Characterization of the Opp peptide transporter of Corynebacterium pseudotuberculosis and its role in virulence and pathogenicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:489782. [PMID: 24895581 PMCID: PMC4034477 DOI: 10.1155/2014/489782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022]
Abstract
Despite the economic importance of caseous lymphadenitis (CLA), a chronic disease caused by Corynebacterium pseudotuberculosis, few genes related to the virulence of its etiologic agent have been characterized. The oligopeptide permease (Opp) transporters are located in the plasma membrane and have functions generally related to the uptake of peptides from the extracellular environment. These peptide transporters, in addition to having an important role in cell nutrition, also participate in the regulation of various processes involving intercellular signaling, including the control of the expression of virulence genes in pathogenic bacteria. To study the role of Opp in C. pseudotuberculosis, an OppD deficient strain was constructed via simple crossover with a nonreplicative plasmid carrying part of the oppD gene sequence. As occurred to the wild-type, the ΔoppD strain showed impaired growth when exposed to the toxic glutathione peptide (GSH), indicating two possible scenarios: (i) that this component can be internalized by the bacterium through an Opp-independent pathway or (ii) that there is toxicity while the peptide is extracellular. Additionally, the ΔoppD mutant presented a reduced ability to adhere to and infect macrophages compared to the wild-type, although both strains exhibit the same potential to colonize spleens and cause injury and death to infected mice.
Collapse
|
30
|
De S, Groaz E, Herdewijn P. Tailoring Peptide-Nucleotide Conjugates (PNCs) for Nucleotide Delivery in Bacterial Cells. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Yang C, Hou L, Yang Q, Siu CH. ATP-Binding Cassette Transporter B4 Anchors the Cell Adhesion Molecule DdCAD-1 to Cell Membrane in Dictyostelium discoideum. Indian J Microbiol 2013; 53:460-6. [PMID: 24426151 DOI: 10.1007/s12088-013-0393-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/16/2013] [Indexed: 12/13/2022] Open
Abstract
In Dictyostelium, soluble cell adhesion molecule, DdCAD-1, regulates cell-cell interaction through an unknown anchoring protein on the plasma membrane. Far western blot analysis using different probes revealed that the potential DdCAD-1 interacting protein was between 64 and 98 kDa. To isolate and identify the anchoring protein, GST-DdCAD-1 and anchoring protein were cross-linked in vivo by chemical cross-linker and stable protein complex was isolated by co-immunoprecipitation assays. The protein cross-linked to DdCAD-1 was extracted from the gel slice and trypsinized. The peptides were subjected to analysis by mass spectrometry, which showed that the putative anchoring protein belongs to ATP-binding cassette transporter family.
Collapse
Affiliation(s)
- Chunxia Yang
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Liansheng Hou
- School of Life Science, East China Normal University, 200062 Shanghai, China
| | - Qixiu Yang
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| | - Chi-Hung Siu
- Banting and Best Department of Medical Research and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8 Canada
| |
Collapse
|
32
|
Silva EB, Dow SW. Development of Burkholderia mallei and pseudomallei vaccines. Front Cell Infect Microbiol 2013; 3:10. [PMID: 23508691 PMCID: PMC3598006 DOI: 10.3389/fcimb.2013.00010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/20/2013] [Indexed: 12/16/2022] Open
Abstract
Burkholderia mallei and Burkholderia pseudomallei are Gram-negative bacteria that cause glanders and melioidosis, respectively. Inhalational infection with either organism can result in severe and rapidly fatal pneumonia. Inoculation by the oral and cutaneous routes can also produce infection. Chronic infection may develop after recovery from acute infection with both agents, and control of infection with antibiotics requires prolonged treatment. Symptoms for both meliodosis and glanders are non-specific, making diagnosis difficult. B. pseudomallei can be located in the environment, but in the host, B. mallei and B. psedomallei are intracellular organisms, and infection results in similar immune responses to both agents. Effective early innate immune responses are critical to controlling the early phase of the infection. Innate immune signaling molecules such as TLR, NOD, MyD88, and pro-inflammatory cytokines such as IFN-γ and TNF-α play key roles in regulating control of infection. Neutrophils and monocytes are critical cells in the early infection for both microorganisms. Both monocytes and macrophages are necessary for limiting dissemination of B. pseudomallei. In contrast, the role of adaptive immune responses in controlling Burkholderia infection is less well understood. However, T cell responses are critical for vaccine protection from Burkholderia infection. At present, effective vaccines for prevention of glanders or meliodosis have not been developed, although recently development of Burkholderia vaccines has received renewed attention. This review will summarize current and past approaches to develop B. mallei and B. pseudomalllei vaccines, with emphasis on immune mechanisms of protection and the challenges facing the field. At present, immunization with live attenuated bacteria provides the most effective and durable immunity, and it is important therefore to understand the immune correlates of protection induced by live attenuated vaccines. Subunit vaccines have typically provided less robust immunity, but are safer to administer to a wider variety of people, including immune compromised individuals because they do not reactivate or cause disease. The challenges facing B. mallei and B. pseudomalllei vaccine development include identification of broadly protective antigens, design of efficient vaccine delivery and adjuvant systems, and a better understanding of the correlates of protection from both acute and chronic infection.
Collapse
Affiliation(s)
- Ediane B Silva
- Department of Microbiology, Immunology, and Pathology, Regional Center of Excellence in Emerging Diseases and Bioterrorism, Colorado State University Ft. Collins, CO, USA
| | | |
Collapse
|
33
|
Jensen JM, Ismat F, Szakonyi G, Rahman M, Mirza O. Probing the putative active site of YjdL: an unusual proton-coupled oligopeptide transporter from E. coli. PLoS One 2012; 7:e47780. [PMID: 23110099 PMCID: PMC3478282 DOI: 10.1371/journal.pone.0047780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/17/2012] [Indexed: 12/20/2022] Open
Abstract
YjdL from E. coli is an unusual proton-coupled oligopeptide transporter (POT). Unlike prototypical POTs, dipeptides are preferred over tripeptides, in particular dipeptides with a positively charged C-terminal residue. To further understand this difference in peptide specificity, the sequences of YjdL and YdgR, a prototypical E. coli POT, were compared in light of the crystal structure of a POT from Shewanella oneidensis. Several residues found in the putative active site were mutated and the activities of the mutated variants were assessed in terms of substrate uptake assays, and changes in specificity in terms of uptake inhibition. Most strikingly, changing the YjdL specific Asp392 to the conserved Ser in YjdL obliterated the preference for a positively charged C-terminal residue. Based on this unique finding and previously published results indicating that the dipeptide N-terminus may interact with Glu388, a preliminary orientation model of a dipeptide in the YjdL cavity is presented. Single site mutations of particularly Ala281 and Trp278 support the presented orientation. A dipeptide bound in the cavity of YjdL appears to be oriented such that the N-terminal side chain protrudes into a sub pocket that opens towards the extracellular space. The C-terminal side chain faces in the opposite direction into a sub pocket that faces the cytoplasm. These data indicated a stabilizing effect on a bulky N-terminal residue by an Ala281Phe variant and on the dipeptide backbone by Trp278. In the presented orientation model, Tyr25 and Tyr58 both appear to be in proximity of the dipeptide backbone while Lys117 appears to be in proximity of the peptide C-terminus. Mutational studies of these conserved residues highlight their functional importance.
Collapse
Affiliation(s)
- Johanne Mørch Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
34
|
Lewis VG, Ween MP, McDevitt CA. The role of ATP-binding cassette transporters in bacterial pathogenicity. PROTOPLASMA 2012; 249:919-942. [PMID: 22246051 DOI: 10.1007/s00709-011-0360-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
The ATP-binding cassette transporter superfamily is present in all three domains of life. This ubiquitous class of integral membrane proteins have diverse biological functions, but their fundamental role involves the unidirectional translocation of compounds across cellular membranes in an ATP coupled process. The importance of this class of proteins in eukaryotic systems is well established as typified by their association with genetic diseases and roles in the multi-drug resistance of cancer. In stark contrast, the ABC transporters of prokaryotes have not been exhaustively investigated due to the sheer number of different roles and organisms in which they function. In this review, we examine the breadth of functions associated with microbial ABC transporters in the context of their contribution to bacterial pathogenicity and virulence.
Collapse
Affiliation(s)
- Victoria G Lewis
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
35
|
Gao J, Li X, Feng Y, Zhang B, Miao S, Wang L, Wang N. Purification and crystallization of the ABC-type transport substrate-binding protein OppA from Thermoanaerobacter tengcongensis. Biochem Biophys Res Commun 2012; 423:45-9. [PMID: 22627134 DOI: 10.1016/j.bbrc.2012.05.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 05/14/2012] [Indexed: 11/29/2022]
Abstract
Di- and oligopeptide- binding protein OppAs play important roles in solute and nutrient uptake, sporulation, biofilm formation, cell wall muropeptides recycling, peptide-dependent quorum-sensing responses, adherence to host cells, and a variety of other biological processes. Soluble OppA from Thermoanaerobacter tengcongensis was expressed in Escherichia coli. The protein was found to be >95% pure with SDS-PAGE after a series of purification steps and the purity was further verified by mass spectrometry. The protein was crystallized using the sitting-drop vapour-diffusion method with PEG 400 as the precipitant. Crystal diffraction extended to 2.25 Å. The crystal belonged to space group C222(1), with unit-cell parameters of a=69.395, b=199.572, c=131.673 Å, and α=β=γ=90°.
Collapse
Affiliation(s)
- Jinlan Gao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Tsinghua University, Beijing 100005, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
36
|
Transcriptional regulator PerA influences biofilm-associated, platelet binding, and metabolic gene expression in Enterococcus faecalis. PLoS One 2012; 7:e34398. [PMID: 22496800 PMCID: PMC3319582 DOI: 10.1371/journal.pone.0034398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/27/2012] [Indexed: 12/02/2022] Open
Abstract
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections, traits facilitated by the ability to quickly acquire and transfer virulence determinants. A 150 kb pathogenicity island (PAI) comprised of genes contributing to virulence is found in many enterococcal isolates and is known to undergo horizontal transfer. We have shown that the PAI-encoded transcriptional regulator PerA contributes to pathogenicity in the mouse peritonitis infection model. In this study, we used whole-genome microarrays to determine the PerA regulon. The PerA regulon is extensive, as transcriptional analysis showed 151 differentially regulated genes. Our findings reveal that PerA coordinately regulates genes important for metabolism, amino acid degradation, and pathogenicity. Further transcriptional analysis revealed that PerA is influenced by bicarbonate. Additionally, PerA influences the ability of E. faecalis to bind to human platelets. Our results suggest that PerA is a global transcriptional regulator that coordinately regulates genes responsible for enterococcal pathogenicity.
Collapse
|
37
|
Reffuveille F, Leneveu C, Chevalier S, Auffray Y, Rincé A. Lipoproteins of Enterococcus faecalis: bioinformatic identification, expression analysis and relation to virulence. MICROBIOLOGY-SGM 2011; 157:3001-3013. [PMID: 21903750 DOI: 10.1099/mic.0.053314-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Enterococcus faecalis is a ubiquitous bacterium that is capable of surviving in a broad range of natural environments, including the human host, as either a natural commensal or an opportunistic pathogen involved in severe hospital-acquired infections. How such opportunistic pathogens cause fatal infections is largely unknown but it is likely that they are equipped with sophisticated systems to perceive external signals and interact with eukaryotic cells. Accordingly, being partially exposed at the cell exterior, some surface-associated proteins are involved in several steps of the infection process. Among them are lipoproteins, representing about 25 % of the surface-associated proteins, which could play a major role in bacterial virulence processes. This review focuses on the identification of 90 lipoprotein-encoding genes in the genome of the E. faecalis V583 clinical strain and their putative roles, and provides a transcriptional comparison of microarray data performed in environmental conditions including blood and urine. Taken together, these data suggest a potential involvement of lipoproteins in E. faecalis virulence, making them serious candidates for vaccine production.
Collapse
Affiliation(s)
- Fany Reffuveille
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| | - Charlène Leneveu
- Laboratoire de Microbiologie du Froid Signaux et Micro-Environnement (LMDF-SME), UPRES EA4312, Université de Rouen, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid Signaux et Micro-Environnement (LMDF-SME), UPRES EA4312, Université de Rouen, France
| | - Yanick Auffray
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| | - Alain Rincé
- USC INRA 2017, Microbiologie de l'Environnement, EA 956, Université de Caen, France
| |
Collapse
|
38
|
Maqbool A, Levdikov VM, Blagova EV, Hervé M, Horler RSP, Wilkinson AJ, Thomas GH. Compensating stereochemical changes allow murein tripeptide to be accommodated in a conventional peptide-binding protein. J Biol Chem 2011; 286:31512-21. [PMID: 21705338 PMCID: PMC3173086 DOI: 10.1074/jbc.m111.267179] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2-5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, L-Ala-γ-D-Glu-meso-Dap), which contains a D-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (K(D) ∼ 250 nM). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the D-stereochemistry, which projects the side chain of the D-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide.
Collapse
Affiliation(s)
- Abbas Maqbool
- Department of Biology (Area 10), University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
39
|
Coevolution of ABC transporters and two-component regulatory systems as resistance modules against antimicrobial peptides in Firmicutes Bacteria. J Bacteriol 2011; 193:3851-62. [PMID: 21665979 DOI: 10.1128/jb.05175-11] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Firmicutes bacteria, ATP-binding cassette (ABC) transporters have been recognized as important resistance determinants against antimicrobial peptides. Together with neighboring two-component systems (TCSs), which regulate their expression, they form specific detoxification modules. Both the transport permease and sensor kinase components show unusual domain architecture: the permeases contain a large extracellular domain, while the sensor kinases lack an obvious input domain. One of the best-characterized examples is the bacitracin resistance module BceRS-BceAB of Bacillus subtilis. Strikingly, in this system, the ABC transporter and TCS have an absolute mutual requirement for each other in both sensing of and resistance to bacitracin, suggesting a novel mode of signal transduction in which the transporter constitutes the actual sensor. We identified over 250 such BceAB-like ABC transporters in the current databases. They occurred almost exclusively in Firmicutes bacteria, and 80% of the transporters were associated with a BceRS-like TCS. Phylogenetic analyses of the permease and sensor kinase components revealed a tight evolutionary correlation. Our findings suggest a direct regulatory interaction between the ABC transporters and TCSs, mediating communication between both components. Based on their observed coclustering and conservation of response regulator binding sites, we could identify putative corresponding two-component systems for transporters lacking a regulatory system in their immediate neighborhood. Taken together, our results show that these types of ABC transporters and TCSs have coevolved to form self-sufficient detoxification modules against antimicrobial peptides, widely distributed among Firmicutes bacteria.
Collapse
|
40
|
Eitinger T, Rodionov DA, Grote M, Schneider E. Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions. FEMS Microbiol Rev 2011; 35:3-67. [PMID: 20497229 DOI: 10.1111/j.1574-6976.2010.00230.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Thomas Eitinger
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Structural and functional insights into Aeropyrum pernix OppA, a member of a novel archaeal OppA subfamily. J Bacteriol 2010; 193:620-30. [PMID: 21097609 DOI: 10.1128/jb.00899-10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study we gain insight into the structural and functional characterization of the Aeropyrum pernix oligopeptide-binding protein (OppA(Ap)) previously identified from the extracellular medium of an Aeropyrum pernix cell culture at late stationary phase. OppA(Ap) showed an N-terminal Q32 in a pyroglutamate form and C-terminal processing at the level of a threonine-rich region probably involved in protein membrane anchoring. Moreover, the OppA(Ap) protein released into the medium was identified as a "nicked" form composed of two tightly associated fragments detachable only under strong denaturing conditions. The cleavage site E569-G570 seems be located on an exposed surface loop that is highly conserved in several three-dimensional (3D) structures of dipeptide/oligopeptide-binding proteins from different sources. Structural and biochemical properties of the nicked protein were virtually indistinguishable from those of the intact form. Indeed, studies of the entire bacterially expressed OppA(Ap) protein owning the same N and C termini of the nicked form supported these findings. Moreover, in the middle exponential growth phase, OppA(Ap) was found as an intact cell membrane-associated protein. Interestingly, the native exoprotein OppA(Ap) was copurified with a hexapeptide (EKFKIV) showing both lysines methylated and possibly originating from an A. pernix endogenous stress-induced lipoprotein. Therefore, the involvement of OppA(Ap) in the recycling of endogenous proteins was suggested to be a potential physiological function. Finally, a new OppA from Sulfolobus solfataricus, SSO1288, was purified and preliminarily characterized, allowing the identification of a common structural/genetic organization shared by all "true" archaeal OppA proteins of the dipeptide/oligopeptide class.
Collapse
|
42
|
Hammes UZ, Meier S, Dietrich D, Ward JM, Rentsch D. Functional properties of the Arabidopsis peptide transporters AtPTR1 and AtPTR5. J Biol Chem 2010; 285:39710-7. [PMID: 20937801 DOI: 10.1074/jbc.m110.141457] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis di- and tripeptide transporters AtPTR1 and AtPTR5 were expressed in Xenopus laevis oocytes, and their selectivity and kinetic properties were determined by voltage clamping and by radioactive uptake. Dipeptide transport by AtPTR1 and AtPTR5 was found to be electrogenic and dependent on protons but not sodium. In the absence of dipeptides, both transporters showed proton-dependent leak currents that were inhibited by Phe-Ala (AtPTR5) and Phe-Ala, Trp-Ala, and Phe-Phe (AtPTR1). Phe-Ala was shown to reduce leak currents by binding to the substrate-binding site with a high apparent affinity. Inhibition of leak currents was only observed when the aromatic amino acids were present at the N-terminal position. AtPTR1 and AtPTR5 transport activity was voltage-dependent, and currents increased supralinearly with more negative membrane potentials and did not saturate. The voltage dependence of the apparent affinities differed between Ala-Ala, Ala-Lys, and Ala-Asp and was not conserved between the two transporters. The apparent affinity of AtPTR1 for these dipeptides was pH-dependent and decreased with decreasing proton concentration. In contrast to most proton-coupled transporters characterized so far, -I(max) increased at high pH, indicating that regulation of the transporter by pH overrides the importance of protons as co-substrate.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | | | | | | | | |
Collapse
|
43
|
Identification of various substrate-binding proteins of the hyperthermophylic archaeon Aeropyrum pernix K1. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
A highly selective oligopeptide binding protein from the archaeon Sulfolobus solfataricus. J Bacteriol 2010; 192:3123-31. [PMID: 20382765 DOI: 10.1128/jb.01414-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SSO1273 of Sulfolobus solfataricus was identified as a cell surface-bound protein by a proteomics approach. Sequence inspection of the genome revealed that the open reading frame of sso1273 is associated in an operon-like structure with genes encoding all the remaining components of a canonical protein-dependent ATP-binding cassette (ABC) transporter. sso1273 gene expression and SSO1273 protein accumulation on the cell surface were demonstrated to be strongly induced by the addition of a peptide mixture (tryptone) to the culture medium. The native protein was obtained in multimeric form, mostly hexameric, under the purification conditions used, and it was characterized as an oligopeptide binding protein, named S. solfataricus OppA (OppA(Ss)). OppaA(Ss) possesses typical sequence patterns required for glycosylphosphatidylinositol lipid anchoring, resulting in an N-linked glycoprotein with carbohydrate moieties likely composed of high mannose and/or hybrid complex carbohydrates. OppA(Ss) specifically binds oligopeptides and shows a marked selectivity for the amino acid composition of substrates when assayed in complex peptide mixtures. Moreover, a truncated version of OppA(Ss), produced in recombinant form and including the putative binding domain, showed a low but significant oligopeptide binding activity.
Collapse
|
45
|
Oshiro EE, Tavares MB, Suzuki CF, Pimenta DC, Angeli CB, de Oliveira JCF, Ferro MIT, Ferreira LCS, Ferreira RCC. Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species. Genet Mol Biol 2010; 33:341-7. [PMID: 21637492 PMCID: PMC3036861 DOI: 10.1590/s1415-47572010005000049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/09/2009] [Indexed: 11/21/2022] Open
Abstract
In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.
Collapse
Affiliation(s)
- Elisa E Oshiro
- Departamento de Microbiologia, Universidade de São Paulo, São Paulo, SP Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Brucellosis is a prevalent zoonotic disease and is endemic in the Middle East, South America, and other areas of the world. In this study, complete inventories of putative functional ABC systems of five Brucella species have been compiled and compared. ABC systems of Brucella melitensis 16M, Brucella abortus 9-941, Brucella canis RM6/66, Brucella suis 1330, and Brucella ovis 63/290 were identified and aligned. High numbers of ABC systems, particularly nutrient importers, were found in all Brucella species. However, differences in the total numbers of ABC systems were identified (B. melitensis, 79; B. suis, 72; B. abortus 64; B. canis, 74; B. ovis, 59) as well as specific differences in the functional ABC systems of the Brucella species. Since B. ovis is not known to cause human brucellosis, functional ABC systems absent in the B. ovis genome may represent virulence factors in human brucellosis.
Collapse
|
47
|
Casagrande F, Harder D, Schenk A, Meury M, Ucurum Z, Engel A, Weitz D, Daniel H, Fotiadis D. Projection structure of DtpD (YbgH), a prokaryotic member of the peptide transporter family. J Mol Biol 2009; 394:708-17. [PMID: 19782088 DOI: 10.1016/j.jmb.2009.09.048] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/09/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Cellular uptake of di- and tripeptides has been characterized in numerous organisms, and various transporters have been identified. In contrast, structural information on peptide transporters is very sparse. Here, we have cloned, overexpressed, purified, and biochemically characterized DtpD (YbgH) from Escherichia coli, a prokaryotic member of the peptide transporter family. Its homologues in mammals, PEPT1 (SLC15A1) and PEPT2 (SLC15A2), not only transport peptides but also are of relevance for uptake of drugs as they accept a large spectrum of peptidomimetics such as beta-lactam antibiotics, antivirals, peptidase inhibitors, and others as substrates. Uptake experiments indicated that DtpD functions as a canonical peptide transporter and is, therefore, a valid model for structural studies of this family of proteins. Blue native polyacrylamide gel electrophoresis, gel filtration, and transmission electron microscopy of single-DtpD particles suggest that the transporter exists in a monomeric form when solubilized in detergent. Two-dimensional crystallization of DtpD yielded first tubular crystals that allowed the determination of a projection structure at better than 19 A resolution. This structure of DtpD represents the first structural view of a member of the peptide transporter family.
Collapse
Affiliation(s)
- Fabio Casagrande
- Department of Chemistry and Biochemistry, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
The Repertoire and Evolution of ATP-Binding Cassette Systems in Synechococcus and Prochlorococcus. J Mol Evol 2009; 69:300-10. [PMID: 19756840 DOI: 10.1007/s00239-009-9259-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 06/14/2009] [Accepted: 06/16/2009] [Indexed: 12/17/2022]
|
49
|
Nogales J, Muñoz S, Olivares J, Sanjuán J. Genetic characterization of oligopeptide uptake systems in Sinorhizobium meliloti. FEMS Microbiol Lett 2009; 293:177-87. [PMID: 19522956 DOI: 10.1111/j.1574-6968.2009.01527.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genetic characterization of three ABC transport systems involved in oligopeptide uptake by Sinorhizobium meliloti is reported. Oligopeptide permease (Opp) encoded by the pSymB oppABCD operon, is required for uptake of tetrapeptides and certain tripeptides like 3Ala and bialaphos. The chromosomally encoded dipeptide permease (Dpp1), also able to import the toxic tripeptide bialaphos, is required for utilization of dipeptides and tripeptides like 3Gly and GlyGlyAla, with minor importance for utilization of 3Ala and tetrapeptides. The ttp (tri and tetrapeptide uptake) operon, encodes a third ABC system (Ttp) unable of transporting bialaphos and with minor role in the utilization of tetrapeptides and tripeptides like 3-Ala. Despite the overlapping substrate specificities of these ABC transporters, the corresponding gene operons displayed distinct expression profiles: dpp1 showed high constitutive expression levels under all conditions tested, in contrast to the low expression levels of ttp, whereas opp was maximally expressed upon entry into stationary phase. Nevertheless, complex interactions among the three systems at the transcriptional level were observed: opp was negatively autoregulated via OppA and positively regulated via DppA1, whereas dpp1 seems negatively autoregulated via DppA1. The expression of both opp and dppl was reduced in Ttp mutants. The ABC transport systems characterized in this work are not essential for the establishment of nitrogen-fixing symbiosis with alfalfa.
Collapse
Affiliation(s)
- Joaquina Nogales
- Dpto. Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | | | |
Collapse
|
50
|
Harder D, Stolz J, Casagrande F, Obrdlik P, Weitz D, Fotiadis D, Daniel H. DtpB (YhiP) and DtpA (TppB, YdgR) are prototypical proton-dependent peptide transporters of Escherichia coli. FEBS J 2008; 275:3290-8. [PMID: 18485005 DOI: 10.1111/j.1742-4658.2008.06477.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genome of Escherichia coli contains four genes assigned to the peptide transporter (PTR) family. Of these, only tppB (ydgR) has been characterized, and named tripeptide permease, whereas protein functions encoded by the yhiP, ybgH and yjdL genes have remained unknown. Here we describe the overexpression of yhiP as a His-tagged fusion protein in E. coli and show saturable transport of glycyl-sarcosine (Gly-Sar) with an apparent affinity constant of 6.5 mm. Overexpression of the gene also increased the susceptibility of cells to the toxic dipeptide alafosfalin. Transport was strongly decreased in the presence of a protonophore but unaffected by sodium depletion, suggesting H(+)-dependence. This was confirmed by purification of YhiP and TppB by nickel affinity chromatography and reconstitution into liposomes. Both transporters showed Gly-Sar influx in the presence of an artificial proton gradient and generated transport currents on a chip-based sensor. Competition experiments established that YhiP transported dipeptides and tripeptides. Western blot analysis revealed an apparent mass of YhiP of 40 kDa. Taken together, these findings show that yhiP encodes a protein that mediates proton-dependent electrogenic transport of dipeptides and tripeptides with similarities to mammalian PEPT1. On the basis of our results, we propose to rename YhiP as DtpB (dipeptide and tripeptide permease B), by analogy with the nomenclature in other bacteria. We also propose to rename TppB as DtpA, to better describe its function as the first protein of the PTR family characterized in E. coli.
Collapse
Affiliation(s)
- Daniel Harder
- Molecular Nutrition Unit, Technical University of Munich, Freising, Germany
| | | | | | | | | | | | | |
Collapse
|