1
|
Fu J, Nakata Y, Itoh H, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Molecular Editing Enhances Oxidation Resistance of Menaquinone-Targeting Antibiotics Lysocin E and WAP-8294A2. Chemistry 2023; 29:e202301224. [PMID: 37328428 DOI: 10.1002/chem.202301224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Lysocin E (1 a) and WAP-8294A2 (2 a) are peptidic natural products with 37- and 40-membered macrocycles, respectively. Compounds 1 a and 2 a have potent antibacterial activities against Gram-positive bacteria and share a unique mode of action. The electron-rich indole ring of d-Trp-10 of 1 a and 2 a interacts with the electron-deficient benzoquinone ring of menaquinone, which is a co-enzyme in the bacterial respiratory chain. Formation of the electron-donor-acceptor complex causes membrane disruption, leading to cell death. Despite the promising activities of 1 a and 2 a, the susceptibility of Trp-10 to oxidative degradation potentially deters the development of these compounds as antibacterial drugs. To address this issue, we replaced the indole ring with more oxidation-resistant aromatics having a similar shape and electron-rich character. Specifically, analogues with benzofuran (1 b/2 b), benzothiophene (1 c/2 c), and 1-naphthalene (1 d/2 d) rings were designed, and chemically prepared by full solid-phase total syntheses. Antibacterial assays of the six analogues revealed similar activities of 1 d/2 d and markedly reduced activities of 1 b/2 b and 1 c/2 c compared with 1 a/2 a. Equipotent 1 d and 2 d both showed high resistance to oxidation by peroxyl radicals. Hence, the present study demonstrates a new molecular editing strategy for conferring oxidation stability on natural products with pharmacologically useful functions.
Collapse
Affiliation(s)
- Junhao Fu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yosuke Nakata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Suresh Panthee
- GenEndeavor LLC, 26219 Eden Landing Rd, Hayward, CA, 94545, USA
- Faculty of Pharma-Science, Teikyo University, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Hiroshi Hamamoto
- Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata, Yamagata, 990-9585, Japan
| | - Kazuhisa Sekimizu
- Faculty of Pharma-Science, Teikyo University, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
2
|
Díaz Calvo T, Tejera N, McNamara I, Langridge GC, Wain J, Poolman M, Singh D. Genome-Scale Metabolic Modelling Approach to Understand the Metabolism of the Opportunistic Human Pathogen Staphylococcus epidermidis RP62A. Metabolites 2022; 12:metabo12020136. [PMID: 35208211 PMCID: PMC8874387 DOI: 10.3390/metabo12020136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus epidermidis is a common commensal of collagen-rich regions of the body, such as the skin, but also represents a threat to patients with medical implants (joints and heart), and to preterm babies. Far less studied than Staphylococcus aureus, the mechanisms behind this increasingly recognised pathogenicity are yet to be fully understood. Improving our knowledge of the metabolic processes that allow S. epidermidis to colonise different body sites is key to defining its pathogenic potential. Thus, we have constructed a fully curated, genome-scale metabolic model for S. epidermidis RP62A, and investigated its metabolic properties with a focus on substrate auxotrophies and its utilisation for energy and biomass production. Our results show that, although glucose is available in the medium, only a small portion of it enters the glycolytic pathways, whils most is utilised for the production of biofilm, storage and the structural components of biomass. Amino acids, proline, valine, alanine, glutamate and arginine, are preferred sources of energy and biomass production. In contrast to previous studies, we have shown that this strain has no real substrate auxotrophies, although removal of proline from the media has the highest impact on the model and the experimental growth characteristics. Further study is needed to determine the significance of proline, an abundant amino acid in collagen, in S. epidermidis colonisation.
Collapse
Affiliation(s)
- Teresa Díaz Calvo
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK;
| | - Noemi Tejera
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - Iain McNamara
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
- Department of Orthopaedics and Trauma, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich NR4 7UY, UK
| | - Gemma C. Langridge
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
| | - John Wain
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK;
| | - Mark Poolman
- Cell System Modelling Group, Oxford Brookes University, Oxford OX3 OBP, UK;
| | - Dipali Singh
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK; (N.T.); (G.C.L.); (J.W.)
- Correspondence:
| |
Collapse
|
3
|
McGill SL, Yung Y, Hunt KA, Henson MA, Hanley L, Carlson RP. Pseudomonas aeruginosa reverse diauxie is a multidimensional, optimized, resource utilization strategy. Sci Rep 2021; 11:1457. [PMID: 33446818 PMCID: PMC7809481 DOI: 10.1038/s41598-020-80522-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is a globally-distributed bacterium often found in medical infections. The opportunistic pathogen uses a different, carbon catabolite repression (CCR) strategy than many, model microorganisms. It does not utilize a classic diauxie phenotype, nor does it follow common systems biology assumptions including preferential consumption of glucose with an 'overflow' metabolism. Despite these contradictions, P. aeruginosa is competitive in many, disparate environments underscoring knowledge gaps in microbial ecology and systems biology. Physiological, omics, and in silico analyses were used to quantify the P. aeruginosa CCR strategy known as 'reverse diauxie'. An ecological basis of reverse diauxie was identified using a genome-scale, metabolic model interrogated with in vitro omics data. Reverse diauxie preference for lower energy, nonfermentable carbon sources, such as acetate or succinate over glucose, was predicted using a multidimensional strategy which minimized resource investment into central metabolism while completely oxidizing substrates. Application of a common, in silico optimization criterion, which maximizes growth rate, did not predict the reverse diauxie phenotypes. This study quantifies P. aeruginosa metabolic strategies foundational to its wide distribution and virulence including its potentially, mutualistic interactions with microorganisms found commonly in the environment and in medical infections.
Collapse
Affiliation(s)
- S Lee McGill
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Yeni Yung
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Kristopher A Hunt
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Michael A Henson
- Department of Chemical Engineering, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ross P Carlson
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
4
|
Development of a high-throughput strategy for discovery of potent analogues of antibiotic lysocin E. Nat Commun 2019; 10:2992. [PMID: 31278250 PMCID: PMC6611794 DOI: 10.1038/s41467-019-10754-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Lysocin E, a 37-membered natural depsipeptide, induces rapid bacteriolysis in methicillin-resistant Staphylococcus aureus via a unique menaquinone-dependent mechanism, presenting a promising therapeutic lead. Despite the great medical importance, exploring the potential utility of its derivatives as new platform structures for antibiotic development has remained a significant challenge. Here, we report a high-throughput strategy that enabled the preparation of thousands of analogues of lysocin E and large-scale structure-activity relationship analyses. We integrate 26-step total synthesis of 2401 cyclic peptides, tandem mass spectrometry-sequencing, and two microscale activity assays to identify 23 candidate compounds. Re-synthesis of these candidates shows that 11 of them (A1-A11) exhibit antimicrobial activity superior or comparable to that of lysocin E, and that lysocin E and A1-A11 share L-Leu-6 and L-Ile-11. Therefore, the present strategy allows us to efficiently decipher biologically crucial residues and identify potentially useful agents for the treatment of infectious diseases.
Collapse
|
5
|
Itoh H, Inoue M. Comprehensive Structure–Activity Relationship Studies of Macrocyclic Natural Products Enabled by Their Total Syntheses. Chem Rev 2019; 119:10002-10031. [DOI: 10.1021/acs.chemrev.9b00063] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Zeden MS, Schuster CF, Bowman L, Zhong Q, Williams HD, Gründling A. Cyclic di-adenosine monophosphate (c-di-AMP) is required for osmotic regulation in Staphylococcus aureus but dispensable for viability in anaerobic conditions. J Biol Chem 2018; 293:3180-3200. [PMID: 29326168 PMCID: PMC5836111 DOI: 10.1074/jbc.m117.818716] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/03/2018] [Indexed: 01/15/2023] Open
Abstract
Cyclic di-adenosine monophosphate (c-di-AMP) is a recently discovered signaling molecule important for the survival of Firmicutes, a large bacterial group that includes notable pathogens such as Staphylococcus aureus However, the exact role of this molecule has not been identified. dacA, the S. aureus gene encoding the diadenylate cyclase enzyme required for c-di-AMP production, cannot be deleted when bacterial cells are grown in rich medium, indicating that c-di-AMP is required for growth in this condition. Here, we report that an S. aureus dacA mutant can be generated in chemically defined medium. Consistent with previous findings, this mutant had a severe growth defect when cultured in rich medium. Using this growth defect in rich medium, we selected for suppressor strains with improved growth to identify c-di-AMP-requiring pathways. Mutations bypassing the essentiality of dacA were identified in alsT and opuD, encoding a predicted amino acid and osmolyte transporter, the latter of which we show here to be the main glycine betaine-uptake system in S. aureus. Inactivation of these transporters likely prevents the excessive osmolyte and amino acid accumulation in the cell, providing further evidence for a key role of c-di-AMP in osmotic regulation. Suppressor mutations were also obtained in hepS, hemB, ctaA, and qoxB, coding proteins required for respiration. Furthermore, we show that dacA is dispensable for growth in anaerobic conditions. Together, these findings reveal an essential role for the c-di-AMP signaling network in aerobic, but not anaerobic, respiration in S. aureus.
Collapse
Affiliation(s)
- Merve S Zeden
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Christopher F Schuster
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Lisa Bowman
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Qiyun Zhong
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| | - Huw D Williams
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Angelika Gründling
- From the Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection and
| |
Collapse
|
7
|
Itoh H, Tokumoto K, Kaji T, Paudel A, Panthee S, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Mode of Action of WAP-8294A2: A Menaquinone-Targeting Antibiotic. J Org Chem 2017; 83:6924-6935. [PMID: 29019678 DOI: 10.1021/acs.joc.7b02318] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
WAP-8294A2 (lotilibcin, 1) is a potent antibiotic with superior in vivo efficacy to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Despite the great medical importance, its molecular mode of action remains unknown. Here we report the total synthesis of complex macrocyclic peptide 1 comprised of 12 amino acids with a β-hydroxy fatty-acid chain, and its deoxy analogue 2. A full solid-phase synthesis of 1 and 2 enabled their rapid assembly and the first detailed investigation of their functions. Compounds 1 and 2 were equipotent against various strains of Gram-positive bacteria including MRSA. We present evidence that the antimicrobial activities of 1 and 2 are due to lysis of the bacterial membrane, and their membrane-disrupting effects depend on the presence of menaquinone, an essential factor for the bacterial respiratory chain. The established synthetic routes and the menaquinone-targeting mechanisms provide valuable information for designing and developing new antibiotics based on their structures.
Collapse
Affiliation(s)
- Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Kotaro Tokumoto
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Takuya Kaji
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Atmika Paudel
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Suresh Panthee
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Hiroshi Hamamoto
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Kazuhisa Sekimizu
- Teikyo University Institute of Medical Mycology , 359 Otsuka , Hachioji , Tokyo 192-0395 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
8
|
Kaji T, Murai M, Itoh H, Yasukawa J, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Functional Evaluation of Fourteen Derivatives of Lysocin E: Importance of Cationic, Hydrophobic, and Aromatic Moieties for Antibacterial Activity. Chemistry 2016; 22:16912-16919. [PMID: 27739191 DOI: 10.1002/chem.201604022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Indexed: 12/22/2022]
Abstract
Lysocin E (1) is a structurally complex 37-membered depsipeptide comprising 12 amino-acid residues with an N-methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure-activity relationship (SAR) study by systematically changing the side-chain structures of l-Thr-1, d-Arg-2, N-Me-d-Phe-5, d-Arg-7, l-Glu-8, and d-Trp-10. First, we achieved total synthesis of the 14 new side-chain analogues of 1 by employing a solid-phase strategy. We then evaluated the MK-dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d-Arg-2/7 to a neutral amide, and the C7-acyl group of l-Thr-1 to the C2 or C11 counterpart decreased the antimicrobial activities four- or eight-fold. More drastically, chemical mutation of d-Trp-10 to d-Ala-10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side-chain functionalities.
Collapse
Affiliation(s)
- Takuya Kaji
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motoki Murai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jyunichiro Yasukawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kohdo, Kyotanabe, Kyoto, 610-0395, Japan
| | - Hiroshi Hamamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Kazuhisa Sekimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Teikyo University Institute of Medical Mycology, 359 Otsuka, Hachioji, Tokyo, 192-0395, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Abstract
Staphylococcus aureus is the leading cause of skin and soft tissue infections, bacteremia, osteomyelitis, and endocarditis in the developed world. The ability of S. aureus to cause substantial disease in distinct host environments is supported by a flexible metabolism that allows this pathogen to overcome challenges unique to each host organ. One feature of staphylococcal metabolic flexibility is a branched aerobic respiratory chain composed of multiple terminal oxidases. Whereas previous biochemical and spectroscopic studies reported the presence of three different respiratory oxygen reductases (o type, bd type, and aa3 type), the genome contains genes encoding only two respiratory oxygen reductases, cydAB and qoxABCD. Previous investigation showed that cydAB and qoxABCD are required to colonize specific host organs, the murine heart and liver, respectively. This work seeks to clarify the relationship between the genetic studies showing the unique roles of the cydAB and qoxABCD in virulence and the respiratory reductases reported in the literature. We establish that QoxABCD is an aa3-type menaquinol oxidase but that this enzyme is promiscuous in that it can assemble as a bo3-type menaquinol oxidase. However, the bo3 form of QoxABCD restricts the carbon sources that can support the growth of S. aureus. In addition, QoxABCD function is supported by a previously uncharacterized protein, which we have named CtaM, that is conserved in aerobically respiring Firmicutes. In total, these studies establish the heme A biosynthesis pathway in S. aureus, determine that QoxABCD is a type aa3 menaquinol oxidase, and reveal CtaM as a new protein required for type aa3 menaquinol oxidase function in multiple bacterial genera. Staphylococcus aureus relies upon the function of two terminal oxidases, CydAB and QoxABCD, to aerobically respire and colonize distinct host tissues. Previous biochemical studies support the conclusion that a third terminal oxidase is also present. We establish the components of the S. aureus electron transport chain by determining the heme cofactors that interact with QoxABCD. This insight explains previous observations by revealing that QoxABCD can utilize different heme cofactors and confirms that the electron transport chain of S. aureus is comprised of two terminal menaquinol oxidases. In addition, a newly identified protein, CtaM, is found to be required for the function of QoxABCD. These results provide a more complete assessment of the molecular mechanisms that support staphylococcal respiration.
Collapse
|
10
|
Tynecka Z, Malm A, Goś-Szcześniak Z. Cd(2+) extrusion by P-type Cd(2+)-ATPase of Staphylococcus aureus 17810R via energy-dependent Cd(2+)/H(+) exchange mechanism. Biometals 2016; 29:651-63. [PMID: 27323956 PMCID: PMC4972856 DOI: 10.1007/s10534-016-9941-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/12/2016] [Indexed: 11/25/2022]
Abstract
Cd2+ is highly toxic to Staphylococcus aureus since it blocks dithiols in cytoplasmic 2-oxoglutarate dehydrogenase complex (ODHC) participating in energy conservation process. However, S. aureus 17810R is Cd2+-resistant due to possession of cadA-coded Cd2+ efflux system, recognized here as P-type Cd2+-ATPase. This Cd2+ pump utilizing cellular energy—ATP, ∆μH+ (electrochemical proton potential) and respiratory protons, extrudes Cd2+ from cytoplasm to protect dithiols in ODHC, but the mechanism of Cd2+ extrusion remains unknown. Here we propose that two Cd2+ taken up by strain 17810R via Mn2+ uniporter down membrane potential (∆ψ) generated during glutamate oxidation in 100 mM phosphate buffer (high PiB) are trapped probably by high affinity sites in cytoplasmic domain of Cd2+-ATPase, forming SCdS. This stops Cd2+ transport towards dithiols in ODHC, allowing undisturbed NADH production, its oxidation and energy conservation, while ATP could change orientation of SCdS towards facing transmembrane channel. Now, increased number of Pi-dependent protons pumped electrogenically via respiratory chain and countertransported through the channel down ∆ψ, extrude two trapped cytoplasmic Cd2+, which move to low affinity sites, being then extruded into extracellular space via ∆ψ-dependent Cd2+/H+ exchange. In 1 mM phosphate buffer (low PiB), external Cd2+ competing with decreased number of Pi-dependent protons, binds to ψs of Cd2+-ATPase channel, enters cytoplasm through the channel down ∆ψ via Cd2+/Cd2+ exchange and blocks dithiols in ODHC. However, Mg2+ pretreatment preventing external Cd2+ countertransport through the channel down ∆ψ, allowed undisturbed NADH production, its oxidation and extrusion of two cytoplasmic Cd2+ via Cd2+/H+ exchange, despite low PiB.
Collapse
Affiliation(s)
- Zofia Tynecka
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University, Chodźki 1, 20-093, Lublin, Poland.
| | - Anna Malm
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University, Chodźki 1, 20-093, Lublin, Poland
| | - Zofia Goś-Szcześniak
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Medical University, Chodźki 1, 20-093, Lublin, Poland
| |
Collapse
|
11
|
Day M. Yeast petites and small colony variants: for everything there is a season. ADVANCES IN APPLIED MICROBIOLOGY 2016; 85:1-41. [PMID: 23942147 DOI: 10.1016/b978-0-12-407672-3.00001-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The yeast petite mutant was first found in the yeast Saccharomyces cerevisiae. The colony is small because of a block in the aerobic respiratory chain pathway, which generates ATP. The petite yeasts are thus unable to grow on nonfermentable carbon sources (such as glycerol or ethanol), and form small anaerobic-sized colonies when grown in the presence of fermentable carbon sources (such as glucose). The petite phenotype results from mutations in the mitochondrial genome, loss of mitochondria, or mutations in the host cell genome. The latter mutations affect nuclear-encoded genes involved in oxidative phosphorylation and these mutants are termed neutral petites. They all produce wild-type progeny when crossed with a wild-type strain. The staphylococcal small colony variant (SCV) is a slow-growing mutant that typically exhibits the loss of many phenotypic characteristics and pathogenic traits. SCVs are mostly small, nonpigmented, and nonhaemolytic. Their small size is often due to an inability to synthesize electron transport chain components and so cannot generate ATP by oxidative phosphorylation. Evidence suggests that they are responsible for persistent and/or recurrent infections. This chapter compares the physiological and genetic basis of the petite mutants and SCVs. The review focuses principally on two representatives, the eukaryote S. cerevisiae and the prokaryote Staphylococcus aureus. There is, clearly, commonality in the physiological response. Interestingly, the similarity, based on their physiological states, has not been commented on previously. The finding of an overlapping physiological response that occurs across a taxonomic divide is novel.
Collapse
Affiliation(s)
- Martin Day
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
12
|
Murai M, Kaji T, Kuranaga T, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Evaluation of the Antibiotic Lysocin E and Its Enantiomeric, Epimeric, and N-Demethylated Analogues. Angew Chem Int Ed Engl 2014; 54:1556-60. [DOI: 10.1002/anie.201410270] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 11/11/2022]
|
13
|
Murai M, Kaji T, Kuranaga T, Hamamoto H, Sekimizu K, Inoue M. Total Synthesis and Biological Evaluation of the Antibiotic Lysocin E and Its Enantiomeric, Epimeric, and N-Demethylated Analogues. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201410270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hara T, Matsui H, Shimizu H. Suppression of microbial metabolic pathways inhibits the generation of the human body odor component diacetyl by Staphylococcus spp. PLoS One 2014; 9:e111833. [PMID: 25390046 PMCID: PMC4229079 DOI: 10.1371/journal.pone.0111833] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/30/2014] [Indexed: 11/19/2022] Open
Abstract
Diacetyl (2,3-butanedione) is a key contributor to unpleasant odors emanating from the axillae, feet, and head regions. To investigate the mechanism of diacetyl generation on human skin, resident skin bacteria were tested for the ability to produce diacetyl via metabolism of the main organic acids contained in human sweat. l-Lactate metabolism by Staphylococcus aureus and Staphylococcus epidermidis produced the highest amounts of diacetyl, as measured by high-performance liquid chromatography. Glycyrrhiza glabra root extract (GGR) and α-tocopheryl-l-ascorbate-2-O-phosphate diester potassium salt (EPC-K1), a phosphate diester of α-tocopherol and ascorbic acid, effectively inhibited diacetyl formation without bactericidal effects. Moreover, a metabolic flux analysis revealed that GGR and EPC-K1 suppressed diacetyl formation by inhibiting extracellular bacterial conversion of l-lactate to pyruvate or by altering intracellular metabolic flow into the citrate cycle, respectively, highlighting fundamentally distinct mechanisms by GGR and EPC-K1 to suppress diacetyl formation. These results provide new insight into diacetyl metabolism by human skin bacteria and identify a regulatory mechanism of diacetyl formation that can facilitate the development of effective deodorant agents.
Collapse
Affiliation(s)
- Takeshi Hara
- Technical Development Center, Mandom Corp., Osaka, Japan
- * E-mail:
| | - Hiroshi Matsui
- Technical Development Center, Mandom Corp., Osaka, Japan
| | | |
Collapse
|
15
|
Schurig-Briccio LA, Yano T, Rubin H, Gennis RB. Characterization of the type 2 NADH:menaquinone oxidoreductases from Staphylococcus aureus and the bactericidal action of phenothiazines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:954-63. [PMID: 24709059 DOI: 10.1016/j.bbabio.2014.03.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 02/01/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is currently one of the principal multiple drug resistant bacterial pathogens causing serious infections, many of which are life-threatening. Consequently, new therapeutic targets are required to combat such infections. In the current work, we explore the type 2 Nicotinamide adenine dinucleotide reduced form (NADH) dehydrogenases (NDH-2s) as possible drug targets and look at the effects of phenothiazines, known to inhibit NDH-2 from Mycobacterium tuberculosis. NDH-2s are monotopic membrane proteins that catalyze the transfer of electrons from NADH via flavin adenine dinucleotide (FAD) to the quinone pool. They are required for maintaining the NADH/Nicotinamide adenine dinucleotide (NAD(+)) redox balance and contribute indirectly to the generation of proton motive force. NDH-2s are not present in mammals, but are the only form of respiratory NADH dehydrogenase in several pathogens, including S. aureus. In this work, the two putative ndh genes present in the S. aureus genome were identified, cloned and expressed, and the proteins were purified and characterized. Phenothiazines were shown to inhibit both of the S. aureus NDH-2s with half maximal inhibitory concentration (IC50) values as low as 8μM. However, evaluating the effects of phenothiazines on whole cells of S. aureus was complicated by the fact that they are also acting as uncouplers of oxidative phosphorylation. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- Lici A Schurig-Briccio
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA
| | - Takahiro Yano
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harvey Rubin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B Gennis
- Department of Biochemistry, University of Illinois, 600 S. Mathews Street, Urbana, IL 61801, USA.
| |
Collapse
|
16
|
Both terminal oxidases contribute to fitness and virulence during organ-specific Staphylococcus aureus colonization. mBio 2013; 4:e00976-13. [PMID: 24302255 PMCID: PMC3870253 DOI: 10.1128/mbio.00976-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In their recent article, Hammer et al. (N. D. Hammer, M. L. Reniere, J. E. Cassat, Y. Zhang, A. O. Hirsch, M. Indriati Hood, and E. P. Skaar, mBio 4:e00241-13, 2013) described the dual functions of the two terminal oxidases encoded by cydBA and qoxABCD in Staphylococcus aureus. The aerobic growth of cydB or qoxB single mutant bacteria was barely affected. However, a cydB qoxB double mutant was completely unable to respire and exhibited the small-colony variant phenotype that is typical of menaquinone and heme biosynthesis mutants. The authors found that the two terminal oxidases play a role in pathogenesis. In a systemic mouse infection model, it turned out that in the cydB mutant the bacterial burden was significantly decreased in the heart, kidneys, and liver, while in the qoxB mutant it was decreased only in the liver. These results illustrate that both terminal oxidases contribute to fitness and virulence, representing promising candidates for the development of antimicrobials.
Collapse
|
17
|
Hammer ND, Reniere ML, Cassat JE, Zhang Y, Hirsch AO, Indriati Hood M, Skaar EP. Two heme-dependent terminal oxidases power Staphylococcus aureus organ-specific colonization of the vertebrate host. mBio 2013; 4:e00241-13. [PMID: 23900169 PMCID: PMC3735196 DOI: 10.1128/mbio.00241-13] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/26/2013] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Staphylococcus aureus is a significant cause of infections worldwide and is able to utilize aerobic respiration, anaerobic respiration, or fermentation as the means by which it generates the energy needed for proliferation. Aerobic respiration is supported by heme-dependent terminal oxidases that catalyze the final step of aerobic respiration, the reduction of O2 to H2O. An inability to respire forces bacteria to generate energy via fermentation, resulting in reduced growth. Elucidating the roles of these energy-generating pathways during colonization of the host could uncover attractive therapeutic targets. Consistent with this idea, we report that inhibiting aerobic respiration by inactivating heme biosynthesis significantly impairs the ability of S. aureus to colonize the host. Two heme-dependent terminal oxidases support aerobic respiration of S. aureus, implying that the staphylococcal respiratory chain is branched. Systemic infection with S. aureus mutants limited to a single terminal oxidase results in an organ-specific colonization defect, resulting in reduced bacterial burdens in either the liver or the heart. Finally, inhibition of aerobic respiration can be achieved by exposing S. aureus to noniron heme analogues. These data provide evidence that aerobic respiration plays a major role in S. aureus colonization of the host and that this energy-generating process is a viable therapeutic target. IMPORTANCE Staphylococcus aureus poses a significant threat to public health as antibiotic-resistant isolates of this pathogen continue to emerge. Our understanding of the energy-generating processes that allow S. aureus to proliferate within the host is incomplete. Host-derived heme is the preferred source of nutrient iron during infection; however, S. aureus can synthesize heme de novo and use it to facilitate aerobic respiration. We demonstrate that S. aureus heme biosynthesis powers a branched aerobic respiratory chain composed of two terminal oxidases. The importance of having two terminal oxidases is demonstrated by the finding that each plays an essential role in colonizing distinct organs during systemic infection. Additionally, this process can be targeted by small-molecule heme analogues called noniron protoporphyrins. This study serves to demonstrate that heme biosynthesis supports two terminal oxidases that are required for aerobic respiration and are also essential for S. aureus pathogenesis.
Collapse
Affiliation(s)
- Neal D Hammer
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ferreira MT, Manso AS, Gaspar P, Pinho MG, Neves AR. Effect of oxygen on glucose metabolism: utilization of lactate in Staphylococcus aureus as revealed by in vivo NMR studies. PLoS One 2013; 8:e58277. [PMID: 23472168 PMCID: PMC3589339 DOI: 10.1371/journal.pone.0058277] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/01/2013] [Indexed: 01/25/2023] Open
Abstract
The ability to successfully adapt to changing host conditions is crucial for full virulence of bacterial pathogens. Staphylococcus aureus has to cope with fluctuating oxygen concentrations during the course of infection. Hence, we studied the effect of oxygen on glucose metabolism in non-growing S. aureus COL-S cells by in vivo13C-NMR. Glucose catabolism was probed at different oxygen concentrations in suspensions of cells grown aerobically (direct effects on metabolism) or anaerobically (transcriptional adjustment to oxygen deprivation). In aerobically-grown cells, the rate of glucose consumption diminished progressively with decreasing oxygen concentrations. Additionally, oxygen deprivation resulted in biphasic glucose consumption, with the second phase presenting a higher rate. The fructose-1,6-bisphosphate pool peaked while glucose was still abundant, but the transient maximum varied with the oxygen concentration. As oxygen became limiting mannitol/mannitol-1-phosphate were detected as products of glucose catabolism. Under anoxic conditions, accumulation of mannitol-1-phosphate ceased with the switch to higher glucose consumption rates, which implies the activation of a more efficient means by which NAD+ can be regenerated. The distribution of end-products deriving from glucose catabolism was dramatically affected by oxygen: acetate increased and lactate decreased with the oxygen concentration; ethanol was formed only anaerobically. Moreover, oxygen promoted the energetically favourable conversion of lactate into acetate, which was particularly noticeable under fully oxygenated conditions. Interestingly, under aerobiosis growing S. aureus cells also converted lactate to acetate, used simultaneously glucose and lactate as substrates for growth, and grew considerably well on lactate-medium. We propose that the efficient lactate catabolism may endow S. aureus with a metabolic advantage in its ecological niche.
Collapse
Affiliation(s)
- Maria Teresa Ferreira
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana S. Manso
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paula Gaspar
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Laboratory of Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana Rute Neves
- Laboratory of Lactic Acid Bacteria & in vivo NMR, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
19
|
A metabolomic view of Staphylococcus aureus and its ser/thr kinase and phosphatase deletion mutants: involvement in cell wall biosynthesis. ACTA ACUST UNITED AC 2011; 17:820-30. [PMID: 20797611 DOI: 10.1016/j.chembiol.2010.06.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 06/24/2010] [Accepted: 06/28/2010] [Indexed: 01/23/2023]
Abstract
Little is known about intracellular metabolite pools in pathogens such as Staphylococcus aureus. We have studied a particular metabolome by means of the presented LC-MS method. By investigating the central carbon metabolism which includes most of the energy transfer molecules like nucleotides, sugar mono- and biphosphates, and cofactors, a conclusion about phenotypes and stress answers in microorganisms is possible. Quantitative metabolite levels of S. aureus grown in complex lysogeny broth and in minimal medium were compared in the wild-type S. aureus strain 8325 and the isogenic eukaryotic-like protein serine/threonine kinase (DeltapknB) and phosphatase (Deltastp) deletion mutants. Detection of several remarkable differences, e.g., in nucleotide metabolism and especially cell wall precursor metabolites, indicates a previously unreported importance of serine/threonine kinase/phosphatase on peptidoglycan and wall teichoic acid biosynthesis. These findings may lead to new insights into the regulation of staphylococcal cell wall metabolism.
Collapse
|
20
|
Hong Y, Brown DG. Alteration of bacterial surface electrostatic potential and pH upon adhesion to a solid surface and impacts to cellular bioenergetics. Biotechnol Bioeng 2010; 105:965-72. [PMID: 19953670 DOI: 10.1002/bit.22606] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous study [Hong Y, Brown DG (2009) Appl Environ Microbiol 75(8):2346-2353], the adenosine triphosphate (ATP) level of adhered bacteria was observed to be 2-5 times higher than that of planktonic bacteria. Consequently, the proton motive force (Delta p) of adhered bacteria was approximately 15% greater than that of planktonic bacteria. It was hypothesized that the cell surface pH changes upon adhesion due to the charge-regulated nature of the bacterial cell surface and that this change in surface pH can propagate to the cytoplasmic membrane and alter Delta p. In the current study, we developed and applied a charge regulation model to bacterial adhesion and demonstrated that the charge nature of the adhering surface can have a significant effect on the cell surface pH and ultimately the affect the ATP levels of adhered bacteria. The results indicated that the negatively charged glass surface can result in a two-unit drop in cell surface pH, whereas adhesion to a positively charged amine surface can result in a two-unit rise in pH. The working hypothesis indicates that the negatively charged surface should enhance Delta p and increase cellular ATP, while the positively charged surface should decrease Delta p and decrease ATP, and these results of the hypothesis are directly supported by prior experimental results with both negatively and positively charged surfaces. Overall, these results suggest that the nature of charge on the solid surface can have an impact on the proton motive force and cellular ATP levels.
Collapse
Affiliation(s)
- Yongsuk Hong
- Department of Civil & Environmental Engineering, Lehigh University, 13 East Packer Avenue, Bethlehem, Pennsylvania 18015, USA
| | | |
Collapse
|
21
|
Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol 2010; 192:2385-94. [PMID: 20207757 DOI: 10.1128/jb.01472-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that various tricarboxylic acid (TCA) cycle genes, particularly the succinate dehydrogenase genes (sdhCAB), are upregulated in Staphylococcus aureus biofilms. To better study the role of this enzyme complex, an sdhCAB deletion mutant (Deltasdh) was constructed. Compared to the wild type (wt) the mutant was impaired in planktonic growth under aerobic conditions, excreted acetic acid could not be reused and accumulated continuously, succinate was excreted and found in the culture supernatant, and metabolome analysis with cells grown in chemically defined medium revealed reduced uptake/metabolism of some amino acids from the growth medium. Moreover, the mutant was able to counteract the steadily decreasing extracellular pH by increased urease activity. The addition of fumarate to the growth medium restored the wt phenotype. The mutant showed a small-colony variant (SCV)-like phenotype, a slight increase in resistance to various aminoglycoside antibiotics, and decreased pigmentation. The decreased growth under aerobic conditions is due to the interruption of the TCA cycle (indicated by the accumulation of succinate and acetic acid) with the consequence that many fewer reduction equivalents (NADH and FADH2) can fuel the respiratory chain. The results indicate that the TCA cycle is required for acetate and amino acid catabolism; its upregulation under biofilm conditions is advantageous under such nutrient- and oxygen-limited conditions.
Collapse
|
22
|
Medina LFC, Hertz PF, Stefani V, Henriques JAP, Zanotto-Filho A, Brandelli A. Aminonaphthoquinone induces oxidative stress inStaphylococcus aureus. Biochem Cell Biol 2006; 84:720-7. [PMID: 17167535 DOI: 10.1139/o06-087] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biological activity of 5-amino-8-hydroxy-1,4-naphthoquinone (ANQ) on Staphylococcus aureus was investigated in comparison with the unsubstituted 1,4-naphthoquinone (NQ). Complete inhibition of microbial growth was observed with ANQ and NQ at 50 and 10 µg/mL, respectively. The antibacterial effect of naphthoquinones decreased in the presence of sodium ascorbate, but the superoxide scavenger 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron) was able to protect S. aureus only from the harmful effect of ANQ. Naphthoquinones blocked oxygen uptake and induced cyanide-insensitive oxygen consumption. When combining rotenone or salicylhydroxamic acid with ANQ or NQ, a slight decrease in respiratory activity was observed. Assays in the presence of naphthoquinones induced an increase of lipid peroxidation in S. aureus, as determined by thiobarbituric acid reactive substances. These results showed that 1,4-naphthoquinones effectively act as electron acceptors and induce an increase in reactive oxygen species that are toxic to S. aureus cells.
Collapse
Affiliation(s)
- L F C Medina
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| | | | | | | | | | | |
Collapse
|
23
|
Heinemann M, Kümmel A, Ruinatscha R, Panke S. In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng 2006; 92:850-64. [PMID: 16155945 DOI: 10.1002/bit.20663] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A genome-scale metabolic model of the Gram-positive, facultative anaerobic opportunistic pathogen Staphylococcus aureus N315 was constructed based on current genomic data, literature, and physiological information. The model comprises 774 metabolic processes representing approximately 23% of all protein-coding regions. The model was extensively validated against experimental observations and it correctly predicted main physiological properties of the wild-type strain, such as aerobic and anaerobic respiration and fermentation. Due to the frequent involvement of S. aureus in hospital-acquired bacterial infections combined with its increasing antibiotic resistance, we also investigated the clinically relevant phenotype of small colony variants and found that the model predictions agreed with recent findings of proteome analyses. This indicates that the model is useful in assisting future experiments to elucidate the interrelationship of bacterial metabolism and resistance. To help directing future studies for novel chemotherapeutic targets, we conducted a large-scale in silico gene deletion study that identified 158 essential intracellular reactions. A more detailed analysis showed that the biosynthesis of glycans and lipids is rather rigid with respect to circumventing gene deletions, which should make these areas particularly interesting for antibiotic development. The combination of this stoichiometric model with transcriptomic and proteomic data should allow a new quality in the analysis of clinically relevant organisms and a more rationalized system-level search for novel drug targets.
Collapse
Affiliation(s)
- Matthias Heinemann
- Bioprocess Laboratory, Institute of Process Engineering, ETH Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|