1
|
Gulshan K. Crosstalk Between Cholesterol, ABC Transporters, and PIP2 in Inflammation and Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:353-377. [PMID: 36988888 DOI: 10.1007/978-3-031-21547-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The lowering of plasma low-density lipoprotein cholesterol (LDL-C) is an easily achievable and highly reliable modifiable risk factor for preventing cardiovascular disease (CVD), as validated by the unparalleled success of statins in the last three decades. However, the 2021 American Heart Association (AHA) statistics show a worrying upward trend in CVD deaths, calling into question the widely held belief that statins and available adjuvant therapies can fully resolve the CVD problem. Human biomarker studies have shown that indicators of inflammation, such as human C-reactive protein (hCRP), can serve as a reliable risk predictor for CVD, independent of all traditional risk factors. Oxidized cholesterol mediates chronic inflammation and promotes atherosclerosis, while anti-inflammatory therapies, such as an anti-interleukin-1 beta (anti-IL-1β) antibody, can reduce CVD in humans. Cholesterol removal from artery plaques, via an athero-protective reverse cholesterol transport (RCT) pathway, can dampen inflammation. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a role in RCT by promoting adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1)-mediated cholesterol efflux from arterial macrophages. Cholesterol crystals activate the nod-like receptor family pyrin domain containing 3 (Nlrp3) inflammasome in advanced atherosclerotic plaques, leading to IL-1β release in a PIP2-dependent fashion. PIP2 thus is a central player in CVD pathogenesis, serving as a critical link between cellular cholesterol levels, ATP-binding cassette (ABC) transporters, and inflammasome-induced IL-1β release.
Collapse
Affiliation(s)
- Kailash Gulshan
- College of Sciences and Health Professions, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA.
| |
Collapse
|
2
|
Finding relationships among biological entities. LOGIC AND CRITICAL THINKING IN THE BIOMEDICAL SCIENCES 2020. [PMCID: PMC7499094 DOI: 10.1016/b978-0-12-821364-3.00005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Confusion over the concepts of “relationships” and “similarities” lies at the heart of many battles over the direction and intent of research projects. Here is a short story that demonstrates the difference between the two concepts: You look up at the clouds, and you begin to see the shape of a lion. The cloud has a tail, like a lion’s tale, and a fluffy head, like a lion’s mane. With a little imagination the mouth of the lion seems to roar down from the sky. You have succeeded in finding similarities between the cloud and a lion. If you look at a cloud and you imagine a tea kettle producing a head of steam and you recognize that the physical forces that create a cloud and the physical forces that produced steam from a heated kettle are the same, then you have found a relationship. Most popular classification algorithms operate by grouping together data objects that have similar properties or values. In so doing, they may miss finding the true relationships among objects. Traditionally, relationships among data objects are discovered by an intellectual process. In this chapter, we will discuss the scientific gains that come when we classify biological entities by relationships, not by their similarities.
Collapse
|
3
|
Dergunov AD, Savushkin EV, Dergunova LV, Litvinov DY. Significance of Cholesterol-Binding Motifs in ABCA1, ABCG1, and SR-B1 Structure. J Membr Biol 2018; 252:41-60. [DOI: 10.1007/s00232-018-0056-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
|
4
|
Tao F, Weinstock J, Venners SA, Cheng J, Hsu YH, Zou Y, Pan F, Jiang S, Zha X, Xu X. Associations of the ABCA1 and LPL Gene Polymorphisms With Lipid Levels in a Hyperlipidemic Population. Clin Appl Thromb Hemost 2017; 24:771-779. [PMID: 28891316 DOI: 10.1177/1076029617725601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We conducted a cross-sectional study to investigate the effects of the adenosine triphosphate-binding cassette transporter 1 (ABCA1) I883M and lipoprotein lipase (LPL) HindIII polymorphisms on lipid levels in patients with hyperlipidemia. A total of 533 patients were enrolled. Serum lipid parameters were determined by an automatic biochemistry analyzer. Genotyping of the ABCA1 I883M and LPL HindIII was carried out using the polymerase chain reaction-restriction fragment length polymorphism technique. Multiple linear regression analysis was used to estimate the associations between serum lipid levels and the genetic polymorphisms. The frequency distribution of the ABCA1 I883M and LPL HindIII polymorphisms did not deviate from Hardy-Weinberg equilibrium. The major finding of our regression analysis showed that neither the ABCA1 I883M nor the LPL HindIII polymorphism was associated with baseline serum lipid levels in the total population. However, among patients with elevated alanine aminotransferase (ALT) levels (ALT ≥ 40 U/L), carriers of the M allele of the ABCA1 gene had lower levels of high-density lipoprotein cholesterol (HDL-C) and higher levels of low-density lipoprotein cholesterol (LDL-C) after adjusting for age, sex, smoking status, alcohol consumption, education level, occupation, and work intensity ( P < .05 for both). A test on interaction terms between the ABCA1 I833M polymorphism and ALT on HDL-C and LDL-C levels also remained significant ( P = .001 and P = .014, respectively). Our data suggest that there are significant interactive effects between ABCA1 I883M and ALT levels on HDL-C and LDL-C levels. However, the LPL HindIII polymorphism did not influence lipid levels.
Collapse
Affiliation(s)
- Fang Tao
- 1 School of Life Sciences, Anhui University, Hefei, China
| | - Justin Weinstock
- 2 Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Scott A Venners
- 3 Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jun Cheng
- 1 School of Life Sciences, Anhui University, Hefei, China
| | - Yi-Hsiang Hsu
- 4 Institute for Aging Research, HSL and Harvard Medical School, Boston, MA, USA.,5 Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Yanfeng Zou
- 6 Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Faming Pan
- 6 Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Shanqun Jiang
- 1 School of Life Sciences, Anhui University, Hefei, China.,7 Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Xiangdong Zha
- 1 School of Life Sciences, Anhui University, Hefei, China
| | - Xiping Xu
- 8 Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| |
Collapse
|
5
|
Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol 2016; 12:1463-1477. [PMID: 27548410 DOI: 10.1080/17425255.2016.1223626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.
Collapse
|
6
|
Brunham LR, Hayden MR. Human genetics of HDL: Insight into particle metabolism and function. Prog Lipid Res 2015; 58:14-25. [DOI: 10.1016/j.plipres.2015.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
7
|
Abstract
High-density lipoprotein (HDL) is considered to be an anti-atherogenic lipoprotein moiety. Generation of genetically modified (total body and tissue-specific knockout) mouse models has significantly contributed to our understanding of HDL function. Here we will review data from knockout mouse studies on the importance of HDL's major alipoprotein apoA-I, the ABC transporters A1 and G1, lecithin:cholesterol acyltransferase, phospholipid transfer protein, and scavenger receptor BI for HDL's metabolism and its protection against atherosclerosis in mice. The initial generation and maturation of HDL particles as well as the selective delivery of its cholesterol to the liver are essential parameters in the life cycle of HDL. Detrimental atherosclerosis effects observed in response to HDL deficiency in mice cannot be solely attributed to the low HDL levels per se, as the low HDL levels are in most models paralleled by changes in non-HDL-cholesterol levels. However, the cholesterol efflux function of HDL is of critical importance to overcome foam cell formation and the development of atherosclerotic lesions in mice. Although HDL is predominantly studied for its atheroprotective action, the mouse data also suggest an essential role for HDL as cholesterol donor for steroidogenic tissues, including the adrenals and ovaries. Furthermore, it appears that a relevant interaction exists between HDL-mediated cellular cholesterol efflux and the susceptibility to inflammation, which (1) provides strong support for the novel concept that inflammation and metabolism are intertwining biological processes and (2) identifies the efflux function of HDL as putative therapeutic target also in other inflammatory diseases than atherosclerosis.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Gorlaeus Laboratories, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands,
| | | |
Collapse
|
8
|
A Comprehensive In Silico Analysis of the Functional and Structural Impact of Nonsynonymous SNPs in the ABCA1 Transporter Gene. CHOLESTEROL 2014; 2014:639751. [PMID: 25215231 PMCID: PMC4156994 DOI: 10.1155/2014/639751] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/07/2014] [Accepted: 07/24/2014] [Indexed: 12/24/2022]
Abstract
Disease phenotypes and defects in function can be traced to nonsynonymous single nucleotide polymorphisms (nsSNPs), which are important indicators of action sites and effective potential therapeutic approaches. Identification of deleterious nsSNPs is crucial to characterize the genetic basis of diseases, assess individual susceptibility to disease, determinate molecular and therapeutic targets, and predict clinical phenotypes. In this study using PolyPhen2 and MutPred in silico algorithms, we analyzed the genetic variations that can alter the expression and function of the ABCA1 gene that causes the allelic disorders familial hypoalphalipoproteinemia and Tangier disease. Predictions were validated with published results from in vitro, in vivo, and human studies. Out of a total of 233 nsSNPs, 80 (34.33%) were found deleterious by both methods. Among these 80 deleterious nsSNPs found, 29 (12.44%) rare variants resulted highly deleterious with a probability >0.8. We have observed that mostly variants with verified functional effect in experimental studies are correctly predicted as damage variants by MutPred and PolyPhen2 tools. Still, the controversial results of experimental approaches correspond to nsSNPs predicted as neutral by both methods, or contradictory predictions are obtained for them. A total of seventeen nsSNPs were predicted as deleterious by PolyPhen2, which resulted neutral by MutPred. Otherwise, forty two nsSNPs were predicted as deleterious by MutPred, which resulted neutral by PolyPhen2.
Collapse
|
9
|
Akao H, Polisecki E, Schaefer EJ, Trompet S, Robertson M, Ford I, Jukema JW, de Craen AJM, Packard C, Buckley BM, Kajinami K. ABCA1 gene variation and heart disease risk reduction in the elderly during pravastatin treatment. Atherosclerosis 2014; 235:176-81. [PMID: 24854628 DOI: 10.1016/j.atherosclerosis.2014.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/17/2014] [Accepted: 04/25/2014] [Indexed: 11/30/2022]
Abstract
AIMS Our goals were to examine the relationships of a specific ATP-binding cassette transporter A1 (ABCA1) variant, rs2230806 (R219K), on baseline lipids, low-density lipoprotein cholesterol (LDL-C) lowering due to pravastatin, baseline heart disease, and cardiac endpoints on trial. METHODS AND RESULTS The ABCA1 R219K variant was assessed in 5414 participants in PROSPER (PROspective Study of Pravastatin in the Elderly at Risk) (mean age 75.3 years), who had been randomized to pravastatin 40 mg/day or placebo and followed for a mean of 3.2 years. Of these subjects 47.6% carried the variant, with 40.0% carrying one allele, and 7.6% carrying both alleles. No effects on baseline LDL-C levels were noted, but mean HDL-C increased modestly according to the number of variant alleles being present (1.27 vs 1.28 vs 1.30 mmol/L, p = 0.024). No relationships between the presence or absence of this variant and statin induced LDL-C lowering response or CHD at baseline were noted. However within trial those with the variant as compared to those without the variant, the overall adjusted hazard ratio for new cardiovascular disease (fatal CHD, non-fatal myocardial infarction, or fatal or non-fatal stroke) was 1.22 (95% CI 1.06-1.40, p = 0.006), while for those in the pravastatin group it was 1.41 (1.15-1.73, p = 0.001), and for those in the placebo group it was 1.08 (0.89-1.30, p = 0.447) (p for interaction 0.058). CONCLUSION Our data indicate that subjects with the ABCA1 R219K variant may get significantly less heart disease risk reduction from pravastatin treatment than those without the variant.
Collapse
Affiliation(s)
- Hironobu Akao
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA, USA; Department of Cardiology, Kanazawa Medical University, Uchinada, Japan
| | - Eliana Polisecki
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA, USA; Boston Heart Diagnostics, Framingham, MA, USA
| | - Ernst J Schaefer
- Lipid Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University and Tufts University School of Medicine, Boston, MA, USA; Boston Heart Diagnostics, Framingham, MA, USA
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Gerontology, and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Michele Robertson
- Robertson Centre of Biostatistics, University of Glasgow, Glasgow, Scotland, UK
| | - Ian Ford
- Robertson Centre of Biostatistics, University of Glasgow, Glasgow, Scotland, UK
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Gerontology, and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Anton J M de Craen
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands; Department of Gerontology, and Geriatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Christopher Packard
- Department of Vascular Biochemistry, University of Glasgow, Glasgow, Scotland, UK
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - Kouji Kajinami
- Department of Cardiology, Kanazawa Medical University, Uchinada, Japan.
| | | |
Collapse
|
10
|
Jiang Z, Zhou R, Xu C, Feng G, Zhou Y. Genetic variation of the ATP-binding cassette transporter A1 and susceptibility to coronary heart disease. Mol Genet Metab 2011; 103:81-8. [PMID: 21300560 DOI: 10.1016/j.ymgme.2011.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/16/2011] [Accepted: 01/16/2011] [Indexed: 11/27/2022]
Abstract
ATP-binding cassette transporter A1 (ABCA1) is a member of a superfamily of membrane proteins that has attracted considerable attention as a candidate gene for coronary heart disease (CHD) based on its enzyme function as a key factor in regulating plasma HDL-C and apo A-I metabolism. It has been suggested that polymorphisms in the ABCA1 gene are risk factors for CHD, but a large number of studies have reported apparently conflicting results. To investigate this inconsistency and derive a more precise estimation of the relationship, a meta-analysis of 14,040 cases and 28,607 controls from 31 published case-control studies was performed. Five potential sources of heterogeneity including ethnicity, source of control, sample size, HWE status and genotyping method of study were also assessed. Overall, significantly decreased CHD risk was associated with 219K allele of R219K polymorphism when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, significantly decreased risks were found in Asians and other ethnic population for the polymorphism in all genetic models; while no significant associations were found among Caucasians. When stratified by source of controls, both population and hospital based studies get consistent positive results. However, no significant results were observed for I883M polymorphism of ABCA1 in all genetic models. In conclusion, this meta-analysis suggests that K allele of ABCA1 R219K polymorphism is a protective factor associated with decreased CHD susceptibility, but these associations vary in different ethnic populations.
Collapse
Affiliation(s)
- Zhihui Jiang
- Department of Cardiology, Taixing People's Hospital, Jiangsu Province, PR China
| | | | | | | | | |
Collapse
|
11
|
Brunham LR, Singaraja RR, Hayden MR. Variations on a gene: rare and common variants in ABCA1 and their impact on HDL cholesterol levels and atherosclerosis. Annu Rev Nutr 2006; 26:105-29. [PMID: 16704350 DOI: 10.1146/annurev.nutr.26.061505.111214] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cholesterol and its metabolites play a variety of essential roles in living systems. Virtually all animal cells require cholesterol, which they acquire through synthesis or uptake, but only the liver can degrade cholesterol. The ABCA1 gene product regulates the rate-controlling step in the removal of cellular cholesterol: the efflux of cellular cholesterol and phospholipids to an apolipoprotein acceptor. Mutations in ABCA1, as seen in Tangier disease, result in accumulation of cellular cholesterol, reduced plasma high-density lipoprotein cholesterol, and increased risk for coronary artery disease. To date, more than 100 coding variants have been identified in ABCA1, and these variants result in a broad spectrum of biochemical and clinical phenotypes. Here we review genetic variation in ABCA1 and its critical role in cholesterol metabolism and atherosclerosis in the general population.
Collapse
Affiliation(s)
- Liam R Brunham
- Center for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child & Family Research Institute, University of British Columbia, Vancouver, V6T 1Z4 British Columbia
| | | | | |
Collapse
|
12
|
Singaraja RR, Visscher H, James ER, Chroni A, Coutinho JM, Brunham LR, Kang MH, Zannis VI, Chimini G, Hayden MR. Specific Mutations in ABCA1 Have Discrete Effects on ABCA1 Function and Lipid Phenotypes Both In Vivo and In Vitro. Circ Res 2006; 99:389-97. [PMID: 16873719 DOI: 10.1161/01.res.0000237920.70451.ad] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mutations in ATP-binding cassette transporter A1 (ABCA1) cause Tangier disease and familial hypoalphalipoproteinemia, resulting in low to absent plasma high-density lipoprotein cholesterol levels. However, wide variations in clinical lipid phenotypes are observed in patients with mutations in ABCA1. We hypothesized that the various lipid phenotypes would be the direct result of discrete and differing effects of the mutations on ABCA1 function. To determine whether there is a correlation between the mutations and the resulting phenotypes, we generated in vitro 15 missense mutations that have been described in patients with Tangier disease and familial hypoalphalipoproteinemia. Using localization of ABCA1, its ability to induce cell surface binding of apolipoprotein A-I, and its ability to elicit efflux of cholesterol and phospholipids to apolipoprotein A-I we determined that the phenotypes of patients correlate with the severity and nature of defects in ABCA1 function.
Collapse
Affiliation(s)
- Roshni R Singaraja
- Center for Molecular Medicine and Therapeutics, University of British Columbia and Child and Family Research Institute, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Brunham LR, Singaraja RR, Pape TD, Kejariwal A, Thomas PD, Hayden MR. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene. PLoS Genet 2005; 1:e83. [PMID: 16429166 PMCID: PMC1342637 DOI: 10.1371/journal.pgen.0010083] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/30/2005] [Indexed: 11/26/2022] Open
Abstract
The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation. A major goal of human genetics research is to understand how genetic variation leads to differences in the function of genes. Genome sequencing projects have generated large amounts of sequence data, yet our ability to predict which specific sequence variants will result in functional differences is currently limited. To address this problem, the authors use an evolutionary model to predict the functional significance of genetic variation in the ABCA1 gene. To predict the functional impact of genetic variation in this gene, the authors compare the specific sites at which the variants occurred in evolutionarily related proteins and generated a likelihood score of functional impairment. These predictions were then compared to actual functional measurements of each variant. The authors show that it is possible to accurately predict which specific variants will affect ABCA1 function and to what extent. These results suggest that the evolutionary approach used may be a useful method in general for determining the functional consequence of genetic variation, which should aid in the study of how genetic variation contributes to phenotypic differences.
Collapse
Affiliation(s)
- Liam R Brunham
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia
| | - Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia
| | - Terry D Pape
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia
| | - Anish Kejariwal
- Computational Biology, Applied Biosystems, Foster City, California, United States of America
| | - Paul D Thomas
- Computational Biology, Applied Biosystems, Foster City, California, United States of America
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Akiyama M, Sugiyama-Nakagiri Y, Sakai K, McMillan JR, Goto M, Arita K, Tsuji-Abe Y, Tabata N, Matsuoka K, Sasaki R, Sawamura D, Shimizu H. Mutations in lipid transporter ABCA12 in harlequin ichthyosis and functional recovery by corrective gene transfer. J Clin Invest 2005; 115:1777-84. [PMID: 16007253 PMCID: PMC1159149 DOI: 10.1172/jci24834] [Citation(s) in RCA: 275] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022] Open
Abstract
Harlequin ichthyosis (HI) is a devastating skin disorder with an unknown underlying cause. Abnormal keratinocyte lamellar granules (LGs) are a hallmark of HI skin. ABCA12 is a member of the ATP-binding cassette transporter family, and members of the ABCA subfamily are known to have closely related functions as lipid transporters. ABCA3 is involved in lipid secretion via LGs from alveolar type II cells, and missense mutations in ABCA12 have been reported to cause lamellar ichthyosis type 2, a milder form of ichthyosis. Therefore, we hypothesized that HI might be caused by mutations that lead to serious ABCA12 defects. We identify 5 distinct ABCA12 mutations, either in a compound heterozygous or homozygous state, in patients from 4 HI families. All the mutations resulted in truncation or deletion of highly conserved regions of ABCA12. Immunoelectron microscopy revealed that ABCA12 localized to LGs in normal epidermal keratinocytes. We confirmed that ABCA12 defects cause congested lipid secretion in cultured HI keratinocytes and succeeded in obtaining the recovery of LG lipid secretion after corrective gene transfer of ABCA12. We concluded that ABCA12 works as an epidermal keratinocyte lipid transporter and that defective ABCA12 results in a loss of the skin lipid barrier, leading to HI. Our findings not only allow DNA-based early prenatal diagnosis but also suggest the possibility of gene therapy for HI.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/chemistry
- ATP-Binding Cassette Transporters/genetics
- Amino Acid Sequence
- Base Sequence
- Biological Transport, Active
- Cells, Cultured
- DNA Mutational Analysis
- Female
- Gene Transfer Techniques
- Humans
- Ichthyosis, Lamellar/etiology
- Ichthyosis, Lamellar/genetics
- Ichthyosis, Lamellar/metabolism
- Ichthyosis, Lamellar/therapy
- Infant, Newborn
- Keratinocytes/metabolism
- Keratinocytes/ultrastructure
- Lipid Metabolism, Inborn Errors/complications
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/therapy
- Male
- Molecular Sequence Data
- Mutation
- Pedigree
- Phenotype
- Pregnancy
- Prenatal Diagnosis
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Masashi Akiyama
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjaerg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004; 114:1343-53. [PMID: 15520867 PMCID: PMC524222 DOI: 10.1172/jci20361] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Accepted: 08/31/2004] [Indexed: 02/04/2023] Open
Abstract
Homozygosity for mutations in ABC transporter A1 (ABCA1) causes Tangier disease, a rare HDL-deficiency syndrome. Whether heterozygosity for genetic variation in ABCA1 also contributes to HDL cholesterol (HDL-C) levels in the general population is presently unclear. We determined whether mutations or single-nucleotide polymorphisms (SNPs) in ABCA1 were overrepresented in individuals with the lowest 1% (n=95) or highest 1% (n=95) HDL-C levels in the general population by screening the core promoter and coding region of ABCA1. For all nonsynonymous SNPs identified, we determined the effect of genotype on lipid traits in 9,259 individuals from the general population. Heterozygosity for ABCA1 mutations was identified in 10% of individuals with low HDL-C only. Three of 6 nonsynonymous SNPs (V771M, V825I, and R1587K) were associated with increases or decreases in HDL-C in women in the general population and some with consistent trends in men, determined as isolated single-site effects varying only at the relevant SNP. Finally, these results were consistent over time. In conclusion, we show that at least 10% of individuals with low HDL-C in the general population are heterozygous for mutations in ABCA1 and that both mutations and SNPs in ABCA1 contribute to HDL-C levels in the general population.
Collapse
Affiliation(s)
- Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | | |
Collapse
|
16
|
Frikke-Schmidt R, Nordestgaard BG, Jensen GB, Tybjærg-Hansen A. Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population. J Clin Invest 2004. [DOI: 10.1172/jci200420361] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Selva DM, Hirsch-Reinshagen V, Burgess B, Zhou S, Chan J, McIsaac S, Hayden MR, Hammond GL, Vogl AW, Wellington CL. The ATP-binding cassette transporter 1 mediates lipid efflux from Sertoli cells and influences male fertility. J Lipid Res 2004; 45:1040-50. [PMID: 15026428 DOI: 10.1194/jlr.m400007-jlr200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The liver X receptor/retinoid X receptor (LXR/RXR)-regulated gene ABCA1 effluxes cellular cholesterol and phospholipid to apolipoprotein A1 (apoA1), which is the rate-limiting step in high-density lipoprotein synthesis. The RXR pathway plays a critical role in testicular lipid trafficking, and RXRbeta-deficient male mice are sterile and accumulate lipids in Sertoli cells. Here, we demonstrate that ABCA1 mRNA and protein are abundant in Sertoli cells, whereas germ cells express little ABCA1. LXR/RXR agonists stimulate ABCA1 expression in cultured Sertoli MSC1 and Leydig TM3 cell lines. However, Sertoli TM4 cells lack ABCA1, and TM4 cells or primary Sertoli cells cultured from ABCA1(-/-) mice both fail to efflux cholesterol to apoA1. Expression of exogenous ABCA1 restores apoA1-dependent cholesterol efflux in Sertoli TM4 cells. In vivo, ABCA1-deficient mice exhibit lipid accumulation in Sertoli cells and depletion of normal lipid droplets from Leydig cells by 2 months of age. By 6 months of age, intratesticular testosterone levels and sperm counts are significantly reduced in ABCA1(-/-) mice compared with wild-type (WT) controls. Finally, a 21% decrease (P = 0.01) in fertility was observed between ABCA1(-/-) males compared with WT controls across their reproductive lifespans. These results show that ABCA1 plays an important role in lipid transport in Sertoli cells and influences male fertility.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pisciotta L, Hamilton-Craig I, Tarugi P, Bellocchio A, Fasano T, Alessandrini P, Bon GB, Siepi D, Mannarino E, Cattin L, Averna M, Cefalù AB, Cantafora A, Calandra S, Bertolini S. Familial HDL deficiency due to ABCA1 gene mutations with or without other genetic lipoprotein disorders. Atherosclerosis 2004; 172:309-20. [PMID: 15019541 DOI: 10.1016/j.atherosclerosis.2003.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 11/04/2003] [Accepted: 11/07/2003] [Indexed: 11/16/2022]
Abstract
Mutations in ABCA1 have been shown to be the cause of Tangier disease (TD) and some forms of familial hypoalphalipoproteinemia (HA), two genetic disorders characterized by low plasma HDL levels. Here we report six subjects with low HDL, carrying seven ABCA1 mutations, six of which are previously unreported. Two mutations (R557X and H160FsX173) were predicted to generate short truncated proteins; two mutations (E284K and Y482C) were located in the first extracellular loop and two (R1901S and Q2196H) in the C-terminal cytoplasmic domain of ABCA1. Two subjects found to be compound heterozygotes for ABCA1 mutations did not have overt clinical manifestations of TD. Three subjects, all with premature coronary artery disease (pCAD), had a combination of genetic defects. Besides being heterozygotes for ABCA1 mutations, two of them were also carriers of the R3500Q substitution in apolipoprotein B and the third was a carrier of N291S substitution in lipoprotein lipase. By extending family studies we identified 17 heterozygotes for ABCA1 mutations. Plasma HDL-C and Apo A-I values in these subjects were 38.3 and 36.9% lower than in unaffected family members and similar to the values found in heterozygotes for Apo A-I gene mutations which prevent Apo A-I synthesis. This survey underlines the allelic heterogeneity of ABCA1 mutations and suggests that: (i) TD subjects, if asymptomatic, may be overlooked and (ii) there may be a selection bias in genotyping towards carriers of ABCA1 mutations who have pCAD possibly related to a combination of genetic and environmental cardiovascular risk factors.
Collapse
Affiliation(s)
- Livia Pisciotta
- Department of Internal Medicine, University of Genoa, Viale Benedetto XV 6, I-16132 Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Singaraja RR, Brunham LR, Visscher H, Kastelein JJP, Hayden MR. Efflux and atherosclerosis: the clinical and biochemical impact of variations in the ABCA1 gene. Arterioscler Thromb Vasc Biol 2003; 23:1322-32. [PMID: 12763760 DOI: 10.1161/01.atv.0000078520.89539.77] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Approximately 50 mutations and many single nucleotide polymorphisms have been described in the ABCA1 gene, with mutations leading to Tangier disease and familial hypoalphalipoproteinemia. Homozygotes and heterozygotes for mutations in ABCA1 display a wide range of phenotypes. Identification of ABCA1 as the molecular defect in these diseases has allowed for ascertainment based on genetic status and determination of genotype-phenotype correlations and has permitted us to identify mutations conferring a range of severity of cellular, biochemical, and clinical phenotypes. In this study we review how genetic variation at the ABCA1 locus affects its role in the maintenance of lipid homeostasis and the natural progression of atherosclerosis.
Collapse
Affiliation(s)
- Roshni R Singaraja
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, and Children's and Women's Hospital , Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW To review gene regulation of HDL-cholesterol and discuss molecular abnormalities in HDL candidate genes that may lead to human pathologic states. RECENT FINDINGS The inverse association between HDL-cholesterol and vascular disease, especially coronary heart disease, has long been recognized, but understanding gene regulation of HDL in humans gained considerable momentum following the identification of ABCA1 as playing a pivotal role in reverse cholesterol transport. Recent data suggest that potentially important targets for upregulating HDL in humans include upregulators of ABCA1 and APOA1 (e.g. peroxisome proliferator activated receptor and liver X receptor agonists) and downregulators of CETP (e.g. JTT-705). A host of other nuclear receptors under investigation in animal models may advance to human testing in the near future. SUMMARY Disorders affecting HDL metabolism are complex because monogenic disorders causing low HDL do not necessarily correlate with premature vascular disease. To date, pathologic phenotypes have only been deduced among several HDL candidate genes. Understanding the genetic underpinnings associated with variant HDL and reverse cholesterol transport provides an exceptional opportunity to identify novel agents that may optimize this process and reduce vascular event rates beyond currently available LDL lowering therapies.
Collapse
Affiliation(s)
- Michael Miller
- Departments of Medicine and Epidemiology, Veterans Affairs and University of Maryland Medical Center, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
21
|
Woll PS, Hanson NQ, Tsai MY. Absence of ABCA1 mutations in individuals with low serum HDL-cholesterol. Clin Chem 2003; 49:521-2. [PMID: 12600975 DOI: 10.1373/49.3.521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Altilia S, Pisciotta L, Garuti R, Tarugi P, Cantafora A, Calabresi L, Tagliabue J, Maccari S, Bernini F, Zanotti I, Vergani C, Bertolini S, Calandra S. Abnormal splicing of ABCA1 pre-mRNA in Tangier disease due to a IVS2 +5G>C mutation in ABCA1 gene. J Lipid Res 2003; 44:254-64. [PMID: 12576507 DOI: 10.1194/jlr.m200248-jlr200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.
Collapse
Affiliation(s)
- Serena Altilia
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
See RH, Caday-Malcolm RA, Singaraja RR, Zhou S, Silverston A, Huber MT, Moran J, James ER, Janoo R, Savill JM, Rigot V, Zhang LH, Wang M, Chimini G, Wellington CL, Tafuri SR, Hayden MR. Protein kinase A site-specific phosphorylation regulates ATP-binding cassette A1 (ABCA1)-mediated phospholipid efflux. J Biol Chem 2002; 277:41835-42. [PMID: 12196520 DOI: 10.1074/jbc.m204923200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-binding cassette A1 (ABCA1) is a key mediator of cholesterol and phospholipid efflux to apolipoprotein particles. We show that ABCA1 is a constitutively phosphorylated protein in both RAW macrophages and in a human embryonic kidney cell line expressing ABCA1. Furthermore, we demonstrate that phosphorylation of ABCA1 is mediated by protein kinase A (PKA) or a PKA-like kinase in vivo. Through site-directed mutagenesis studies of consensus PKA phosphorylation sites and in vitro PKA kinase assays, we show that Ser-1042 and Ser-2054, located in the nucleotide binding domains of ABCA1, are major phosphorylation sites for PKA. ApoA-I-dependent phospholipid efflux was decreased significantly by mutation of Ser-2054 alone and Ser-1042/Ser-2054 but was not significantly impaired with Ser-1042 alone. The mechanism by which ABCA1 phosphorylation affected ApoA-I-dependent phospholipid efflux did not involve either alterations in ApoA-I binding or changes in ABCA1 protein stability. These studies demonstrate a novel serine (Ser-2054) on the ABCA1 protein crucial for PKA phosphorylation and for regulation of ABCA1 transporter activity.
Collapse
Affiliation(s)
- Raymond H See
- Center for Molecular Medicine and Therapeutics, Department of Medical Genetics and Children's and Women's Hospital, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fitzgerald ML, Morris AL, Rhee JS, Andersson LP, Mendez AJ, Freeman MW. Naturally occurring mutations in the largest extracellular loops of ABCA1 can disrupt its direct interaction with apolipoprotein A-I. J Biol Chem 2002; 277:33178-87. [PMID: 12084722 DOI: 10.1074/jbc.m204996200] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ABCA1 transporter contains two large domains into which many of the genetic mutations in individuals with Tangier disease fall. To investigate the structural requirements for the cellular cholesterol efflux mediated by ABCA1, we have determined the topology of these two domains and generated transporters harboring five naturally occurring missense mutations in them. These mutants, unlike wild type ABCA1, produced little or no apoA-I-stimulated cholesterol efflux when transfected into 293 cells, establishing their causality in Tangier disease. Because all five mutant proteins were well expressed and detectable on the plasma membrane, their interaction with the ABCA1 ligand, apolipoprotein (apo) A-I, was measured using bifunctional cross-linking agents. Four of five mutants had a marked decline in cross-linking to apoA-I, whereas one (W590S) retained full cross-linking activity. Cross-linking of apoA-I was temperature-dependent, rapid in onset, and detectable with both lipid- and water-soluble cross-linking agents. These results suggest that apoA-I-stimulated cholesterol efflux cannot occur without a direct interaction between the apoprotein and critical residues in two extracellular loops of ABCA1. The behavior of the W590S mutant indicates that although binding of apoA-I by ABCA1 may be necessary, it is not sufficient for stimulation of cholesterol efflux.
Collapse
Affiliation(s)
- Michael L Fitzgerald
- Lipid Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
25
|
Nishida Y, Hirano K, Tsukamoto K, Nagano M, Ikegami C, Roomp K, Ishihara M, Sakane N, Zhang Z, Tsujii Ki KI, Matsuyama A, Ohama T, Matsuura F, Ishigami M, Sakai N, Hiraoka H, Hattori H, Wellington C, Yoshida Y, Misugi S, Hayden MR, Egashira T, Yamashita S, Matsuzawa Y. Expression and functional analyses of novel mutations of ATP-binding cassette transporter-1 in Japanese patients with high-density lipoprotein deficiency. Biochem Biophys Res Commun 2002; 290:713-21. [PMID: 11785958 DOI: 10.1006/bbrc.2001.6219] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ATP-binding cassette transporter-1 (ABCA1) gene is mutated in patients with familial high-density lipoprotein deficiency (FHD). In order to know the molecular basis for FHD, we characterized three different ABCA1 mutations associated with FHD (G1158A/A255T, C5946T/R1851X, and A5226G/N1611D) with respect to their expression in the passaged fibroblasts from the patients and in the cells transfected with the mutated cDNAs. Fibroblasts from the all patients showed markedly decreased cholesterol efflux to apolipoprotein (apo)-Al. In the fibroblasts homozygous for G1158A/A255T, the immunoreactive mass of ABCA1 could not be detected, even when stimulated by 9-cis-retinoic acid and 22-R-hydroxycholesterol. In the fibroblasts homozygous for C5946T/R1851X, ABCA1 mRNA was comparable. Because the mutant ABCA1 protein (R1851X) was predicted to lack the epitope for the antibody used, we transfected FLAG-tagged truncated mutant (R1851X/ABCA1-FLAG) cDNA into Cos-7 cells, showing that the mutant protein expression was markedly reduced. The expression of N1611D ABCA1 protein was comparable in both fibroblasts and overexpressing cells, although cholesterol efflux from the cells was markedly reduced. These data indicated that, in the three patients investigated, the abnormalities and dysfunction of ABCA1 occurred at the different levels, providing important information about the expression, regulation, and function of ABCA1.
Collapse
Affiliation(s)
- Yoshiharu Nishida
- Department of Internal Medicine and Molecular Science, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|