1
|
Thakur SS, Swiderski K, Ryall JG, Lynch GS. Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2016.0528. [PMID: 29203713 DOI: 10.1098/rstb.2016.0528] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2017] [Indexed: 02/03/2023] Open
Abstract
Duchenne muscular dystrophy is the most common and severe of the muscular dystrophies, a group of inherited myopathies caused by different genetic mutations leading to aberrant expression or complete absence of cytoskeletal proteins. Dystrophic muscles are prone to injury, and regenerate poorly after damage. Remorseless cycles of muscle fibre breakdown and incomplete repair lead to progressive and severe muscle wasting, weakness and premature death. Many other conditions are similarly characterized by muscle wasting, including sarcopenia, cancer cachexia, sepsis, denervation, burns, and chronic obstructive pulmonary disease. Muscle trauma and loss of mass and physical capacity can significantly compromise quality of life for patients. Exercise and nutritional interventions are unlikely to halt or reverse the conditions, and strategies promoting muscle anabolism have limited clinical acceptance. Heat shock proteins (HSPs) are molecular chaperones that help proteins fold back to their original conformation and restore function. Since many muscle wasting conditions have pathophysiologies where inflammation, atrophy and weakness are indicated, increasing HSP expression in skeletal muscle may have therapeutic potential. This review will provide evidence supporting HSP induction for muscular dystrophy and other muscle wasting conditions.This article is part of the theme issue 'Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective'.
Collapse
Affiliation(s)
- Savant S Thakur
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Kristy Swiderski
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - James G Ryall
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Gordon S Lynch
- Basic and Clinical Myology Laboratory, Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Weeks SD, Muranova LK, Heirbaut M, Beelen S, Strelkov SV, Gusev NB. Characterization of human small heat shock protein HSPB1 α-crystallin domain localized mutants associated with hereditary motor neuron diseases. Sci Rep 2018; 8:688. [PMID: 29330367 PMCID: PMC5766566 DOI: 10.1038/s41598-017-18874-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/15/2017] [Indexed: 01/25/2023] Open
Abstract
Congenital mutations in human small heat shock protein HSPB1 (HSP27) have been linked to Charcot-Marie-Tooth disease, a commonly occurring peripheral neuropathy. Understanding the molecular mechanism of such mutations is indispensable towards developing future therapies for this currently incurable disorder. Here we describe the physico-chemical properties of the autosomal dominant HSPB1 mutants R127W, S135F and R136W. Despite having a nominal effect on thermal stability, the three mutations induce dramatic changes to quaternary structure. At high concentrations or under crowding conditions, the mutants form assemblies that are approximately two times larger than those formed by the wild-type protein. At low concentrations, the mutants have a higher propensity to dissociate into small oligomers, while the dissociation of R127W and R135F mutants is enhanced by MAPKAP kinase-2 mediated phosphorylation. Specific differences are observed in the ability to form hetero-oligomers with the homologue HSPB6 (HSP20). For wild-type HSPB1 this only occurs at or above physiological temperature, whereas the R127W and S135F mutants form hetero-oligomers with HSPB6 at 4 °C, and the R136W mutant fails to form hetero-oligomers. Combined, the results suggest that the disease-related mutations of HSPB1 modify its self-assembly and interaction with partner proteins thus affecting normal functioning of HSPB1 in the cell.
Collapse
Affiliation(s)
- Stephen D Weeks
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Lydia K Muranova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation
| | - Michelle Heirbaut
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Steven Beelen
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Sergei V Strelkov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000, Leuven, Belgium.
| | - Nikolai B Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991, Russian Federation.
| |
Collapse
|
3
|
Treweek TM, Meehan S, Ecroyd H, Carver JA. Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 2015; 72:429-451. [PMID: 25352169 PMCID: PMC11113218 DOI: 10.1007/s00018-014-1754-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/15/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Small heat-shock proteins (sHsps) are a diverse family of intra-cellular molecular chaperone proteins that play a critical role in mitigating and preventing protein aggregation under stress conditions such as elevated temperature, oxidation and infection. In doing so, they assist in the maintenance of protein homeostasis (proteostasis) thereby avoiding the deleterious effects that result from loss of protein function and/or protein aggregation. The chaperone properties of sHsps are therefore employed extensively in many tissues to prevent the development of diseases associated with protein aggregation. Significant progress has been made of late in understanding the structure and chaperone mechanism of sHsps. In this review, we discuss some of these advances, with a focus on mammalian sHsp hetero-oligomerisation, the mechanism by which sHsps act as molecular chaperones to prevent both amorphous and fibrillar protein aggregation, and the role of post-translational modifications in sHsp chaperone function, particularly in the context of disease.
Collapse
Affiliation(s)
- Teresa M Treweek
- Graduate School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - Sarah Meehan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, Northfields Avenue, Wollongong, NSW, 2522, Australia.
- School of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT, 2601, Australia.
| |
Collapse
|
4
|
Aquilina JA, Shrestha S, Morris AM, Ecroyd H. Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. J Biol Chem 2013; 288:13602-9. [PMID: 23532854 DOI: 10.1074/jbc.m112.443812] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND αB-crystallin and HSP27 are mammalian intracellular small heat shock proteins. RESULTS These proteins exchange subunits in a rapid and temperature-dependent manner. CONCLUSION This facile subunit exchange suggests that differential expression could be used by the cell to regulate the response to stress. SIGNIFICANCE A robust technique defines parameters for the dynamic interaction between the major mammalian small heat shock proteins. Small heat shock proteins (sHSPs) exist as large polydisperse species in which there is constant dynamic subunit exchange between oligomeric and dissociated forms. Their primary role in vivo is to bind destabilized proteins and prevent their misfolding and aggregation. αB-Crystallin (αB) and HSP27 are the two most widely distributed and most studied sHSPs in the human body. They are coexpressed in different tissues, where they are known to associate with each other to form hetero-oligomeric complexes. In this study, we aimed to determine how these two sHSPs interact to form hetero-oligomers in vitro and whether, by doing so, there is an increase in their chaperone activity and stability compared with their homo-oligomeric forms. Our results demonstrate that HSP27 and αB formed polydisperse hetero-oligomers in vitro, which had an average molecular mass that was intermediate of each of the homo-oligomers and which were more thermostable than αB, but less so than HSP27. The hetero-oligomer chaperone function was found to be equivalent to that of αB, with each being significantly better in preventing the amorphous aggregation of α-lactalbumin and the amyloid fibril formation of α-synuclein in comparison with HSP27. Using mass spectrometry to monitor subunit exchange over time, we found that HSP27 and αB exchanged subunits 23% faster than the reported rate for HSP27 and αA and almost twice that for αA and αB. This represents the first quantitative evaluation of αB/HSP27 subunit exchange, and the results are discussed in the broader context of regulation of function and cellular proteostasis.
Collapse
Affiliation(s)
- J Andrew Aquilina
- Illawarra Health and Medical Research Institute and School of Biological Sciences, University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | | | | | | |
Collapse
|
5
|
Datskevich PN, Mymrikov EV, Gusev NB. Utilization of fluorescent chimeras for investigation of heterooligomeric complexes formed by human small heat shock proteins. Biochimie 2012; 94:1794-804. [PMID: 22531625 DOI: 10.1016/j.biochi.2012.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/06/2012] [Indexed: 01/21/2023]
Abstract
Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.
Collapse
Affiliation(s)
- Petr N Datskevich
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | | | | |
Collapse
|
6
|
Mymrikov EV, Seit-Nebi AS, Gusev NB. Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 2012; 17:157-69. [PMID: 22002549 PMCID: PMC3273557 DOI: 10.1007/s12192-011-0296-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 09/17/2011] [Accepted: 09/20/2011] [Indexed: 10/16/2022] Open
Abstract
Oligomeric association of human small heat shock proteins HspB1, HspB5, HspB6 and HspB8 was analyzed by means of size-exclusion chromatography, analytical ultracentrifugation and chemical cross-linking. Wild-type HspB1 and Cys mutants of HspB5, HspB6 and HspB8 containing a single Cys residue in position homologous to that of Cys137 of human HspB1 were able to generate heterodimers cross-linked by disulfide bond. Cross-linked heterodimers between HspB1/HspB5, HspB1/HspB6 and HspB5/HspB6 were easily produced upon mixing, whereas formation of any heterodimers with participation of HspB8 was significantly less efficient. The size of heterooligomers formed by HspB1/HspB6 and HspB5/HspB6 was different from the size of the corresponding homooligomers. Disulfide cross-linked homodimers of small heat shock proteins were unable to participate in heterooligomer formation. Thus, monomers can be involved in subunit exchange leading to heterooligomer formation and restriction of flexibility induced by disulfide cross-linking prevents subunit exchange.
Collapse
Affiliation(s)
- Evgeny V. Mymrikov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Alim S. Seit-Nebi
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| | - Nikolai B. Gusev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow, 119991 Russian Federation
| |
Collapse
|
7
|
Larkins NT, Murphy RM, Lamb GD. Absolute amounts and diffusibility of HSP72, HSP25, and αB-crystallin in fast- and slow-twitch skeletal muscle fibers of rat. Am J Physiol Cell Physiol 2011; 302:C228-39. [PMID: 21975426 DOI: 10.1152/ajpcell.00266.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) are essential for normal cellular stress responses. Absolute amounts of HSP72, HSP25, and αB-crystallin in rat extensor digitorum longus (EDL) and soleus (SOL) muscle were ascertained by quantitative Western blotting to better understand their respective capabilities and limitations. HSP72 content of EDL and SOL muscle was only ∼1.1 and 4.6 μmol/kg wet wt, respectively, and HSP25 content approximately twofold greater (∼3.4 and ∼8.9 μmol/kg, respectively). αB-crystallin content of EDL muscle was ∼4.9 μmol/kg but in SOL muscle was ∼30-fold higher (∼140 μmol/kg). To examine fiber heterogeneity, HSP content was also assessed in individual fiber segments; every EDL type II fiber had less of each HSP than any SOL type I fiber, whereas the two SOL type II fibers examined were indistinguishable from the EDL type II fibers. Sarcolemma removal (fiber skinning) demonstrated that 10-20% of HSP25 and αB-crystallin was sarcolemma-associated in SOL fibers. HSP diffusibility was assessed from the extent and rate of diffusion out of skinned fiber segments. In unstressed SOL fibers, 70-90% of each HSP was readily diffusible, whereas ∼95% remained tightly bound in fibers from SOL muscles heated to 45°C. Membrane disruption with Triton X-100 allowed dispersion of HSP72 and sarco(endo)plasmic reticulum Ca(2+)-ATPase pumps but did not alter binding of HSP25 or αB-crystallin. The amount of HSP72 in unstressed EDL muscle is much less than the number of its putative binding sites, whereas SOL type I fibers contain large amounts of αB-crystallin, suggesting its importance in normal cellular function without upregulation.
Collapse
Affiliation(s)
- Noni T Larkins
- Department of Zoology, La Trobe University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
8
|
Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM. The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 2010; 15:1-11. [PMID: 19568960 PMCID: PMC2866971 DOI: 10.1007/s12192-009-0127-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022] Open
Abstract
The small heat shock protein, HSPB6, is a 17-kDa protein that belongs to the small heat shock protein family. HSPB6 was identified in the mid-1990s when it was recognized as a by-product of the purification of HSPB1 and HSPB5. HSPB6 is highly and constitutively expressed in smooth, cardiac, and skeletal muscle and plays a role in muscle function. This review will focus on the physiologic and biochemical properties of HSPB6 in smooth, cardiac, and skeletal muscle; the putative mechanisms of action; and therapeutic implications.
Collapse
|
9
|
Bukach OV, Glukhova AE, Seit-Nebi AS, Gusev NB. Heterooligomeric complexes formed by human small heat shock proteins HspB1 (Hsp27) and HspB6 (Hsp20). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:486-95. [DOI: 10.1016/j.bbapap.2008.11.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/03/2008] [Accepted: 11/17/2008] [Indexed: 10/24/2022]
|
10
|
Salinthone S, Tyagi M, Gerthoffer WT. Small heat shock proteins in smooth muscle. Pharmacol Ther 2008; 119:44-54. [PMID: 18579210 DOI: 10.1016/j.pharmthera.2008.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/28/2008] [Indexed: 01/16/2023]
Abstract
The small heat shock proteins (HSPs) HSP20, HSP27 and alphaB-crystallin are chaperone proteins that are abundantly expressed in smooth muscles are important modulators of muscle contraction, cell migration and cell survival. This review focuses on factors regulating expression of small HSPs in smooth muscle, signaling pathways that regulate macromolecular structure and the biochemical and cellular functions of small HSPs. Cellular processes regulated by small HSPs include chaperoning denatured proteins, maintaining cellular redox state and modifying filamentous actin polymerization. These processes influence smooth muscle proliferation, cell migration, cell survival, muscle contraction and synthesis of signaling proteins. Understanding functions of small heat shock proteins is relevant to mechanisms of disease in which dysfunctional smooth muscle causes symptoms, or is a target of drug therapy. One example is that secreted HSP27 may be a useful marker of inflammation during atherogenesis. Another is that phosphorylated HSP20 which relaxes smooth muscle may prove to be highly relevant to treatment of hypertension, vasospasm, asthma, premature labor and overactive bladder. Because small HSPs also modulate smooth muscle proliferation and cell migration they may prove to be targets for developing effective, novel treatments of clinical problems arising from remodeling of smooth muscle in vascular, respiratory and urogenital systems.
Collapse
Affiliation(s)
- Sonemany Salinthone
- Department of Neurology, Oregon Health Sciences University, Portland, OR, USA
| | | | | |
Collapse
|
11
|
Huey KA, McCall GE, Zhong H, Roy RR. Modulation of HSP25 and TNF-alpha during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol (1985) 2007; 102:2307-14. [PMID: 17379754 DOI: 10.1152/japplphysiol.00021.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Early events in response to abrupt increases in activation and loading with muscle functional overload (FO) are associated with increased damage and inflammation. Heat shock protein 25 (HSP25) may protect against these stressors, and its expression can be regulated by muscle loading and activation. The purpose of this study was to investigate the responses of HSP25, phosphorylated HSP25 (pHSP25), and tumor necrosis factor-alpha (TNF-alpha) during FO of the slow soleus and fast plantaris. We compared the HSP25 mRNA, HSP25 protein, pHSP25, and TNF-alpha responses in the soleus and plantaris after 0.5, 1, 2, 3, and 7 days of FO. HSP25 and pHSP25 were quantified in soluble and insoluble fractions. HSP25 mRNA increased immediately in both muscles and decreased with continued FO. However, HSP25 mRNA levels were consistently higher in the muscles of FO than control rats. In the soluble fraction, HSP25 increased in the plantaris after 2-7 days of FO with the greatest response at 3 and 7 days. The pHSP25 response to FO was greater in the plantaris than soleus at all points in the soluble fraction and at 0.5 days in the insoluble fraction. TNF-alpha levels in the plantaris, but not soleus, were higher than control at 0.5-2 days of FO. This may have contributed to the greater FO response in pHSP25 in the plantaris than soleus as TNF-alpha increased pHSP25 in C2C12 myotubes. These results suggest that the initial responses of pHSP25 and TNF-alpha to mechanical stress and inflammation associated with FO are greater in a fast than slow extensor muscle.
Collapse
Affiliation(s)
- Kimberly A Huey
- Department of Kinesiology, University of Illinois, Urbana-Champaign, 120 Freer Hall, 906 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
12
|
Yamano Y, Ohyama K, Ohta M, Nakamura J, Morishima I. Expression of Small Stress Protein Hsp20 Gene in the Maturing Rat Testis. J Vet Med Sci 2005; 67:1181-4. [PMID: 16327233 DOI: 10.1292/jvms.67.1181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we cloned a cDNA that encodes a small heat shock protein, Hsp20 (alphaB crystallin-related protein), from a maturing rat testis by means of differential display. The full-length cDNA sequence was completely identical to that registered in the DNA databank. The expression of Hsp20 gene was detected strongly in the heart and slightly in the testis of a 9-week-old rat. The expression of Hsp20 increased gradually from three weeks to 9 weeks, and the strongest expression was observed in the testis at week fifteen. The expression was localized in spermatocytes and round spermatids. The gene expression was not affected by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) when it was administered into male rats during the nursling period.
Collapse
Affiliation(s)
- Yoshiaki Yamano
- Laboratory of Veterinary Biochemistry, Faculty of Agriculture, Tottori University, Japan
| | | | | | | | | |
Collapse
|
13
|
Abstract
The heat shock proteins are families of proteins with known activities that include chaperoning nascent peptides within the cell and cytoprotection. Most work on the nervous system has related to the role of heat shock proteins in neuroprotection from either hypoxic-ischemic or traumatic injury. The role of these proteins during normal physiological activity and injury is still under investigation. Heat shock proteins in neuromuscular disease have been investigated to some extent but were largely neglected until recently. The goal of this review is to summarize the evidence linking heat shock proteins with neuromuscular disease and to provide some insight into the roles or functions of these proteins in disease states.
Collapse
Affiliation(s)
- Robert N Nishimura
- Department of Neurology, Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, California 91343, USA.
| | | |
Collapse
|
14
|
Huey KA, Thresher JS, Brophy CM, Roy RR. Inactivity-induced modulation of Hsp20 and Hsp25 content in rat hindlimb muscles. Muscle Nerve 2004; 30:95-101. [PMID: 15221884 DOI: 10.1002/mus.20063] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Denervation decreases small heat shock protein (HSP) content in the rat soleus muscle; however, it is unknown whether this change is due to inactivity or absence of a nerve-muscle connection. Spinal cord isolation (SI) is a model of inactivity with an intact neuromuscular connection. After 7 days of SI, Hsp20 and Hsp25 levels in the soleus, plantaris, and adductor longus muscles were lower than in control rats, whereas Hsp20 was unchanged and Hsp25 increased in the tibialis anterior. The results for the soleus indicate that these small HSPs respond to inactivity and that this response is not influenced by neural activity-independent factors. Furthermore, the data indicate that these HSPs are impacted to a greater degree in muscles that are predominantly slow or have an antigravity function than in flexor muscles. Understanding the regulation of these HSPs during chronic reductions in neuromuscular activity may have valuable applications for conditions such as spinal cord injury.
Collapse
Affiliation(s)
- Kimberly A Huey
- Department of Kinesiology, Arizona State University, Tempe, Arizona, USA.
| | | | | | | |
Collapse
|