1
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
2
|
Steinhart MR, van der Valk WH, Osorio D, Serdy SA, Zhang J, Nist-Lund C, Kim J, Moncada-Reid C, Sun L, Lee J, Koehler KR. Mapping oto-pharyngeal development in a human inner ear organoid model. Development 2023; 150:dev201871. [PMID: 37796037 PMCID: PMC10698753 DOI: 10.1242/dev.201871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Inner ear development requires the coordination of cell types from distinct epithelial, mesenchymal and neuronal lineages. Although we have learned much from animal models, many details about human inner ear development remain elusive. We recently developed an in vitro model of human inner ear organogenesis using pluripotent stem cells in a 3D culture, fostering the growth of a sensorineural circuit, including hair cells and neurons. Despite previously characterizing some cell types, many remain undefined. This study aimed to chart the in vitro development timeline of the inner ear organoid to understand the mechanisms at play. Using single-cell RNA sequencing at ten stages during the first 36 days of differentiation, we tracked the evolution from pluripotency to various ear cell types after exposure to specific signaling modulators. Our findings showcase gene expression that influences differentiation, identifying a plethora of ectodermal and mesenchymal cell types. We also discern aspects of the organoid model consistent with in vivo development, while highlighting potential discrepancies. Our study establishes the Inner Ear Organoid Developmental Atlas (IODA), offering deeper insights into human biology and improving inner ear tissue differentiation.
Collapse
Affiliation(s)
- Matthew R. Steinhart
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wouter H. van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- OtoBiology Leiden, Department of Otorhinolaryngology and Head & Neck Surgery; Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW); Leiden University Medical Center, Leiden, 2333 ZA, the Netherlands
| | - Daniel Osorio
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Sara A. Serdy
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jingyuan Zhang
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cynthia Moncada-Reid
- Speech and Hearing Bioscience and Technology (SHBT) Graduate Program, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Sun
- Research Computing, Department of Information Technology; Boston Children's Hospital, Boston, MA 02115, USA
| | - Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA 02115, USA
- F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
3
|
Jeong M, Bojkovic K, Sagi V, Stankovic KM. Molecular and Clinical Significance of Fibroblast Growth Factor 2 in Development and Regeneration of the Auditory System. Front Mol Neurosci 2022; 14:757441. [PMID: 35002617 PMCID: PMC8733209 DOI: 10.3389/fnmol.2021.757441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/18/2021] [Indexed: 01/25/2023] Open
Abstract
The fibroblast growth factor 2 (FGF2) is a member of the FGF family which is involved in key biological processes including development, cellular proliferation, wound healing, and angiogenesis. Although the utility of the FGF family as therapeutic agents has attracted attention, and FGF2 has been studied in several clinical contexts, there remains an incomplete understanding of the molecular and clinical function of FGF2 in the auditory system. In this review, we highlight the role of FGF2 in inner ear development and hearing protection and present relevant clinical studies for tympanic membrane (TM) repair. We conclude by discussing the future implications of FGF2 as a potential therapeutic agent.
Collapse
Affiliation(s)
- Minjin Jeong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Katarina Bojkovic
- Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Varun Sagi
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,University of Minnesota Medical School, Minneapolis, MN, United States
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States.,Department of Otolaryngology-Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, Kispert A, Trowe MO. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 2021; 148:dev.195651. [PMID: 33795231 DOI: 10.1242/dev.195651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.
Collapse
Affiliation(s)
- Marina Kaiser
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
6
|
Tambalo M, Anwar M, Ahmed M, Streit A. Enhancer activation by FGF signalling during otic induction. Dev Biol 2020; 457:69-82. [PMID: 31539539 PMCID: PMC6902270 DOI: 10.1016/j.ydbio.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 02/07/2023]
Abstract
Vertebrate ear progenitors are induced by fibroblast growth factor signalling, however the molecular mechanisms leading to the coordinate activation of downstream targets are yet to be discovered. The ear, like other sensory placodes, arises from the pre-placodal region at the border of the neural plate. Using a multiplex NanoString approach, we determined the response of these progenitors to FGF signalling by examining the changes of more than 200 transcripts that define the otic and other placodes, neural crest and neural plate territories. This analysis identifies new direct and indirect FGF targets during otic induction. Investigating changes in histone marks by ChIP-seq reveals that FGF exposure of pre-placodal cells leads to rapid deposition of active chromatin marks H3K27ac near FGF-response genes, while H3K27ac is depleted in the vicinity of non-otic genes. Genomic regions that gain H3K27ac act as cis-regulatory elements controlling otic gene expression in time and space and define a unique transcription factor signature likely to control their activity. Finally, we show that in response to FGF signalling the transcription factor dimer AP1 recruits the histone acetyl transferase p300 to selected otic enhancers. Thus, during ear induction FGF signalling modifies the chromatin landscape to promote enhancer activation and chromatin accessibility.
Collapse
Affiliation(s)
- Monica Tambalo
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Maryam Anwar
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Mohi Ahmed
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dental, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
7
|
Hoijman E, Fargas L, Blader P, Alsina B. Pioneer neurog1 expressing cells ingress into the otic epithelium and instruct neuronal specification. eLife 2017; 6. [PMID: 28537554 PMCID: PMC5476427 DOI: 10.7554/elife.25543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/23/2017] [Indexed: 11/30/2022] Open
Abstract
Neural patterning involves regionalised cell specification. Recent studies indicate that cell dynamics play instrumental roles in neural pattern refinement and progression, but the impact of cell behaviour and morphogenesis on neural specification is not understood. Here we combine 4D analysis of cell behaviours with dynamic quantification of proneural expression to uncover the construction of the zebrafish otic neurogenic domain. We identify pioneer cells expressing neurog1 outside the otic epithelium that migrate and ingress into the epithelialising placode to become the first otic neuronal progenitors. Subsequently, neighbouring cells express neurog1 inside the placode, and apical symmetric divisions amplify the specified pool. Interestingly, pioneer cells delaminate shortly after ingression. Ablation experiments reveal that pioneer cells promote neurog1 expression in other otic cells. Finally, ingression relies on the epithelialisation timing controlled by FGF activity. We propose a novel view for otic neurogenesis integrating cell dynamics whereby ingression of pioneer cells instructs neuronal specification. DOI:http://dx.doi.org/10.7554/eLife.25543.001 The inner ear is responsible for our senses of hearing and balance, and is made up of a series of fluid-filled cavities. Sounds, and movements of the head, cause the fluid within these cavities to move. This activates neurons that line the cavities, causing them to increase their firing rates and pass on information about the sounds or head movements to the brain. Damage to these neurons can result in deafness or vertigo. But where do the neurons themselves come from? It is generally assumed that all inner ear neurons develop inside an area of the embryo called the inner ear epithelium. Cells in this region are thought to switch on a gene called neurog1, triggering a series of changes that turn them into inner ear neurons. However, using advanced microscopy techniques in zebrafish embryos, Hoijman, Fargas et al. now show that this is not the whole story. While zebrafish do not have external ears, they do possess fluid-filled structures for balance and hearing that are similar to those of other vertebrates. Zebrafish embryos are also transparent, which means that activation of genes can be visualized directly. By imaging zebrafish embryos in real time, Hoijman, Fargas et al. show that the first cells to switch on neurog1 do so outside the inner ear epithelium. These pioneer cells then migrate into the inner ear epithelium and switch on neurog1 in their new neighbors. A substance called fibroblast growth factor tells the inner ear epithelium to let the pioneers enter, and thereby controls the final number of inner ear neurons. The work of Hoijman, Fargas et al. reveals how coordinated activation of genes and movement of cells gives rise to inner ear neurons. This should provide insights into the mechanisms that generate other types of sensory tissue. In the long term, the advances made in this study may lead to new strategies for repairing damaged sensory nerves. DOI:http://dx.doi.org/10.7554/eLife.25543.002
Collapse
Affiliation(s)
- Esteban Hoijman
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - L Fargas
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Patrick Blader
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Berta Alsina
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
8
|
Chen J, Tambalo M, Barembaum M, Ranganathan R, Simões-Costa M, Bronner ME, Streit A. A systems-level approach reveals new gene regulatory modules in the developing ear. Development 2017; 144:1531-1543. [PMID: 28264836 PMCID: PMC5399671 DOI: 10.1242/dev.148494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/24/2017] [Indexed: 01/23/2023]
Abstract
The inner ear is a complex vertebrate sense organ, yet it arises from a simple epithelium, the otic placode. Specification towards otic fate requires diverse signals and transcriptional inputs that act sequentially and/or in parallel. Using the chick embryo, we uncover novel genes in the gene regulatory network underlying otic commitment and reveal dynamic changes in gene expression. Functional analysis of selected transcription factors reveals the genetic hierarchy underlying the transition from progenitor to committed precursor, integrating known and novel molecular players. Our results not only characterize the otic transcriptome in unprecedented detail, but also identify new gene interactions responsible for inner ear development and for the segregation of the otic lineage from epibranchial progenitors. By recapitulating the embryonic programme, the genes and genetic sub-circuits discovered here might be useful for reprogramming naïve cells towards otic identity to restore hearing loss. Summary: Transcriptome analysis and knock down of select transcription factors reveals a genetic hierarchy as cells become committed to inner ear fate.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Monica Tambalo
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Meyer Barembaum
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ramya Ranganathan
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| | - Marcos Simões-Costa
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Streit
- Department of Craniofacial Development and Stem Cell Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
9
|
Abstract
Fibroblast growth factors (Fgfs) play important roles in developmental processes of the inner ear, including the ontogeny of the statoacoustic ganglia (SAG) and hair cells. However, the detailed genetic mechanism(s) underlying Fgf/Fgfr-dependent otic neural development remains elusive. Using conditional genetic approaches and inhibitory small molecules, we have revealed that Fgfr-PI3K/Akt signaling is mainly responsible for zebrafish SAG development and have determined that Sox9a and Atoh1a act downstream of Fgfr-Akt signaling to specify and/or maintain the otic neuron fate during the early segmentation stage. Sox9a and Atoh1a coregulate numerous downstream factors identified through our ChIP-seq analyses, including Tlx2 and Eya2. Fgfr-Erk1/2 signaling contributes to ultricular hair cell development during a critical period between 9 and 15 hours postfertilization. Our work reveals that a genetic network of the previously known sensory determinant Atoh1 and the neural crest determinant Sox9 plays critical roles in SAG development. These newly uncovered roles for Atoh1and Sox9 in zebrafish otic development may be relevant to study in other species.
Collapse
|
10
|
Zhang J, Wright KD, Mahoney Rogers AA, Barrett MM, Shim K. Compensatory regulation of the size of the inner ear in response to excess induction of otic progenitors by fibroblast growth factor signaling. Dev Dyn 2014; 243:1317-27. [PMID: 24847848 DOI: 10.1002/dvdy.24148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The otic placode comprises the progenitors of the inner ear and the neurons that convey hearing and balance information to the brain. Transplantation studies in birds and amphibians demonstrate that when the otic placode is morphologically visible as a thickened patch of ectoderm, it is first committed to an otic fate. Fibroblast growth factor (FGF) signaling initiates induction of the otic placode, and levels of FGF signaling are fine-tuned by the Sprouty family of antagonists of receptor tyrosine kinase signaling. RESULTS Here, we examined the size of the otic placode and cup by combinatorial inactivation of the Sprouty1 and Sprouty2 genes. Interestingly, in a Sprouty gene dosage series, early enlargement of the otic placode was progressively restored to normal. Restoration of otic size was preceded by normal levels of FGF signaling, reduced cell proliferation and reduced cell death. CONCLUSIONS Our study demonstrates that excess otic placode cells, which form in response to increased FGF signaling, are not maintained in mammals. This suggests that growth plasticity exists in the mammalian otic placode and cup, and that FGF signaling may not be sufficient to induce the genetic program that maintains otic fate.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | |
Collapse
|
11
|
Battisti AC, Fantetti KN, Moyers BA, Fekete DM. A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2. Hear Res 2014; 310:1-12. [PMID: 24456709 PMCID: PMC3979322 DOI: 10.1016/j.heares.2014.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 12/20/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023]
Abstract
Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensory domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 h in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 h confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst.
Collapse
Affiliation(s)
- Andrea C Battisti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Kristen N Fantetti
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Belle A Moyers
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| | - Donna M Fekete
- Department of Biological Sciences and Purdue University Center for Cancer Research, Purdue University, 915 W State St., West Lafayette, IN 47907-1392, USA.
| |
Collapse
|
12
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
13
|
Gata3 directly regulates early inner ear expression of Fgf10. Dev Biol 2013; 374:210-22. [DOI: 10.1016/j.ydbio.2012.11.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 01/19/2023]
|
14
|
Yang L, O'Neill P, Martin K, Maass JC, Vassilev V, Ladher R, Groves AK. Analysis of FGF-dependent and FGF-independent pathways in otic placode induction. PLoS One 2013; 8:e55011. [PMID: 23355906 PMCID: PMC3552847 DOI: 10.1371/journal.pone.0055011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/10/2012] [Indexed: 12/27/2022] Open
Abstract
The inner ear develops from a patch of thickened cranial ectoderm adjacent to the hindbrain called the otic placode. Studies in a number of vertebrate species suggest that the initial steps in induction of the otic placode are regulated by members of the Fibroblast Growth Factor (FGF) family, and that inhibition of FGF signaling can prevent otic placode formation. To better understand the genetic pathways activated by FGF signaling during otic placode induction, we performed microarray experiments to estimate the proportion of chicken otic placode genes that can be up-regulated by the FGF pathway in a simple culture model of otic placode induction. Surprisingly, we find that FGF is only sufficient to induce about 15% of chick otic placode-specific genes in our experimental system. However, pharmacological blockade of the FGF pathway in cultured chick embryos showed that although FGF signaling was not sufficient to induce the majority of otic placode-specific genes, it was still necessary for their expression in vivo. These inhibitor experiments further suggest that the early steps in otic placode induction regulated by FGF signaling occur through the MAP kinase pathway. Although our work suggests that FGF signaling is necessary for otic placode induction, it demonstrates that other unidentified signaling pathways are required to co-operate with FGF signaling to induce the full otic placode program.
Collapse
Affiliation(s)
- Lu Yang
- Departments of Neuroscience and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | | | | | | | | | | | | |
Collapse
|
15
|
Jidigam VK, Gunhaga L. Development of cranial placodes: insights from studies in chick. Dev Growth Differ 2012; 55:79-95. [PMID: 23278869 DOI: 10.1111/dgd.12027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on how research, using chick as a model system, has contributed to our knowledge regarding the development of cranial placodes. This review highlights when and how molecular signaling events regulate early specification of placodal progenitor cells, as well as the development of individual placodes including morphological movements. In addition, we briefly describe various techniques used in chick that are important for studies in cell and developmental biology.
Collapse
Affiliation(s)
- Vijay K Jidigam
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
16
|
Vemaraju S, Kantarci H, Padanad MS, Riley BB. A spatial and temporal gradient of Fgf differentially regulates distinct stages of neural development in the zebrafish inner ear. PLoS Genet 2012; 8:e1003068. [PMID: 23166517 PMCID: PMC3499369 DOI: 10.1371/journal.pgen.1003068] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 09/21/2012] [Indexed: 01/13/2023] Open
Abstract
Neuroblasts of the statoacoustic ganglion (SAG) initially form in the floor of the otic vesicle during a relatively brief developmental window. They soon delaminate and undergo a protracted phase of proliferation and migration (transit-amplification). Neuroblasts eventually differentiate and extend processes bi-directionally to synapse with hair cells in the inner ear and various targets in the hindbrain. Our studies in zebrafish have shown that Fgf signaling controls multiple phases of this complex developmental process. Moderate levels of Fgf in a gradient emanating from the nascent utricular macula specify SAG neuroblasts in laterally adjacent otic epithelium. At a later stage, differentiating SAG neurons express Fgf5, which serves two functions: First, as SAG neurons accumulate, increasing levels of Fgf exceed an upper threshold that terminates the initial phase of neuroblast specification. Second, elevated Fgf delays differentiation of transit-amplifying cells, balancing the rate of progenitor renewal with neuronal differentiation. Laser-ablation of mature SAG neurons abolishes feedback-inhibition and causes precocious neuronal differentiation. Similar effects are obtained by Fgf5-knockdown or global impairment of Fgf signaling, whereas Fgf misexpression has the opposite effect. Thus Fgf signaling renders SAG development self-regulating, ensuring steady production of an appropriate number of neurons as the larva grows. Neurons of the statoacoustic ganglion (SAG), which innervate the inner ear, are derived from neuroblasts originating from the floor of the otic vesicle. Neuroblasts quickly delaminate from the otic vesicle to form dividing progenitors, which eventually differentiate into mature neurons of the SAG. Fgf has been implicated in initial neuroblast specification in multiple vertebrate species. However, the role of Fgf at later stages remains uncertain, because previous studies have not been able to evaluate the effects of changing levels of Fgf, nor have they been able to clearly distinguish the effects of Fgf at different stages of SAG development. We have combined conditional loss of function, misexpression, and laser-ablation studies in zebrafish to elucidate how graded Fgf coordinates distinct steps in SAG development. Initially moderate Fgf in a spatial gradient specifies neuroblasts within the otic vesicle. Later, mature SAG neurons express Fgf5 and, as additional neurons accumulate outside the otic vesicle, rising levels of Fgf terminate further specification. Elevated Fgf also slows maturation of progenitors, maintaining a stable progenitor pool in which growth and differentiation are evenly balanced. This feedback facilitates steady production of new neurons as the animal grows through larval and adults stages.
Collapse
Affiliation(s)
- Shruti Vemaraju
- Biology Department, Texas A&M University, College Station, Texas, United States of America
| | | | | | | |
Collapse
|
17
|
Padanad MS, Bhat N, Guo B, Riley BB. Conditions that influence the response to Fgf during otic placode induction. Dev Biol 2012; 364:1-10. [PMID: 22327005 DOI: 10.1016/j.ydbio.2012.01.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/22/2012] [Accepted: 01/26/2012] [Indexed: 01/04/2023]
Abstract
Despite the vital importance of Fgf for otic induction, previous attempts to study otic induction through Fgf misexpression have yielded widely varying and contradictory results. There are also discrepancies regarding the ability of Fgf to induce otic tissue in ectopic locations, raising questions about the sufficiency of Fgf and the degree to which other local factors enhance or restrict otic potential. Using heat shock-inducible transgenes to misexpress Fgf3 or Fgf8 in zebrafish, we found that the stage, distribution and level of misexpression strongly influence the response to Fgf. Fgf misexpression during gastrulation can inhibit or promote otic development, depending on context, whereas misexpression after gastrulation leads to expansion of otic markers throughout preplacodal ectoderm surrounding the head. Elevated Fgf also expands expression of the putative competence factor Foxi1, which is required for Fgf to expand other otic markers. Misexpression of downstream factors Pax2a or Pax8 also expands otic markers but cannot bypass the requirement for Fgf or Foxi1. Co-misexpression of Pax2/8 with Fgf8 potentiates formation of ectopic otic vesicles expressing a full range of otic markers. These findings document the variables critically affecting the response to Fgf and clarify the roles of foxi1 and pax2/8 in the otic response.
Collapse
Affiliation(s)
- Mahesh S Padanad
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | |
Collapse
|
18
|
Stuhlmiller TJ, García-Castro MI. FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development 2011; 139:289-300. [PMID: 22129830 DOI: 10.1242/dev.070276] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neural crest induction involves the combinatorial inputs of the FGF, BMP and Wnt signaling pathways. Recently, a two-step model has emerged where BMP attenuation and Wnt activation induces the neural crest during gastrulation, whereas activation of both pathways maintains the population during neurulation. FGF is proposed to act indirectly during the inductive phase by activating Wnt ligand expression in the mesoderm. Here, we use the chick model to investigate the role of FGF signaling in the amniote neural crest for the first time and uncover a novel requirement for FGF/MAPK signaling. Contrary to current models, we demonstrate that FGF is required within the prospective neural crest epiblast during gastrulation and is unlikely to operate through mesodermal tissues. Additionally, we show that FGF/MAPK activity in the prospective neural plate prevents the ectopic expression of lateral ectoderm markers, independently of its role in neural specification. We then investigate the temporal participation of BMP/Smad signaling and suggest a later involvement in neural plate border development, likely due to widespread FGF/MAPK activity in the gastrula epiblast. Our results identify an early requirement for FGF/MAPK signaling in amniote neural crest induction and suggest an intriguing role for FGF-mediated Smad inhibition in ectodermal development.
Collapse
Affiliation(s)
- Timothy J Stuhlmiller
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8103, USA
| | | |
Collapse
|
19
|
Padanad MS, Riley BB. Pax2/8 proteins coordinate sequential induction of otic and epibranchial placodes through differential regulation of foxi1, sox3 and fgf24. Dev Biol 2011; 351:90-8. [PMID: 21215261 DOI: 10.1016/j.ydbio.2010.12.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022]
Abstract
Vertebrate cranial placodes contribute vitally to development of sensory structures of the head. Amongst posterior placodes, the otic placode forms the inner ear whereas nearby epibranchial placodes produce sensory ganglia within branchial clefts. Though diverse in fate, these placodes show striking similarities in their early regulation. In zebrafish, both are initiated by localized Fgf signaling plus the ubiquitous competence factor Foxi1, and both express pax8 and sox3 in response. It has been suggested that Fgf initially induces a common otic/epibranchial field, which later subdivides in response to other signals. However, we find that otic and epibranchial placodes form at different times and by distinct mechanisms. Initially, Fgf from surrounding tissues induces otic expression of pax8 and sox3, which cooperate synergistically to establish otic fate. Subsequently, pax8 works with related genes pax2a/pax2b to downregulate otic expression of foxi1, a necessary step for further otic development. Additionally, pax2/8 activate otic expression of fgf24, which induces epibranchial expression of sox3. Knockdown of fgf24 or sox3 causes severe epibranchial deficiencies but has little effect on otic development. These findings clarify the roles of pax8 and sox3 and support a model whereby the otic placode forms first and induces epibranchial placodes through an Fgf-relay.
Collapse
Affiliation(s)
- Mahesh S Padanad
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | |
Collapse
|
20
|
Feng Y, Xu Q. Pivotal role of hmx2 and hmx3 in zebrafish inner ear and lateral line development. Dev Biol 2010; 339:507-18. [DOI: 10.1016/j.ydbio.2009.12.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
|
21
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
22
|
Paxton CN, Bleyl SB, Chapman SC, Schoenwolf GC. Identification of differentially expressed genes in early inner ear development. Gene Expr Patterns 2009; 10:31-43. [PMID: 19913109 DOI: 10.1016/j.gep.2009.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/30/2009] [Accepted: 11/05/2009] [Indexed: 01/06/2023]
Abstract
To understand the etiology of congenital hearing loss, a comprehensive understanding of the molecular genetic mechanisms underlying normal ear development is required. We are identifying genes involved in otogenesis, with the longer term goal of studying their mechanisms of action, leading to inner ear induction and patterning. Using Agilent microarrays, we compared the differential expression of a test domain (which consisted of the pre-otic placodal ectoderm with the adjacent hindbrain ectoderm and the underlying mesendodermal tissues) with a rostral control domain (which included tissue that is competent, but not specified, to express inner ear markers in explant assays). We identified 1261 transcripts differentially expressed between the two domains at a 2-fold or greater change: 463 were upregulated and 798 were downregulated in the test domain. We validated the differential expression of several signaling molecules and transcription factors identified in this array using in situ hybridization. Furthermore, the expression patterns of the validated group of genes from the test domain were explored in detail to determine how the timing of their expression relates to specific events of otic induction and development. In conclusion, we identified a number of novel candidate genes for otic placode induction.
Collapse
Affiliation(s)
- Christian N Paxton
- University of Utah, Dept. of Neurobiology and Anatomy, Salt Lake City, UT 84132-3401, USA
| | | | | | | |
Collapse
|
23
|
Deng M, Pan L, Xie X, Gan L. Requirement for Lmo4 in the vestibular morphogenesis of mouse inner ear. Dev Biol 2009; 338:38-49. [PMID: 19913004 DOI: 10.1016/j.ydbio.2009.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
During development, compartmentalization of an early embryonic structure produces blocks of cells with distinct properties and developmental potentials. The auditory and vestibular components of vertebrate inner ears are derived from defined compartments within the otocyst during embryogenesis. The vestibular apparatus, including three semicircular canals, saccule, utricle, and their associated sensory organs, detects angular and linear acceleration of the head and relays the information through vestibular neurons to vestibular nuclei in the brainstem. How the early developmental events manifest vestibular structures at the molecular level is largely unknown. Here, we show that LMO4, a LIM-domain-only transcriptional regulator, is required for the formation of semicircular canals and their associated sensory cristae. Targeted disruption of Lmo4 resulted in the dysmorphogenesis of the vestibule and in the absence of three semicircular canals, anterior and posterior cristae. In Lmo4-null otocysts, canal outpouches failed to form and cell proliferation was reduced in the dorsolateral region. Expression analysis of the known otic markers showed that Lmo4 is essential for the normal expression of Bmp4, Fgf10, Msx1, Isl1, Gata3, and Dlx5 in the dorsolateral domain of the otocyst, whereas the initial compartmentalization of the otocyst remains unaffected. Our results demonstrate that Lmo4 controls the development of the dorsolateral otocyst into semicircular canals and cristae through two distinct mechanisms: regulating the expression of otic specific genes and stimulating the proliferation of the dorsolateral part of the otocyst.
Collapse
Affiliation(s)
- Min Deng
- University of Rochester Flaum Eye Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
24
|
Domínguez-Frutos E, Vendrell V, Alvarez Y, Zelarayan LC, López-Hernández I, Ros M, Schimmang T. Tissue-specific requirements for FGF8 during early inner ear development. Mech Dev 2009; 126:873-81. [DOI: 10.1016/j.mod.2009.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 11/15/2022]
|
25
|
Molecular and tissue interactions governing induction of cranial ectodermal placodes. Dev Biol 2009; 332:189-95. [PMID: 19500565 DOI: 10.1016/j.ydbio.2009.05.572] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 12/31/2022]
Abstract
Whereas neural crest cells are the source of the peripheral nervous system in the trunk of vertebrates, the "ectodermal placodes," together with neural crest, form the peripheral nervous system of the head. Cranial ectodermal placodes are thickenings in the ectoderm that subsequently ingress or invaginate to make important contributions to cranial ganglia, including epibranchial and trigeminal ganglia, and sensory structures, the ear, nose, lens, and adenohypophysis. Recent studies have uncovered a number of molecular signals mediating induction and differentiation of placodal cells. Here, we described recent advances in understanding the tissue interactions and signals underlying induction and neurogenesis of placodes, with emphasis on the trigeminal and epibranchial. Important roles of Fibroblast Growth Factors, Platelet Derived Growth Factors, Sonic Hedgehog, TGFbeta superfamily members, and Wnts are discussed.
Collapse
|
26
|
Freter S, Muta Y, Mak SS, Rinkwitz S, Ladher RK. Progressive restriction of otic fate: the role of FGF and Wnt in resolving inner ear potential. Development 2008; 135:3415-24. [PMID: 18799542 DOI: 10.1242/dev.026674] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The development of the vertebrate inner ear is an emergent process. Its progression from a relatively simple disk of thickened epithelium within head ectoderm into a complex organ capable of sensing sound and balance is controlled by sequential molecular and cellular interactions. Fibroblast growth factor (FGF) and Wnt signals emanating from mesoderm and neural ectoderm have been shown to direct inner ear fate. However, the role of these multiple signals during inner ear induction is unclear. We demonstrate that the action of the FGFs and Wnts is sequential, and that their roles support a model of hierarchical fate decisions that progressively restrict the developmental potential of the ectoderm until otic commitment. We show that signalling by Fgf3 and Fgf19 is required to initiate a proliferative progenitor region that is a precursor to both the inner ear and the neurogenic epibranchial placodes. Significantly, we find that only after FGF action is attenuated can the subsequent action of Wnt signalling allow otic differentiation to proceed. In addition, gain and loss of function of Wnt-signalling components show a role for this signalling in repressing epibranchial fate. This interplay of signalling factors ensures the correct and ordered differentiation of both inner ear and epibranchial systems.
Collapse
Affiliation(s)
- Sabine Freter
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
27
|
Zheng Y, Rayner M, Feng L, Hu X, Zheng X, Bearth E, Lin J. EGF Mediates Survival of Rat Cochlear Sensory Cells via an NF-κB Dependent Mechanism In Vitro. ACTA ACUST UNITED AC 2008; 2:9-15. [PMID: 19920873 DOI: 10.2174/1874082000802010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The survival of cochlear epithelial cells is of considerable importance, biologically. However, little is known about the growth factor(s) that are involved in the survival of cochlear sensory epithelial cells. In this study, we demonstrated that epidermal growth factor (EGF) plays a role in the survival of cochlear epithelial cells. Firstly, the presence of the EGF signaling pathway was demonstrated in the developing cochlear tissues of rats and a sensory epithelial cell line (OC1): -- epidermal growth factor receptor (EGFR), mitogen-activated protein kinase kinase (MAPKK), I kappa B alpha (IκBα), nuclear factor kappa B (NF-κB), and B cell lymphoma 2 (Bcl-2). Secondly, the addition of EGF to OC1 increased the promoter activity of NF-κB and cell viability but not cell cycle progression and cell number increase -- which suggests that EGF is for cellular survival rather than cell proliferation of OC1. Finally, pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) and inhibitor kappa B alpha (IκBα) mutant (IκBαM, a specific inhibitor of NF-κB) abrogated the EGF-induced NF-κB activity and cell survival. These data suggest that EGF plays a role in the survival of cochlear sensory epithelial cells through the EGFR/MAPKK/IκBα/NF-κB/Bcl-2 pathway.
Collapse
Affiliation(s)
- Yiqing Zheng
- Departments of Otolaryngology, University of Minnesota School of Medicine, Minneapolis, MN
| | | | | | | | | | | | | |
Collapse
|
28
|
Daudet N, Ariza-McNaughton L, Lewis J. Notch signalling is needed to maintain, but not to initiate, the formation of prosensory patches in the chick inner ear. Development 2007; 134:2369-78. [PMID: 17537801 DOI: 10.1242/dev.001842] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Notch signalling is well-known to mediate lateral inhibition in inner ear sensory patches, so as to generate a balanced mixture of sensory hair cells and supporting cells. Recently, however, we have found that ectopic Notch activity at an early stage can induce the formation of ectopic sensory patches. This suggests that Notch activity may have two different functions in normal ear development, acting first to promote the formation of the prosensory patches, and then later to regulate hair-cell production within the patches. The Notch ligand Serrate1 (Jag1 in mouse and humans) is expressed in the patches from an early stage and may provide Notch activation during the prosensory phase. Here, we test whether Notch signalling is actually required for prosensory patch development. When we block Notch activation in the chick embryo using the gamma-secretase inhibitor DAPT, we see a complete loss of prosensory epithelial cells in the anterior otocyst, where they are diverted into a neuroblast fate via failure of Delta1-dependent lateral inhibition. The cells of the posterior prosensory patch remain epithelial, but expression of Sox2 and Bmp4 is drastically reduced. Expression of Serrate1 here is initially almost normal, but subsequently regresses. The patches of sensory hair cells that eventually develop are few and small. We suggest that, in normal development, factors other than Notch activity initiate Serrate1 expression. Serrate1, by activating Notch, then drives the expression of Sox2 and Bmp4, as well as expression of the Serrate1 gene itself. The positive feedback maintains Notch activation and thereby preserves and perhaps extends the prosensory state, leading eventually to the development of normal sensory patches.
Collapse
MESH Headings
- Amyloid Precursor Protein Secretases/antagonists & inhibitors
- Animals
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Chick Embryo
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Ear, Inner/cytology
- Ear, Inner/embryology
- Embryo, Nonmammalian
- Enzyme Inhibitors/pharmacology
- HMGB Proteins/genetics
- HMGB Proteins/metabolism
- Hair Cells, Auditory, Inner/cytology
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Outer/cytology
- Hair Cells, Auditory, Outer/embryology
- Hair Cells, Auditory, Outer/metabolism
- Immunohistochemistry
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins
- Jagged-1 Protein
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Organ Culture Techniques
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/metabolism
- SOXB1 Transcription Factors
- Serrate-Jagged Proteins
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triglycerides/pharmacology
- gamma-Aminobutyric Acid/analogs & derivatives
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Nicolas Daudet
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
29
|
Fgf-dependent otic induction requires competence provided by Foxi1 and Dlx3b. BMC DEVELOPMENTAL BIOLOGY 2007; 7:5. [PMID: 17239227 PMCID: PMC1794237 DOI: 10.1186/1471-213x-7-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 01/19/2007] [Indexed: 01/21/2023]
Abstract
Background The inner ear arises from a specialized set of cells, the otic placode, that forms at the lateral edge of the neural plate adjacent to the hindbrain. Previous studies indicated that fibroblast growth factors (Fgfs) are required for otic induction; in zebrafish, loss of both Fgf3 and Fgf8 results in total ablation of otic tissue. Furthermore, gain-of-function studies suggested that Fgf signaling is not only necessary but also sufficient for otic induction, although the amount of induced ectopic otic tissue reported after misexpression of fgf3 or fgf8 varies among different studies. We previously suggested that Foxi1 and Dlx3b may provide competence to form the ear because loss of both foxi1 and dlx3b results in ablation of all otic tissue even in the presence of a fully functional Fgf signaling pathway. Results Using a transgenic line that allows us to misexpress fgf8 under the control of the zebrafish temperature-inducible hsp70 promoter, we readdressed the role of Fgf signaling and otic competence during placode induction. We find that misexpression of fgf8 fails to induce formation of ectopic otic vesicles outside of the endogenous ear field and has different consequences depending upon the developmental stage. Overexpression of fgf8 from 1-cell to midgastrula stages leads to formation of no or small otic vesicles, respectively. Overexpression of fgf8 at these stages never leads to ectopic expression of foxi1 or dlx3b, contrary to previous studies that indicated that foxi1 is activated by Fgf signaling. Consistent with our results we find that pharmacological inhibition of Fgf signaling has no effect on foxi1 or dlx3b expression, but instead, Bmp signaling activates foxi1, directly and dlx3b, indirectly. In contrast to early activation of fgf8, fgf8 overexpression at the end of gastrulation, when otic induction begins, leads to much larger otic vesicles. We further show that application of a low dose of retinoic acid that does not perturb patterning of the anterior neural plate leads to expansion of foxi1 and to a massive Fgf-dependent otic induction. Conclusion These results provide further support for the hypothesis that Foxi1 and Dlx3b provide competence for cells to respond to Fgf and form an otic placode.
Collapse
|
30
|
Miyazaki H, Kobayashi T, Nakamura H, Funahashi JI. Role of Gbx2 and Otx2 in the formation of cochlear ganglion and endolymphatic duct. Dev Growth Differ 2007; 48:429-38. [PMID: 16961590 DOI: 10.1111/j.1440-169x.2006.00879.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The boundary of gene expression of transcription factors often plays a role in making a signaling center in development. In the otic vesicle, Gbx2 is expressed in the dorso-medial region including the endolymphatic duct, and Otx2 in the ventral region. Fgf10 is expressed between their expression boundaries, and the cochleovestibular ganglion develops close to the medial side of the Fgf10 expressing domain. Similar expression patterns are observed in the central nervous system, where Otx2 and Gbx2 expression abut at the mid-hindbrain boundary, and the repressive interaction between Otx2 and Gbx2 defines the mid-hindbrain boundary. These analogous expression patterns raise a question about the role of the interaction between Gbx2 and Otx2 in the otic vesicle. To address this, we misexpressed Gbx2 and Otx2 to the otic epithelium. Ectopic Gbx2 expression could repress Otx2 expression and vice versa. In addition, Fgf10 expression was repressed and cochlear ganglion formation was interfered with. Moreover, endolymphatic duct was severely hypomorphic in the Otx2 misexpressing embryos. These results suggest that the interaction between Gbx2 and Otx2 in developing inner ear defines Fgf10 expression domain to induce the cochlear ganglion. It is also suggested that Gbx2 expression is important for the formation of the endolymphatic duct.
Collapse
Affiliation(s)
- Hiromitsu Miyazaki
- Department of Molecular Neurobiology, Institute of Development, Aging and Cancer, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
31
|
Sánchez-Calderón H, Francisco-Morcillo J, Martín-Partido G, Hidalgo-Sánchez M. Fgf19 expression patterns in the developing chick inner ear. Gene Expr Patterns 2006; 7:30-8. [PMID: 16798106 DOI: 10.1016/j.modgep.2006.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 05/05/2006] [Accepted: 05/16/2006] [Indexed: 01/30/2023]
Abstract
The inner ear is a complex sensorial structure with hearing and balance functions. A key aim of developmental biology is to understand the molecular and cellular mechanisms involved in the induction, patterning and innervation of the vertebrate inner ear. These developmental events could be mediated by the expression of regulating genes, such as the members of the family of Fibroblast Growth Factors (Fgfs). This work reports the detailed spatial and temporal patterns of Fgf19 expression in the developing inner ear from otic cup (stage 14) to 8 embryonic days (stage 34). In the earliest stages, Fgf19 and Fgf8 expressions determine two subdomains within the Fgf10-positive proneural-sensory territory. We show that, from the earliest stages, the Fgf19 expression was detected in the acoustic-vestibular ganglion and the macula utriculi. The Fgf19 gene was also strongly, but transiently, expressed in the macula lagena, whereas the macula neglecta never expressed this gene in the period analysed. The Fgf19 expression was also clearly observed in some borders of various sensory elements. These results could be useful from further investigations into the role of FGF19 in otic patterning.
Collapse
Affiliation(s)
- Hortensia Sánchez-Calderón
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Extremadura, Avda. de Elvas s/n, 06071 Badajoz, Spain
| | | | | | | |
Collapse
|
32
|
Schlosser G. Induction and specification of cranial placodes. Dev Biol 2006; 294:303-51. [PMID: 16677629 DOI: 10.1016/j.ydbio.2006.03.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 12/17/2022]
Abstract
Cranial placodes are specialized regions of the ectoderm, which give rise to various sensory ganglia and contribute to the pituitary gland and sensory organs of the vertebrate head. They include the adenohypophyseal, olfactory, lens, trigeminal, and profundal placodes, a series of epibranchial placodes, an otic placode, and a series of lateral line placodes. After a long period of neglect, recent years have seen a resurgence of interest in placode induction and specification. There is increasing evidence that all placodes despite their different developmental fates originate from a common panplacodal primordium around the neural plate. This common primordium is defined by the expression of transcription factors of the Six1/2, Six4/5, and Eya families, which later continue to be expressed in all placodes and appear to promote generic placodal properties such as proliferation, the capacity for morphogenetic movements, and neuronal differentiation. A large number of other transcription factors are expressed in subdomains of the panplacodal primordium and appear to contribute to the specification of particular subsets of placodes. This review first provides a brief overview of different cranial placodes and then synthesizes evidence for the common origin of all placodes from a panplacodal primordium. The role of various transcription factors for the development of the different placodes is addressed next, and it is discussed how individual placodes may be specified and compartmentalized within the panplacodal primordium. Finally, tissues and signals involved in placode induction are summarized with a special focus on induction of the panplacodal primordium itself (generic placode induction) and its relation to neural induction and neural crest induction. Integrating current data, new models of generic placode induction and of combinatorial placode specification are presented.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Brain Research Institute, AG Roth, University of Bremen, FB2, 28334 Bremen, Germany.
| |
Collapse
|
33
|
Hu RY, Xu P, Chen YL, Lou X, Ding X. The role of Paraxial Protocadherin in Xenopus otic placode development. Biochem Biophys Res Commun 2006; 345:239-47. [PMID: 16678122 DOI: 10.1016/j.bbrc.2006.04.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Accepted: 04/17/2006] [Indexed: 10/24/2022]
Abstract
Vertebrate inner ear develops from its rudiment, otic placode, which later forms otic vesicle and gives rise to tissues comprising the entire inner ear. Although several signaling molecules have been identified as candidates responsible for inner ear specification and patterning, many details remain elusive. Here, we report that Paraxial Protocadherin (PAPC) is required for otic vesicle formation in Xenopus embryos. PAPC is expressed strictly in presumptive otic placode and later in otic vesicle during inner ear morphogenesis. Knockdown of PAPC by dominant-negative PAPC results in the failure of otic vesicle formation and the loss of early inner ear markers Sox9 and Tbx2, suggesting the requirement of PAPC in the early stage of otic vesicle development. However, PAPC alone is not sufficient to induce otic placode formation.
Collapse
Affiliation(s)
- Rui-Ying Hu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
34
|
Martin K, Groves AK. Competence of cranial ectoderm to respond to Fgf signaling suggests a two-step model of otic placode induction. Development 2006; 133:877-87. [PMID: 16452090 DOI: 10.1242/dev.02267] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vertebrate craniofacial sensory organs derive from ectodermal placodes early in development. It has been suggested that all craniofacial placodes arise from a common ectodermal domain adjacent to the anterior neural plate, and a number of genes have been recently identified that mark such a 'pre-placodal' domain. However, the functional significance of this pre-placodal domain is still unclear. In the present study, we show that Fgf signaling is necessary and sufficient to directly induce some, but not all, markers of the otic placode in ectoderm taken from the pre-placodal domain. By contrast, ectoderm from outside this domain is not competent to express otic markers in response to Fgfs. Grafting naïve ectoderm into the pre-placodal domain causes upregulation of pre-placodal markers within 8 hours, together with the acquisition of competence to respond to Fgf signaling. This suggests a two-step model of craniofacial placode induction in which ectoderm first acquires pre-placodal region identity, and subsequently differentiates into particular craniofacial placodes under the influence of local inducing signals.
Collapse
Affiliation(s)
- Kareen Martin
- Gonda Department of Cell and Molecular Biology, House Ear Institute, 2100 West 3rd Street, Los Angeles, CA 90057, USA
| | | |
Collapse
|
35
|
Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M. Pax2 expression patterns in the developing chick inner ear. Gene Expr Patterns 2005; 5:763-73. [PMID: 15979948 DOI: 10.1016/j.modgep.2005.04.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/05/2005] [Accepted: 04/05/2005] [Indexed: 11/15/2022]
Abstract
The fate specification of the developing vertebrate inner ear could be determined by complex regulatory genetic pathways involving the Pax2/5/8 genes. Pax2 expression has been reported in the otic placode and vesicle of all vertebrates that have been studied. Loss-of-function experiments suggest that the Pax2 gene plays a key role in the development of the cochlear duct and acoustic ganglion. Despite all these data, the role of Pax2 gene in the specification of the otic epithelium is still only poorly defined. In the present work, we report a detailed study of the spatial and temporal Pax2 expression patterns during the development of the chick inner ear. In the period analysed, Pax2 is expressed only in some presumptive sensory patches, but not all, even though all sensory patches show the scattered Pax2 expression pattern later on. We also show that Pax2 is also expressed in several non-sensory structures.
Collapse
|
36
|
Ahrens K, Schlosser G. Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. Dev Biol 2005; 288:40-59. [PMID: 16271713 DOI: 10.1016/j.ydbio.2005.07.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 07/15/2005] [Accepted: 07/19/2005] [Indexed: 11/26/2022]
Abstract
Ectodermal placodes, from which many cranial sense organs and ganglia develop, arise from a common placodal primordium defined by Six1 expression. Here, we analyse placodal Six1 induction in Xenopus using microinjections and tissue grafts. We show that placodal Six1 induction occurs during neural plate and neural fold stages. Grafts of anterior neural plate but not grafts of cranial dorsolateral endomesoderm induce Six1 ectopically in belly ectoderm, suggesting that only the neural plate is sufficient for inducing Six1 in ectoderm. However, extirpation of either anterior neural plate or of cranial dorsolateral endomesoderm abolishes placodal Six1 expression indicating that both tissues are required for its induction. Elevating BMP-levels blocks placodal Six1 induction, whereas ectopic sources of BMP inhibitors expand placodal Six1 expression without inducing Six1 ectopically. This suggests that BMP inhibition is necessary but needs to cooperate with additional factors for Six1 induction. We show that FGF8, which is expressed in the anterior neural plate, can strongly induce ectopic Six1 in ventral ectoderm when combined with BMP inhibitors. In contrast, FGF8 knockdown abolishes placodal Six1 expression. This suggests that FGF8 is necessary and together with BMP inhibitors sufficient to induce placodal Six1 expression in cranial ectoderm, implicating FGF8 as a central component in generic placode induction.
Collapse
Affiliation(s)
- Katja Ahrens
- Brain Research Institute, AG Roth, University of Bremen, FB 2, PO Box 33 04 40, 28334 Bremen, Germany
| | | |
Collapse
|
37
|
Ladher RK, Wright TJ, Moon AM, Mansour SL, Schoenwolf GC. FGF8 initiates inner ear induction in chick and mouse. Genes Dev 2005; 19:603-13. [PMID: 15741321 PMCID: PMC551580 DOI: 10.1101/gad.1273605] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In both chick and mouse, the otic placode, the rudiment of the inner ear, is induced by at least two signals, one from the cephalic paraxial mesoderm and the other from the neural ectoderm. In chick, the mesodermal signal, FGF19, induces neural ectoderm to express additional signals, including WNT8c and FGF3, resulting in induction of the otic placode. In mouse, mesodermal Fgf10 acting redundantly with neural Fgf3 is required for induction of the placode. To determine how the mesodermal inducers of the otic placode are localized, we took advantage of the unique strengths of the two model organisms. We show that endoderm is necessary for otic induction in the chick and that Fgf8, expressed in the chick endoderm subjacent to Fgf19, is both sufficient and necessary for the expression of Fgf19 in the mesoderm. In the mouse, Fgf8 is also expressed in endoderm as well as in other germ layers in the periotic placode region. We show that otic induction fails in embryos null for Fgf3 and hypomorphic for Fgf8 and expression of mesodermal Fgf10 is reduced. Thus, Fgf8 plays a critical upstream role in an FGF signaling cascade required for otic induction in chick and mouse.
Collapse
Affiliation(s)
- Raj K Ladher
- Sensory Development, Riken Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | |
Collapse
|
38
|
Sánchez-Calderón H, Martín-Partido G, Hidalgo-Sánchez M. Otx2, Gbx2, and Fgf8 expression patterns in the chick developing inner ear and their possible roles in otic specification and early innervation. Gene Expr Patterns 2005; 4:659-69. [PMID: 15465488 DOI: 10.1016/j.modgep.2004.04.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 11/30/2022]
Abstract
The chick inner ear is a complex structure containing auditory and vestibular sensory organs innervated by neurons of the acoustic-vestibular ganglion. The molecular signals involved in the specification and initial innervation of the otic epithelium are poorly understood. Here, we present a detailed description of the Otx2, Gbx2, and Fgf8 gene expression patterns in the chick developing inner ear, comparing them with the Bmp4 expression, a putative sensory-organ marker. The Otx2 expression was detected in the ventro-lateral wall of the otic anlage and could play a role in the segregation of the saccule and utricle maculae. The relationship between Gbx2 and Fgf8 expression changed during inner ear development but was always related to the macula sacculi innervation and endolymphatic duct formation. Our results also suggest that the maculae of the saccule and lagena, and the medial portion of the macula utriculi could arise within a broad Fgf8-positive domain previously observed at the otocyst stage. The spatial and temporal relationships between these gene expression domains and the initial innervation of the epithelium by some subpopulations of otic axons suggest that expression domain boundaries could be involved in the specification and early innervation of presumptive sensory patches.
Collapse
|
39
|
Streit A. Early development of the cranial sensory nervous system: from a common field to individual placodes. Dev Biol 2005; 276:1-15. [PMID: 15531360 DOI: 10.1016/j.ydbio.2004.08.037] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 08/20/2004] [Accepted: 08/23/2004] [Indexed: 01/12/2023]
Abstract
Sensory placodes are unique columnar epithelia with neurogenic potential that develop in the vertebrate head ectoderm next to the neural tube. They contribute to the paired sensory organs and the cranial sensory ganglia generating a wide variety of cell types ranging from lens fibres to sensory receptor cells and neurons. Although progress has been made in recent years to identify the molecular players that mediate placode specification, induction and patterning, the processes that initiate placode development are not well understood. One hypothesis suggests that all placode precursors arise from a common territory, the pre-placodal region, which is then subdivided to generate placodes of specific character. This model implies that their induction begins through molecular and cellular mechanisms common to all placodes. Embryological and molecular evidence suggests that placode induction is a multi-step process and that the molecular networks establishing the pre-placodal domain as well as the acquisition of placodal identity are surprisingly similar to those used in Drosophila to specify sensory structures.
Collapse
Affiliation(s)
- Andrea Streit
- Department of Craniofacial Development, King's College London, Guy's Campus, London SE1 9RT, UK.
| |
Collapse
|
40
|
Chang W, Brigande JV, Fekete DM, Wu DK. The development of semicircular canals in the inner ear: role of FGFs in sensory cristae. Development 2004; 131:4201-11. [PMID: 15280215 DOI: 10.1242/dev.01292] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the vertebrate inner ear, the ability to detect angular head movements lies in the three semicircular canals and their sensory tissues, the cristae. The molecular mechanisms underlying the formation of the three canals are largely unknown. Malformations of this vestibular apparatus found in zebrafish and mice usually involve both canals and cristae. Although there are examples of mutants with only defective canals, few mutants have normal canals without some prior sensory tissue specification, suggesting that the sensory tissues,cristae, might induce the formation of their non-sensory components, the semicircular canals. We fate-mapped the vertical canal pouch in chicken that gives rise to the anterior and posterior canals, using a fluorescent,lipophilic dye (DiI), and identified a canal genesis zone adjacent to each prospective crista that corresponds to the Bone morphogenetic protein 2 (Bmp2)-positive domain in the canal pouch. Using retroviruses or beads to increase Fibroblast Growth Factors (FGFs) for gain-of-function and beads soaked with the FGF inhibitor SU5402 for loss-of-function experiments,we show that FGFs in the crista promote canal development by upregulating Bmp2. We postulate that FGFs in the cristae induce a canal genesis zone by inducing/upregulating Bmp2 expression. Ectopic FGF treatments convert some of the cells in the canal pouch from the prospective common crus to a canal-like fate. Thus, we provide the first molecular evidence whereby sensory organs direct the development of the associated non-sensory components, the semicircular canals, in vertebrate inner ears.
Collapse
Affiliation(s)
- Weise Chang
- National Institute on Deafness and Other Communication Disorders, Rockville, MD 20850, USA
| | | | | | | |
Collapse
|
41
|
Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T. An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol 2004; 271:416-30. [PMID: 15223344 DOI: 10.1016/j.ydbio.2004.04.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2004] [Revised: 04/13/2004] [Accepted: 04/15/2004] [Indexed: 11/21/2022]
Abstract
Beside spatial distribution, timing of gene expression is a key parameter controlling gene function during embryonic development. Gain-of-function experiments can therefore have quite opposing results, depending on the time of gene activation. Induction techniques are necessary to control timing in these experiments from outside of the organism. Natural heat shock promoters constitute a simple inducible misexpression system, the main disadvantage is a high background level of expression. We present here a new heat stress-inducible bidirectional promoter consisting of multimerized heat shock elements (HSE). The simplified architecture of this promoter largely improves the properties needed for an efficient induction system: dramatically reduced background activity, improved inducibility, and loss of all tissue specific components. Based on this new artificial promoter, we present a transient induction system for fish embryos. Application of this new induction system for Fgf8 misexpression during embryonic development reveals different windows of competence during eye development. A dramatic early phenotype resulting in loss of the eyes is observed for conventional mRNA injection. Later activation, by using our inducible promoter, uncovers different eye phenotypes like cyclopic eyes. Even after 14 days, an efficient heat stress response could be evoked in the injected embryos. The HSE promoter therefore represents a new artificial heat shock promoter with superior properties, making possible transient experiments with inducible misexpression at various stages of development.
Collapse
Affiliation(s)
- Baubak Bajoghli
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | | | | |
Collapse
|
42
|
Saint-Germain N, Lee YH, Zhang Y, Sargent TD, Saint-Jeannet JP. Specification of the otic placode depends on Sox9 function in Xenopus. Development 2004; 131:1755-63. [PMID: 15084460 DOI: 10.1242/dev.01066] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vertebrate inner ear develops from a thickening of the embryonic ectoderm, adjacent to the hindbrain, known as the otic placode. All components of the inner ear derive from the embryonic otic placode. Sox proteins form a large class of transcriptional regulators implicated in the control of a variety of developmental processes. One member of this family, Sox9, is expressed in the developing inner ear, but little is known about the early function of Sox9 in this tissue. We report the functional analysis of Sox9 during development of Xenopus inner ear. Sox9 otic expression is initiated shortly after gastrulation in the sensory layer of the ectoderm, in a bilateral patch of cells immediately adjacent to the cranial neural crest. In the otic placode, Sox9 colocalizes with Pax8 one of the earliest gene expressed in response to otic placode inducing signals. Depletion of Sox9 protein in whole embryos using morpholino antisense oligonucleotides causes a dramatic loss of the early otic placode markers Pax8 and Tbx2. Later in embryogenesis, Sox9 morpholino-injected embryos lack a morphologically recognizable otic vesicle and fail to express late otic markers (Tbx2, Bmp4, Otx2 and Wnt3a) that normally exhibit regionalized expression pattern throughout the otocyst. Using a hormone inducible inhibitory mutant of Sox9, we demonstrate that Sox9 function is required for otic placode specification but not for its subsequent patterning. We propose that Sox9 is one of the key regulators of inner ear specification in Xenopus.
Collapse
Affiliation(s)
- Natasha Saint-Germain
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
43
|
Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F. FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 2004; 267:119-34. [PMID: 14975721 DOI: 10.1016/j.ydbio.2003.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.
Collapse
Affiliation(s)
- Berta Alsina
- Biologia del Desenvolupament, Departament de Ciéncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Alvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bösl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T. Requirements for FGF3 and FGF10 during inner ear formation. Development 2004; 130:6329-38. [PMID: 14623822 DOI: 10.1242/dev.00881] [Citation(s) in RCA: 158] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Members of the fibroblast growth factor (FGF) gene family control formation of the body plan and organogenesis in vertebrates. FGF3 is expressed in the developing hindbrain and has been shown to be involved in inner ear development of different vertebrate species, including zebrafish, Xenopus, chick and mouse. In the mouse, insertion of a neomycin resistance gene into the Fgf3 gene via homologous recombination results in severe developmental defects during differentiation of the otic vesicle. We have addressed the precise roles of FGF3 and other FGF family members during formation of the murine inner ear using both loss- and gain-of-function experiments. We generated a new mutant allele lacking the entire FGF3-coding region but surprisingly found no evidence for severe defects either during inner ear development or in the mature sensory organ, suggesting the functional involvement of other FGF family members during its formation. Ectopic expression of FGF10 in the developing hindbrain of transgenic mice leads to the formation of ectopic vesicles, expressing some otic marker genes and thus indicating a role for FGF10 during otic vesicle formation. Expression analysis of FGF10 during mouse embryogenesis reveals a highly dynamic pattern of expression in the developing hindbrain, partially overlapping with FGF3 expression and coinciding with formation of the inner ear. However, FGF10 mutant mice have been reported to display only mild defects during inner ear differentiation. We thus created double mutant mice for FGF3 and FGF10, which form severely reduced otic vesicles, suggesting redundant roles of these FGFs, acting in combination as neural signals for otic vesicle formation.
Collapse
Affiliation(s)
- Yolanda Alvarez
- Center for Molecular Neurobiology Hamburg, University of Hamburg, Falkenried 94, D-20251 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The vertebrate inner ear is a marvel of structural and functional complexity, which is all the more remarkable because it develops from such a simple structure, the otic placode. Analysis of inner ear development has long been a fascination of experimental embryologists, who sought to understand cellular mechanisms of otic placode induction. More recently, however, molecular and genetic approaches have made the inner ear a useful model system for studying a much broader range of basic developmental mechanisms, including cell fate specification and differentiation, axial patterning, epithelial morphogenesis, cytoskeletal dynamics, stem cell biology, neurobiology, physiology, etc. Of course, there has also been tremendous progress in understanding the functions and processes peculiar to the inner ear. The goal of this review is to recount how historical approaches have shaped our understanding of the signaling interactions controlling early otic development; to discuss how new findings have led to fundamental new insights; and to point out new problems that need to be resolved in future research.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA.
| | | |
Collapse
|
46
|
Abstract
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| | | |
Collapse
|
47
|
Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B. Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 2003; 227:203-15. [PMID: 12761848 PMCID: PMC3904739 DOI: 10.1002/dvdy.10297] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We have investigated the expression of FGF10 during ear development and the effect of an FGF10 null mutation on ear development. Our in situ hybridization data reveal expression of FGF10 in all three canal crista sensory epithelia and the cochlea anlage as well as all sensory neurons at embryonic day 11.5 (E11.5). Older embryos (E18.5) displayed strong graded expression in all sensory epithelia. FGF10 null mutants show complete agenesis of the posterior canal crista and the posterior canal. The posterior canal sensory neurons form initially and project rather normally by E11.5, but they disappear within 2 days. FGF10 null mutants have no posterior canal system at E18.5. In addition, these mutants have deformations of the anterior and horizontal cristae, reduced formation of the anterior and horizontal canals, as well as altered position of the remaining sensory epithelia with respect to the utricle. Hair cells form but some have defects in their cilia formation. No defects were detected in the organ of Corti at the cellular level. Together these data suggest that FGF10 plays a major role in ear morphogenesis. Most of these data are consistent with earlier findings on a null mutation in FGFR2b, one of FGF10's main receptors.
Collapse
Affiliation(s)
- Sarah Pauley
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
| | - Tracy J. Wright
- University of Utah, Department of Human Genetics, Salt Lake City, Utah
| | - Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, Finland
| | - David Ornitz
- Department of Molecular Biology, Washington University, St. Louis, Missouri
| | - Kirk Beisel
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
| | - Bernd Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska
- Correspondence to: Bernd Fritzsch, Creighton University, Department of Biomedical Sciences, Omaha, NE 68178.
| |
Collapse
|
48
|
Solomon KS, Kudoh T, Dawid IB, Fritz A. Zebrafish foxi1 mediates otic placode formation and jaw development. Development 2003; 130:929-40. [PMID: 12538519 DOI: 10.1242/dev.00308] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The otic placode is a transient embryonic structure that gives rise to the inner ear. Although inductive signals for otic placode formation have been characterized, less is known about the molecules that respond to these signals within otic primordia. Here, we identify a mutation in zebrafish, hearsay, which disrupts the initiation of placode formation. We show that hearsay disrupts foxi1, a forkhead domain-containing gene, which is expressed in otic precursor cells before placodes become visible; foxi1 appears to be the earliest marker known for the otic anlage. We provide evidence that foxi1 regulates expression of pax8, indicating a very early role for this gene in placode formation. In addition, foxi1 is expressed in the developing branchial arches, and jaw formation is disrupted in hearsay mutant embryos.
Collapse
Affiliation(s)
- Keely S Solomon
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
49
|
MESH Headings
- Animals
- Auditory Pathways/metabolism
- Ear/embryology
- Ear/growth & development
- Ear/innervation
- Ear, External/growth & development
- Ear, External/innervation
- Ear, Inner/growth & development
- Ear, Inner/innervation
- Ear, Middle/growth & development
- Ear, Middle/innervation
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/metabolism
- Mesoderm/metabolism
- Morphogenesis
- Receptor, trkB/metabolism
- Receptor, trkC/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
50
|
Abstract
Evolution shaped the vertebrate ear into a complicated three-dimensional structure and positioned the sensory epithelia so that they can extract specific aspects of mechanical stimuli to govern vestibular and hearing-related responses of the whole organism. This information is conducted from the ear via specific neuronal connections to distinct areas of the hindbrain for proper processing. During development, the otic placode, a simple sheet of epidermal cells, transforms into a complicated system of ducts and recesses. This placode also generates the mechanoelectrical transducers, the hair cells, and sensory neurons of the vestibular and cochlear (spiral) ganglia of the ear. We argue that ear development can be broken down into dynamic processes that use a number of known and unknown genes to govern the formation of the three-dimensional labyrinth in an interactive fashion. Embedded in this process, but in large part independent of it, is an evolutionary conserved process that induces early the development of the neurosensory component of the ear. We present molecular data suggesting that this later process is, in its basic aspects, related to the mechanosensory cell formation across phyla and is extremely conserved at the molecular level. We suggest that sensory neuron development and maintenance are vertebrate or possibly chordate novelties and present the molecular data to support this notion.
Collapse
Affiliation(s)
- B Fritzsch
- Creighton University, Department of Biomedical Sciences, Omaha, Nebraska 68178, USA
| | | |
Collapse
|