1
|
Cappellari O, Mantuano P, De Luca A. "The Social Network" and Muscular Dystrophies: The Lesson Learnt about the Niche Environment as a Target for Therapeutic Strategies. Cells 2020; 9:cells9071659. [PMID: 32660168 PMCID: PMC7407800 DOI: 10.3390/cells9071659] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
The muscle stem cells niche is essential in neuromuscular disorders. Muscle injury and myofiber death are the main triggers of muscle regeneration via satellite cell activation. However, in degenerative diseases such as muscular dystrophy, regeneration still keep elusive. In these pathologies, stem cell loss occurs over time, and missing signals limiting damaged tissue from activating the regenerative process can be envisaged. It is unclear what comes first: the lack of regeneration due to satellite cell defects, their pool exhaustion for degeneration/regeneration cycles, or the inhibitory mechanisms caused by muscle damage and fibrosis mediators. Herein, Duchenne muscular dystrophy has been taken as a paradigm, as several drugs have been tested at the preclinical and clinical levels, targeting secondary events in the complex pathogenesis derived from lack of dystrophin. We focused on the crucial roles that pro-inflammatory and pro-fibrotic cytokines play in triggering muscle necrosis after damage and stimulating satellite cell activation and self-renewal, along with growth and mechanical factors. These processes contribute to regeneration and niche maintenance. We review the main effects of drugs on regeneration biomarkers to assess whether targeting pathogenic events can help to protect niche homeostasis and enhance regeneration efficiency other than protecting newly formed fibers from further damage.
Collapse
|
2
|
Younis S, Naboulsi R, Wang X, Cao X, Larsson M, Sargsyan E, Bergsten P, Welsh N, Andersson L. The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells. FASEB J 2020; 34:10250-10266. [PMID: 32557799 DOI: 10.1096/fj.201901321r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5'-GGCTCG-3' in intron 1 of Igf2. Deletion of this motif (Igf2ΔGGCT ) or complete ablation of Zbed6 leads to ~20-fold upregulation of the IGF2 protein. Quantitative proteomics revealed an activation of Ras signaling pathway in both Zbed6-/- and Igf2ΔGGCT myoblasts, and a significant enrichment of mitochondrial membrane proteins among proteins showing altered expression in Zbed6-/- myoblasts. Both Zbed6-/- and Igf2ΔGGCT myoblasts showed a faster growth rate and developed myotube hypertrophy. These cells exhibited an increased O2 consumption rate, due to IGF2 upregulation. Transcriptome analysis revealed ~30% overlap between differentially expressed genes in Zbed6-/- and Igf2ΔGGCT myotubes, with an enrichment of upregulated genes involved in muscle development. In contrast, ZBED6-overexpression in myoblasts led to cell apoptosis, cell cycle arrest, reduced mitochondrial activities, and ceased myoblast differentiation. The similarities in growth and differentiation phenotypes observed in Zbed6-/- and Igf2ΔGGCT myoblasts demonstrates that ZBED6 affects mitochondrial activity and myogenesis largely through its regulation of IGF2 expression. This study adds new insights how the ZBED6-Igf2 axis affects muscle metabolism.
Collapse
Affiliation(s)
- Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Rakan Naboulsi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiaofang Cao
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ernest Sargsyan
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
3
|
Comparative transcriptomic analysis of skeletal muscle tissue during prenatal stages in Tongcheng and Yorkshire pig using RNA-seq. Funct Integr Genomics 2018; 18:195-209. [DOI: 10.1007/s10142-017-0584-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 11/13/2017] [Accepted: 12/13/2017] [Indexed: 01/06/2023]
|
4
|
Maltin CA. Muscle development and obesity: Is there a relationship? Organogenesis 2012; 4:158-69. [PMID: 19279728 DOI: 10.4161/org.4.3.6312] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 05/20/2008] [Indexed: 12/25/2022] Open
Abstract
The formation of skeletal muscle from the epithelial somites involves a series of events triggered by temporally and spatially discrete signals resulting in the generation of muscle fibers which vary in their contractile and metabolic nature. The fiber type composition of muscles varies between individuals and it has now been found that there are differences in fiber type proportions between lean and obese animals and humans. Amongst the possible causes of obesity, it has been suggested that inappropriate prenatal environments may 'program' the fetus and may lead to increased risks for disease in adult life. The characteristics of muscle are both heritable and plastic, giving the tissue some ability to adapt to signals and stimuli both pre and postnatally. Given that muscle is a site of fatty acid oxidation and carbohydrate metabolism and that its development can be changed by prenatal events, it is interesting to examine the possible relationship between muscle development and the risk of obesity.
Collapse
Affiliation(s)
- Charlotte A Maltin
- School of Pharmacy and Life Sciences; Robert Gordon University; Aberdeen UK
| |
Collapse
|
5
|
Kang LHD, Hoh JFY. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers. J Histochem Cytochem 2011; 59:849-63. [PMID: 21705646 DOI: 10.1369/0022155411413817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber-type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber-type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.
Collapse
Affiliation(s)
- Lucia H D Kang
- Discipline of Physiology and the Bosch Institute, School of Medical Sciences, Sydney Medical School, The University of Sydney, New South Wales, Australia
| | | |
Collapse
|
6
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
7
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
8
|
Hagiwara N, Ma B, Ly A. Slow and fast fiber isoform gene expression is systematically altered in skeletal muscle of the Sox6 mutant, p100H. Dev Dyn 2006; 234:301-11. [PMID: 16124007 DOI: 10.1002/dvdy.20535] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have previously demonstrated that p100H mutant mice, which lack a functional Sox6 gene, exhibit skeletal and cardiac muscle degeneration and develop cardiac conduction abnormalities soon after birth. To understand the role of Sox6 in skeletal muscle development, we identified muscle-specific genes differentially expressed between wild-type and p100H mutant skeletal muscles and investigated their temporal expression in the mutant muscle. We found that, in the mutant skeletal muscle, slow fiber and cardiac isoform genes are expressed at significantly higher levels, whereas fast fiber isoform genes are expressed at significantly lower levels than wild-type. Onset of this aberrant fiber type-specific gene expression in the mutant coincides with the beginning of the secondary myotube formation, at embryonic day 15-16 in mice. Together with our earlier report, demonstrating early postnatal muscle defects in the Sox6 null-p100H mutant, the present results suggest that Sox6 likely plays an important role in muscle development.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine, Rowe Program in Genetics, Davis, CA 95616, USA
| | | | | |
Collapse
|
9
|
Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomès D, Tajbakhsh S. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev 2005; 19:1426-31. [PMID: 15964993 PMCID: PMC1151658 DOI: 10.1101/gad.345505] [Citation(s) in RCA: 381] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Skeletal muscle serves as a paradigm for the acquisition of cell fate, yet the relationship between primitive cell populations and emerging myoblasts has remained elusive. We identify a novel population of resident Pax3+/Pax7+, muscle marker-negative cells throughout development. Using mouse mutants that uncouple myogenic progression, we show that these Pax+ cells give rise to muscle progenitors. In the absence of skeletal muscle, they apoptose after down-regulation of Pax7. Furthermore, they mark the emergence of satellite cells during fetal development, and do not require Pax3 function. These findings identify critical cell populations during lineage restriction, and provide a framework for defining myogenic cell states for therapeutic studies.
Collapse
Affiliation(s)
- Lina Kassar-Duchossoy
- Department of Developmental Biology, Pasteur Institute, Centre Nationale de la Recherche Scientifique Unité de Recherche Associeé 2578, 75724 Paris, Cedex 15, France
| | | | | | | | | | | |
Collapse
|
10
|
Zhao H, Pestov NB, Korneenko TV, Shakhparonov MI, Modyanov NN. Accumulation of βm, a structural member of X,K-ATPase β-subunit family, in nuclear envelopes of perinatal myocytes. Am J Physiol Cell Physiol 2004; 286:C757-67. [PMID: 14656723 DOI: 10.1152/ajpcell.00358.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently discovered muscle-specific βmprotein is structurally closely related to the X,K-ATPase β-subunits. However, it has a number of unique properties such as predominant localization in intracellular stores and lack of association with known X,K-ATPase α-subunits on heterologous coexpression. In this study, the primary structure of mouse βmwas determined and developmental regulation of the gene (ATP1B4) was analyzed. The expression is first detected at day 14 of gestation, is sharply increased at day 16, and reaches its maximum at day 18. After birth, the expression quickly decreases and is hardly detectable in adult mice. A more detailed subcellular localization study was undertaken, and its results indicate that βmnot only is located in sarcoplasmic reticulum but is concentrated in nuclear envelopes of both prenatal and postnatal skeletal muscles. Immunohistochemical studies show that βmis specific to myocytes and, at the subcellular level, many nuclear envelopes are intensively labeled in both fetal and newborn skeletal muscles. Accordingly, βmis detected by immunoblotting in purified nuclei and nuclear membranes from neonatal skeletal muscles. On transfection of human rhabdomyosarcoma cell line RD, green fluorescent protein-tagged βmresides intracellularly with significant enrichment in nuclear envelopes, whereas βmwith transmembrane domain deleted localizes in both cytoplasm and nucleoplasm. Nuclear βmapparently is not in association with Na,K-ATPase because we never detected its α-subunit in myonuclear membranes. These results indicate that βmhas a specialized function in mammalian perinatal myocytes, different from functions of other X,K-ATPase β-subunits. The unique temporospatial distribution of βmprotein expression suggests its important role in development of growing skeletal muscle.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Pharmacology, Medical College of Ohio, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
11
|
Nissen PM, Jorgensen PF, Oksbjerg N. Within-litter variation in muscle fiber characteristics, pig performance, and meat quality traits1. J Anim Sci 2004; 82:414-21. [PMID: 14974538 DOI: 10.2527/2004.822414x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to examine the intralitter variation in postnatal growth performance, meat quality, and muscle fiber characteristics when littermates were categorized by carcass weight. Thirty-nine litters were weaned at 4 wk of age and had free access to feed from 2 wk of age until slaughter. They were slaughtered by litter at an average BW of 104 +/- 14 kg, and six pigs per litter were selected for analysis: the heaviest- (HW), middle- (MW), and lightest-weight (LW) pig of each sex. Categorizing littermates in LW, MW, and HW pigs at the same age reflected the differences in postnatal growth rate within a litter; thus ADG, muscle mass, and muscle deposition rate differed across pig weight groups (P < 0.001). Also, the total DNA content was different among pig weight groups (P < 0.001) and reflected differences in muscle growth rate. The difference in muscle growth rate between LW and MW pigs could be explained by a larger (P < 0.05) mean fiber area (MFA) in MW pigs, whereas the number of muscle fibers was similar. Growth rate differences between MW and HW pigs could in part be explained by a higher number (P < 0.01) of equal-sized muscle fibers in HW pigs. The difference in MFA was due to a higher estimated DNA and RNA content per muscle fiber in MW and HW compared with LW pigs (P < 0.05). Pigment content was higher in MW and HW compared with LW pigs (P < 0.01), but no other measured meat quality traits were significantly different across pig weight groups. These results indicate that both the number and the growth rate of muscle fibers contribute to intralitter variation in postnatal growth performance.
Collapse
Affiliation(s)
- P M Nissen
- Department of Food Science, Danish Institute of Agricultural Sciences, DK-8830 Tjele, Denmark.
| | | | | |
Collapse
|
12
|
Cardoso SMP, Mutch P, Scotting PJ, Wigmore PM. Gene transfer into intact fetal skeletal muscle grown in vitro. Muscle Nerve 2004; 30:87-94. [PMID: 15221883 DOI: 10.1002/mus.20051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The development of an organ culture system for growing prenatal intercostal muscle in vitro and its use to study gene function is described. Fetal skeletal muscle is relatively inaccessible during the key stages of its development, and this method enables DNA transfections and other manipulations to be carried out. The system allows cell proliferation and differentiation to continue and also maintains the morphology and fiber types of developing muscle. Gene transfer into cultured embryonic intercostal muscle was achieved by square-pulse electroporation of intact pieces of tissue. Expression of a marker gene (GFP) was found within 5 h and maintained for 2 days in muscle fibers and cells. The technique should enable the function of genes implicated in muscle development and disease to be studied at stages when access is difficult and in a controlled environment.
Collapse
Affiliation(s)
- Sandra M Pinto Cardoso
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | | | |
Collapse
|
13
|
Fonseca S, Wilsons IJ, Horgan GW, Maltin CA. Slow fiber cluster pattern in pig longissimus thoracis muscle: implications for myogenesis. J Anim Sci 2003; 81:973-83. [PMID: 12723087 DOI: 10.2527/2003.814973x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent evidence implicates fiber type proportions as playing a role in meat eating quality, and in pigs it has been suggested that the slow oxidative fibers contribute to both juiciness and tenderness. The fiber distribution in pigs is different from that found in most other species, in which the various types of skeletal muscle fiber are distributed in a "checkerboard" pattern, because in pigs the slow oxidative fibers have a clustered distribution. The initial processes leading to fiber clustering are likely to occur during myogenesis, but the precise mechanistic aetiology of this patterning and whether the slow oxidative fiber clusters occur in a random or ordered fashion is unknown. In the present study longissimus thoracis muscle from Large White crossbred pigs was sampled at the 10th rib, 48 h postmortem. Transverse cryo-sections were cut and histochemically stained to allow the identification of the main muscle fiber types: slow oxidative, fast glycolytic, and fast oxidative glycolytic. Images of the sections were captured and analyzed using point processes and Voronoi Tesselations to examine the randomness and spatial distribution of the clusters of slow oxidative fibers found in pig longissimus thoracis muscle. The results showed that an assumption of complete spatial randomness can be rejected and that a mathematical model incorporating a minimum distance of 1.7 to 2.0 microm between cluster centers produced fiber patterns similar to those observed in the original transverse sections of the muscle. In addition, if it assumed that the central fiber in each cluster is derived from primary myoblast progenitors, these results suggest that there may be some degree of repulsion between the primary fibers during the initial stages of cluster formation. The mechanistic basis of such repulsion is not clear, but it is speculated that secreted factors, such as sonic hedgehog or myostatin may play a role.
Collapse
Affiliation(s)
- S Fonseca
- Rowett Research Institute, Bucksburn Aberdeen, AB21 9SB, U.K
| | | | | | | |
Collapse
|
14
|
Te KG, Reggiani C. Skeletal muscle fibre type specification during embryonic development. J Muscle Res Cell Motil 2003; 23:65-9. [PMID: 12363287 DOI: 10.1023/a:1019940932275] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the last 10 years an increasing number of studies have provided an insight in the signalling mechanisms underlying myogenesis and fibre type specification during embryonic development: this paper aims to review the most relevant findings. In vertebrates a central role in muscle differentiation is played by the MyoD family, a group of transcription factors which activate transcription of muscle specific genes. In turn MyoD family is expressed in response to inductive signals coming from tissues adjacent to somites, in the first place the notochord and the neural tube. Hedgehog and Wnt are among these inductive signals and they find in the future myoblasts a response pathway which includes Ptc, Smu and Gli. The signalling mechanisms have been analysed in model organisms: mouse, chick. zebrafish and Drosophila. For some factors the orthologs in different species have been found to accomplish similar function, but for some other factors important differences are present: for example in Drosophila twist codes for a transcription factor which promotes myogenesis, whereas its ortholog in mouse tends to prevent or inhibit myogenesis. Conversely, nautilus which is the orholog of MyoD in Drosophila does not have a general function in muscle differentiation, but is required for the differentiation of a limited group of muscle fibres.
Collapse
|
15
|
Patel K, Christ B, Stockdale FE. Control of muscle size during embryonic, fetal, and adult life. Results Probl Cell Differ 2003; 38:163-86. [PMID: 12132394 DOI: 10.1007/978-3-540-45686-5_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Ketan Patel
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 OTU, UK
| | | | | |
Collapse
|
16
|
Rees E, Young RD, Evans DJR. Spatial and temporal contribution of somitic myoblasts to avian hind limb muscles. Dev Biol 2003; 253:264-78. [PMID: 12645930 DOI: 10.1016/s0012-1606(02)00028-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Skeletal muscles of the avian limb are derived from mononucleated myogenic precursor cells (myoblasts) that migrate into the somatopleural mesoderm of the developing limb bud from the ventrolateral dermomyotome of limb adjacent somites. In the present study, we utilized replication-deficient lacZ-encoding retroviruses to elucidate the source of myoblasts for all hind limb muscles in the chick and define the distinct patterns of myoblast distribution within the limb. We also examined, using the same marker, whether the time of migration from the somites into the limb dictates the spatial contribution the myoblasts make to the developing musculature, particularly in relation to the proximodistal and dorsovental axes. Finally, we used these investigations to examine whether the precursors of both primary and secondary myotubes are derived from somitic mesoderm, a presumption, which up until now, has not been demonstrated in vivo. Overall, the results of our studies demonstrate that individual somites have a selective spatial pattern of participation in the development of the avian hind limb musculature and contribute to both primary and secondary myotubes. We also show that both early and later migrating myoblasts can contribute fully to the formation of the appendicular muscles.
Collapse
Affiliation(s)
- Elaine Rees
- Cardiff School of Biosciences, Cardiff University, Wales, CF10 3US, UK
| | | | | |
Collapse
|
17
|
Wigmore PM, Evans DJR. Molecular and cellular mechanisms involved in the generation of fiber diversity during myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 216:175-232. [PMID: 12049208 DOI: 10.1016/s0074-7696(02)16006-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Skeletal muscles have a characteristic proportion and distribution of fiber types, a pattern which is set up early in development. It is becoming clear that different mechanisms produce this pattern during early and late stages of myogenesis. In addition, there are significant differences between the formation of muscles in head and those found in rest of the body. Early fiber type differentiation is dependent upon an interplay between patterning systems which include the Wnt and Hox gene families and different myoblast populations. During later stages, innervation, hormones, and functional demand increasingly act to determine fiber type, but individual muscles still retain an intrinsic commitment to form particular fiber types. Head muscle is the only muscle not derived from the somites and follows a different development pathway which leads to the formation of particular fiber types not found elsewhere. This review discusses the formation of fiber types in both head and other muscles using results from both chick and mammalian systems.
Collapse
Affiliation(s)
- Peter M Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
18
|
Shimizu-Nishikawa K, Shibota Y, Takei A, Kuroda M, Nishikawa A. Regulation of specific developmental fates of larval- and adult-type muscles during metamorphosis of the frog Xenopus. Dev Biol 2002; 251:91-104. [PMID: 12413900 DOI: 10.1006/dbio.2002.0800] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During anuran metamorphosis, larval-type myotubes in both trunk and tail are removed by apoptosis, and only trunk muscles are replaced by newly formed adult-type myotubes. In the present study, we clarified the regulatory mechanisms for specific developmental fates of adult and larval muscles. Two distinct (adult and larval) types of myoblasts were found to exist in the trunk, but no or very few adult myoblasts were found in the tail. Each type of myoblast responded differently to metamorphic trigger, 3,3',5-triiodo-L-thyronine (T(3)) in vitro. T(3)-induced cell death was observed in larval myoblasts but not in adult myoblasts. These results suggest that the fates (life or death) of trunk and tail muscles are determined primarily by the differential distribution of adult myoblasts within the muscles. However, a transplantation study clarified that each larval and adult myoblast was not committed to fuse into particular myotube types, and they could form heterokaryon myotubes in vivo. Cell culture experiments suggested that the following two mechanisms are involved in the specification of myotube fate: (1) Heterokaryon myotubes could escape T(3)-induced death only when the proportion of adult nuclei number was higher than 70% in the myotubes. Apoptosis was not observed in any larval nuclei within the surviving heterokaryon myotubes, suggesting the conversion of larval nuclei fate. (2) Differentiation of adult myoblasts was promoted by the factor(s) released from larval myoblasts in a cell type-specific manner. Taken together, the developmental fate of myotubes is determined by the ratio of nuclei types, and the formation of adult nuclei-rich myotubes was specifically enhanced by larval myoblast factor(s).
Collapse
Affiliation(s)
- Keiko Shimizu-Nishikawa
- Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane, 690-8504, Japan
| | | | | | | | | |
Collapse
|
19
|
Pin CL, Hrycyshyn AW, Rogers KA, Rushlow WJ, Merrifield PA. Embryonic and fetal rat myoblasts form different muscle fiber types in an ectopic in vivo environment. Dev Dyn 2002; 224:253-66. [PMID: 12112456 DOI: 10.1002/dvdy.10106] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Limb muscle development is characterized by the migration of muscle precursor cells from the somite followed by myoblast differentiation and the maturation of myotubes into distinct muscle fiber types. Previous in vitro experiments have suggested that rat limb myoblasts are composed of at least two distinct myoblast subpopulations that appear in the developing hindlimb at different developmental stages. These embryonic and fetal myoblast subpopulations are believed to generate primary and secondary myotubes, respectively. To test this hypothesis, cells obtained from embryonic day 14 (ED 14) and ED 20 rat hindlimbs were analyzed for myosin heavy chain expression after long-term differentiation in adult rat brains. Fetal myoblasts from ED 20 hindlimbs produced muscle fibers with a phenotype similar to that seen in tissue culture--predominantly fast myosin with a small proportion also coexpressing slow myosin. However, injection sites populated by embryonic myoblasts from ED 14 hindlimbs produced a different phenotype from that previously reported in culture, with fibers expressing an entire array of myosin isoforms. In addition, a subpopulation of fibers expressing exclusively slow myosin was found only in the embryonic injection sites. Our results support the existence of at least three myogenic subpopulations in early rat limb buds with only one exhibiting the capability to differentiate in vitro. These findings are consistent with a model of muscle fiber type development in which the fiber type potential of myoblast populations is established before differentiation into myotubes. This process establishes myogenic subpopulations that have restricted adaptive ranges regulated by both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Christopher L Pin
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
20
|
Abstract
Isoform diversity in striated muscle is largely controlled at the level of transcription. In this review we will concentrate on studies concerning transcriptional regulation of the alkali myosin light chain 1F/3F gene. Uncoupled activity of the MLC1F and 3F promoters, together with complex patterns of transcription in developing skeletal and cardiac muscle, combine to make analysis of this gene particularly intriguing. In vitro and transgenic studies of MLC1F/3F regulatory elements have revealed an array of cis-acting modules that each drive a subset of the expression pattern of the two promoters. These cis-acting regulatory modules, including the MLC1F and 3F promoter regions and two skeletal muscle enhancers, control tissue-specificity, cell or fibre-type specificity, and the spatiotemporal regulation of gene expression, including positional information. How each of these regulatory modules acts and how their individual activites are integrated to coordinate transcription at this locus are discussed.
Collapse
Affiliation(s)
- R G Kelly
- CNRS URA 1947, Département de Biologie Moléculaire, Institut Pasteur, 75724 Paris Cedex 15, France
| | | |
Collapse
|