1
|
Daly I, Williams N, Nasuto SJ. TMS-evoked potential propagation reflects effective brain connectivity. J Neural Eng 2024; 21:066038. [PMID: 39671798 DOI: 10.1088/1741-2552/ad9ee0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Objective.Cognition is achieved through communication between brain regions. Consequently, there is considerable interest in measuring effective connectivity. A promising effective connectivity metric is transcranial magnetic stimulation (TMS) evoked potentials (TEPs), an inflection in amplitude of the electroencephalogram recorded from one brain region as a result of TMS applied to another region. However, the TEP is confounded by multiple factors and there is a need for further investigation of the TEP as a measure of effective connectivity and to compare it to existing statistical measures of effective connectivity.Approach.To this end, we used a pre-existing experimental dataset to compare TEPs between a motor control task with and without visual feedback. We then used the results to compare our TEP-based measures of effective connectivity to established statistical measures of effective connectivity provided by multivariate auto-regressive modelling.Main results.Our results reveal significantly more negative TEPs when feedback is not presented from 40 ms to 100 ms post-TMS over frontal and central channels. We also see significantly more positive later TEPs from 280-400 ms on the contra-lateral hemisphere motor and parietal channels when no feedback is presented. These results suggest differences in effective connectivity are induced by visual feedback of movement. We further find that the variation in one of these early TEPs (the N40) is reliably related to directed coherence.Significance.Taken together, these results indicate components of the TEPs serve as a measure of effective connectivity. Furthermore, our results also support the idea that effective connectivity is a dynamic process and, importantly, support the further use of TEPs in delineating region-to-region maps of changes in effective connectivity as a result of motor control feedback.
Collapse
Affiliation(s)
- Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Nitin Williams
- Department of Neuroscience & Biomedical Engineering, Aalto University, Espoo, Finland
- Department of Computer Science, University of Helsinki, Helsinki, Finland
| | - Slawomir J Nasuto
- Biomedical Sciences and Biomedical Engineering Division, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
2
|
Balasubramanian P, De Leon RP, Snyder DB, Beardsley SA, Hyngstrom AS, Schmit BD. Altered Cortical Activity during a Finger Tap in People with Stroke. Brain Topogr 2024; 37:907-920. [PMID: 38722465 DOI: 10.1007/s10548-024-01049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 09/14/2024]
Abstract
This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Roxanne P De Leon
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Dylan B Snyder
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Allison S Hyngstrom
- Department of Physical Therapy, Marquette University, Milwaukee, WI, 53201, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA.
| |
Collapse
|
3
|
Zhang L, Bao K, Liao Y. Enhanced Post-Movement Beta Rebound: Unraveling the Impact of Preplanned Sequential Actions. J Mot Behav 2024; 56:727-737. [PMID: 39138969 DOI: 10.1080/00222895.2024.2384886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
The Post-Movement Beta Rebound (PMBR) is the increase in beta-band power after voluntary movement ends, but its specific role in cognitive processing is unclear. Current theory links PMBR with updates to internal models, mental frameworks that help anticipate and react to sensory feedback. However, research has not explored how reactivating a preexisting action plan, another source for internal model updates, might affect PMBR intensity. To address this gap, we recruited 20 participants (mean age 18.55 ± 0.51; 12 females) for an experiment involving isolated (single-step) or sequential (two-step) motor tasks based on predetermined cues. We compared PMBR after single-step movements with PMBR after the first movement in two-step tasks to assess the influence of a subsequent action on the PMBR power associated with the first action. The results show a significant increase in PMBR magnitude after the first movement in sequential tasks compared to the second action and the isolated movements. Notably, this increase is more pronounced for right-hand movements, suggesting lateralized brain activity in the left hemisphere. These findings indicate that PMBR is influenced not only by external stimuli but also by internal cognitive processes such as working memory. This insight enhances our understanding of PMBR's role in motor control, emphasizing the integration of both external and internal information.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Kaige Bao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Yu Liao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Zhang Y, Li M, Wang H, Zhang M, Xu G. Preparatory movement state enhances premovement EEG representations for brain-computer interfaces. J Neural Eng 2024; 21:036044. [PMID: 38806037 DOI: 10.1088/1741-2552/ad5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/28/2024] [Indexed: 05/30/2024]
Abstract
Objective. Motor-related brain-computer interface (BCI) have a broad range of applications, with the detection of premovement intentions being a prominent use case. However, the electroencephalography (EEG) features during the premovement phase are not distinctly evident and are susceptible to attentional influences. These limitations impede the enhancement of performance in motor-based BCI. The objective of this study is to establish a premovement BCI encoding paradigm that integrates the preparatory movement state and validates its feasibility in improving the detection of movement intentions.Methods. Two button tasks were designed to induce subjects into a preparation state for two movement intentions (left and right) based on visual guidance, in contrast to spontaneous premovement. The low frequency movement-related cortical potentials (MRCPs) and high frequency event-related desynchronization (ERD) EEG data of 14 subjects were recorded. Extracted features were fused and classified using task related common spatial patterns (CSP) and CSP algorithms. Differences between prepared premovement and spontaneous premovement were compared in terms of time domain, frequency domain, and classification accuracy.Results. In the time domain, MRCPs features reveal that prepared premovement induce lower amplitude and earlier latency on both contralateral and ipsilateral motor cortex compared to spontaneous premovement, with susceptibility to the dominant hand's influence. Frequency domain ERD features indicate that prepared premovement induce lower ERD values bilaterally, and the ERD recovery speed after button press is the fastest. By using the fusion approach, the classification accuracy increased from 78.92% for spontaneous premovement to 83.59% for prepared premovement (p< 0.05). Along with the 4.67% improvement in classification accuracy, the standard deviation decreased by 0.95.Significance. The research findings confirm that incorporating a preparatory state into premovement enhances neural representations related to movement. This encoding enhancement paradigm effectively improves the performance of motor-based BCI. Additionally, this concept has the potential to broaden the range of decodable movement intentions and related information in motor-related BCI.
Collapse
Affiliation(s)
- Yuxin Zhang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Mengfan Li
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Haili Wang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Mingyu Zhang
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Guizhi Xu
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, People's Republic of China
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, People's Republic of China
| |
Collapse
|
5
|
Lopes J, Miziara I, Kahani D, Parreira R, Fonseca D, Lazzari R, Cordeiro L, Naves E, Cimolin V, Galli M, Conway B, Oliveira C. Brain wave behavior in children with down syndrome following cortical neuromodulation combined with sensorimotor stimulation: observational study. Physiother Theory Pract 2024; 40:941-951. [PMID: 36384401 DOI: 10.1080/09593985.2022.2147808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Individuals with Down syndrome (DS) require more time to develop motor and/or cognitive skills. Neuromodulation is used to assist in this development. However, there is a gap in the literature on neurophysiological changes that may occur in the primary motor cortex in individuals with DS following neuromodulation. OBJECTIVE Our objective was to investigate possible neurophysiological changes in brain wave behavior of the primary motor cortex following the administration of anodal transcranial direct current stimulation combined with sensorimotor training. METHODS The study involved 12 participants with DS. EEG equipment was used to investigate brain activity. The participants received neuromodulation involving anodal tDCS for 20 minutes with a current of 1 mA combined with virtual reality (VR) training three times a week for a total of ten sessions. We analyzed EGG signals and 3D movement during a reaching movement of the dominant upper limb before and after the ten-session protocol. RESULTS Significant differences in event-related desynchronization and event-related synchronization of the alpha and beta rhythms were found throughout the evaluations. Brain mapping revealed reductions in power and frequency, demonstrating changes in the patterns of these rhythms in the cerebral cortex. Revealed reorganization of the behavior of alpha and beta waves, as demonstrated by distribution of synchronization and desynchronization of these waves among the regions of the brain. CONCLUSION The results suggest that anodal tDCS promotes the reorganization of brain impulses, redirecting these impulses to the required regions more efficiently and contributing to better motor planning.
Collapse
Affiliation(s)
- Jamile Lopes
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Isabela Miziara
- Electrical and Biomedical Engineering, Technology Institute, Federal University of Pará, Belém, PA, Brazil
| | - Danial Kahani
- Department of Bioengineering, University of Strathclyde, Glasgow, UK
| | - Rodolfo Parreira
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Daniela Fonseca
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| | - Roberta Lazzari
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
| | - Lorraine Cordeiro
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| | - Eduardo Naves
- Electrical Engineering Faculty, Federal University of Uberlândia, Uberlândia, Brazil
| | - Veronica Cimolin
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Istituto Auxologico Italiano - IRCCS, San Giuseppe Hospital, Piancavallo, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Bernard Conway
- Department of Bioengineering, University of Strathclyde, Glasgow, UK
| | - Claudia Oliveira
- School of Medical Sciences, Santa Casa de São Paulo, 112 Doutor Cesário Street, São Paulo, SP, Brazil
- Movement Analysis Lab, University Centre of Anápolis, Anápolis, Brazil
| |
Collapse
|
6
|
Rueda Parra S, Perry JC, Wolbrecht ET, Gupta D. Neural correlates of bilateral proprioception and adaptation with training. PLoS One 2024; 19:e0299873. [PMID: 38489319 PMCID: PMC10942095 DOI: 10.1371/journal.pone.0299873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Bilateral proprioception includes the ability to sense the position and motion of one hand relative to the other, without looking. This sensory ability allows us to perform daily activities seamlessly, and its impairment is observed in various neurological disorders such as cerebral palsy and stroke. It can undergo experience-dependent plasticity, as seen in trained piano players. If its neural correlates were better understood, it would provide a useful assay and target for neurorehabilitation for people with impaired proprioception. We designed a non-invasive electroencephalography-based paradigm to assess the neural features relevant to proprioception, especially focusing on bilateral proprioception, i.e., assessing the limb distance from the body with the other limb. We compared it with a movement-only task, with and without the visibility of the target hand. Additionally, we explored proprioceptive accuracy during the tasks. We tested eleven Controls and nine Skilled musicians to assess whether sensorimotor event-related spectral perturbations in μ (8-12Hz) and low-β (12-18Hz) rhythms differ in people with musical instrument training, which intrinsically involves a bilateral proprioceptive component, or when new sensor modalities are added to the task. The Skilled group showed significantly reduced μ and low-β suppression in bilateral tasks compared to movement-only, a significative difference relative to Controls. This may be explained by reduced top-down control due to intensive training, despite this, proprioceptive errors were not smaller for this group. Target visibility significantly reduced proprioceptive error in Controls, while no change was observed in the Skilled group. During visual tasks, Controls exhibited significant μ and low-β power reversals, with significant differences relative to proprioceptive-only tasks compared to the Skilled group-possibly due to reduced uncertainty and top-down control. These results provide support for sensorimotor μ and low-β suppression as potential neuromarkers for assessing proprioceptive ability. The identification of these features is significant as they could be used to quantify altered proprioceptive neural processing in skill and movement disorders. This in turn can be useful as an assay for pre and post sensory-motor intervention research.
Collapse
Affiliation(s)
- Sebastian Rueda Parra
- Department of Electrical Engineering, University of Idaho, Moscow, Idaho, United States of America
- Stratton Veterans Affairs Medical Center, Albany, New York
| | - Joel C. Perry
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Eric T. Wolbrecht
- Department of Mechanical Engineering, University of Idaho, Moscow, Idaho, United States of America
| | - Disha Gupta
- Stratton Veterans Affairs Medical Center, Albany, New York
- Department of Electrical and Computer Engineering, University at Albany, State University of New York, Albany, New York, United States of America
| |
Collapse
|
7
|
Zhang X, Wang H, Guo Y, Long J. Beta rebound reduces subsequent movement preparation time by modulating of GABAA inhibition. Cereb Cortex 2024; 34:bhae037. [PMID: 38342689 DOI: 10.1093/cercor/bhae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/13/2024] Open
Abstract
Post-movement beta synchronization is an increase of beta power relative to baseline, which commonly used to represent the status quo of the motor system. However, its functional role to the subsequent voluntary motor output and potential electrophysiological significance remain largely unknown. Here, we examined the reaction time of a Go/No-Go task of index finger tapping which performed at the phases of power baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds (ballistic/self-paced) in 13 healthy subjects. We found a correlation between the post-movement beta synchronization and reaction time that larger post-movement beta synchronization prolonged the reaction time during Go trials. To probe the electrophysiological significance of post-movement beta synchronization, we assessed intracortical inhibitory measures probably involving GABAB (long-interval intracortical inhibition) and GABAA (short-interval intracortical inhibition) receptors in beta baseline and post-movement beta synchronization peak induced by index finger abduction movements at different speeds. We found that short-interval intracortical inhibition but not long-interval intracortical inhibition increased in post-movement beta synchronization peak compared with that in the power baseline, and was negatively correlated with the change of post-movement beta synchronization peak value. These novel findings indicate that the post-movement beta synchronization is related to forward model updating, with high beta rebound predicting longer time for the preparation of subsequent movement by inhibitory neural pathways of GABAA.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- School of Psychology, Northwest Normal University, Lanzhou 730070, China
| | - Houmin Wang
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaqiu Guo
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- Pazhou Lab, Guangzhou 510335, China
| |
Collapse
|
8
|
Nasrawi R, Boettcher SEP, van Ede F. Prospection of Potential Actions during Visual Working Memory Starts Early, Is Flexible, and Predicts Behavior. J Neurosci 2023; 43:8515-8524. [PMID: 37857486 PMCID: PMC10711698 DOI: 10.1523/jneurosci.0709-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
For visual working memory to serve upcoming behavior, it is crucial that we prepare for the potential use of working-memory contents ahead of time. Recent studies have demonstrated how the prospection and planning for an upcoming manual action starts early after visual encoding, and occurs alongside visual retention. Here, we address whether such "output planning" in visual working memory flexibly adapts to different visual-motor mappings, and occurs even when an upcoming action will only potentially become relevant for behavior. Human participants (female and male) performed a visual-motor working memory task in which they remembered one or two colored oriented bars for later (potential) use. We linked, and counterbalanced, the tilt of the visual items to specific manual responses. This allowed us to track planning of upcoming behavior through contralateral attenuation of β band activity, a canonical motor-cortical EEG signature of manual-action planning. The results revealed how action encoding and subsequent planning alongside visual working memory (1) reflect anticipated task demands rather than specific visual-motor mappings, (2) occur even for actions that will only potentially become relevant for behavior, and (3) are associated with faster performance for the encoded item, at the expense of performance to other working-memory content. This reveals how the potential prospective use of visual working memory content is flexibly planned early on, with consequences for the speed of memory-guided behavior.SIGNIFICANCE STATEMENT It is increasingly studied how visual working memory helps us to prepare for the future, in addition to how it helps us to hold onto the past. Recent studies have demonstrated that the planning of prospective actions occurs alongside encoding and retention in working memory. We show that such early "output planning" flexibly adapts to varying visual-motor mappings, occurs both for certain and potential actions, and predicts ensuing working-memory guided behavior. These results highlight the flexible and future-oriented nature of visual working memory, and provide insight into the neural basis of the anticipatory dynamics that translate visual representations into adaptive upcoming behavior.
Collapse
Affiliation(s)
- Rose Nasrawi
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands
| | - Sage E P Boettcher
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
| | - Freek van Ede
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands
| |
Collapse
|
9
|
Miao M, Yang Z, Zeng H, Zhang W, Xu B, Hu W. Explainable cross-task adaptive transfer learning for motor imagery EEG classification. J Neural Eng 2023; 20:066021. [PMID: 37963394 DOI: 10.1088/1741-2552/ad0c61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Objective. In the field of motor imagery (MI) electroencephalography (EEG)-based brain-computer interfaces, deep transfer learning (TL) has proven to be an effective tool for solving the problem of limited availability in subject-specific data for the training of robust deep learning (DL) models. Although considerable progress has been made in the cross-subject/session and cross-device scenarios, the more challenging problem of cross-task deep TL remains largely unexplored.Approach. We propose a novel explainable cross-task adaptive TL method for MI EEG decoding. Firstly, similarity analysis and data alignment are performed for EEG data of motor execution (ME) and MI tasks. Afterwards, the MI EEG decoding model is obtained via pre-training with extensive ME EEG data and fine-tuning with partial MI EEG data. Finally, expected gradient-based post-hoc explainability analysis is conducted for the visualization of important temporal-spatial features.Main results. Extensive experiments are conducted on one large ME EEG High-Gamma dataset and two large MI EEG datasets (openBMI and GIST). The best average classification accuracy of our method reaches 80.00% and 72.73% for OpenBMI and GIST respectively, which outperforms several state-of-the-art algorithms. In addition, the results of the explainability analysis further validate the correlation between ME and MI EEG data and the effectiveness of ME/MI cross-task adaptation.Significance. This paper confirms that the decoding of MI EEG can be well facilitated by pre-existing ME EEG data, which largely relaxes the constraint of training samples for MI EEG decoding and is important in a practical sense.
Collapse
Affiliation(s)
- Minmin Miao
- School of Information Engineering, Huzhou University, Huzhou, People's Republic of China
- Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou, People's Republic of China
| | - Zhong Yang
- School of Information Engineering, Huzhou University, Huzhou, People's Republic of China
| | - Hong Zeng
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Wenbin Zhang
- College of Computer and Information, Hohai University, Nanjing, People's Republic of China
| | - Baoguo Xu
- School of Instrument Science and Engineering, Southeast University, Nanjing, People's Republic of China
| | - Wenjun Hu
- School of Information Engineering, Huzhou University, Huzhou, People's Republic of China
- Zhejiang Province Key Laboratory of Smart Management & Application of Modern Agricultural Resources, Huzhou University, Huzhou, People's Republic of China
| |
Collapse
|
10
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Gu B, Wang K, Chen L, He J, Zhang D, Xu M, Wang Z, Ming D. Study of the Correlation between the Motor Ability of the Individual Upper Limbs and Motor Imagery Induced Neural Activities. Neuroscience 2023; 530:56-65. [PMID: 37652289 DOI: 10.1016/j.neuroscience.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/13/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Motor imagery based brain-computer interfaces (MI-BCIs) have excellent application prospects in motor enhancement and rehabilitation. However, MI-induced electroencephalogram features applied to MI-BCI usually vary from person to person. This study aimed to investigate whether the motor ability of the individual upper limbs was associated with these features, which helps understand the causes of inter-subject variability. We focused on the behavioral and psychological factors reflecting motor abilities. We first obtained the behavioral scale scores from Edinburgh Handedness Questionnaire, Maximum Grip Strength Test, and Purdue Pegboard Test assessments to evaluate the motor execution ability. We also required the subjects to complete the psychological Movement Imagery Questionnaire-3 estimate, representing MI ability. Then we recorded EEG signals from all twenty-two subjects during MI tasks. Pearson correlation coefficient and stepwise regression were used to analyze the relationships between MI-induced relative event-related desynchronization (rERD) patterns and motor abilities. Both Purdue Pegboard Test and Movement Imagery Questionnaire-3 scores had significant correlations with MI-induced neural oscillation patterns. Notably, the Purdue Pegboard Test of the left hand had the most significant correlation with the alpha rERD. The results of stepwise multiple regression analysis showed that the Purdue Pegboard Test and Movement Imagery Questionnaire-3 could best predict the MI-induced rERD. The results demonstrate that hand dexterity and fine motor coordination are significantly related to MI-induced neural activities. In addition, the method of imagining is also relevant to MI features. Therefore, this study is meaningful for understanding individual differences and the design of user-centered MI-BCI.
Collapse
Affiliation(s)
- Bin Gu
- SUISHI (Tianjin) Intelligence Ltd, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China.
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China.
| | - Jiatong He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Dingze Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Zhongpeng Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China
| |
Collapse
|
12
|
Inamoto T, Ueda M, Ueno K, Shiroma C, Morita R, Naito Y, Ishii R. Motor-Related Mu/Beta Rhythm in Older Adults: A Comprehensive Review. Brain Sci 2023; 13:brainsci13050751. [PMID: 37239223 DOI: 10.3390/brainsci13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mu rhythm, also known as the mu wave, occurs on sensorimotor cortex activity at rest, and the frequency range is defined as 8-13Hz, the same frequency as the alpha band. Mu rhythm is a cortical oscillation that can be recorded from the scalp over the primary sensorimotor cortex by electroencephalogram (EEG) and magnetoencephalography (MEG). The subjects of previous mu/beta rhythm studies ranged widely from infants to young and older adults. Furthermore, these subjects were not only healthy people but also patients with various neurological and psychiatric diseases. However, very few studies have referred to the effect of mu/beta rhythm with aging, and there was no literature review about this theme. It is important to review the details of the characteristics of mu/beta rhythm activity in older adults compared with young adults, focusing on age-related mu rhythm changes. By comprehensive review, we found that, compared with young adults, older adults showed mu/beta activity change in four characteristics during voluntary movement, increased event-related desynchronization (ERD), earlier beginning and later end, symmetric pattern of ERD and increased recruitment of cortical areas, and substantially reduced beta event-related desynchronization (ERS). It was also found that mu/beta rhythm patterns of action observation were changing with aging. Future work is needed in order to investigate not only the localization but also the network of mu/beta rhythm in older adults.
Collapse
Affiliation(s)
- Takashi Inamoto
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-8555, Japan
- Faculty of Health Sciences, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Masaya Ueda
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Keita Ueno
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - China Shiroma
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Rin Morita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Yasuo Naito
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Ryouhei Ishii
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
13
|
Primary somatosensory cortex sensitivity may increase upon completion of a motor task. Neurosci Lett 2023; 801:137160. [PMID: 36858306 DOI: 10.1016/j.neulet.2023.137160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVES The electroencephalogram and magnetic field primary somatosensory cortex (S1)-derived components are attenuated before and during motor tasks compared to the resting state, a phenomenon called gating; however, the S1 response after a motor task has not been well studied. We aimed to investigate sensory information processing immediately after motor tasks using magnetoencephalography. MATERIALS AND METHODS We investigated sensory information processing immediately after finger movement using magnetoencephalography in 14 healthy adults. Volunteers performed a simple reaction task where they were required to press a button when they received a cue. In parallel, electrical stimulation to the right index finger was applied at regular intervals to detect the magnetic brain field changes. The end of the motor task timing was defined using the event-related synchronization (ERS) appearance latency in the brain magnetic field's beta band around the primary motor cortex. The ERS appearance latency and the sensory stimuli timing applied every 500 ms were synchronized over the experimental system timeline. We examined whether there was a difference in the S1 somatosensory evoked field responses between the ERS emergence and ERS disappearance phase, focusing on the N20m-P35m peak-to-peak amplitude (N20m-P35m amplitude) value. A control experiment was also conducted in which only sensory stimulation was applied with no motor task. RESULTS The N20m-P35m mean amplitude value was significantly higher in the ERS emergence phase (15.81 nAm; standard deviation [SD], 6.54 nAm) than in the ERS disappearance phase (13.54 nAm; SD, 5.12 nAm) (p < 0.05) and the control (12.08 nAm, SD 5.61 nAm) (p = 0.013). No statistically significant differences were identified between the ERS disappearance phase and the control (p = 0.281). CONCLUSIONS The S1 sensitivity may increase rapidly after exiting from the gating influence in S1 (after completing a motor task).
Collapse
|
14
|
Lockhart AK, Sharpley CF, Bitsika V. Mu Desynchronisation in Autistic Individuals: What We Know and What We Need to Know. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2023. [DOI: 10.1007/s40489-023-00354-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
AbstractAutism spectrum disorder (ASD) is a neurodevelopmental condition that includes social-communication deficits and repetitive and stereotypical behaviours (APA 2022). Neurobiological methods of studying ASD are a promising methodology for identifying ASD biomarkers. Mu rhythms (Mu) have the potential to shed light on the socialisation deficits that characterise ASD; however, Mu/ASD studies thus far have yielded inconsistent results. This review examines the existing Mu/ASD studies to determine where this variability lies to elucidate potential factors that can be addressed in future studies.
Collapse
|
15
|
Correia JP, Vaz JR, Domingos C, Freitas SR. From thinking fast to moving fast: motor control of fast limb movements in healthy individuals. Rev Neurosci 2022; 33:919-950. [PMID: 35675832 DOI: 10.1515/revneuro-2021-0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
The ability to produce high movement speeds is a crucial factor in human motor performance, from the skilled athlete to someone avoiding a fall. Despite this relevance, there remains a lack of both an integrative brain-to-behavior analysis of these movements and applied studies linking the known dependence on open-loop, central control mechanisms of these movements to their real-world implications, whether in the sports, performance arts, or occupational setting. In this review, we cover factors associated with the planning and performance of fast limb movements, from the generation of the motor command in the brain to the observed motor output. At each level (supraspinal, peripheral, and motor output), the influencing factors are presented and the changes brought by training and fatigue are discussed. The existing evidence of more applied studies relevant to practical aspects of human performance is also discussed. Inconsistencies in the existing literature both in the definitions and findings are highlighted, along with suggestions for further studies on the topic of fast limb movement control. The current heterogeneity in what is considered a fast movement and in experimental protocols makes it difficult to compare findings in the existing literature. We identified the role of the cerebellum in movement prediction and of surround inhibition in motor slowing, as well as the effects of fatigue and training on central motor control, as possible avenues for further research, especially in performance-driven populations.
Collapse
Affiliation(s)
- José Pedro Correia
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - João R Vaz
- CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal.,Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| | - Christophe Domingos
- CIEQV, Escola Superior de Desporto de Rio Maior, Instituto Politécnico de Santarém, Av. Dr. Mário Soares nº 110, 2040-413, Rio Maior, Portugal
| | - Sandro R Freitas
- Laboratório de Função Neuromuscular, Faculdade de Motricidade Humana, Universidade de Lisboa, Estrada da Costa, 1495-751, Cruz Quebrada, Portugal
| |
Collapse
|
16
|
Fahimi Hnazaee M, Verwoert M, Freudenburg ZV, van der Salm SMA, Aarnoutse EJ, Leinders S, Van Hulle MM, Ramsey NF, Vansteensel MJ. Towards predicting ECoG-BCI performance: assessing the potential of scalp-EEG . J Neural Eng 2022; 19:046045. [PMID: 35931055 DOI: 10.1088/1741-2552/ac8764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022]
Abstract
Objective. Implanted brain-computer interfaces (BCIs) employ neural signals to control a computer and may offer an alternative communication channel for people with locked-in syndrome (LIS). Promising results have been obtained using signals from the sensorimotor (SM) area. However, in earlier work on home-use of an electrocorticography (ECoG)-based BCI by people with LIS, we detected differences in ECoG-BCI performance, which were related to differences in the modulation of low frequency band (LFB) power in the SM area. For future clinical implementation of ECoG-BCIs, it will be crucial to determine whether reliable performance can be predicted before electrode implantation. To assess if non-invasive scalp-electroencephalography (EEG) could serve such prediction, we here investigated if EEG can detect the characteristics observed in the LFB modulation of ECoG signals.Approach. We included three participants with LIS of the earlier study, and a control group of 20 healthy participants. All participants performed a Rest task, and a Movement task involving actual (healthy) or attempted (LIS) hand movements, while their EEG signals were recorded.Main results.Data of the Rest task was used to determine signal-to-noise ratio, which showed a similar range for LIS and healthy participants. Using data of the Movement task, we selected seven EEG electrodes that showed a consistent movement-related decrease in beta power (13-30 Hz) across healthy participants. Within the EEG recordings of this subset of electrodes of two LIS participants, we recognized the phenomena reported earlier for the LFB in their ECoG recordings. Specifically, strong movement-related beta band suppression was observed in one, but not the other, LIS participant, and movement-related alpha band (8-12 Hz) suppression was practically absent in both. Results of the third LIS participant were inconclusive due to technical issues with the EEG recordings.Significance. Together, these findings support a potential role for scalp EEG in the presurgical assessment of ECoG-BCI candidates.
Collapse
Affiliation(s)
| | - Maxime Verwoert
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Zachary V Freudenburg
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sandra M A van der Salm
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sacha Leinders
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc M Van Hulle
- Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, KU Leuven, Belgium
| | - Nick F Ramsey
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
17
|
Lima Dias Pinto I, Rungratsameetaweemana N, Flaherty K, Periyannan A, Meghdadi A, Richard C, Berka C, Bansal K, Garcia JO. Intermittent brain network reconfigurations and the resistance to social media influence. Netw Neurosci 2022; 6:870-896. [PMID: 36605415 PMCID: PMC9810364 DOI: 10.1162/netn_a_00255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Since its development, social media has grown as a source of information and has a significant impact on opinion formation. Individuals interact with others and content via social media platforms in a variety of ways, but it remains unclear how decision-making and associated neural processes are impacted by the online sharing of informational content, from factual to fabricated. Here, we use EEG to estimate dynamic reconfigurations of brain networks and probe the neural changes underlying opinion change (or formation) within individuals interacting with a simulated social media platform. Our findings indicate that the individuals who changed their opinions are characterized by less frequent network reconfigurations while those who did not change their opinions tend to have more flexible brain networks with frequent reconfigurations. The nature of these frequent network configurations suggests a fundamentally different thought process between intervals in which individuals are easily influenced by social media and those in which they are not. We also show that these reconfigurations are distinct to the brain dynamics during an in-person discussion with strangers on the same content. Together, these findings suggest that brain network reconfigurations may not only be diagnostic to the informational context but also the underlying opinion formation.
Collapse
Affiliation(s)
| | | | - Kristen Flaherty
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA,Cornell Tech, New York, NY, USA
| | - Aditi Periyannan
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA,Tufts University, Medford, MA, USA
| | | | | | - Chris Berka
- Advanced Brain Monitoring, Carlsbad, CA, USA
| | - Kanika Bansal
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA,Department of Biomedical Engineering, Columbia University, New York, NY, USA,* Corresponding Authors: ;
| | - Javier Omar Garcia
- US DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA,* Corresponding Authors: ;
| |
Collapse
|
18
|
Schaefer LV, Bittmann FN. Case Study: Intra- and Interpersonal Coherence of Muscle and Brain Activity of Two Coupled Persons during Pushing and Holding Isometric Muscle Action. Brain Sci 2022; 12:703. [PMID: 35741589 PMCID: PMC9221481 DOI: 10.3390/brainsci12060703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Inter-brain synchronization is primarily investigated during social interactions but had not been examined during coupled muscle action between two persons until now. It was previously shown that mechanical muscle oscillations can develop coherent behavior between two isometrically interacting persons. This case study investigated if inter-brain synchronization appears thereby, and if differences of inter- and intrapersonal muscle and brain coherence exist regarding two different types of isometric muscle action. Electroencephalography (EEG) and mechanomyography/mechanotendography (MMG/MTG) of right elbow extensors were recorded during six fatiguing trials of two coupled isometrically interacting participants (70% MVIC). One partner performed holding and one pushing isometric muscle action (HIMA/PIMA; tasks changed). The wavelet coherence of all signals (EEG, MMG/MTG, force, ACC) were analyzed intra- and interpersonally. The five longest coherence patches in 8−15 Hz and their weighted frequency were compared between real vs. random pairs and between HIMA vs. PIMA. Real vs. random pairs showed significantly higher coherence for intra-muscle, intra-brain, and inter-muscle-brain activity (p < 0.001 to 0.019). Inter-brain coherence was significantly higher for real vs. random pairs for EEG of right and central areas and for sub-regions of EEG left (p = 0.002 to 0.025). Interpersonal muscle-brain synchronization was significantly higher than intrapersonal one, whereby it was significantly higher for HIMA vs. PIMA. These preliminary findings indicate that inter-brain synchronization can arise during muscular interaction. It is hypothesized both partners merge into one oscillating neuromuscular system. The results reinforce the hypothesis that HIMA is characterized by more complex control strategies than PIMA. The pilot study suggests investigating the topic further to verify these results on a larger sample size. Findings could contribute to the basic understanding of motor control and is relevant for functional diagnostics such as the manual muscle test which is applied in several disciplines, e.g., neurology, physiotherapy.
Collapse
Affiliation(s)
- Laura V. Schaefer
- Devision of Regulative Physiology and Prevention, Department of Sport and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany;
| | | |
Collapse
|
19
|
Abstract
The use of haptic technologies in modern life scenarios is becoming the new normal particularly in rehabilitation, medical training, and entertainment applications. An evident challenge in haptic telepresence systems is the delay in haptic information. How humans perceive delayed visual and audio information has been extensively studied, however, the same for haptically delayed environments remains largely unknown. Here, we develop a visuo-haptic experimental setting that simulates pick and place task and involves continuous haptic feedback stimulation with four possible haptic delay levels. The setting is built using a haptic device and a computer screen. We use electroencephalography (EEG) to study the neural correlates that could be used to identify the amount of the experienced haptic delay. EEG data were collected from 34 participants. Results revealed that midfrontal theta oscillation plays a pivotal role in quantifying the amount of haptic delay while parietal alpha showed a significant modulation that encodes the presence of haptic delay. Based on the available literature, these results suggest that the amount of haptic delay is proportional to the neural activation that is associated with conflict detection and resolution as well as for multi-sensory divided attention.
Collapse
|
20
|
Chang KH, French IT, Liang WK, Lo YS, Wang YR, Cheng ML, Huang NE, Wu HC, Lim SN, Chen CM, Juan CH. Evaluating the Different Stages of Parkinson's Disease Using Electroencephalography With Holo-Hilbert Spectral Analysis. Front Aging Neurosci 2022; 14:832637. [PMID: 35619940 PMCID: PMC9127298 DOI: 10.3389/fnagi.2022.832637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Electroencephalography (EEG) can reveal the abnormalities of dopaminergic subcortico-cortical circuits in patients with Parkinson's disease (PD). However, conventional time-frequency analysis of EEG signals cannot fully reveal the non-linear processes of neural activities and interactions. A novel Holo-Hilbert Spectral Analysis (HHSA) was applied to reveal non-linear features of resting state EEG in 99 PD patients and 59 healthy controls (HCs). PD patients demonstrated a reduction of β bands in frontal and central regions, and reduction of γ bands in central, parietal, and temporal regions. Compared with early-stage PD patients, late-stage PD patients demonstrated reduction of β bands in the posterior central region, and increased θ and δ2 bands in the left parietal region. θ and β bands in all brain regions were positively correlated with Hamilton depression rating scale scores. Machine learning algorithms using three prioritized HHSA features demonstrated "Bag" with the best accuracy of 0.90, followed by "LogitBoost" with an accuracy of 0.89. Our findings strengthen the application of HHSA to reveal high-dimensional frequency features in EEG signals of PD patients. The EEG characteristics extracted by HHSA are important markers for the identification of depression severity and diagnosis of PD.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Isobel Timothea French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Central University and Academia Sinica, Taipei, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Wang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Norden E. Huang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
- Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| |
Collapse
|
21
|
Neural correlates of texture perception during active touch. Behav Brain Res 2022; 429:113908. [DOI: 10.1016/j.bbr.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
|
22
|
Rayson H, Debnath R, Alavizadeh S, Fox N, Ferrari PF, Bonaiuto JJ. Detection and analysis of cortical beta bursts in developmental EEG data. Dev Cogn Neurosci 2022; 54:101069. [PMID: 35114447 PMCID: PMC8816670 DOI: 10.1016/j.dcn.2022.101069] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 01/10/2023] Open
Abstract
Developmental EEG research often involves analyzing signals within various frequency bands, based on the assumption that these signals represent oscillatory neural activity. However, growing evidence suggests that certain frequency bands are dominated by transient burst events in single trials rather than sustained oscillations. This is especially true for the beta band, with adult 'beta burst' timing a better predictor of motor behavior than slow changes in average beta amplitude. No developmental research thus far has looked at beta bursts, with techniques used to investigate frequency-specific activity structure rarely even applied to such data. Therefore, we aimed to: i) provide a tutorial for developmental EEG researchers on the application of methods for evaluating the rhythmic versus transient nature of frequency-specific activity; and ii) use these techniques to investigate the existence of sensorimotor beta bursts in infants. We found that beta activity in 12-month-olds did occur in bursts, however differences were also revealed in terms of duration, amplitude, and rate during grasping compared to adults. Application of the techniques illustrated here will be critical for clarifying the functional roles of frequency-specific activity across early development, including the role of beta activity in motor processing and its contribution to differing developmental motor trajectories.
Collapse
Affiliation(s)
- Holly Rayson
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | | | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Nathan Fox
- University of Maryland College Park, MD, USA
| | - Pier F Ferrari
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR5229, Bron, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
23
|
Wilhelm RA, Threadgill AH, Gable PA. Motor Preparation and Execution for Performance Difficulty: Centroparietal Beta Activation during the Effort Expenditure for Rewards Task as a Function of Motivation. Brain Sci 2021; 11:brainsci11111442. [PMID: 34827441 PMCID: PMC8615645 DOI: 10.3390/brainsci11111442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Debate exists as to the effects of anxiety in performance-based studies. However, no studies have examined the influence of motivation both in preparation of a motor movement and during movement performance. The present study measured beta activation in preparation for and during execution of the effort expenditure for rewards task (EEfRT), a button-pressing task consisting of easy and hard trials. Results indicated that motor preparation (i.e., reduced beta activation) was greater in preparation for hard trials than for easy trials. Additionally, motor preparation decreased (i.e., beta activation increased) over the course of hard trial execution. These results suggest that motor preparation is enhanced prior to more challenging tasks but that motor preparation declines as participants become closer to completing their goal in each challenging trial. These results provide insight into how beta activation facilitates effort expenditure for motor tasks varying in difficulty and motivation. The impact of these results on models of anxiety and performance is discussed.
Collapse
Affiliation(s)
- Ricardo A. Wilhelm
- Department of Psychology, The University of Alabama, Tuscaloosa, AL 35487, USA;
| | - A. Hunter Threadgill
- Departments of Biomedical Sciences and Psychology, Florida State University, Tallahassee, FL 32306, USA;
| | - Philip A. Gable
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Correspondence:
| |
Collapse
|
24
|
Gyulai A, Körmendi J, Juhasz Z, Nagy Z. Inter trial coherence of low-frequency oscillations in the course of stroke recovery. Clin Neurophysiol 2021; 132:2447-2455. [PMID: 34454272 DOI: 10.1016/j.clinph.2021.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/08/2021] [Accepted: 06/26/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The aim was to find a sensitive method to highlight the remodeling of the brain's bioelectric activity in post-stroke repair. METHODS Fifteen mild upper limb paretic stroke patients and age-matched healthy controls were included. Repeated trials of finger tapping around the 10th and 100th days after stroke onset were recorded with a 128-channel EEG. Power spectra and Inter Trial Coherence (ITC) calculations were synchronized to tappings. ITC was correlated with motor performance. RESULTS ITC, in low frequency bands, designates the motor related bioelectric activity in channel space in both healthy subjects and patients. Ten days after stroke onset, delta-theta ITC was severely reduced compared to baseline, while three months later ITC reorganized partially over the ipsilesional central-parietal areas reflecting the improvement of motor networks. Decreased ITC in the central-parietal area remained significant compared to controls. Delta band ITC over the dorsolateral-prefrontal cortex correlates with the performance on Nine Hole Peg Test. At post-recovery, non-paretic hand tappings show significantly decreased delta-theta ITC over the supplementary motor area, which reflects network remodeling. CONCLUSIONS Inter Trial Coherence is a useful measure of brain reorganization during stroke recovery. SIGNIFICANCE Delta- theta ITC is a sensitive indicator of impaired motor execution.
Collapse
Affiliation(s)
- Adam Gyulai
- Uzsoki Hospital, Uzsoki u. 29-41., 1145 Budapest, Hungary; National Institute of Clinical Neurosciences, Laky Adolf u. 44-46., 1145 Budapest, Hungary; Semmelweis University, Üllői út 26., 1085 Budapest, Hungary.
| | - Janos Körmendi
- National Institute of Clinical Neurosciences, Laky Adolf u. 44-46., 1145 Budapest, Hungary; Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10., 8200 Veszprem, Hungary; Institute of Health Promotion and Sport Sciences, Faculty of Education and Psychology, Eötvös Loránd University, Bogdánfy Ödön u. 10., 1117 Budapest, Hungary
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10., 8200 Veszprem, Hungary
| | - Zoltan Nagy
- National Institute of Clinical Neurosciences, Laky Adolf u. 44-46., 1145 Budapest, Hungary; Semmelweis University, Üllői út 26., 1085 Budapest, Hungary; Department of Electrical Engineering and Information Systems, University of Pannonia, Egyetem u. 10., 8200 Veszprem, Hungary.
| |
Collapse
|
25
|
Low-frequency oscillations in cortical level to help diagnose task-specific dystonia. Neurobiol Dis 2021; 157:105444. [PMID: 34265424 DOI: 10.1016/j.nbd.2021.105444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Task-specific dystonia is a neurological movement disorder that abnormal contractions of muscles result in the twisting of fixed postures or muscle spasm during specific tasks. Due to the rareness and the pathophysiology of the disease, there is no test to confirm the diagnosis of task-specific dystonia, except comprehensive observations by the experts. Evidence from neural electrophysiological data suggests that enhanced low frequency (4-12 Hz) oscillations in the subcortical structure of the globus pallidus were associated with the pathological abnormalities concerning β and γ rhythms in motor areas and motor cortical network in patients with task-specific dystonia. However, whether patients with task-specific dystonia have any low-frequency abnormalities in motor cortical areas remains unclear. In this study, we hypothesized that low-frequency abnormalities are present in core motor areas and motor cortical networks in patients with task-specific dystonia during performing the non-symptomatic movements and those low-frequency abnormalities can help the diagnosis of this disease. We tested this hypothesis by using EEG, effective connectivity analysis, and a machine learning method. Fifteen patients with task-specific dystonia and 15 healthy controls were recruited. The machine learning method identified 8 aberrant movement-related network connections concerning low frequency, β and γ frequencies, which enabled the separation of the data of patients from those of controls with an accuracy of 90%. Importantly, 7 of the 8 aberrant connections engaged the premotor area contralateral to the affected hand, suggesting an important role of the premotor area in the pathological abnormities. The patients exhibited significantly lower low frequency activities during the movement preparation and significantly lower β rhythms during movements compared with healthy controls in the core motor areas. Our findings of low frequency- and β-related abnormalities at the cortical level and aberrant motor network could help diagnose task-specific dystonia in the clinical setting, and the importance of the contralesional premotor area suggests its diagnostic potential for task-specific dystonia.
Collapse
|
26
|
Byrne A, Hewitt D, Henderson J, Newton-Fenner A, Roberts H, Tyson-Carr J, Fallon N, Giesbrecht T, Stancak A. Investigating the effect of losses and gains on effortful engagement during an incentivized Go/NoGo task through anticipatory cortical oscillatory changes. Psychophysiology 2021; 59:e13897. [PMID: 34251684 DOI: 10.1111/psyp.13897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/02/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Losses usually have greater subjective value (SV) than gains of equal nominal value but often cause a relative deterioration in effortful performance. Since losses and gains induce differing approach/avoidance behavioral tendencies, we explored whether incentive type interacted with approach/avoidance motor-sets. Alpha- and beta-band event-related desynchronization (ERD) was hypothesized to be weakest when participants expected a loss and prepared an inhibitory motor-set, and strongest when participants expected a gain and prepared an active motor-set. It was also hypothesized that effort would modulate reward and motor-set-related cortical activation patterns. Participants completed a cued Go/NoGo task while expecting a reward (+10p), avoiding a loss (-10p), or receiving no incentive (0p); and while expecting a NoGo cue with a probability of either .75 or .25. Pre-movement alpha- and beta-band EEG power was analyzed using the ERD method, and the SV of effort was evaluated using a cognitive effort discounting task. Gains incentivized faster RTs and stronger preparatory alpha band ERD compared to loss and no incentive conditions, while inhibitory motor-sets resulted in significantly weaker alpha-band ERD. However, there was no interaction between incentive and motor-sets. Participants were more willing to expend effort in losses compared to gain trials, although the SV of effort was not associated with ERD patterns or RTs. Results suggest that incentive and approach/avoidance motor tendencies modulate cortical activations prior to a speeded RT movement independently, and are not associated with the economic value of effort. The present results favor attentional explanations of the effect of incentive modality on effort.
Collapse
Affiliation(s)
- Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Danielle Hewitt
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Jessica Henderson
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Alice Newton-Fenner
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Hannah Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nick Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | | | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| |
Collapse
|
27
|
Abstract
What are the cortical neural correlates that distinguish goal-directed and non-goal-directed movements? We investigated this question in the monkey frontal eye field (FEF), which is implicated in voluntary control of saccades. Here, we compared FEF activity associated with goal-directed (G) saccades and non-goal-directed (nG) saccades made by the monkey. Although the FEF neurons discharged before these nG saccades, there were three major differences in the neural activity: First, the variability in spike rate across trials decreased only for G saccades. Second, the local field potential beta-band power decreased during G saccades but did not change during nG saccades. Third, the time from saccade direction selection to the saccade onset was significantly longer for G saccades compared with nG saccades. Overall, our results reveal unexpected differences in neural signatures for G versus nG saccades in a brain area that has been implicated selectively in voluntary control. Taken together, these data add critical constraints to the way we think about saccade generation in the brain.
Collapse
|
28
|
Bečev O, Mareček R, Lamoš M, Majchrowicz B, Roman R, Brázdil M. Inferior parietal lobule involved in representation of "what" in a delayed-action Libet task. Conscious Cogn 2021; 93:103149. [PMID: 34098153 DOI: 10.1016/j.concog.2021.103149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 03/22/2021] [Accepted: 05/05/2021] [Indexed: 11/28/2022]
Abstract
Intentional motor action is typically characterized by the decision about the timing, and the selection of the action variant, known as the "what" component. We compared free action selection with instructed action, where the movement type was externally cued, in order to investigate the action selection and action representation in a Libet's task. Temporal and spatial locus of these processes was examined using the combination of high-density electroencephalography, topographic analysis of variance, and source reconstruction. Instructed action, engaging representation of the response movement, was associated with distinct negativity at the parietal and centro-parietal channels starting around 750 ms before the movement, which has a source particularly in the bilateral inferior parietal lobule. This suggests that in delayed-action tasks, the process of action representation in the inferior parietal lobule may play an important part in the larger parieto-frontal activity responsible for movement selection.
Collapse
Affiliation(s)
- Ondřej Bečev
- Brain and Mind Research, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, MU, Pekařská 664/53, 656 91 Brno, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| | - Radek Mareček
- Brain and Mind Research, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Martin Lamoš
- Brain and Mind Research, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Bartosz Majchrowicz
- Consciousness Lab, Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland
| | - Robert Roman
- Brain and Mind Research, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Milan Brázdil
- Brain and Mind Research, CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, MU, Pekařská 664/53, 656 91 Brno, Czech Republic
| |
Collapse
|
29
|
Boettcher SEP, Gresch D, Nobre AC, van Ede F. Output planning at the input stage in visual working memory. SCIENCE ADVANCES 2021; 7:eabe8212. [PMID: 33762341 PMCID: PMC7990334 DOI: 10.1126/sciadv.abe8212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/04/2021] [Indexed: 06/01/2023]
Abstract
Working memory serves as the buffer between past sensations and future behavior, making it vital to understand not only how we encode and retain sensory information in memory but also how we plan for its upcoming use. We ask when prospective action goals emerge alongside the encoding and retention of visual information in working memory. We show that prospective action plans do not emerge gradually during memory delays but are brought into memory early, in tandem with sensory encoding. This action encoding (i) precedes a second stage of action preparation that adapts to the time of expected memory utilization, (ii) occurs even ahead of an intervening motor task, and (iii) predicts visual memory-guided behavior several seconds later. By bringing prospective action plans into working memory at an early stage, the brain creates a dual (visual-motor) memory code that can make memories more effective and robust for serving ensuing behavior.
Collapse
Affiliation(s)
- Sage E P Boettcher
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Daniela Gresch
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Department of Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Netherlands
| |
Collapse
|
30
|
Amidfar M, Kim YK. EEG Correlates of Cognitive Functions and Neuropsychiatric Disorders: A Review of Oscillatory Activity and Neural Synchrony Abnormalities. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2021. [DOI: 10.2174/2666082216999201209130117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A large body of evidence suggested that disruption of neural rhythms and
synchronization of brain oscillations are correlated with a variety of cognitive and perceptual processes.
Cognitive deficits are common features of psychiatric disorders that complicate treatment of
the motivational, affective and emotional symptoms.
Objective:
Electrophysiological correlates of cognitive functions will contribute to understanding of
neural circuits controlling cognition, the causes of their perturbation in psychiatric disorders and
developing novel targets for the treatment of cognitive impairments.
Methods:
This review includes a description of brain oscillations in Alzheimer’s disease, bipolar
disorder, attention-deficit/hyperactivity disorder, major depression, obsessive compulsive disorders,
anxiety disorders, schizophrenia and autism.
Results:
The review clearly shows that the reviewed neuropsychiatric diseases are associated with
fundamental changes in both spectral power and coherence of EEG oscillations.
Conclusion:
In this article, we examined the nature of brain oscillations, the association of brain
rhythms with cognitive functions and the relationship between EEG oscillations and neuropsychiatric
diseases. Accordingly, EEG oscillations can most likely be used as biomarkers in psychiatric
disorders.
Collapse
Affiliation(s)
- Meysam Amidfar
- Department of Neuroscience, Tehran University of Medical Sciences, Tehran, Iran
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University, Seoul, South Korea
| |
Collapse
|
31
|
An KM, Ikeda T, Hasegawa C, Yoshimura Y, Tanaka S, Saito DN, Yaoi K, Iwasaki S, Hirosawa T, Jensen O, Kikuchi M. Aberrant brain oscillatory coupling from the primary motor cortex in children with autism spectrum disorders. Neuroimage Clin 2021; 29:102560. [PMID: 33494029 PMCID: PMC7838765 DOI: 10.1016/j.nicl.2021.102560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/05/2020] [Accepted: 01/10/2021] [Indexed: 11/25/2022]
Abstract
Autism spectrum disorder (ASD) often involves dysfunction in general motor control and motor coordination, in addition to core symptoms. However, the neural mechanisms underlying motor dysfunction in ASD are poorly understood. To elucidate this issue, we focused on brain oscillations and their coupling in the primary motor cortex (M1). We recorded magnetoencephalography in 18 children with ASD, aged 5 to 7 years, and 19 age- and IQ-matched typically-developing children while they pressed a button during a video-game-like motor task. The motor-related gamma (70 to 90 Hz) and pre-movement beta oscillations (15 to 25 Hz) were analyzed in the primary motor cortex using an inverse method. To determine the coupling between beta and gamma oscillations, we applied phase-amplitude coupling to calculate the statistical dependence between the amplitude of fast oscillations and the phase of slow oscillations. We observed a motor-related gamma increase and a pre-movement beta decrease in both groups. The ASD group exhibited a reduced motor-related gamma increase and enhanced pre-movement beta decrease in the ipsilateral primary motor cortex. We found phase-amplitude coupling, in which high-gamma activity was modulated by the beta rhythm in the primary motor cortex. Phase-amplitude coupling in the ipsilateral primary motor cortex was reduced in the ASD group compared with the control group. Using oscillatory changes and their couplings, linear discriminant analysis classified the ASD and control groups with high accuracy (area under the receiver operating characteristic curve: 97.1%). The current findings revealed alterations in oscillations and oscillatory coupling, reflecting the dysregulation of motor gating mechanisms in ASD. These results may be helpful for elucidating the neural mechanisms underlying motor dysfunction in ASD, suggesting the possibility of developing a biomarker for ASD diagnosis.
Collapse
Affiliation(s)
- Kyung-Min An
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan; Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| | - Sumie Iwasaki
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, United Kingdom
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan; Division of Socio-Cognitive-Neuroscience, Department of Child Development United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Kanazawa, Japan; Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
32
|
Breska A, Ivry RB. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. SCIENCE ADVANCES 2020; 6:6/49/eabb1141. [PMID: 33268365 PMCID: PMC7821877 DOI: 10.1126/sciadv.abb1141] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Physiological methods have identified a number of signatures of temporal prediction, a core component of attention. While the underlying neural dynamics have been linked to activity within cortico-striatal networks, recent work has shown that the behavioral benefits of temporal prediction rely on the cerebellum. Here, we examine the involvement of the human cerebellum in the generation and/or temporal adjustment of anticipatory neural dynamics, measuring scalp electroencephalography in individuals with cerebellar degeneration. When the temporal prediction relied on an interval representation, duration-dependent adjustments were impaired in the cerebellar group compared to matched controls. This impairment was evident in ramping activity, beta-band power, and phase locking of delta-band activity. These same neural adjustments were preserved when the prediction relied on a rhythmic stream. Thus, the cerebellum has a context-specific causal role in the adjustment of anticipatory neural dynamics of temporal prediction, providing the requisite modulation to optimize behavior.
Collapse
Affiliation(s)
- Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA.
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| |
Collapse
|
33
|
Zhang X, D’Arcy R, Chen L, Xu M, Ming D, Menon C. The Feasibility of Longitudinal Upper Extremity Motor Function Assessment Using EEG. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5487. [PMID: 32992698 PMCID: PMC7582505 DOI: 10.3390/s20195487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Motor function assessment is crucial in quantifying motor recovery following stroke. In the rehabilitation field, motor function is usually assessed using questionnaire-based assessments, which are not completely objective and require prior training for the examiners. Some research groups have reported that electroencephalography (EEG) data have the potential to be a good indicator of motor function. However, those motor function scores based on EEG data were not evaluated in a longitudinal paradigm. The ability of the motor function scores from EEG data to track the motor function changes in long-term clinical applications is still unclear. In order to investigate the feasibility of using EEG to score motor function in a longitudinal paradigm, a convolutional neural network (CNN) EEG model and a residual neural network (ResNet) EEG model were previously generated to translate EEG data into motor function scores. To validate applications in monitoring rehabilitation following stroke, the pre-established models were evaluated using an initial small sample of individuals in an active 14-week rehabilitation program. Longitudinal performances of CNN and ResNet were evaluated through comparison with standard Fugl-Meyer Assessment (FMA) scores of upper extremity collected in the assessment sessions. The results showed good accuracy and robustness with both proposed networks (average difference: 1.22 points for CNN, 1.03 points for ResNet), providing preliminary evidence for the proposed method in objective evaluation of motor function of upper extremity in long-term clinical applications.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC V5A 1S6, Canada;
| | - Ryan D’Arcy
- Schools of Engineering Science and Computer Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
| | - Minpeng Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China; (X.Z.); (M.X.)
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China;
- Tianjin International Joint Research Center for Neural Engineering, Tianjin 300072, China
| | - Carlo Menon
- Menrva Research Group, Schools of Mechatronic Systems Engineering and Engineering Science, Simon Fraser University, Metro Vancouver, BC V5A 1S6, Canada;
| |
Collapse
|
34
|
Perez‐Zabalza M, Reig R, Manrique J, Jercog D, Winograd M, Parga N, Sanchez‐Vives MV. Modulation of cortical slow oscillatory rhythm by GABA B receptors: an in vitro experimental and computational study. J Physiol 2020; 598:3439-3457. [PMID: 32406934 PMCID: PMC7984206 DOI: 10.1113/jp279476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/11/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We confirm that GABAB receptors (GABAB -Rs) are involved in the termination of Up-states; their blockade consistently elongates Up-states. GABAB -Rs also modulate Down-states and the oscillatory cycle, thus having an impact on slow oscillation rhythm and its regularity. The most frequent effect of GABAB -R blockade is elongation of Down-states and subsequent decrease of oscillatory frequency, with an increased regularity. In a quarter of cases, GABAB -R blockade shortened Down-states and increased oscillatory frequency, changes that are independent of firing rates in Up-states. Our computer model provides mechanisms for the experimentally observed dynamics following blockade of GABAB -Rs, for Up/Down durations, oscillatory frequency and regularity. The time course of excitation, inhibition and adaptation can explain the observed dynamics of the network. This study brings novel insights into the role of GABAB -R-mediated slow inhibition on the slow oscillatory activity, which is considered the default activity pattern of the cortical network. ABSTRACT Slow wave oscillations (SWOs) dominate cortical activity during deep sleep, anaesthesia and in some brain lesions. SWOs are composed of periods of activity (Up states) interspersed with periods of silence (Down states). The rhythmicity expressed during SWOs integrates neuronal and connectivity properties of the network and is often altered under pathological conditions. Adaptation mechanisms as well as synaptic inhibition mediated by GABAB receptors (GABAB -Rs) have been proposed as mechanisms governing the termination of Up states. The interplay between these two mechanisms is not well understood, and the role of GABAB -Rs controlling the whole cycle of the SWO has not been described. Here we contribute to its understanding by combining in vitro experiments on spontaneously active cortical slices and computational techniques. GABAB -R blockade modified the whole SWO cycle, not only elongating Up states, but also affecting the subsequent Down state duration. Furthermore, while adaptation tends to yield a rather regular behaviour, we demonstrate that GABAB -R activation desynchronizes the SWOs. Interestingly, variability changes could be accomplished in two different ways: by either shortening or lengthening the duration of Down states. Even when the most common observation following GABAB -Rs blocking is the lengthening of Down states, both changes are expressed experimentally and also in numerical simulations. Our simulations suggest that the sluggishness of GABAB -Rs to follow the excitatory fluctuations of the cortical network can explain these different network dynamics modulated by GABAB -Rs.
Collapse
Affiliation(s)
- Maria Perez‐Zabalza
- Institut d'Investigaciones Biomediques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ramon Reig
- Instituto de Neurociencias de Alicante, CSIC‐UMHSan Juan de AlicanteAlicanteSpain
| | | | - Daniel Jercog
- Institut d'Investigaciones Biomediques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Milena Winograd
- Instituto de Neurociencias de Alicante, CSIC‐UMHSan Juan de AlicanteAlicanteSpain
| | - Nestor Parga
- Física TeóricaUniversidad Autónoma MadridMadridSpain
- Centro de Investigación Avanzada en Física FundamentalUniversidad Autónoma de MadridMadridSpain
| | - Maria V. Sanchez‐Vives
- Institut d'Investigaciones Biomediques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| |
Collapse
|
35
|
Zhang X, Li H, Xie T, Liu Y, Chen J, Long J. Movement speed effects on beta-band oscillations in sensorimotor cortex during voluntary activity. J Neurophysiol 2020; 124:352-359. [PMID: 32579410 DOI: 10.1152/jn.00238.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-band oscillations are a dominant feature in the sensorimotor system, which includes movement-related beta desynchronization (MRBD) during the preparation and execution phases of movement and postmovement beta synchronization (PMBS) on movement cessation. Many studies have linked this rhythm to motor functions. However, its associations to the movement speed are still unclear. We make a hypothesis that PMBS will be modulated with increasing of movement speeds. We assessed the MRBD and PMBS during isotonic slower self-paced and ballistic movements with 15 healthy subjects. Furthermore, we conduct an additional control experiment with the isometric contraction with two levels of forces to match those in the isotonic slower self-paced and ballistic movements separately. We found that the amplitude of PMBS but not MRBD in motor cortex is modulated by the speed during voluntary movement. PMBS was positively correlated with movement speed and acceleration through the partial correlation analysis. However, there were no changes in the PMBS and MRBD during the isometric contraction with two levels of forces. These results demonstrate a different function of PMBS and MRBD to the movement speed during voluntary activity and suggest that the movement speed would affect the amplitude of PMBS.NEW & NOTEWORTHY Beta-band oscillations are a dominant feature in the sensorimotor system that associate to the motor function. We found that the movement-related postmovement beta synchronization (PMBS) over the contralateral sensorimotor cortex was positively correlated with the speed of a voluntary movement, but the movement-related beta desynchronization (MRBD) was not. Our results show a differential response of the PMBS and MRBD to the movement speed during voluntary movement.
Collapse
Affiliation(s)
- Xiangzi Zhang
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Hualiang Li
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Tingjun Xie
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Yuzhong Liu
- Guangdong Power Grid Corporation, Guangzhou, Guangdong, China
| | - Juan Chen
- School of Psychology, Center for the Study of Applied Psychology, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong Province, China.,Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education, China
| | - Jinyi Long
- College of Information Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Leite JAA, Dos Santos MAC, da Silva RMC, Andrade ADO, da Silva GM, Bazan R, de Souza LAPS, Luvizutto GJ. Alpha and beta cortical activity during guitar playing: task complexity and audiovisual stimulus analysis. Somatosens Mot Res 2020; 37:245-251. [PMID: 32597273 DOI: 10.1080/08990220.2020.1784130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE Some studies have explored the relationship between music and cortical activities; however, there are just few studies investigating guitar performance associated with different sensory stimuli. Our aim was to evaluate alpha and beta activity during guitar playing. MATERIALS AND METHOD Twenty healthy right-handed people participated in this study. Cortical activity was measured by electroencephalogram (EEG) during rest and 4 tasks (1: easy music with an auditory stimulus; 2: easy music with an audiovisual stimulus; 3: complex music with an auditory stimulus; 4: complex music with an audiovisual stimulus). The peak frequency (PF), median frequency (MF) and root mean square (RMS) of alpha and beta EEG signals were assessed. RESULTS A higher alpha PF at the T3-P3 was observed, and this difference was higher between rest and task 3, rest and task 4, tasks 1 and 3, and tasks 1 and 4. For beta waves, a higher PF was observed at C4-P4 and a higher RMS at C3-C4 and O1-O2. At C4-P4, differences between rest and tasks 2 and 4 were observed. The RMS of beta waves at C3-C4 presented differences between rest and task 3 and at O1-O2 between rest and task 2 and 4. CONCLUSION The action observation of audiovisual stimuli while playing guitar can increase beta wave activity in the somatosensory and motor cortexes; and increase in the alpha activity in the somatosensory and auditory cortexes and increase in the beta activity in the bilateral visual cortexes during complex music execution, regardless of the stimulus type received. Abbreviations: bpm: beats per minute; C: central; EEG: electroencephalogram; F: frontal; Hz: hertz; LABCOM: Laboratory of Motor Control and Biomechanics; MD: mean difference; MF: median frequency; O: occipital; P: parietal; PF: peak frequency; R: rest; RMS: root mean square; T: temporal; T1: task 1; T2: task 2; T3: task 3; T4: task 4; UFTM: Federal University of Triângulo Mineiro.
Collapse
Affiliation(s)
- José Artur Aragão Leite
- Department of Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | | | | | - Adriano de Oliveira Andrade
- Centre for Innovation and Technology Assessment in Health, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Gustavo Moreira da Silva
- Centre for Innovation and Technology Assessment in Health, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Rodrigo Bazan
- Botucatu Medical School, São Paulo State University, Botucatu, SP, Brazil
| | | | - Gustavo José Luvizutto
- Department of Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| |
Collapse
|
37
|
Byrne A, Kokmotou K, Roberts H, Soto V, Tyson-Carr J, Hewitt D, Giesbrecht T, Stancak A. The cortical oscillatory patterns associated with varying levels of reward during an effortful vigilance task. Exp Brain Res 2020; 238:1839-1859. [PMID: 32507992 PMCID: PMC7438383 DOI: 10.1007/s00221-020-05825-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/28/2020] [Indexed: 11/29/2022]
Abstract
We explored how reward and value of effort shapes performance in a sustained vigilance, reaction time (RT) task. It was posited that reward and value would hasten RTs and increase cognitive effort by boosting activation in the sensorimotor cortex and inhibition in the frontal cortex, similar to the horse-race model of motor actions. Participants performed a series of speeded responses while expecting differing monetary rewards (0 pence (p), 1 p, and 10 p) if they responded faster than their median RT. Amplitudes of cortical alpha, beta, and theta oscillations were analysed using the event-related desynchronization method. In experiment 1 (N = 29, with 12 females), reward was consistent within block, while in experiment 2 (N = 17, with 12 females), reward amount was displayed before each trial. Each experiment evaluated the baseline amplitude of cortical oscillations differently. The value of effort was evaluated using a cognitive effort discounting task (COGED). In both experiments, RTs decreased significantly with higher rewards. Reward level sharpened the increased amplitudes of beta oscillations during fast responses in experiment 1. In experiment 2, reward decreased the amplitudes of beta oscillations in the ipsilateral sensorimotor cortex. Individual effort values did not significantly correlate with oscillatory changes in either experiment. Results suggest that reward level and response speed interacted with the task- and baseline-dependent patterns of cortical inhibition in the frontal cortex and with activation in the sensorimotor cortex during the period of motor preparation in a sustained vigilance task. However, neither the shortening of RT with increasing reward nor the value of effort correlated with oscillatory changes. This implies that amplitudes of cortical oscillations may shape upcoming motor responses but do not translate higher-order motivational factors into motor performance.
Collapse
Affiliation(s)
- Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK. .,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK.
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| | - Hannah Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Centre for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | - Danielle Hewitt
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK
| | | | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, L69 7ZA, UK.,Institute for Risk and Uncertainty, University of Liverpool, Liverpool, UK
| |
Collapse
|
38
|
Wang K, Xu M, Wang Y, Zhang S, Chen L, Ming D. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces. J Neural Eng 2020; 17:016033. [PMID: 31747642 DOI: 10.1088/1741-2552/ab598f] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE In recent years, brain-computer interface (BCI) systems based on electroencephalography (EEG) have developed rapidly. However, the decoding of voluntary finger pre-movements from EEG is still a challenge for BCIs. This study aimed to analyze the pre-movement EEG features in time and frequency domains and design an efficient method to decode the movement-related patterns. APPROACH In this study, we first investigated the EEG features induced by the intention of left and right finger movements. Specifically, the movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were extracted using discriminative canonical pattern matching (DCPM) and common spatial patterns (CSP), respectively. Then, the two types of features were classified by two fisher discriminant analysis (FDA) classifiers, respectively. Their decision values were further assembled to facilitate the classification. To verify the validity of the proposed method, a private dataset containing 12 subjects and a public dataset from BCI competition II were used for estimating the classification accuracy. MAIN RESULTS As a result, for the private dataset, the combination of DCPM and CSP achieved an average accuracy of 80.96%, which was 5.08% higher than the single DCPM method (p < 0.01) and 10.23% higher than the single CSP method (p < 0.01). Notably, the highest accuracy could achieve 91.5% for the combination method. The test accuracy of dataset IV of BCI competition II was 90%, which was equal to the best result in the existing literature. SIGNIFICANCE The results demonstrate the MRCP and ERD features of pre-movements contain significantly discriminative information, which are complementary to each other, and thereby could be well recognized by the proposed combination method of DCPM and CSP. Therefore, this study provides a promising approach for the decoding of pre-movement EEG patterns, which is significant for the development of BCIs.
Collapse
Affiliation(s)
- Kun Wang
- Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, People's Republic of China. Contributed equally to this work
| | | | | | | | | | | |
Collapse
|
39
|
Prokic EJ, Stanford IM, Woodhall GL, Williams AC, Hall SD. Bradykinesia Is Driven by Cumulative Beta Power During Continuous Movement and Alleviated by Gabaergic Modulation in Parkinson's Disease. Front Neurol 2019; 10:1298. [PMID: 31920922 PMCID: PMC6933612 DOI: 10.3389/fneur.2019.01298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Spontaneous and "event-related" motor cortex oscillations in the beta (15-30 Hz) frequency range are well-established phenomena. However, the precise functional significance of these features is uncertain. An understanding of the specific function is of importance for the treatment of Parkinson's disease (PD), where attenuation of augmented beta throughout the motor network coincides with functional improvement. Previous research using a discrete movement task identified normalization of elevated spontaneous beta and postmovement beta rebound following GABAergic modulation. Here, we explore the effects of the gamma-aminobutyric acid type A modulator, zolpidem, on beta power during the performance of serial movement in 17 (15M, 2F; mean age, 66 ± 6.3 years) PD patients, using a repeated-measures, double-blinded, randomized, placebo-control design. Motor symptoms were monitored before and after treatment, using time-based Unified Parkinson's Disease Rating Scale measurements and beta oscillations in primary motor cortex (M1) were measured during a serial-movement task, using magnetoencephalography. We demonstrate that a cumulative increase in M1 beta power during a 10-s tapping trial is reduced following zolpidem, but not placebo, which is accompanied by an improvement in movement speed and efficacy. This work provides a clear mechanism for the generation of abnormally elevated beta power in PD and demonstrates that perimovement beta accumulation drives the slowing, and impaired initiation, of movement. These findings further indicate a role for GABAergic modulation in bradykinesia in PD, which merits further exploration as a therapeutic target.
Collapse
Affiliation(s)
- Emma J. Prokic
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ian M. Stanford
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Gavin L. Woodhall
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Adrian C. Williams
- Queen Elizabeth Hospital, University Hospital Birmingham, Birmingham, United Kingdom
| | - Stephen D. Hall
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
40
|
Post-stimulus beta responses are modulated by task duration. Neuroimage 2019; 206:116288. [PMID: 31654762 PMCID: PMC6985901 DOI: 10.1016/j.neuroimage.2019.116288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 02/08/2023] Open
Abstract
Modulation of beta-band neural oscillations during and following movement is a robust marker of brain function. In particular, the post-movement beta rebound (PMBR), which occurs on movement cessation, has been related to inhibition and connectivity in the healthy brain, and is perturbed in disease. However, to realise the potential of the PMBR as a biomarker, its modulation by task parameters must be characterised and its functional role determined. Here, we used MEG to image brain electrophysiology during and after a grip-force task, with the aim to characterise how task duration, in the form of an isometric contraction, modulates beta responses. Fourteen participants exerted a 30% maximum voluntary grip-force for 2, 5 and 10 s. Our results showed that the amplitude of the PMBR is modulated by task duration, with increasing duration significantly reducing PMBR amplitude and increasing its time-to-peak. No variation in the amplitude of the movement related beta decrease (MRBD) with task duration was observed. To gain insight into what may underlie these trial-averaged results, we used a Hidden Markov Model to identify the individual trial dynamics of a brain network encompassing bilateral sensorimotor areas. The rapidly evolving dynamics of this network demonstrated similar variation with task parameters to the ‘classical’ rebound, and we show that the modulation of the PMBR can be well-described in terms of increased frequency of beta events on a millisecond timescale rather than modulation of beta amplitude during this time period. Our results add to the emerging picture that, in the case of a carefully controlled paradigm, beta modulation can be systematically controlled by task parameters and such control can reveal new information as to the processes that generate the average beta timecourse. These findings will support design of clinically relevant paradigms and analysis pipelines in future use of the PMBR as a marker of neuropathology. The post-movement beta rebound is modulated by task duration. Increasing task duration reduces amplitude of the post-movement beta rebound. The modulation is explained by increased frequency of short-timescale beta events.
Collapse
|
41
|
Iwane F, Lisi G, Morimoto J. EEG Sensorimotor Correlates of Speed During Forearm Passive Movements. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1667-1675. [PMID: 31425038 DOI: 10.1109/tnsre.2019.2934231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although passive movement therapy has been widely adopted to recover lost motor functions of impaired body parts, the underlying neural mechanisms are still unclear. In this context, fully understanding how the proprioceptive input modulates the brain activity may provide valuable insights. Specifically, it has not been investigated how the speed of motions, passively guided by a haptic device, affects the sensorimotor rhythms (SMR). On the grounds that faster passive motions elicit larger quantity of afferent input, we hypothesize a proportional relationship between localized SMR features and passive movement speed. To address this hypothesis, we conducted an experiment where healthy subjects received passive forearm oscillations at different speed levels while their electroencephalogram was recorded. The mu and beta event related desynchronization (ERD) and beta rebound of both left and right sensorimotor areas are analyzed by linear mixed-effects models. Results indicate that passive movement speed is correlated with the contralateral beta rebound and ipsilateral mu ERD. The former has been previously linked with the processing of proprioceptive afferent input quantity, while the latter with speed-dependent inhibitory processes. This suggests the existence of functionally-distinct frequency-specific neuronal populations associated with passive movements. In future, our findings may guide the design of novel rehabilitation paradigms.
Collapse
|
42
|
Mykland MS, Bjørk MH, Stjern M, Omland PM, Uglem M, Sand T. Fluctuations of sensorimotor processing in migraine: a controlled longitudinal study of beta event related desynchronization. J Headache Pain 2019; 20:77. [PMID: 31288756 PMCID: PMC6734210 DOI: 10.1186/s10194-019-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/17/2019] [Indexed: 11/16/2022] Open
Abstract
Background The migraine brain seems to undergo cyclic fluctuations of sensory processing. For instance, during the preictal phase, migraineurs experience symptoms and signs of altered pain perception as well as other well-known premonitory CNS-symptoms. In the present study we measured EEG-activation to non-painful motor and sensorimotor tasks in the different phases of the migraine cycle by longitudinal measurements of beta event related desynchronization (beta-ERD). Methods We recorded electroencephalography (EEG) of 41 migraine patients and 31 healthy controls. Each subject underwent three EEG recordings on three different days with classification of each EEG recording according to the actual migraine phase. During each recording, subjects performed one motor and one sensorimotor task with the flexion-extension movement of the right wrist. Results Migraine patients had significantly increased beta-ERD and higher baseline beta power at the contralateral C3 electrode overlying the primary sensorimotor cortex in the preictal phase compared to the interictal phase. We found no significant differences in beta-ERD or baseline beta power between interictal migraineurs and controls. Conclusion Increased preictal baseline beta activity may reflect a decrease in pre-activation in the sensorimotor cortex. Altered pre-activation may lead to changes in thresholds for inhibitory responses and increased beta-ERD response, possibly reflecting a generally increased preictal cortical responsivity in migraine. Cyclic fluctuations in the activity of second- and third-order afferent somatosensory neurons, and their associated cortical and/or thalamic interneurons, may accordingly also be a central part of the migraine pathophysiology.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Marte Helene Bjørk
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Marit Stjern
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
| |
Collapse
|
43
|
Aging Does Not Affect Beta Modulation during Reaching Movements. Neural Plast 2019; 2019:1619290. [PMID: 31223306 PMCID: PMC6541950 DOI: 10.1155/2019/1619290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/24/2022] Open
Abstract
During movement, modulation of beta power occurs over the sensorimotor areas, with a decrease just before its start (event-related desynchronization, ERD) and a rebound after its end (event-related synchronization, ERS). We have recently found that the depth of ERD-to-ERS modulation increases during practice in a reaching task and the following day decreases to baseline levels. Importantly, the magnitude of the beta modulation increase during practice is highly correlated with the retention of motor skill tested the following day. Together with other evidence, this suggests that the increase of practice-related modulation depth may be the expression of sensorimotor cortex's plasticity. Here, we determine whether the practice-related increase of beta modulation depth is equally present in a group of younger and a group of older subjects during the performance of a 30-minute block of reaching movements. We focused our analyses on two regions of interest (ROIs): the left sensorimotor and the frontal region. Performance indices were significantly different in the two groups, with the movements of older subjects being slower and less accurate. Importantly, both groups presented a similar increase of the practice-related beta modulation depth in both ROIs in the course of the task. Peak latency analysis revealed a progressive delay of the ERS peak that correlated with the total movement time. Altogether, these findings support the notion that the depth of beta modulation in a reaching movement task does not depend on age and confirm previous findings that only ERS peak latency but not ERS magnitude is related to performance indices.
Collapse
|
44
|
Townsend B, Legere JK, O'Malley S, Mohrenschildt MV, Shedden JM. Attention modulates event-related spectral power in multisensory self-motion perception. Neuroimage 2019; 191:68-80. [DOI: 10.1016/j.neuroimage.2019.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/20/2019] [Accepted: 02/05/2019] [Indexed: 11/24/2022] Open
|
45
|
Rueda-Delgado LM, Heise KF, Daffertshofer A, Mantini D, Swinnen SP. Age-related differences in neural spectral power during motor learning. Neurobiol Aging 2019; 77:44-57. [DOI: 10.1016/j.neurobiolaging.2018.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 11/29/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022]
|
46
|
Zhang X, D’Arcy R, Menon C. Scoring upper-extremity motor function from EEG with artificial neural networks: a preliminary study. J Neural Eng 2019; 16:036013. [DOI: 10.1088/1741-2552/ab0b82] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Tatti E, Ricci S, Mehraram R, Lin N, George S, Nelson AB, Ghilardi MF. Beta Modulation Depth Is Not Linked to Movement Features. Front Behav Neurosci 2019; 13:49. [PMID: 30923498 PMCID: PMC6426772 DOI: 10.3389/fnbeh.2019.00049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/26/2019] [Indexed: 11/17/2022] Open
Abstract
Beta power over the sensorimotor areas starts decreasing just before movement execution (event-related desynchronization, ERD) and increases post-movement (event-related synchronization, ERS). In this study, we determined whether the magnitude of beta ERD, ERS and modulation depth are linked to movement characteristics, such as movement length and velocity. Brain activity was recorded with a 256-channels EEG system in 35 healthy subjects performing fast, uncorrected reaching movements to targets located at three distances. We found that the temporal profiles of velocity were bell-shaped and scaled to the appropriate target distance. However, the magnitude of beta ERD, ERS and modulation depth, as well as their timing, did not significantly change and were not related to movement features.
Collapse
Affiliation(s)
- Elisa Tatti
- CUNY School of Medicine, New York City, NY, United States
| | - Serena Ricci
- CUNY School of Medicine, New York City, NY, United States.,Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), University of Genova, Genoa, Italy
| | - Ramtin Mehraram
- CUNY School of Medicine, New York City, NY, United States.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nancy Lin
- CUNY School of Medicine, New York City, NY, United States
| | - Shaina George
- CUNY School of Medicine, New York City, NY, United States
| | - Aaron B Nelson
- CUNY School of Medicine, New York City, NY, United States
| | | |
Collapse
|
48
|
Wierzgała P, Zapała D, Wojcik GM, Masiak J. Most Popular Signal Processing Methods in Motor-Imagery BCI: A Review and Meta-Analysis. Front Neuroinform 2018; 12:78. [PMID: 30459588 PMCID: PMC6232268 DOI: 10.3389/fninf.2018.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
Brain-Computer Interfaces (BCI) constitute an alternative channel of communication between humans and environment. There are a number of different technologies which enable the recording of brain activity. One of these is electroencephalography (EEG). The most common EEG methods include interfaces whose operation is based on changes in the activity of Sensorimotor Rhythms (SMR) during imagery movement, so-called Motor Imagery BCI (MIBCI).The present article is a review of 131 articles published from 1997 to 2017 discussing various procedures of data processing in MIBCI. The experiments described in these publications have been compared in terms of the methods used for data registration and analysis. Some of the studies (76 reports) were subjected to meta-analysis which showed corrected average classification accuracy achieved in these studies at the level of 51.96%, a high degree of heterogeneity of results (Q = 1806577.61; df = 486; p < 0.001; I2 = 99.97%), as well as significant effects of number of channels, number of mental images, and method of spatial filtering. On the other hand the meta-regression failed to provide evidence that there was an increase in the effectiveness of the solutions proposed in the articles published in recent years. The authors have proposed a newly developed standard for presenting results acquired during MIBCI experiments, which is designed to facilitate communication and comparison of essential information regarding the effects observed. Also, based on the findings of descriptive analysis and meta-analysis, the authors formulated recommendations regarding practices applied in research on signal processing in MIBCIs.
Collapse
Affiliation(s)
- Piotr Wierzgała
- Department of Neuroinformatics, Faculty of Mathematics, Physics and Computer Science, Institute of Computer Science Maria Curie-Sklodowska University, Lublin, Poland
| | - Dariusz Zapała
- Department of Experimental Psychology The John Paul II Catholic University of Lublin, Lublin, Poland
| | - Grzegorz M Wojcik
- Department of Neuroinformatics, Faculty of Mathematics, Physics and Computer Science, Institute of Computer Science Maria Curie-Sklodowska University, Lublin, Poland
| | - Jolanta Masiak
- Neurophysiological Independent Unit of the Department of Psychiatry Medical University of Lublin, Lublin, Poland
| |
Collapse
|
49
|
Zabielska-Mendyk E, Francuz P, Jaśkiewicz M, Augustynowicz P. The Effects of Motor Expertise on Sensorimotor Rhythm Desynchronization during Execution and Imagery of Sequential Movements. Neuroscience 2018; 384:101-110. [DOI: 10.1016/j.neuroscience.2018.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 10/14/2022]
|
50
|
Theta-band EEG Activity over Sensorimotor Regions is Modulated by Expected Visual Reafferent Feedback During Reach Planning. Neuroscience 2018; 385:47-58. [DOI: 10.1016/j.neuroscience.2018.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 01/22/2023]
|