1
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
2
|
Alaqeel SM, Moussa IM, Altinawi A, Almozainy M, Hashem M. Antibacterial effectiveness of photo-sonodynamic treatment by methylene blue-incorporated poly(D, L-lactide-co-glycolide) acid nanoparticles to disinfect root canals. Photodiagnosis Photodyn Ther 2023; 43:103692. [PMID: 37419191 DOI: 10.1016/j.pdpdt.2023.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/09/2023]
Abstract
AIM This in-vitro investigation aimed to assess the antibacterial effectiveness of photo-sonodynamic treatment using methylene blue (MTB)-incorporated poly(D, L-Lactide-Co-Glycolide) acid (PLGA)-nanoparticles for the disinfection of root canals. METHODS The synthesis of PLGA nanoparticles was achieved using a solvent displacement technique. The morphological and spectral characterization of the formulated PLGA nanoparticles were carried out using scanning electron microscopy (SEM) and Transformed-Fourier infrared spectroscopy (TFIR), respectively. One hundred human premolar teeth were sterilized and then their root canals were infected with Enterococcus faecalis (E. faecalis). Later, the bacterial viability evaluation of the following 5 research groups was conducted: (a) G-1: specimens treated with a diode laser; (b) G-2: specimens treated with antimicrobial photodynamic therapy (aPDT) and 50 µg/mL of MTB-incorporated PLGA nanoparticles; (c) G-3: specimens treated with ultrasound (US); (d) G-4: specimens treated with US and 50 µg/mL of MTB-incorporated PLGA nanoparticles; and (e) G-5: control group consisting of specimens that did not undergo any treatment. RESULTS Under SEM, the nanoparticles exhibited a uniform spherical shape and were around 100 nm. The formulated nanoparticles' size was validated through zeta potential analysis utilizing dynamic light scattering (DLS). The TFIR images of both PLGA nanoparticles and MTB-incorporated PLGA nanoparticles exhibited absorption bands ranging from around 1000 to 1200/cm and nearly from 1500 to 1750/cm. The G-5 samples (control group) demonstrated the greatest viability against E. faecalis, followed by G-3 (US-conditions specimens), G-1 (diode laser-conditioned specimens), G-2 (aPDT + MTB-incorporated PLGA-nanoparticles-conditioned specimens), and G-5 (US + MTB-incorporated PLGA-nanoparticles-conditioned specimens). Significant statistical differences (p < 0.05) were observed among all research groups, including both the experimental groups and control group. CONCLUSION The combination of US via MTB-incorporated PLGA nanoparticles exhibited the most effective eradication of E. faecalis, suggestive of a promising therapeutic modality against E. faecalis for disinfecting root canals with complex and challenging anatomy.
Collapse
Affiliation(s)
- Samer M Alaqeel
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Ihab M Moussa
- Dental Biomaterials Department, College of Dentistry, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Amir Altinawi
- Biomedical Technology Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Mayyadah Almozainy
- Restorative Dental Science Department, College of Dentistry, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Mohamed Hashem
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia.
| |
Collapse
|
3
|
Ayoub AM, Atya MS, Abdelsalam AM, Schulze J, Amin MU, Engelhardt K, Wojcik M, Librizzi D, Yousefi BH, Nasrullah U, Pfeilschifter J, Bakowsky U, Preis E. Photoactive Parietin-loaded nanocarriers as an efficient therapeutic platform against triple-negative breast cancer. Int J Pharm 2023; 643:123217. [PMID: 37429562 DOI: 10.1016/j.ijpharm.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.
Collapse
Affiliation(s)
- Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Muhammed S Atya
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| |
Collapse
|
4
|
Kumar L, Kukreti G, Rana R, Chaurasia H, Sharma A, Sharma N, Komal. Poly(lactic-co-glycolic) Acid (PLGA) Nanoparticles and Transdermal Drug Delivery: An Overview. Curr Pharm Des 2023; 29:2940-2953. [PMID: 38173050 DOI: 10.2174/0113816128275385231027054743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/22/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Biodegradable polymeric nanoparticles have garnered pharmaceutical industry attention throughout the past decade. PLGA [Poly(lactic-co-glycolic acid)] is an excellent biodegradable polymer explored for the preparation of nanoparticles that are administered through various routes like intravenous and transdermal. PLGA's versatility makes it a good choice for the preparation of nanoparticles. OBJECTIVE The main objective of this review paper was to summarize methods of preparation and characterization of PLGA nanoparticles along with their role in the transdermal delivery of various therapeutic agents. METHODS A literature survey for the present review paper was done using various search engines like Pubmed, Google Scholar, and Science Direct. RESULTS In comparison to traditional transdermal administration systems, PLGA nanoparticles have demonstrated several benefits in preclinical investigations, including fewer side effects, low dosage frequency, high skin permeability, and simplicity of application. CONCLUSION PLGA nanoparticles can be considered efficient nanocarriers for the transdermal delivery of drugs. Nevertheless, the clinical investigation of PLGA nanoparticles for the transdermal administration of therapeutic agents remains a formidable obstacle.
Collapse
Affiliation(s)
- Lalit Kumar
- Department of Pharmaceutics, GNA School of Pharmacy, GNA University, Phagwara, Punjab 144401, India
| | - Gauree Kukreti
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Balawala Dehradun, Uttarakhand 248161, India
| | - Ritesh Rana
- Department of Pharmaceutical Sciences (Pharmaceutics), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Himanshu Chaurasia
- Department of Pharmacy, Quantum School of Health Science, Quantum University, Vill. Mandawar (N.H.73) Roorkee-Dehradun Highway, Roorkee, Uttrakhand 247662, India
| | - Anchal Sharma
- Department of Pharmaceutics, Shiva Institute of Pharmacy, Chandpur, District-Bilaspur, H.P. 174004, India
| | - Neelam Sharma
- Department of Pharmaceutical Sciences (Pharmacology), Himachal Institute of Pharmaceutical Education and Research (HIPER), Bela-Nadaun, District-Hamirpur, H.P. 177033, India
| | - Komal
- Department of Pharmacology, Chandigarh College of Pharmacy, Landran, Sahibzada Ajit Singh Nagar, Punjab 140307, India
| |
Collapse
|
5
|
Li H, Xiao W, Tian Z, Liu Z, Shi L, Wang Y, Liu Y, Liu Y. Reaction mechanism of nanomedicine based on porphyrin skeleton and its application prospects. Photodiagnosis Photodyn Ther 2022; 41:103236. [PMID: 36494023 DOI: 10.1016/j.pdpdt.2022.103236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Research on porphyrin-based photosensitizing drugs is becoming increasingly popular. They possess unique diagnostic capabilities and therapeutic effects that have gained wide recognition in oncology drug development. In recent years, the rapid growth of nanotechnology has brought great hope for nanopharmaceutical formulations. By combining porphyrins with various nanomaterials, people have improved the properties of porphyrin compounds, making drug delivery easier. Porphyrin-based nanoparticles can enhance the effect of photodynamic therapy for cancer treatment, providing opportunities for achieving complex targeting strategies and versatility with promising applications in drug carriers, tumor imaging, and treatment. This paper reviews recent porphyrin nanodrugs, including inorganic-organic hybrid nanoparticles, nanomicelles, self-assembled nanoparticles, and combination therapeutic nanodrugs, and their actions and effects on cancer cells when performing photodynamic therapy. It also discusses the drawbacks as well as the prospects for development.
Collapse
Affiliation(s)
- Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Wenli Xiao
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Lei Shi
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Ying Wang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Yujie Liu
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Aldegheishem A, Alharthi R, Al-Qahtani YM, Soliman M, Mostafa MS, Mohsin SF, Eldwakhly E. Mechanical and antibacterial efficacy of photo-sonodynamic therapy via methylene blue-loaded nanoparticles over dental implants for treating peri-implantitis. Photodiagnosis Photodyn Ther 2022; 40:103188. [PMID: 36336320 DOI: 10.1016/j.pdpdt.2022.103188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
AIM This study aimed to evaluate the mechanical (i.e., flexural modulus [FM], flexural strength [FS], and surface roughness [Ra]) and antibacterial efficacy of photo-sonodynamic therapy via methylene blue-loaded poly(D,L-lactide-co-glycolide) nanoparticles (MB-loaded PLGA NPs) over dental implants for potential treatment of peri-implantitis. METHODS PLGA NPs were synthesized via a solvent displacement method. After the synthesis and confirmation of MB-loaded PLGA NPs via physical (Scanning Electron Microscope [SEM]) and chemical characterization (Fourier transform infrared spectroscopy [FTIR]), the mature dental biofilm of Porphyromonas gingivalis was produced over the surfaces of dental implants. Then, the bacterial viability assessment of the following five study groups was performed: group-I (diode laser treatment); group-II (PDT/MB-loaded PLGA NPs treatment; group-III (ultrasound treatment); group-IV (ultrasound/PLGA NPs-MB treatment); and group-V: control group included the samples without any treatment. Finally, the FS, FM, and Ra of the samples was assessed. RESULTS Under the SEM, the NPs were spherical homogeneous particles having round morphology ranging approximately 100 nm in size without aggregation. The FTIR spectra of PLGA NPs and MB-loaded PLGA NPs demonstrated absorption peaks at approximately 1000 cm-1 to 1200 cm-1 and around 1500 cm-1 to 1750 cm-1. The greatest level of P. gingivalis killing was exhibited by ultrasound/MB-loaded PLGA-NPs-treated samples. The FS was statistically significantly greater for control group samples than any other group (i.e., 100.28 MPa; p<0.05). The FM and Ra ranged between 3.31 and 3.58 GPa and between 0.18 and 0.20 µm without any statistically significant difference between the control and experimental groups (p>0.05), respectively. CONCLUSION Within the limitations of this study, the application of photo-sonodynamic therapy via MB-loaded PLGA NPs demonstrated the greatest antibacterial activity against P. gingivalis without deteriorating the surfaces and compromising the mechanical properties of dental implants.
Collapse
Affiliation(s)
- Alhanoof Aldegheishem
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia.
| | - Rasha Alharthi
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| | - Yasser M Al-Qahtani
- Consultant in Restorative Dentistry Department, Ministry of Health, Abha, Saudi Arabia
| | - Mai Soliman
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| | - Marwa Salah Mostafa
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo 12613, Egypt
| | - Syed Fareed Mohsin
- Department of Oral Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Qassim University, Qassim, Saudi Arabia
| | - Elzahraa Eldwakhly
- Clinical Dental Science Department, College of Dentistry, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11564, Saudi Arabia
| |
Collapse
|
7
|
Figueiredo BS, Ferreira JNDS, Vasconcelos VVV, Ribeiro JN, Guimarães MCC, Gonçalves ADS, da Silva AR. Interaction effects between macromolecules and photosensitizer on the ability of AlPc and InPc-loaded PHB magnetic nanoparticles in photooxidatizing simple biomolecules. Int J Biol Macromol 2022; 212:579-593. [PMID: 35618092 DOI: 10.1016/j.ijbiomac.2022.05.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022]
Abstract
The parameters used in the preparation of polymeric nanoparticles can influence its ability to photooxidate biomolecules. This work evaluated the effects of four parameter to prepare Poly(3-hydroxybutyrate) (PHB) nanoparticle loaded with aluminum and indium phthalocyanine (AlPc and InPc), together with iron oxide nanoparticles, assessing their influence on the size, the entrapment efficiency, and the nanoparticles recovery efficacy. The capability of free, and encapsulated, AlPc and InPc in photooxidating the bovine serum albumin (BSA) and tryptophan (Trp) was monitored by fluorescence. The AlPc-loaded nanoparticles had a larger size and a greater entrapment efficiency than that obtained by InPc-loaded nanoparticles. The free InPc was more efficient than the free AlPc to photooxidize the BSA and Trp; whereas the encapsulated AlPc was more efficient than encapsulated InPc to photooxidize the biomolecules. The higher hydrophobicity of the AlPc, combined with the greater aggregation state and the major interaction with the BSA, quenching the capacity of the free AlPc to photooxidate the biomolecules; whereas the greater interaction of the AlPc with PHB reduce the aggregation effect on the free molecules in the aqueous phase and increase the entrapment efficiency, resulting in an improving of the photodynamic efficiency and an increase of the photooxidation rate constant.
Collapse
Affiliation(s)
- Barbara Silva Figueiredo
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Julyana Noval de Souza Ferreira
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | | | - Joselito Nardy Ribeiro
- Health Science Center, Federal University of Espírito Santo, 29043-910 Vitória, ES, Brazil
| | - Marco Cesar Cunegundes Guimarães
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil
| | - Arlan da Silva Gonçalves
- Federal Institute of Espírito Santo, Campus Vila Velha, 29106-010 Vila Velha, ES, Brazil; Graduate Program in Chemistry, Federal University of Espírito Santo, unit Goiabeiras, 29075-910 Vitória, ES, Brazil
| | - André Romero da Silva
- Graduate Program in Biochemistry and Pharmacology, Federal University of Espírito Santo, Campus Maruípe, 29047-105 Vitória, ES, Brazil; Federal Institute of Espírito Santo, Campus Aracruz, 29192-733 Aracruz, ES, Brazil.
| |
Collapse
|
8
|
Kirar S, Thakur NS, Reddy YN, Banerjee UC, Bhaumik J. Insights on the polypyrrole based nanoformulations for photodynamic therapy. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621300032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review is written to endow updated information on polypyrrole based photosensitizers for the treatment of deadly diseases such as cancer and microbial infection. Tetrapyrrolic macromolecules such as porphyrins and phthalocyanines hold unique photophysical properties which make them very useful compounds for various biomedical applications. Besides their properties, they also have some limitations such as low water solubility, bioavailability, biocompatibility and lack of specificity, etc. Researchers are trying to overcome these limitations by incorporating photosensitizers into the different types of nanoparticles and improve the quality of photodynamic therapy. We have contributed to this field by synthesizing and developing polypyrrolic photosensitizer based nanoparticles for potential applications in antimicrobial and anticancer photodynamic activity. Throughout this review, newly synthesized and existing PSs conjugated/encapsulated/doped/incorporated with nanoparticles are emphasized, which are essential for current and future research themes. Also in this review, we briefly summarized the research work carried over the past few years by considering the porphyrin based photosensitizers as alternative therapeutic entities for the treatment of microbial infections, cancers, and many other diseases.
Collapse
Affiliation(s)
- Seema Kirar
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Neeraj Singh Thakur
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Sector-81, S.A.S. Nagar-140306, Mohali, Punjab, India
| | - Uttam Chand Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar-160062, Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), S.A.S. Nagar-140306, Mohali, Punjab, India
| |
Collapse
|
9
|
Naskar S, Das SK, Sharma S, Kuotsu K. A Review on Designing Poly (Lactic-co-glycolic Acid) Nanoparticles as Drug Delivery Systems. Pharm Nanotechnol 2021; 9:36-50. [PMID: 33319695 DOI: 10.2174/2211738508666201214103010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) is a versatile synthetic polymer comprehensively
used in the pharmaceutical sector because of its biocompatibility and biodegradability. These benefits
lead to its application in the area of nanoparticles (NPs) for drug delivery for over thirty years.
This article offers a general study of the different poly (lactic-co-glycolic acid) nanoparticles (PNPs),
preparation methods such as emulsification-solvent evaporation, coacervation, emulsification
solvent diffusion, dialysis, emulsification reverse salting out, spray drying nanoprecipitation, and
supercritical fluid technology, from the methodological point of view. The physicochemical behavior
of PNPs, including morphology, drug loading, particle size and its distribution, surface
charge, drug release, stability as well as cytotoxicity study and cellular uptake, are briefly discussed.
This survey additionally coordinates to bring a layout of the significant uses of PNPs in different
drug delivery system over the three decades. At last, surface modifications of PNPs and PLGA
nanocomplexes (NCs) are additionally examined.
Collapse
Affiliation(s)
- Sweet Naskar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Sanjoy Kumar Das
- Institute of Pharmacy, Jalpaiguri, Pin-735101, West Bengal, India
| | - Suraj Sharma
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| | - Ketousetuo Kuotsu
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata-700032, West Bengal, India
| |
Collapse
|
10
|
Sharma D, Mazumder ZH, Sengupta D, Mukherjee A, Sengupta M, Das RK, Barbhuiya MH, Palit P, Jha T. Cancer photocytotoxicity and anti-inflammatory response of cis-A2B2 type meso-p-nitrophenyl and p-hydroxyphenyl porphyrin and its zinc(ii) complex: a synthetic alternative to the THPP synthon. NEW J CHEM 2021. [DOI: 10.1039/d0nj05106c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In comparison with the popular synthetic synthon THPP, the cis-A2B2 type of porphyrin derivative and its zinc(ii) complex PN2(OH)2Zn offer more promising photochemical and photobiological outcomes.
Collapse
Affiliation(s)
| | | | | | - Avinaba Mukherjee
- Department of Zoology
- Charuchandra College
- University of Calcutta
- Kolkata
- India
| | | | | | | | - Partha Palit
- Department of Pharmaceutical Sciences
- Assam University
- Silchar
- India
| | - Tarun Jha
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata
- India
| |
Collapse
|
11
|
de Andrade LR, Tedesco AC, Primo FL, Farias GR, da Silva JR, Longo JP, de Almeida MC, de Souza PE, de Azevedo RB, Pinheiro WO, Lacava ZG. Tumor cell death in orthotopic breast cancer model by NanoALA: a novel perspective on photodynamic therapy in oncology. Nanomedicine (Lond) 2020; 15:1019-1036. [PMID: 32264766 DOI: 10.2217/nnm-2019-0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Nano-5-aminolevulic acid (NanoALA)-mediated photodynamic therapy (PDT), an oil-in-water polymeric nanoemulsion of ALA, was evaluated in a murine model of breast cancer. Materials & methods: Analysis of ALA-derived protoporphyrin IX production and acute toxicity test, biocompatibility and treatment efficacy, and long-term effect of NanoALA-PDT on tumor progression were performed. Results: The nanoformulation favored the prodrug uptake by tumor cells in a shorter time (1.5 h). As a result, the adverse effects were negligible and the response rates for primary mammary tumor control were significantly improved. Tumor progression was slower after NanoALA-PDT treatment, providing longer survival. Conclusion: NanoALA is a good proactive drug candidate for PDT against cancer potentially applied as adjuvant/neoadjuvant intervention strategy for breast cancer.
Collapse
Affiliation(s)
- Laise R de Andrade
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology & Tissue Engineering - Photobiology & Photomedicine Research Group, Faculty of Philosophy, Sciences & Letters of Ribeirão Preto, University of São Paulo, 14010-100, Ribeirão Preto, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University, 14800-903, Araraquara, SP, Brazil
| | - Gabriel R Farias
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Jaqueline R da Silva
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - João Pf Longo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Marcos C de Almeida
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Paulo En de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, 70919-970, Brasília, DF, Brazil
| | - Ricardo B de Azevedo
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| | - Willie O Pinheiro
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil.,Post-Graduation Program in Sciences & Technologies in Health, Faculty of Ceilândia, University of Brasília, 72220-275, Brasília, DF, Brazil
| | - Zulmira Gm Lacava
- Department of Genetics & Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
12
|
Bœuf-Muraille G, Rigaux G, Callewaert M, Zambrano N, Van Gulick L, Roullin VG, Terryn C, Andry MC, Chuburu F, Dukic S, Molinari M. Evaluation of mTHPC-loaded PLGA nanoparticles for in vitro photodynamic therapy on C6 glioma cell line. Photodiagnosis Photodyn Ther 2019; 25:448-455. [PMID: 30708089 DOI: 10.1016/j.pdpdt.2019.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Photodynamic therapy (PDT) is a very attractive strategy to complement or replace common cancer treatments such as radiotherapy, surgery, and chemotherapy. Some molecules have shown their efficiency as photosensitizers (PS), still many issues have to be solved such as the inherent cytotoxicity of the PS or its hydrophobic properties causing limitation in their solubility, leading to side effects. In this study, the encapsulation of an approved PS, the meso-tetra hydroxyphenylchlorine (mTHPC, Foscan®) within biocompatible and biodegradable poly(D, l-lactide-co-glycolide) acid (PLGA) NPs prepared by the nanoprecipitation method was studied. The mTHPC-loaded NPs (mTHPC ⊂ PLGA NPs) were analyzed by UV-vis spectroscopy to determine the efficiency of mTHPC encapsulation, and by dynamic light scattering (DLS) and atomic force microscopy (AFM) to determine mTHPC ⊂ PLGA NPs sizes, morphologies and surface charges. The longitudinal follow-up of mTHPC release from the NPs indicated that 50% of the encapsulated PS was retained within the NP matrix after a period of five days. Finally, the cytotoxicity and the phototoxicity of the mTHPC ⊂ PLGA NPs were determined in murine C6 glioma cell lines and compared to the ones of mTHPC alone. The studies showed a strong decrease of mTHPC cytotoxicity and an increase of mTHPC photo-cytotoxicity when mTHPC was encapsulated. In order to have a better insight of the underlying cellular mechanisms that governed cell death after mTHPC ⊂ PLGA NPs incubation and irradiation, annexin V staining tests were performed. The results indicated that apoptosis was the main cell death mechanism.
Collapse
Affiliation(s)
- G Bœuf-Muraille
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France; Laboratoire de Recherche en Nanosciences LRN EA 4682, University of Reims Champagne-Ardenne URCA, 51685, Reims Cedex 2, France
| | - G Rigaux
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France
| | - M Callewaert
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France
| | - N Zambrano
- Laboratoire de Recherche en Nanosciences LRN EA 4682, University of Reims Champagne-Ardenne URCA, 51685, Reims Cedex 2, France
| | - L Van Gulick
- BioSpecT, Faculty of Pharmacy, University of Reims Champagne Ardenne URCA, 51100, Reims, France
| | - V G Roullin
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France; Laboratoire de Nanotechnologies Pharmaceutiques, Faculté de Pharmacie, Université de Montréal, Montréal, H3T 1J4, Canada
| | - C Terryn
- PICT platform, University of Reims Champagne-Ardenne, 51100, Reims, France
| | - M-C Andry
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France
| | - F Chuburu
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, University of Reims Champagne Ardenne, 51687, Reims Cedex 2, France
| | - S Dukic
- BioSpecT, Faculty of Pharmacy, University of Reims Champagne Ardenne URCA, 51100, Reims, France
| | - M Molinari
- Laboratoire de Recherche en Nanosciences LRN EA 4682, University of Reims Champagne-Ardenne URCA, 51685, Reims Cedex 2, France; CBMN CNRS UMR 5248, Université de Bordeaux, INP Bordeaux, 33600 Pessac, France.
| |
Collapse
|
13
|
Keyal U, Luo Q, Bhatta AK, Luan H, Zhang P, Wu Q, Zhang H, Liu P, Zhang L, Wang P, Yang D, Zhang G, Yao J, Wang X, Shi L. Zinc pthalocyanine-loaded chitosan/mPEG-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma. JOURNAL OF BIOPHOTONICS 2018; 11:e201800114. [PMID: 29893047 DOI: 10.1002/jbio.201800114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Zinc pthalocyanine (ZnPc) is a second-generation photodynamic therapy (PDT) sensitizer with sufficient PDT activity for squamous cell carcinoma (SCC). ZnPc is hydrophobic and insoluble in water, which creates hurdles in systemic administration and hence restricts its use in clinic. Here we have loaded ZnPc on chitosan/methoxy polyethylene glycol-polylactic acid (CPP) nanoparticles to form Z-CPP to enhance PDT efficacy. In vitro and in vivo studies were performed to see dark toxicity of the compounds ZnPc, CPP and Z-CPP. Then PDT was done and its growth inhibitory effect on SCC cells was evaluated. In addition, reactive oxygen species (ROS) formation and apoptosis of cancer cells following PDT were studied. The results showed that the tested compounds exhibit no dark toxicity and the effect of PDT was significantly better with Z-CPP when compared to free ZnPc (P < .05). Photoactivation of Z-CPP led to a dose-dependent growth inhibition of cancer cells of >50% at 1 μM to >80% at 10 μM concentration. Also Z-CPP-treated cells had highest number of apoptotic cells and produced more ROS compared to free ZnPc-treated cells (P < .05). Hence, this study suggests that Z-CPP is a suitable pharmaceutical compound to increase PDT efficacy.
Collapse
Affiliation(s)
- Uma Keyal
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Qiong Luo
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Shanghai, P. R. China
| | - Anil K Bhatta
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Hansen Luan
- National Pharmaceutical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai, P. R. China
| | - Ping Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P. R. China
| | - Qianqian Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Haiyan Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Pei Liu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Linglin Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Degang Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, P. R. China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| | - Lei Shi
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
14
|
Feng Q, Wang J, Song H, Zhuo LG, Wang G, Liao W, Feng Y, Wei H, Chen Y, Yang Y, Yang X. Uptake and light-induced cytotoxicity of hyaluronic acid-grafted liposomes containing porphyrin in tumor cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.06.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Sarı C, Eyüpoğlu FC, Değirmencioğlu İ, Bayrak R. Synthesis of axially disubstituted silicon phthalocyanines and investigation of photodynamic effects on HCT-116 colorectal cancer cell line. Photodiagnosis Photodyn Ther 2018; 23:83-88. [PMID: 29775760 DOI: 10.1016/j.pdpdt.2018.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy is one of the hot topics in cancer studies. Photosensitizing chemical substrates are stimulated by light having a specific wavelength to cause fatal effect on different kinds of targets. In this study, axially 4-{[(1E)-2-furylmethylene]amino}phenol, 4-{[(1E)-2-thienylmethylene]amino}phenol and 4-{[(1E)-(4-nitro-2-thienyl)methylene]amino}phenol disubstituted silicon phthalocyanines were synthesized as Photosensitizers for photodynamic therapy in cancer treatment. The structural characterizations of these novel compounds were performed by a combination of FT-IR, 1H-NMR, UV-vis and mass. All these newly prepared compounds did not show aggregation at the concentration range of 2 × 10-6-12 × 10-6 M in tetrahydrofurane and also did not show aggregation in different organic solvents at 2 × 10-6 M concentration. Phthalocyanines synthesized in this study were tested on HCT-116 colorectal cancer cells and stimulated by light has wavelength of 680 nm. The toxic effects on cancer cells which are caused by different concentrations of photosensitizing molecules have been examined and compared with the toxic effects on cancer cells that were kept in the dark. It is confirmed that these molecules caused toxic effects on colorectal cancer cells when they were stimulated by light but there was no toxic effect in the dark.
Collapse
Affiliation(s)
- Ceren Sarı
- Karadeniz Technical University, Institute of Health Sciences, Department of Medical Biology, Trabzon, Turkey
| | - Figen Celep Eyüpoğlu
- Karadeniz Technical University, Faculty of Medicine, Department of Medical Biology, Trabzon, Turkey.
| | - İsmail Değirmencioğlu
- Karadeniz Technical University, Faculty of Science, Department of Chemistry, Trabzon, Turkey.
| | - Rıza Bayrak
- Sinop University, Vocational School of Health Services, Department of Medical Laboratory Techniques, Sinop, Turkey
| |
Collapse
|
16
|
Ali M, McCoy TM, McKinnon IR, Majumder M, Tabor RF. Synthesis and Characterization of Graphene Oxide-Polystyrene Composite Capsules with Aqueous Cargo via a Water-Oil-Water Multiple Emulsion Templating Route. ACS APPLIED MATERIALS & INTERFACES 2017; 9:18187-18198. [PMID: 28492312 DOI: 10.1021/acsami.7b02576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graphene oxide/polystyrene (GO/PS) nanocomposite capsules containing a two-compartment cargo have been successfully fabricated using a Pickering emulsion strategy. Highly purified GO sheets with typically micrometer-scale lateral dimensions and amphiphilic characteristics were prepared from the oxidation reaction of graphite with concomitant exfoliation of the graphite structure. These GO sheets were employed as a stabilizer for oil-in-water emulsions where the oil phase comprised toluene or olive oil. The stability and morphology of the emulsions were extensively studied as a function of different parameters including GO concentration, aqueous phase pH, ultrasonication time, effects of added electrolytes and stability to dilution. In selected conditions, the olive oil emulsions showed spontaneous formation of multiple w/o/w emulsions with high stability, whereas toluene formed simple o/w emulsions of lower overall stability. Olive oil emulsions were therefore used to prepare capsules templated from emulsion droplets by surrounding the oil phase with a GO/PS shell. The GO sheets, emulsions and composite capsules were characterized using a variety of physical and spectroscopic techniques in order to unravel the interactions responsible for capsule formation. The ability of the capsules to control the release of a model active agent in the form of a hydrophilic dye was explored, and release kinetics were monitored using UV-visible spectroscopy to obtain rate parameters. The composite capsules showed promising sustained release properties, with release rates 11× lower than the precursor GO-stabilized multiple emulsion droplets.
Collapse
Affiliation(s)
- Muthana Ali
- Department of Chemistry, University of Karbala , Karbala 56001, Iraq
| | | | | | | | | |
Collapse
|
17
|
Tang R, Habimana-Griffin LM, Lane DD, Egbulefu C, Achilefu S. Nanophotosensitive drugs for light-based cancer therapy: what does the future hold? Nanomedicine (Lond) 2017; 12:1101-1105. [PMID: 28447872 PMCID: PMC5480785 DOI: 10.2217/nnm-2017-0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/15/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Rui Tang
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - LeMoyne M Habimana-Griffin
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Daniel D. Lane
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Christopher Egbulefu
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Achilefu
- Optical Radiology Lab, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
18
|
Kato A, Kataoka H, Yano S, Hayashi K, Hayashi N, Tanaka M, Naitoh I, Ban T, Miyabe K, Kondo H, Yoshida M, Fujita Y, Hori Y, Natsume M, Murakami T, Narumi A, Nomoto A, Naiki-Ito A, Takahashi S, Joh T. Maltotriose Conjugation to a Chlorin Derivative Enhances the Antitumor Effects of Photodynamic Therapy in Peritoneal Dissemination of Pancreatic Cancer. Mol Cancer Ther 2017; 16:1124-1132. [PMID: 28292934 DOI: 10.1158/1535-7163.mct-16-0670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/29/2016] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
Peritoneal dissemination is a major clinical issue associated with dismal prognosis and poor quality of life for patients with pancreatic cancer; however, no effective treatment strategies have been established. Herein, we evaluated the effects of photodynamic therapy (PDT) with maltotriose-conjugated chlorin (Mal3-chlorin) in culture and in a peritoneal disseminated mice model of pancreatic cancer. The Mal3-chlorin was prepared as a water-soluble chlorin derivative conjugated with four Mal3 molecules to improve cancer selectivity. In vitro, Mal3-chlorin showed superior uptake into pancreatic cancer cells compared with talaporfin, which is clinically used. Moreover, the strong cytotoxic effects of PDT with Mal3-chlorin occurred via apoptosis and reactive oxygen species generation, whereas Mal3-chlorin alone did not cause any cytotoxicity in pancreatic cancer cells. Notably, using a peritoneal disseminated mice model, we demonstrated that Mal3-chlorin accumulated in xenograft tumors and suppressed both tumor growth and ascites formation with PDT. Furthermore, PDT with Mal3-chlorin induced robust apoptosis in peritoneal disseminated tumors, as indicated by immunohistochemistry. Taken together, these findings implicate Mal3-chlorin as a potential next-generation photosensitizer for PDT and the basis of a new strategy for managing peritoneal dissemination of pancreatic cancer. Mol Cancer Ther; 16(6); 1124-32. ©2017 AACR.
Collapse
Affiliation(s)
- Akihisa Kato
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan.
| | - Shigenobu Yano
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Kazuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyuki Hayashi
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mamoru Tanaka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Itaru Naitoh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tesshin Ban
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuyuki Miyabe
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromu Kondo
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Michihiro Yoshida
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuaki Fujita
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuki Hori
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Makoto Natsume
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Murakami
- Laboratory of Tumor Biology, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Japan
| | - Akihiro Nomoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Joh
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
19
|
Ogawara KI, Higaki K. Nanoparticle-Based Photodynamic Therapy: Current Status and Future Application to Improve Outcomes of Cancer Treatment. Chem Pharm Bull (Tokyo) 2017; 65:637-641. [DOI: 10.1248/cpb.c17-00063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ken-ichi Ogawara
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| | - Kazutaka Higaki
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University
| |
Collapse
|
20
|
Dąbrowski JM, Pucelik B, Regiel-Futyra A, Brindell M, Mazuryk O, Kyzioł A, Stochel G, Macyk W, Arnaut LG. Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Zhou Y, Liang X, Dai Z. Porphyrin-loaded nanoparticles for cancer theranostics. NANOSCALE 2016; 8:12394-12405. [PMID: 26730838 DOI: 10.1039/c5nr07849k] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Porphyrins have been used as pioneering theranostic agents not only for the photodynamic therapy, sonodynamic therapy and radiotherapy of cancer, but also for diagnostic fluorescence imaging, magnetic resonance imaging and photoacoustic imaging. A variety of porphyrins have been developed but very few of them have actually been employed in clinical trials due to their poor selectivity to tumorous tissue and high accumulation rates in the skin. In addition, most porphyrin molecules are hydrophobic and form aggregates in aqueous media. Nevertheless, the use of nanoparticles as porphyrin carriers shows great promise to overcome these shortcomings. Encapsulating or attaching porphyrins to nanoparticles makes them more suitable for tissue delivery because we can create materials with a conveniently specific tissue lifetime, specific targeting, immune tolerance, and hydrophilicity as well as other characteristics through rational design. In addition, various functional components (e.g. for targeting, imaging or therapeutic functions) can be easily introduced into a single nanoparticle platform for cancer theranostics. This review presents the current state of knowledge on porphyrin-loaded nanoparticles for the interwined imaging and therapy of cancer. The future trends and limitations of prophyrin-loaded nanoparticles are also outlined.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
22
|
Jeong K, Park S, Lee YD, Kang CS, Kim HJ, Park H, Kwon IC, Kim J, Park CR, Kim S. Size-engineered biocompatible polymeric nanophotosensitizer for locoregional photodynamic therapy of cancer. Colloids Surf B Biointerfaces 2016; 144:303-310. [PMID: 27107384 DOI: 10.1016/j.colsurfb.2016.04.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/03/2016] [Accepted: 04/13/2016] [Indexed: 02/02/2023]
Abstract
Current approaches in use of water-insoluble photosensitizers for photodynamic therapy (PDT) of cancer often demand a nano-delivery system. Here, we report a photosensitizer-loaded biocompatible nano-delivery formulation (PPaN-20) whose size was engineered to ca. 20nm to offer improved cell/tissue penetration and efficient generation of cytotoxic singlet oxygen. PPaN-20 was fabricated through the physical assembly of all biocompatible constituents: pyropheophorbide-a (PPa, water-insoluble photosensitizer), polycaprolactone (PCL, hydrophobic/biodegradable polymer), and Pluronic F-68 (clinically approved polymeric surfactant). Repeated microemulsification/evaporation method resulted in a fine colloidal dispersion of PPaN-20 in water, where the particulate PCL matrix containing well-dispersed PPa molecules inside was stabilized by the Pluronic corona. Compared to a control sample of large-sized nanoparticles (PPaN-200) prepared by a conventional solvent displacement method, PPaN-20 revealed optimal singlet oxygen generation and efficient cellular uptake by virtue of the suitably engineered size and constitution, leading to high in vitro phototoxicity against cancer cells. Upon administration to tumor-bearing mice by peritumoral route, PPaN-20 showed efficient tumor accumulation by the enhanced cell/tissue penetration evidenced by in vivo near-infrared fluorescence imaging. The in vivo PDT treatment with peritumorally administrated PPaN-20 showed significantly enhanced suppression of tumor growth compared to the control group, demonstrating great potential as a biocompatible photosensitizing agent for locoregional PDT treatment of cancer.
Collapse
Affiliation(s)
- Keunsoo Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea; Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-744, South Korea
| | - Solji Park
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea; Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Yong-Deok Lee
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Chi Soo Kang
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Hyun Jun Kim
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Hyeonjong Park
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea
| | - Jungahn Kim
- Department of Chemistry, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, South Korea
| | - Chong Rae Park
- Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, Gwanak-gu, Seoul 151-744, South Korea
| | - Sehoon Kim
- Center for Theragnosis, Korea Institute of Science and Technology, 39-1Hawolgok-dong, Seongbuk-gu, Seoul 136-791, South Korea.
| |
Collapse
|
23
|
Diz V, Leyva G, Zysler R, Awruch J, Dicelio L. Photophysics of an octasubstituted zinc(II) phthalocyanine incorporated into solid polymeric magnetic and non-magnetic PLGA–PVA nanoparticles. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2015.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
de Souza TD, Ziembowicz FI, Müller DF, Lauermann SC, Kloster CL, Santos RCV, Lopes LQS, Ourique AF, Machado G, Villetti MA. Evaluation of photodynamic activity, photostability and in vitro drug release of zinc phthalocyanine-loaded nanocapsules. Eur J Pharm Sci 2016; 83:88-98. [DOI: 10.1016/j.ejps.2015.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 01/09/2023]
|
25
|
Pramual S, Assavanig A, Bergkvist M, Batt CA, Sunintaboon P, Lirdprapamongkol K, Svasti J, Niamsiri N. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:40. [PMID: 26712706 DOI: 10.1007/s10856-015-5655-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/18/2015] [Indexed: 06/05/2023]
Abstract
In this study, we developed and investigated nanoparticles of biologically-derived, biodegradable polyhydroxyalkanoates (PHAs) as carriers of a hydrophobic photosensitizer, 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H, 23H-porphine (pTHPP) for photodynamic therapy (PDT). Three PHA variants; polyhydroxybutyrate, poly(hydroxybutyrate-co-hydroxyvalerate) or P(HB-HV) with 12 and 50% HV were used to formulate pTHPP-loaded PHA nanoparticles by an emulsification-diffusion method, where we compared two different poly(vinyl alcohol) (PVA) stabilizers. The nanoparticles exhibited nano-scale spherical morphology under TEM and hydrodynamic diameters ranging from 169.0 to 211.2 nm with narrow size distribution. The amount of drug loaded and the drug entrapment efficiency were also investigated. The in vitro photocytotoxicity was evaluated using human colon adenocarcinoma cell line HT-29 and revealed time and concentration dependent cell death, consistent with a gradual release pattern of pTHPP over 24 h. This study is the first demonstration using bacterially derived P(HB-HV) copolymers for nanoparticle delivery of a hydrophobic photosensitizer drug and their potential application in PDT.
Collapse
Affiliation(s)
- Sasivimon Pramual
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Apinya Assavanig
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Magnus Bergkvist
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, 12203, USA
| | - Carl A Batt
- Department of Food Science, Cornell University, New York, 14853, USA
| | - Panya Sunintaboon
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
- Center of Excellence in Protein Structure and Function, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Nuttawee Niamsiri
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
26
|
Ogawara KI, Shiraishi T, Araki T, Watanabe TI, Ono T, Higaki K. Efficient anti-tumor effect of photodynamic treatment with polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer encapsulating hydrophobic porphyrin derivative. Eur J Pharm Sci 2016; 82:154-60. [DOI: 10.1016/j.ejps.2015.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/22/2015] [Accepted: 11/20/2015] [Indexed: 10/22/2022]
|
27
|
Boix-Garriga E, Acedo P, Casadó A, Villanueva A, Stockert JC, Cañete M, Mora M, Sagristá ML, Nonell S. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating. NANOTECHNOLOGY 2015; 26:365104. [PMID: 26293792 DOI: 10.1088/0957-4484/26/36/365104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) are being considered as nanodelivery systems for photodynamic therapy. The physico-chemical and biological aspects of their use remain largely unknown. Herein we report the results of a study of PLGA NPs for the delivery of the model hydrophobic photosensitizer ZnTPP to HeLa cells. ZnTPP was encapsulated in PLGA with high efficiency and the NPs showed negative zeta potentials and diameters close to 110 nm. Poly(ethylene glycol) (PEG) coating, introduced to prevent opsonization and clearance by macrophages, decreased the size and zeta potential of the NPs by roughly a factor of two and improved their stability in the presence of serum proteins. Photophysical studies revealed two and three populations of ZnTPP and singlet oxygen in uncoated and PEGylated NPs, respectively. Singlet oxygen is confined within the NPs in bare PLGA while it is more easily released into the external medium after PEG coating, which contributes to a higher photocytotoxicity towards HeLa cells in vitro. PLGA NPs are internalized by endocytosis, deliver their cargo to lysosomes and induce cell death by apoptosis upon exposure to light. In conclusion, PLGA NPs coated with PEG show high potential as delivery systems for photodynamic applications.
Collapse
Affiliation(s)
- Ester Boix-Garriga
- Grup d'Enginyeria Molecular, Institut Químic de Sarrià, Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu J, Chu X, Hou Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem Commun (Camb) 2015; 50:11614-30. [PMID: 25058003 DOI: 10.1039/c4cc03984j] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanoparticles (NPs) have recently been well investigated for cancer therapy. Among them, those that are responsive to internal or external stimuli are promising due to their flexibility. In this feature article, we provide an overview on stimuli-sensitive cancer therapy, using pH- and reduction-sensitive NPs, as well as light- and magnetic field-responsive NPs.
Collapse
Affiliation(s)
- Jing Yu
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | | | | |
Collapse
|
29
|
Penon O, Patiño T, Barrios L, Nogués C, Amabilino DB, Wurst K, Pérez-García L. A new porphyrin for the preparation of functionalized water-soluble gold nanoparticles with low intrinsic toxicity. ChemistryOpen 2015; 4:127-36. [PMID: 25969810 PMCID: PMC4420584 DOI: 10.1002/open.201402092] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Indexed: 12/28/2022] Open
Abstract
A potential new photosensitizer based on a dissymmetric porphyrin derivative bearing a thiol group was synthesized. 5-[4-(11-Mercaptoundecyloxy)-phenyl-10,15,20-triphenylporphyrin (PR-SH) was used to functionalize gold nanoparticles in order to obtain a potential drug delivery system. Water-soluble multifunctional gold nanoparticles GNP-PR/PEG were prepared using the Brust-Schiffrin methodology, by immobilization of both a thiolated polyethylene glycol (PEG) and the porphyrin thiol compound (PR-SH). The nanoparticles were fully characterized by transmission electron microscopy and (1)H nuclear magnetic resonance spectroscopy, UV/Vis absorption spectroscopy, and X-ray photoelectron spectroscopy. Furthermore, the ability of GNP-PR/PEGs to induce singlet oxygen production was analyzed to demonstrate the activity of the photosensitizer. Cytotoxicity experiments showed the nanoparticles are nontoxic. Finally, cellular uptake experiments demonstrated that the functionalized gold nanoparticles are internalized. Therefore, this colloid can be considered to be a novel nanosystem that could potentially be suitable as an intracellular drug delivery system of photosensitizers for photodynamic therapy.
Collapse
Affiliation(s)
- Oriol Penon
- Departament de Farmacologia i Química Terapèutica, and Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de BarcelonaAvda. Joan XXIII s/n, 08028, Barcelona, (Spain)
| | - Tania Patiño
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de BarcelonaCampus de la UAB, 08193, Bellaterra, Spain
| | - Lleonard Barrios
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de BarcelonaCampus de la UAB, 08193, Bellaterra, Spain
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de BarcelonaCampus de la UAB, 08193, Bellaterra, Spain
| | - David B Amabilino
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB08193, Bellaterra, (Spain)
| | - Klaus Wurst
- Institut für Anorganische ChemieInnrain 80/82, 6020, Innsbruck, (Austria)
| | - Lluïsa Pérez-García
- Departament de Farmacologia i Química Terapèutica, and Institut de Nanociència i Nanotecnologia UB (IN2UB), Universitat de BarcelonaAvda. Joan XXIII s/n, 08028, Barcelona, (Spain)
| |
Collapse
|
30
|
Affiliation(s)
- Sasidharan Swarnalatha Lucky
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
| | - Khee Chee Soo
- Division
of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore 169610
| | - Yong Zhang
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, Singapore, Singapore 117456
- Department
of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore 117576
- College
of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang, P. R. China 321004
| |
Collapse
|
31
|
Li L, Huh KM. Polymeric nanocarrier systems for photodynamic therapy. Biomater Res 2014; 18:19. [PMID: 26331070 PMCID: PMC4552462 DOI: 10.1186/2055-7124-18-19] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/02/2014] [Indexed: 01/14/2023] Open
Abstract
Photodynamic therapy (PDT) is an emerging treatment modality that involves the combined action of photosensitizers (PSs) and light for treatment of solid tumor and other diseases. Although this therapeutic method has been considered as an alternative to classical cancer treatments, clinical PDT requires further advances in selectivity and therapeutic efficacy to overcome numerous shortages related to conventional PDT. In this regard, great efforts have been devoted to the development of polymeric nanocarrier-encapsulated PSs for targeted PDT, aiming at improvement of water solubility and tumor-specificity of hydrophobic PSs. Here, we discuss the general concepts and considerations of polymeric nanocarriers for efficient delivery of PSs. In recent, the amphiphilic PS-polymer conjugate-based self-quenchable nanoparticles and PS-polymer-conjugate/quencher nanocomplexes have emerged as an attractive delivery platform for efficient and reliable PDT. They can incorporate and deliver the PS in a photodynamically inactive state but demonstrate cytotoxic effects by tumor environment-sensitive activation mechanisms, so that the photodynamic cancer treatment can achieve maximum target specificity. Here, we report the recent achievements on the development of activatable PS formulations based on PS-polymer conjugates.
Collapse
Affiliation(s)
- Li Li
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764 Republic of Korea
| |
Collapse
|
32
|
Vaculikova E, Placha D, Pisarcik M, Peikertova P, Dedkova K, Devinsky F, Jampilek J. Preparation of risedronate nanoparticles by solvent evaporation technique. Molecules 2014; 19:17848-61. [PMID: 25375330 PMCID: PMC6271162 DOI: 10.3390/molecules191117848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/16/2022] Open
Abstract
One approach for the enhancement of oral drug bioavailability is the technique of nanoparticle preparation. Risedronate sodium (Biopharmaceutical Classification System Class III) was chosen as a model compound with high water solubility and low intestinal permeability. Eighteen samples of risedronate sodium were prepared by the solvent evaporation technique with sodium dodecyl sulfate, polysorbate, macrogol, sodium carboxymethyl cellulose and sodium carboxymethyl dextran as nanoparticle stabilizers applied in three concentrations. The prepared samples were characterized by dynamic light scattering and scanning electron microscopy. Fourier transform mid-infrared spectroscopy was used for verification of the composition of the samples. The particle size of sixteen samples was less than 200 nm. Polysorbate, sodium carboxymethyl dextran and macrogol were determined as the most favourable excipients; the particle size of the samples of risedronate with these excipients ranged from 2.8 to 10.5 nm.
Collapse
Affiliation(s)
- Eliska Vaculikova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, Brno 61242, Czech Republic
| | - Daniela Placha
- Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 70833, Czech Republic
| | - Martin Pisarcik
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinciakova 8, Bratislava 83232, Slovakia
| | - Pavlina Peikertova
- Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 70833, Czech Republic
| | - Katerina Dedkova
- Nanotechnology Centre, VSB-Technical University of Ostrava, 17. listopadu 15/2172, Ostrava 70833, Czech Republic
| | - Ferdinand Devinsky
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinciakova 8, Bratislava 83232, Slovakia
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, Brno 61242, Czech Republic.
| |
Collapse
|
33
|
Srikar R, Upendran A, Kannan R. Polymeric nanoparticles for molecular imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:245-67. [PMID: 24616442 DOI: 10.1002/wnan.1259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 01/31/2023]
Abstract
Conventional imaging technologies (X-ray computed tomography, magnetic resonance, and optical) depend on contrast agents to visualize a target site or organ of interest. The imaging agents currently used in clinics for diagnosis suffer from disadvantages including poor target specificity and in vivo instability. Consequently, delivery of low concentrations of contrast agents to region of interest affects image quality. Therefore, it is important to selectively deliver high payload of contrast agent to obtain clinically useful images. Nanoparticles offer multifunctional capabilities to transport high concentrations of imaging probes selectively to diseased site inside the body. Polymeric nanoparticles, incorporated with contrast agents, have shown significant benefits in molecular imaging applications. These materials possess the ability to encapsulate different contrast agents within a single matrix enabling multimodal imaging possibilities. The materials can be surface conjugated to target-specific biomolecules for controlling the navigation under in vivo conditions. The versatility of this class of nanomaterials makes them an attractive platform for developing highly sensitive molecular imaging agents. The research community's progress in the area of synthesis of polymeric nanomaterials and their in vivo imaging applications has been noteworthy, but it is still in the pioneer stage of development. The challenges ahead should focus on the design and fabrication of these materials including burst release of contrasts agents, solubility, and stability issues of polymeric nanomaterials.
Collapse
Affiliation(s)
- R Srikar
- Department of Radiology, University of Missouri, Columbia, MO, USA
| | | | | |
Collapse
|
34
|
Tanaka M, Kataoka H, Yano S, Ohi H, Moriwaki K, Akashi H, Taguchi T, Hayashi N, Hamano S, Mori Y, Kubota E, Tanida S, Joh T. Antitumor Effects in Gastrointestinal Stromal Tumors Using Photodynamic Therapy with a Novel Glucose-Conjugated Chlorin. Mol Cancer Ther 2014; 13:767-75. [DOI: 10.1158/1535-7163.mct-13-0393] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Thandu M, Rapozzi V, Xodo L, Albericio F, Comuzzi C, Cavalli S. “Clicking” Porphyrins to Magnetic Nanoparticles for Photodynamic Therapy. Chempluschem 2013; 79:90-98. [DOI: 10.1002/cplu.201300276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Indexed: 11/10/2022]
|
36
|
da Silva CL, Del Ciampo JO, Rossetti FC, Bentley MVLB, Pierre MBR. ImprovedIn vitroandIn vivoCutaneous Delivery of Protoporphyrin IX from PLGA-based Nanoparticles. Photochem Photobiol 2013; 89:1176-84. [DOI: 10.1111/php.12121] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 06/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Carolina L. da Silva
- School of Pharmacy; Federal University of Rio de Janeiro; Rio de Janeiro; SP; Brazil
| | - José O. Del Ciampo
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; Ribeirão Preto; SP; Brazil
| | - Fábia C. Rossetti
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; Ribeirão Preto; SP; Brazil
| | - Maria V. L. B. Bentley
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo; Ribeirão Preto; SP; Brazil
| | - Maria B. R. Pierre
- School of Pharmacy; Federal University of Rio de Janeiro; Rio de Janeiro; SP; Brazil
| |
Collapse
|
37
|
Lim CK, Heo J, Shin S, Jeong K, Seo YH, Jang WD, Park CR, Park SY, Kim S, Kwon IC. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett 2013; 334:176-87. [DOI: 10.1016/j.canlet.2012.09.012] [Citation(s) in RCA: 216] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 02/07/2023]
|
38
|
Yang Y, Wang H. Perspectives of nanotechnology in minimally invasive therapy of breast cancer. JOURNAL OF HEALTHCARE ENGINEERING 2013; 4:67-86. [PMID: 23502250 DOI: 10.1260/2040-2295.4.1.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Breast cancer, the most common type of cancer among women in the western world, affects approximately one out of every eight women over their lifetime. In recognition of the high invasiveness of surgical excision and severe side effects of chemical and radiation therapies, increasing efforts are made to seek minimally invasive modalities with fewer side effects. Nanoparticles (<100 nm in size) have shown promising capabilities for delivering targeted therapeutic drugs to cancer cells and confining the treatment mainly within tumors. Additionally, some nanoparticles exhibit distinct properties, such as conversion of photonic energy into heat, and these properties enable eradication of cancer cells. In this review, current utilization of nanostructures for cancer therapy, especially in minimally invasive therapy, is summarized with a particular interest in breast cancer.
Collapse
Affiliation(s)
- Yamin Yang
- Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | |
Collapse
|
39
|
Photosan-II loaded hollow silica nanoparticles: preparation and its effect in killing for QBC939 cells. Photodiagnosis Photodyn Ther 2013; 10:460-9. [PMID: 24284099 DOI: 10.1016/j.pdpdt.2013.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nanoparticles have been explored recently as an efficient means to deliver photosensitizers for photodynamic therapy. However, it is largely unknown if polyhematoporphyrin (C34H38N4NaO5, Photosan-II, PS) or other photosensitizers can be efficiently delivered by hollow silica nanoparticles (HSNP). METHODS Polyhematoporphyrin (C34H38N4NaO5, Photosan-II, PS) was loaded into hollow silica nanoparticles (HSNP) by one-step wet chemical-based synthetic route. Dynamic light scattering (DLS) and polydispersive index (PDI) were used for measurement of the particles size and size distribution. Transmission electron microscope and scanning electron microscopy were used for the microstructure, morphological and chemical composition analysis. Fourier transform infrared spectrometry spectra and fluorescence emission spectrum were obtained. The photobiological activity of the PS-loaded HSNP was evaluated on human cholangiocarcinoma QBC939 cells. The cellular viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Apoptotic and necrotic cells were measured by flow cytometry. RESULTS DLS measurements showed that the size of the particles is in the range of 25-90 nm. PDI of the PS-loaded HSNP is 0.121 ± 0.01, indicating that samples have excellent quality with narrow size distribution to monomodal systems. In MTT assay, PS-loaded HSNP and free PS of the same concentration killed about 95.3% ± 2.0% and 55.7% ± 1.9% of QBC939 cells, respectively. The flow cytometry demonstrated that the laser induced cell death with PS-loaded HSNP was much more severe than that of free PS (P<0.05). CONCLUSIONS Photosan-II-loaded hollow silica nanoparticles not only can quickly deliver Photosan-II into cells but also can reach a more high concentration than free Photosan-II. HSNP is a desirable vehicle and the release system that shows promises for photodynamic therapy use, which not only improve the aqueous solubility, stability and transport efficiency of PS, but also increase its photodynamic efficacy compared to free PS.
Collapse
|
40
|
Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: Photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur J Pharm Sci 2013; 49:371-81. [DOI: 10.1016/j.ejps.2013.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 03/17/2013] [Accepted: 03/20/2013] [Indexed: 11/20/2022]
|
41
|
Cohen BA, Bergkvist M. Targeted in vitro photodynamic therapy via aptamer-labeled, porphyrin-loaded virus capsids. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 121:67-74. [PMID: 23524248 DOI: 10.1016/j.jphotobiol.2013.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 01/08/2023]
Abstract
Virus capsids have emerged as multifunctional platform systems for development of bio-derived nanomaterials. In this work we investigate the use of aptamer decorated MS2 bacteriophage capsids, loaded with photosensitizer for targeted photodynamic therapy in vitro. MS2 capsids were loaded with approximately 250 cationic porphyrins through a novel assembly packaging mechanism, followed by exterior decoration of the capsid with a cancer-targeting nucleic acid aptamer via chemical conjugation. The ability of these aptamer-virus-porphyrin constructs to specifically target and eradicate MCF-7 human breast cancer cells upon photoactivation was assessed. Photoinduced cytotoxicity was evaluated via live/dead staining and a metabolic activity assay with MCF-10A cells as a control. Results show that MCF-7 cells incubated with targeted, porphyrin-loaded virus capsids exhibited cell death whereas the MCF-10A cells did not. Furthermore, MCF-7 cells incubated with porphyrin-loaded viruses decorated with a non-targeting aptamer exhibited no observable phototoxicity. Combined, the results presented in this work demonstrate our unique virus-based loading strategy offers a viable approach for efficient targeted delivery of photoactive compounds for site-specific photodynamic cancer therapy using bio-derived nanomaterials.
Collapse
Affiliation(s)
- Brian A Cohen
- College of Nanoscale Science & Engineering, University at Albany, 257 Fuller Road, Albany, NY 12203, USA
| | | |
Collapse
|
42
|
Abdelghany S, Schmid D, Deacon J, Jaworski J, Fay F, McLaughlin KM, Gormley J, Burrows JF, Longley DB, Donnelly RF, Scott CJ. Enhanced antitumor activity of the photosensitizer meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate through encapsulation in antibody-targeted chitosan/alginate nanoparticles. Biomacromolecules 2013; 14:302-10. [PMID: 23327610 PMCID: PMC3582313 DOI: 10.1021/bm301858a] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 01/16/2013] [Indexed: 11/29/2022]
Abstract
meso-Tetra(N-methyl-4-pyridyl) porphine tetra tosylate (TMP) is a photosensitizer that can be used in photodynamic therapy (PDT) to induce cell death through generation of reactive oxygen species in targeted tumor cells. However, TMP is highly hydrophilic, and therefore, its ability to accumulate intracellularly is limited. In this study, a strategy to improve TMP uptake into cells has been investigated by encapsulating the compound in a hydrogel-based chitosan/alginate nanoparticle formulation. Nanoparticles of 560 nm in diameter entrapping 9.1 μg of TMP per mg of formulation were produced and examined in cell-based assays. These particles were endocytosed into human colorectal carcinoma HCT116 cells and elicited a more potent photocytotoxic effect than free drug. Antibodies targeting death receptor 5 (DR5), a cell surface apoptosis-inducing receptor up-regulated in various types of cancer and found on HCT116 cells, were then conjugated onto the particles. The conjugated antibodies further enhanced uptake and cytotoxic potency of the nanoparticle. Taken together, these results show that antibody-conjugated chitosan/alginate nanoparticles significantly enhanced the therapeutic effectiveness of entrapped TMP. This novel approach provides a strategy for providing targeted site-specific delivery of TMP and other photosensitizer drugs to treat colorectal tumors using PDT.
Collapse
Affiliation(s)
- Sharif
M. Abdelghany
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Daniela Schmid
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Jill Deacon
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Jakub Jaworski
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Francois Fay
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Kirsty M. McLaughlin
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Julie
A. Gormley
- Fusion Antibodies
Ltd., Springbank Industrial Estate, Pembroke Loop Road,
Belfast, BT17 0QL, United Kingdom
| | - James F. Burrows
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Daniel B. Longley
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Ryan F. Donnelly
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| | - Christopher J. Scott
- School of
Pharmacy, Centre for Cancer Research and Cell Biology, and Centre for Infection and Immunity, Queen’s University Belfast, 97
Lisburn Road, Belfast, BT9 7BL, United Kingdom
| |
Collapse
|
43
|
Nagahara A, Mitani A, Fukuda M, Yamamoto H, Tahara K, Morita I, Ting CC, Watanabe T, Fujimura T, Osawa K, Sato S, Takahashi S, Iwamura Y, Kuroyanagi T, Kawashima Y, Noguchi T. Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis. J Periodontal Res 2013; 48:591-9. [PMID: 23317284 DOI: 10.1111/jre.12042] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antimicrobial photodynamic therapy (aPDT) is a new treatment method for the removal of infectious pathogens using a photosensitizer and light of a specific wavelength, e.g., toluidine blue with a wavelength of about 600 nm. We explored a new photosensitizer and focused on indocyanine green (ICG), which has high absorption at a wavelength of 800-805 nm. We investigated the bactericidal effect of PDT on Porphyromonas gingivalis using a new photosensitizer, ICG-loaded nanospheres with an 805 nm wavelength low-level diode laser irradiation. METHODS We designed ICG-loaded nanospheres coated with chitosan (ICG-Nano/c) as a photosensitizer. A solution containing Porphyromonas gingivalis (10(8) CFU/mL) with or without ICG-Nano/c (or ICG) was prepared and irradiated with a diode laser or without laser irradiation as a negative control. The irradiation settings were 0.5 W with a duty ratio of 10%, for 3-100 ms in repeated pulse (RPT) or continuous wave mode. CFU were counted after 7 d of anaerobic culture. RESULTS We observed that ICG-Nano/c could adhere to the surface of P. gingivalis. When ICG-Nano/c was used for aPDT, irradiation with RPT 100 ms mode gave the lowest increase in temperature. Laser irradiation with ICG-Nano/c significantly reduced the number of P. gingivalis (i.e., approximately 2-log10 bacterial killing). The greatest bactericidal effect was found in the RPT 100 ms group. However, laser irradiation (RPT 100 ms) with ICG, as well as without photosensitizer, had no effect on the number of bacteria. CONCLUSIONS Within the limits of this study, ICG-Nano/c with low-level diode laser (0.5 W; 805 nm) irradiation showed an aPDT-like effect, which might be useful for a potential photodynamic periodontal therapy.
Collapse
Affiliation(s)
- A Nagahara
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pandey SK, Haldar C, Patel DK, Maiti P. Biodegradable Polymers for Potential Delivery Systems for Therapeutics. MULTIFACETED DEVELOPMENT AND APPLICATION OF BIOPOLYMERS FOR BIOLOGY, BIOMEDICINE AND NANOTECHNOLOGY 2013. [DOI: 10.1007/12_2012_198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Vaculikova E, Grunwaldova V, Kral V, Dohnal J, Jampilek J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules 2012; 17:13221-34. [PMID: 23132139 PMCID: PMC6268062 DOI: 10.3390/molecules171113221] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023] Open
Abstract
The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.
Collapse
Affiliation(s)
- Eliska Vaculikova
- Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
- Nanotechnology Centre, VSB—Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
- Authors to whom correspondence should be addressed; (E.V.); (J.J.); Tel.: +420-541-562-925 (J.J.); Fax: +420-541-240-607 (J.J.)
| | - Veronika Grunwaldova
- Institute of Chemical Technology, Faculty of Chemical Engineering, Technicka 5, 166 28 Prague 6, Czech Republic
- Institute of Inorganic Chemistry, Academy of Science, 250 68 Rez, Czech Republic
| | - Vladimir Kral
- Institute of Chemical Technology, Faculty of Chemical Engineering, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Jiri Dohnal
- Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
- Research Institute for Pharmacy and Biochemistry, Lidicka 1879/48, 602 00 Brno, Czech Republic
| | - Josef Jampilek
- Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
- Research Institute for Pharmacy and Biochemistry, Lidicka 1879/48, 602 00 Brno, Czech Republic
- Authors to whom correspondence should be addressed; (E.V.); (J.J.); Tel.: +420-541-562-925 (J.J.); Fax: +420-541-240-607 (J.J.)
| |
Collapse
|
46
|
Josefsen LB, Boyle RW. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics 2012; 2:916-66. [PMID: 23082103 PMCID: PMC3475217 DOI: 10.7150/thno.4571] [Citation(s) in RCA: 385] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 08/10/2012] [Indexed: 02/07/2023] Open
Abstract
Porphyrinic molecules have a unique theranostic role in disease therapy; they have been used to image, detect and treat different forms of diseased tissue including age-related macular degeneration and a number of different cancer types. Current focus is on the clinical imaging of tumour tissue; targeted delivery of photosensitisers and the potential of photosensitisers in multimodal biomedical theranostic nanoplatforms. The roles of porphyrinic molecules in imaging and pdt, along with research into improving their selective uptake in diseased tissue and their utility in theranostic applications are highlighted in this Review.
Collapse
|
47
|
Benachour H, Sève A, Bastogne T, Frochot C, Vanderesse R, Jasniewski J, Miladi I, Billotey C, Tillement O, Lux F, Barberi-Heyob M. Multifunctional Peptide-conjugated hybrid silica nanoparticles for photodynamic therapy and MRI. Theranostics 2012; 2:889-904. [PMID: 23082101 PMCID: PMC3475218 DOI: 10.7150/thno.4754] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/14/2012] [Indexed: 11/15/2022] Open
Abstract
Photodynamic therapy (PDT) is an emerging theranostic modality for various cancer as well as non-cancer diseases. Its efficiency is mainly based on a selective accumulation of PDT and imaging agents in tumor tissue. The vascular effect is widely accepted to play a major role in tumor eradication by PDT. To promote this vascular effect, we previously demonstrated the interest of using an active- targeting strategy targeting neuropilin-1 (NRP-1), mainly over-expressed by tumor angiogenic vessels. For an integrated vascular-targeted PDT with magnetic resonance imaging (MRI) of cancer, we developed multifunctional gadolinium-based nanoparticles consisting of a surface-localized tumor vasculature targeting NRP-1 peptide and polysiloxane nanoparticles with gadolinium chelated by DOTA derivatives on the surface and a chlorin as photosensitizer. The nanoparticles were surface-functionalized with hydrophilic DOTA chelates and also used as a scaffold for the targeting peptide grafting. In vitro investigations demonstrated the ability of multifunctional nanoparticles to preserve the photophysical properties of the encapsulated photosensitizer and to confer photosensitivity to MDA-MB-231 cancer cells related to photosensitizer concentration and light dose. Using binding test, we revealed the ability of peptide-functionalized nanoparticles to target NRP-1 recombinant protein. Importantly, after intravenous injection of the multifunctional nanoparticles in rats bearing intracranial U87 glioblastoma, a positive MRI contrast enhancement was specifically observed in tumor tissue. Real-time MRI analysis revealed the ability of the targeting peptide to confer specific intratumoral retention of the multifunctional nanoparticles.
Collapse
|
48
|
Primary investigation of the preparation of nanoparticles by precipitation. Molecules 2012; 17:11067-78. [PMID: 22976470 PMCID: PMC6269072 DOI: 10.3390/molecules170911067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 08/21/2012] [Accepted: 09/03/2012] [Indexed: 11/16/2022] Open
Abstract
The absorption, distribution, biotransformation and excretion of a drug involve its transport across cell membranes. This process is essential and influenced by the characteristics of the drug, especially its molecular size and shape, solubility at the site of its absorption, relative lipid solubility, etc. One of the progressive ways for increasing bioavaibility is a nanoparticle preparation technique. Cholesterol, cholestenolone and pregnenolone acetate as model active pharmaceutical ingredients and some of the commonly used excipients as nanoparticle stabilizers were used in the investigated precipitation method that was modified and simplified and can be used as an effective and an affordable technique for the preparation of nanoparticles. All 120 prepared samples were analyzed by means of dynamic light scattering (Nanophox). The range of the particle size of the determined 100 nanoparticle samples was from 1 nm to 773 nm, whereas 82 samples contained nanoparticles of less than 200 nm. Relationships between solvents and used excipients and their amount are discussed.
Collapse
|
49
|
Sharma SK, Mroz P, Dai T, Huang YY, St. Denis TG, Hamblin MR. Photodynamic Therapy for Cancer and for Infections: What Is the Difference? Isr J Chem 2012; 52:691-705. [PMID: 23248387 PMCID: PMC3522418 DOI: 10.1002/ijch.201100062] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) was discovered over one hundred years ago when it was observed that certain dyes could kill microorganisms when exposed to light in the presence of oxygen. Since those early days, PDT has mainly been developed as a cancer therapy and as a way to destroy proliferating blood vessels. However, recently it has become apparent that PDT may also be used as an effective antimicrobial modality and a potential treatment for localized infections. This review discusses the similarities and differences between the application of PDT for the treatment of microbial infections and for cancer lesions. Type I and type II photodynamic processes are described, and the structure-function relationships of optimal anticancer and antimicrobial photosensitizers are outlined. The different targeting strategies, intracellular photosensitizer localization, and pharmacokinetic properties of photosensitizers required for these two different PDT applications are compared and contrasted. Finally, the ability of PDT to stimulate an adaptive or innate immune response against pathogens and tumors is also covered.
Collapse
Affiliation(s)
- Sulbha K. Sharma
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
| | - Pawel Mroz
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
- Department of Dermatology Harvard Medical School Boston, MA (USA)
| | - Tianhong Dai
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
- Department of Dermatology Harvard Medical School Boston, MA (USA)
| | - Ying-Ying Huang
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
- Department of Dermatology Harvard Medical School Boston, MA (USA)
- Aesthetic and Plastic Center of Guangxi Medical University Nanning (P. R. China)
| | - Tyler G. St. Denis
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
- Columbia University New York City, NY (USA)
| | - Michael R. Hamblin
- Wellman Center for Photomedicine Massachusetts General Hospital Boston, MA (USA)
- Department of Dermatology Harvard Medical School Boston, MA (USA)
- Harvard-MIT Division of Health Sciences and Technology Cambridge, MA (USA)
| |
Collapse
|
50
|
Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 2012; 31:607-31. [PMID: 22951919 DOI: 10.1016/j.biotechadv.2012.08.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 12/27/2022]
Abstract
Phototherapy can be used in two completely different but complementary therapeutic applications. While low level laser (or light) therapy (LLLT) uses red or near-infrared light alone to reduce inflammation, pain and stimulate tissue repair and regeneration, photodynamic therapy (PDT) uses the combination of light plus non-toxic dyes (called photosensitizers) to produce reactive oxygen species that can kill infectious microorganisms and cancer cells or destroy unwanted tissue (neo-vascularization in the choroid, atherosclerotic plaques in the arteries). The recent development of nanotechnology applied to medicine (nanomedicine) has opened a new front of advancement in the field of phototherapy and has provided hope for the development of nanoscale drug delivery platforms for effective killing of pathological cells and to promote repair and regeneration. Despite the well-known beneficial effects of phototherapy and nanomaterials in producing the killing of unwanted cells and promoting repair and regeneration, there are few reports that combine all three elements i.e. phototherapy, nanotechnology and, tissue repair and regeneration. However, these areas in all possible binary combinations have been addressed by many workers. The present review aims at highlighting the combined multi-model applications of phototherapy, nanotechnology and, reparative and regeneration medicine and outlines current strategies, future applications and limitations of nanoscale-assisted phototherapy for the management of cancers, microbial infections and other diseases, and to promote tissue repair and regeneration.
Collapse
|