1
|
Tamaki A, Kohashi K, Yoshimaru K, Hino Y, Hamada H, Kawakubo N, Taguchi T, Tajiri T, Oda Y. A Novel Objective Pathologic Criterion for Isolated Hypoganglionosis. Am J Surg Pathol 2024; 48:803-812. [PMID: 38726836 DOI: 10.1097/pas.0000000000002243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Isolated hypoganglionosis (IHG) is histologically characterized by small numbers of myenteric ganglion cells and small myenteric ganglia; however, no numerical diagnostic criteria for IHG have been established. Therefore, this study aimed to develop quantitative pathologic criteria for IHG. We evaluated 160 resected intestinal tissue specimens from 29 pediatric autopsies and 10 IHG cases. These specimens were obtained from the jejunum, ileum, ascending colon, transverse colon, and rectum. Morphologic features of the myenteric ganglion cells and myenteric ganglia were quantified and analyzed in digitized HuC/HuD-immunostained and CD56-immunostained sections, respectively. Quantitative criteria were developed with a scoring system that used parameters with the area under the receiver operating characteristic curve (AUC) values >0.7 and sensitivity and specificity exceeding 70%. The selected parameters were the number of myenteric ganglion cells per cm and the number of myenteric ganglia with an area >2500 µm 2 per cm. The score for each parameter ranged from -1 to 2, and the total score of the scoring system ranged from -2 to 4. With a cutoff value of ≥2 (AUC, 0.98; 95% CI: 0.96-1.00), the scoring system had a sensitivity of 96% (95% CI: 0.82-1.00) and a specificity of 99% (95% CI: 0.95-1.00). We devised a novel pathologic criterion based on the quantification of the number of myenteric ganglion cells and ganglia. Furthermore, this criterion showed high diagnostic accuracy and could lead to a definitive diagnosis of IHG in clinical practice.
Collapse
Affiliation(s)
- Akihiko Tamaki
- Departments of Anatomic Pathology
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Kenichi Kohashi
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka
| | | | - Yuko Hino
- Departments of Anatomic Pathology
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Hiroshi Hamada
- Departments of Anatomic Pathology
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Naonori Kawakubo
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Tomoaki Taguchi
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Tatsuro Tajiri
- Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | | |
Collapse
|
2
|
Quitadamo P, Tambucci R, Mancini V, Campanozzi A, Caldaro T, Giorgio V, Pensabene L, Isoldi S, Mallardo S, Fusaro F, Staiano A, Salvatore S, Borrelli O. Diagnostic and therapeutic approach to children with chronic refractory constipation: Consensus report by the SIGENP motility working group. Dig Liver Dis 2024; 56:406-420. [PMID: 38104028 DOI: 10.1016/j.dld.2023.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
Constipation is a common problem in children, accounting for about 3% of all primary care visits and up to 25% of referrals to paediatric gastroenterologists. Although polyethylene glycol often proves effective, most children require prolonged treatment and about 50% of them have at least one relapse within the first 5 years after initial recovery. When conventional treatment fails, children are considered to have refractory constipation. Children with refractory constipation deserve specialist management and guidance. Over the last decades, there has been a remarkable increase in our knowledge of normal and abnormal colonic and anorectal motility in children, and a number of different techniques to measure transit and motility have been developed. The present review analyses the possible diagnostic investigations for children with refractory constipation, focusing on their actual indications and their utility in clinical practice. Moreover, we have also analytically reviewed medical and surgical therapeutic options, which should be considered in selected patients in order to achieve the best clinical outcome.
Collapse
Affiliation(s)
- Paolo Quitadamo
- Pediatric Gastroenterology and Epatology Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy.
| | - Renato Tambucci
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Mancini
- Department of Pediatrics and Neonatology, San Carlo Hospital, Milan, Italy
| | - Angelo Campanozzi
- Pediatrics, Department of Medical and Surgical Sciences, University of Foggia
| | - Tamara Caldaro
- Digestive Endoscopy and Surgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Giorgio
- UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma, Italy
| | - Licia Pensabene
- Department of Medical and Surgical Sciences, Pediatric Unit, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - Sara Isoldi
- Pediatric Gastroenterology and Epatology Unit, Santobono-Pausilipon Children's Hospital, Naples, Italy; Maternal and Child Health Department, Sapienza - University of Rome, Santa Maria Goretti Hospital, Polo Pontino, Latina, Italy
| | - Saverio Mallardo
- Maternal and Child Health Department, Sapienza - University of Rome, Santa Maria Goretti Hospital, Polo Pontino, Latina, Italy
| | - Fabio Fusaro
- Department of Medical and Surgical Neonatology, Newborn Surgery Unit, Digestive and Endoscopic Surgery, Gastroenterology and Nutrition, Intestinal Failure Rehabilitation Research Group, Bambino Gesù Children's Hospital Research Institute, Rome, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University "Federico II", Naples, Italy
| | - Silvia Salvatore
- Pediatric Department, Ospedale "F. Del Ponte", University of Insubria, Varese, Italy
| | - Osvaldo Borrelli
- Division of Neurogastroenterology and Motility, Department of Paediatric Gastroenterology, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| |
Collapse
|
3
|
Wang H, Huo R, He K, Cheng L, Zhang S, Yu M, Zhao W, Li H, Xue J. Perineural invasion in colorectal cancer: mechanisms of action and clinical relevance. Cell Oncol (Dordr) 2024; 47:1-17. [PMID: 37610689 PMCID: PMC10899381 DOI: 10.1007/s13402-023-00857-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND In recent years, the significance of the nervous system in the tumor microenvironment has gained increasing attention. The bidirectional communication between nerves and cancer cells plays a critical role in tumor initiation and progression. Perineural invasion (PNI) occurs when tumor cells invade the nerve sheath and/or encircle more than 33% of the nerve circumference. PNI is a common feature in various malignancies and is associated with tumor invasion, metastasis, cancer-related pain, and unfavorable clinical outcomes. The colon and rectum are highly innervated organs, and accumulating studies support PNI as a histopathologic feature of colorectal cancer (CRC). Therefore, it is essential to investigate the role of nerves in CRC and comprehend the mechanisms of PNI to impede tumor progression and improve patient survival. CONCLUSION This review elucidates the clinical significance of PNI, summarizes the underlying cellular and molecular mechanisms, introduces various experimental models suitable for studying PNI, and discusses the therapeutic potential of targeting this phenomenon. By delving into the intricate interactions between nerves and tumor cells, we hope this review can provide valuable insights for the future development of CRC treatments.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Ruixue Huo
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Kexin He
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Li Cheng
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200217, P.R. China
| | - Wei Zhao
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China.
| | - Junli Xue
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| |
Collapse
|
4
|
Dershowitz LB, Li L, Pasca AM, Kaltschmidt JA. Anatomical and functional maturation of the mid-gestation human enteric nervous system. Nat Commun 2023; 14:2680. [PMID: 37160892 PMCID: PMC10170115 DOI: 10.1038/s41467-023-38293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Immature gastrointestinal motility impedes preterm infant survival. The enteric nervous system controls gastrointestinal motility, yet it is unknown when the human enteric nervous system matures enough to carry out vital functions. Here we demonstrate that the second trimester human fetal enteric nervous system takes on a striped organization akin to the embryonic mouse. Further, we perform ex vivo functional assays of human fetal tissue and find that human fetal gastrointestinal motility matures in a similar progression to embryonic mouse gastrointestinal motility. Together, this provides critical knowledge, which facilitates comparisons with common animal models to advance translational disease investigations and testing of pharmacological agents to enhance gastrointestinal motility in prematurity.
Collapse
Affiliation(s)
- Lori B Dershowitz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Li Li
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Anca M Pasca
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
5
|
Sharkey KA, Mawe GM. The enteric nervous system. Physiol Rev 2023; 103:1487-1564. [PMID: 36521049 PMCID: PMC9970663 DOI: 10.1152/physrev.00018.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Of all the organ systems in the body, the gastrointestinal tract is the most complicated in terms of the numbers of structures involved, each with different functions, and the numbers and types of signaling molecules utilized. The digestion of food and absorption of nutrients, electrolytes, and water occurs in a hostile luminal environment that contains a large and diverse microbiota. At the core of regulatory control of the digestive and defensive functions of the gastrointestinal tract is the enteric nervous system (ENS), a complex system of neurons and glia in the gut wall. In this review, we discuss 1) the intrinsic neural control of gut functions involved in digestion and 2) how the ENS interacts with the immune system, gut microbiota, and epithelium to maintain mucosal defense and barrier function. We highlight developments that have revolutionized our understanding of the physiology and pathophysiology of enteric neural control. These include a new understanding of the molecular architecture of the ENS, the organization and function of enteric motor circuits, and the roles of enteric glia. We explore the transduction of luminal stimuli by enteroendocrine cells, the regulation of intestinal barrier function by enteric neurons and glia, local immune control by the ENS, and the role of the gut microbiota in regulating the structure and function of the ENS. Multifunctional enteric neurons work together with enteric glial cells, macrophages, interstitial cells, and enteroendocrine cells integrating an array of signals to initiate outputs that are precisely regulated in space and time to control digestion and intestinal homeostasis.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gary M Mawe
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
6
|
Baidoo N, Sanger GJ, Belai A. Effect of old age on the subpopulations of enteric glial cells in human descending colon. Glia 2023; 71:305-316. [PMID: 36128665 PMCID: PMC10087700 DOI: 10.1002/glia.24272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Old age is associated with a higher incidence of lower bowel conditions such as constipation. Recent evidence suggest that colonic motility may be influenced by enteric glial cells (EGCs). Little is known about the effect of aging on the subpopulation of EGCs in the human colon. We assessed and compared the pattern of distribution of EGCs in adult and elderly human colon. Human descending colon were obtained from 23 cancer patients comprising of adults (23-63 years; 6 male, 7 female) and elderly (66-81 year; 6 male, 4 female). Specimens were serially-sectioned and immunolabeled with anti-Sox-10, anti-S100 and anti-GFAP for morphometric analysis. Standardized procedures were utilized to ensure unbiased counting and densitometric evaluation of EGCs. The number of Sox-10 immunoreactive (IR) EGCs were unaltered with age in both the myenteric plexus (MP) (respectively, in adult and elderly patients, 1939 ± 82 and 1760 ± 44/mm length; p > .05) and submucosal plexus; there were no apparent differences between adult males and females. The density of S100-IR EGCs declined among the elderly in the circular muscle and within the MP per ganglionic area. In the adult colon, there were more S100-IR EGCs distributed in the circular muscle per unit area than the Taenia coli. There was little or no GFAP-IR EGCs in both adult and elderly colon. We concluded that aging of the human descending colon does not result in a loss of Sox-10-IR EGCs in the MP and SMP but reduces S100-IR EGCs density within the musculature. This alteration in myenteric EGCs density with age may contribute to colonic dysfunction.
Collapse
Affiliation(s)
- Nicholas Baidoo
- School of Life and Health Sciences, University of Roehampton, London, UK
| | - Gareth J Sanger
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Abi Belai
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
7
|
Hotta R, Pan W, Bhave S, Nagy N, Stavely R, Ohkura T, Krishnan K, de Couto G, Myers R, Rodriguez-Borlado L, Burns AJ, Goldstein AM. Isolation, Expansion, and Endoscopic Delivery of Autologous Enteric Neuronal Stem Cells in Swine. Cell Transplant 2023; 32:9636897231215233. [PMID: 38049927 PMCID: PMC10697035 DOI: 10.1177/09636897231215233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/22/2023] [Accepted: 11/01/2023] [Indexed: 12/06/2023] Open
Abstract
The enteric nervous system (ENS) is an extensive network of neurons and glia within the wall of the gastrointestinal (GI) tract that regulates many essential GI functions. Consequently, disorders of the ENS due to developmental defects, inflammation, infection, or age-associated neurodegeneration lead to serious neurointestinal diseases. Despite the prevalence and severity of these diseases, effective treatments are lacking as they fail to directly address the underlying pathology. Neuronal stem cell therapy represents a promising approach to treating diseases of the ENS by replacing the absent or injured neurons, and an autologous source of stem cells would be optimal by obviating the need for immunosuppression. We utilized the swine model to address key questions concerning cell isolation, delivery, engraftment, and fate in a large animal relevant to human therapy. We successfully isolated neural stem cells from a segment of small intestine resected from 1-month-old swine. Enteric neuronal stem cells (ENSCs) were expanded as neurospheres that grew optimally in low-oxygen (5%) culture conditions. Enteric neuronal stem cells were labeled by lentiviral green fluorescent protein (GFP) transduction, then transplanted into the same swine from which they had been harvested. Endoscopic ultrasound was then utilized to deliver the ENSCs (10,000-30,000 neurospheres per animal) into the rectal wall. At 10 and 28 days following injection, autologously derived ENSCs were found to have engrafted within rectal wall, with neuroglial differentiation and no evidence of ectopic spreading. These findings strongly support the feasibility of autologous cell isolation and delivery using a clinically useful and minimally invasive technique, bringing us closer to first-in-human ENSC therapy for neurointestinal diseases.
Collapse
Affiliation(s)
- Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Weikang Pan
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Sukhada Bhave
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Nandor Nagy
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Rhian Stavely
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kumar Krishnan
- Division of Gastroenterology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey de Couto
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Richard Myers
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Luis Rodriguez-Borlado
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Alan J. Burns
- Gastrointestinal Drug Discovery Unit, Takeda Development Center Americas, Inc., Cambridge, MA, USA
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Allan M. Goldstein
- Department of Pediatric Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS One 2022; 17:e0269190. [PMID: 35687573 PMCID: PMC9187115 DOI: 10.1371/journal.pone.0269190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) proteinopathy in the neurons of the Enteric Nervous System (ENS) is proposed to have a critical role in Parkinson's disease (PD) onset and progression. Interestingly, the ENS of the human appendix harbors abundant α-syn and appendectomy has been linked to a decreased risk and delayed onset of PD, suggesting that the appendix may influence PD pathology. Common marmosets and rhesus macaques lack a distinct appendix (a narrow closed-end appendage with a distinct change in diameter at the junction with the cecum), yet the cecal microanatomy of these monkeys is similar to the human appendix. Sections of human appendix (n = 3) and ceca from common marmosets (n = 4) and rhesus macaques (n = 3) were evaluated to shed light on the microanatomy and the expression of PD-related proteins. Analysis confirmed that the human appendix and marmoset and rhesus ceca present thick walls comprised of serosa, muscularis externa, submucosa, and mucosa plus abundant lymphoid tissue. Across all three species, the myenteric plexus of the ENS was located within the muscularis externa with nerve fibers innervating all layers of the appendix/ceca. Expression of α-syn and tau in the appendix/cecum was present within myenteric ganglia and along nerve fibers of the muscularis externa and mucosa in all species. In the myenteric ganglia α-syn, p-α-syn, tau and p-tau immunoreactivities (ir) were not significantly different across species. The percent area above threshold of α-syn-ir and tau-ir in the nerve fibers of the muscularis externa and mucosa were greater in the human appendix than in the NHP ceca (α-syn-ir p<0.05; tau-ir p<0.05). Overall, this study provides critical translational evidence that the common marmoset and rhesus macaque ceca are remarkably similar to the human appendix and, thus, that these NHP species are suitable for studying the development of PD linked to α-syn and tau pathological changes in the ENS.
Collapse
|
9
|
Bodin R, Paillé V, Oullier T, Durand T, Aubert P, Le Berre-Scoul C, Hulin P, Neunlist M, Cissé M. The ephrin receptor EphB2 regulates the connectivity and activity of enteric neurons. J Biol Chem 2021; 297:101300. [PMID: 34648765 PMCID: PMC8569587 DOI: 10.1016/j.jbc.2021.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022] Open
Abstract
Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.
Collapse
Affiliation(s)
- Raphael Bodin
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Vincent Paillé
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Thibauld Oullier
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Tony Durand
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Philippe Aubert
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Catherine Le Berre-Scoul
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | | | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France
| | - Moustapha Cissé
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, Université de Nantes, Nantes, France.
| |
Collapse
|
10
|
Wozniak S, Pawlus A, Grzelak J, Chobotow S, Paulsen F, Olchowy C, Zaleska-Dorobisz U. Descending-sigmoid colon flexure - An important but surprisingly ignored landmark. Ann Anat 2021; 239:151821. [PMID: 34530081 DOI: 10.1016/j.aanat.2021.151821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND In invasive examinations of the colon, e.g. colonoscopy, the tortuosity of the colon is a crucial factor for successful completion of the procedure. If adjacent segments of the colon bend at acute angles (under 90°), endoscopy may become difficult and troublesome. METHODS We retrospectively enroled 227 individuals (96 female, 131 male) who underwent abdominopelvic computed tomography examination. For inclusion, subjects were required to have a negative history for colonic disease and abdominopelvic surgery. We measured the angle between the descending colon and the proximal part of the sigmoid (in degrees). In addition, the position of the descending-sigmoid flexure was assessed in relation to the left anterior superior iliac spine, the median plane, and anterior aspect of the 5th lumbar vertebra (in mm). The study protocol was reviewed and approved by the local ethics committee. RESULTS We visualised the descending-sigmoid flexure in all 227 subjects. In one third of cases, the flexure formed an angle smaller than/or 90°. In females, this landmark (mean ± standard deviation) was located 30.2 ± 8.4 mm from the left anterior superior iliac spine, 88.6 ± 14.2 mm from the median plane, and 115.4 ± 21.4 mm from the anterior aspect of the 5th lumbar vertebra. In males, the dimensions were: 32.1 ± 12.8 mm, 97.6 ± 15.8 mm, and 123.9 ± 22.9 mm, respectively. This landmark distance remained constant from the left anterior superior iliac spine regardless of subject age, height and weight. The other measured distances were related to age, height, weight or BMI. CONCLUSIONS The descending-sigmoid flexure is an important landmark in large intestine morphology situated approximately width of two fingers (3 cm) from the left anterior superior iliac spine and one hand width (9-10 cm) from the median plane. In approximately one third of the subjects, the flexure formed an angle of less than/or 90°, which can cause a problem during colonoscopy.
Collapse
Affiliation(s)
- Slawomir Wozniak
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland.
| | - Aleksander Pawlus
- Department of General Radiology, Provincial Specialist Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland
| | - Joanna Grzelak
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
| | - Slawomir Chobotow
- Department of General Radiology, Provincial Specialist Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland
| | - Friedrich Paulsen
- Friedrich Alexander University Erlangen-Nürnberg (FAU), Institute of Functional and Clinical Anatomy, Universitätsstr. 19, 91054 Erlangen, Germany; Sechenov University, Department of Operative Surgery and Topographic Anatomy, Trubetskaya Street, 119991 Moscow, Russia
| | - Cyprian Olchowy
- Department of Oral Surgery, Wroclaw Medical University, Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland
| | - Urszula Zaleska-Dorobisz
- Department of General and Paediatric Radiology, Medical University of Wroclaw, M. Curie-Sklodowskiej 68, 50-369 Wroclaw, Poland
| |
Collapse
|
11
|
Abstract
Glia, the non-neuronal cells of the nervous system, were long considered secondary cells only necessary for supporting the functions of their more important neuronal neighbors. Work by many groups over the past two decades has completely overturned this notion, revealing the myriad and vital functions of glia in nervous system development, plasticity, and health. The largest population of glia outside the brain is in the enteric nervous system, a division of the autonomic nervous system that constitutes a key node of the gut-brain axis. Here, we review the latest in the understanding of these enteric glia in mammals with a focus on their putative roles in human health and disease.
Collapse
Affiliation(s)
- Harry J. Rosenberg
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Chevalier NR, Ammouche Y, Gomis A, Langlois L, Guilbert T, Bourdoncle P, Dufour S. A neural crest cell isotropic-to-nematic phase transition in the developing mammalian gut. Commun Biol 2021; 4:770. [PMID: 34162999 PMCID: PMC8222382 DOI: 10.1038/s42003-021-02333-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 06/07/2021] [Indexed: 11/09/2022] Open
Abstract
While the colonization of the embryonic gut by neural crest cells has been the subject of intense scrutiny over the past decades, we are only starting to grasp the morphogenetic transformations of the enteric nervous system happening in the fetal stage. Here, we show that enteric neural crest cell transit during fetal development from an isotropic cell network to a square grid comprised of circumferentially-oriented cell bodies and longitudinally-extending interganglionic fibers. We present ex-vivo dynamic time-lapse imaging of this isotropic-to-nematic phase transition and show that it occurs concomitantly with circular smooth muscle differentiation in all regions of the gastrointestinal tract. Using conditional mutant embryos with enteric neural crest cells depleted of β1-integrins, we show that cell-extracellular matrix anchorage is necessary for ganglia to properly reorient. We demonstrate by whole mount second harmonic generation imaging that fibrous, circularly-spun collagen I fibers are in direct contact with neural crest cells during the orientation transition, providing an ideal orientation template. We conclude that smooth-muscle associated extracellular matrix drives a critical reorientation transition of the enteric nervous system in the mammalian fetus.
Collapse
Affiliation(s)
- Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France.
| | - Yanis Ammouche
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Anthony Gomis
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Lucas Langlois
- Laboratoire Matière et Systèmes Complexes, Université de Paris/CNRS UMR 7057, Paris, France
| | - Thomas Guilbert
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Pierre Bourdoncle
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris (UMR-S1016), Paris, France
| | - Sylvie Dufour
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| |
Collapse
|
13
|
Chevalier NR, Agbesi RJA, Ammouche Y, Dufour S. How Smooth Muscle Contractions Shape the Developing Enteric Nervous System. Front Cell Dev Biol 2021; 9:678975. [PMID: 34150774 PMCID: PMC8206791 DOI: 10.3389/fcell.2021.678975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons and glia of the enteric nervous system (ENS) are constantly subject to mechanical stress stemming from contractions of the gut wall or pressure of the bolus, both in adulthood and during embryonic development. Because it is known that mechanical forces can have long reaching effects on neural growth, we investigate here how contractions of the circular smooth muscle of the gut impact morphogenesis of the developing fetal ENS, in chicken and mouse embryos. We find that the number of enteric ganglia is fixed early in development and that subsequent ENS morphogenesis consists in the anisotropic expansion of a hexagonal honeycomb (chicken) or a square (mouse) lattice, without de-novo ganglion formation. We image the deformations of the ENS during spontaneous myogenic motility and show that circular smooth muscle contractile waves induce longitudinal strain on the ENS network; we rationalize this behavior by mechanical finite element modeling of the incompressible gut wall. We find that the longitudinal anisotropy of the ENS vanishes when contractile waves are suppressed in organ culture, showing that these contractile forces play a key role in sculpting the developing ENS. We conclude by summarizing different key events in the fetal development of the ENS and the role played by mechanics in the morphogenesis of this unique nerve network.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Paris, France
| | | | - Yanis Ammouche
- Laboratoire Matière et Systèmes Complexes, Université Paris Diderot/CNRS UMR 7057, Paris, France
| | - Sylvie Dufour
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
| |
Collapse
|
14
|
Abstract
The enteric nervous system (ENS) is the largest division of the peripheral nervous system and closely resembles components and functions of the central nervous system. Although the central role of the ENS in congenital enteric neuropathic disorders, including Hirschsprung disease and inflammatory and functional bowel diseases, is well acknowledged, its role in systemic diseases is less understood. Evidence of a disordered ENS has accumulated in neurodegenerative diseases ranging from amyotrophic lateral sclerosis, Alzheimer disease and multiple sclerosis to Parkinson disease as well as neurodevelopmental disorders such as autism. The ENS is a key modulator of gut barrier function and a regulator of enteric homeostasis. A 'leaky gut' represents the gateway for bacterial and toxin translocation that might initiate downstream processes. Data indicate that changes in the gut microbiome acting in concert with the individual genetic background can modify the ENS, central nervous system and the immune system, impair barrier function, and contribute to various disorders such as irritable bowel syndrome, inflammatory bowel disease or neurodegeneration. Here, we summarize the current knowledge on the role of the ENS in gastrointestinal and systemic diseases, highlighting its interaction with various key players involved in shaping the phenotypes. Finally, current flaws and pitfalls related to ENS research in addition to future perspectives are also addressed.
Collapse
|
15
|
Yuan PQ, Bellier JP, Li T, Kwaan MR, Kimura H, Taché Y. Intrinsic cholinergic innervation in the human sigmoid colon revealed using CLARITY, three-dimensional (3D) imaging, and a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum. Neurogastroenterol Motil 2021; 33:e14030. [PMID: 33174295 PMCID: PMC8126258 DOI: 10.1111/nmo.14030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/28/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND We previously reported the specificity of a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum for immunostaining of cholinergic neuronal cell bodies and fibers in the human colon. In this study, we investigate 3D architecture of intrinsic cholinergic innervation in the human sigmoid colon and the relationship with nitrergic neurons in the enteric plexus. METHODS We developed a modified CLARITY tissue technique applicable for clearing human sigmoid colon specimens and immunostaining with hpChAT antiserum and co-labeling with neuronal nitric oxide synthase (nNOS) antibody. The Z-stack confocal images were processed for 3D reconstruction/segmentation/digital tracing and computational quantitation by Imaris 9.2 and 9.5. KEY RESULTS In the mucosa, a local micro-neuronal network formed of hpChAT-ir fibers and a few neuronal cell bodies were digitally assembled. Three layers of submucosal plexuses were displayed in 3D structure that were interconnected by hpChAT-ir fiber bundles and hpChAT-ir neurons were rarely co-labeled by nNOS. In the myenteric plexus, 30.1% of hpChAT-ir somas including Dogiel type I and II were co-labeled by nNOS and 3 classes of hpChAT-ir nerve fiber strands were visualized in 3D images and videos. The density and intensity values of hpChAT-ir fibers in 3D structure were significantly higher in the circular than in the longitudinal layer. CONCLUSIONS AND INFERENCES The intrinsic cholinergic innervation in the human sigmoid colon was demonstrated layer by layer for the first time in 3D microstructures. This may open a new venue to assess the structure-function relationships and pathological alterations in colonic diseases.
Collapse
Affiliation(s)
- Pu-Qing Yuan
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Tao Li
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mary R. Kwaan
- Department of Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroshi Kimura
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yvette Taché
- CLA/Digestive Diseases Research Core Center, Vatche and Tamar Manoukian Digestive Diseases Division, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
16
|
Mazzoni M, Caremoli F, Cabanillas L, de Los Santos J, Million M, Larauche M, Clavenzani P, De Giorgio R, Sternini C. Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon. Cell Tissue Res 2021; 383:645-654. [PMID: 32965550 PMCID: PMC8059758 DOI: 10.1007/s00441-020-03286-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
The enteric nervous system (ENS) controls gastrointestinal functions. In large mammals' intestine, it comprises an inner (ISP) and outer (OSP) submucous plexus and a myenteric plexus (MP). This study quantifies enteric neurons in the ISP, OSP, and MP of the pig ascending (AC) and descending colon (DC) using the HuC/D, choline acetyltransferase (ChAT), and neuronal nitric oxide synthase (nNOS) neuronal markers in whole mount preparations with multiple labeling immunofluorescence. We established that the ISP contains the highest number of HuC/D neurons/mm2, which were more abundant in AC vs. DC, followed by OSP and MP with similar density in AC and DC. In the ISP, the density of ChAT immunoreactive (IR) neurons was very similar in AC and DC (31% and 35%), nNOS-IR neurons were less abundant in AC than DC (15% vs. 42%, P < 0.001), and ChAT/nNOS-IR neurons were 5% and 10%, respectively. In the OSP, 39-44% of neurons were ChAT-IR in AC and DC, while 45% and 38% were nNOS-IR and 10-12% were ChAT/nNOS-IR (AC vs. DC P < 0.05). In the MP, ChAT-IR neurons were 44% in AC and 54% in DC (P < 0.05), nNOS-IR neurons were 50% in both, and ChAT/nNOS-IR neurons were 12 and 18%, respectively. The ENS architecture with multilayered submucosal plexuses and the distribution of functionally distinct groups of neurons in the pig colon are similar to humans, supporting the suitability of the pig as a model and providing the platform for investigating the mechanisms underlying human colonic diseases.
Collapse
Affiliation(s)
- Maurizio Mazzoni
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Filippo Caremoli
- Division of Digestive Diseases, Department Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Luis Cabanillas
- Division of Digestive Diseases, Department Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Janira de Los Santos
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Mulugeta Million
- Division of Digestive Diseases, Department Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, 90095, USA
| | - Muriel Larauche
- Division of Digestive Diseases, Department Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, 40064, Bologna, Italy
| | - Roberto De Giorgio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Catia Sternini
- Division of Digestive Diseases, Department Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
- Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Huang Z, Liao L, Wang Z, Lu Y, Yan W, Cao H, Tan B. An efficient approach for wholemount preparation of the myenteric plexus of rat colon. J Neurosci Methods 2021; 348:109012. [PMID: 33249181 DOI: 10.1016/j.jneumeth.2020.109012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/15/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The nerve plexus of the enteric nervous system (ENS) plays a crucial part in regulating gastrointestinal functions, such as muscle contractile activity and nutrient absorption. Studying the nerve plexus can provide vital information for research on ENS disorders. Whole-mount preparation is an important technique for investigating the nerve plexus. However, currently available methods are time consuming and highly technical. NEW METHOD This study describes a simple and rapid method for preparing whole mounts of the longitudinal muscle and myenteric plexuses (LMMPs) of rat colon. Integral LMMPs can be easily separated from the underlying layer by using glass rods and wet cotton swabs. RESULTS The proposed method allows the easy separation of the LMMPs in intact sheets. Immunofluorescence histochemical staining of whole mounts enable clear visualization of enteric ganglia, nerve fibers, and several subtypes of neuronal populations residing in the myenteric plexus. COMPARISON WITH EXISTING METHODS Compared with existing procedures for whole-mount preparations, the proposed method achieves a quicker and more efficient preparation of high-quality LMMPs from intestinal segments in sufficient quantity. CONCLUSIONS This work provides a rapid method for efficiently preparing whole mounts of the intestines. Our method can be used for in situ observation of the morphological and functional alterations of the myenteric plexus for further studies on the ENS.
Collapse
Affiliation(s)
- Zitong Huang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Liao
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhesheng Wang
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yulin Lu
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Weiming Yan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Hongying Cao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Bo Tan
- Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
18
|
Jia Z, Wignall A, Prestidge C, Thierry B. An ex vivo investigation of the intestinal uptake and translocation of nanoparticles targeted to Peyer's patches microfold cells. Int J Pharm 2020; 594:120167. [PMID: 33309559 DOI: 10.1016/j.ijpharm.2020.120167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/02/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
Diverse nanoparticulate systems have been engineered as vehicles towards enhancing the bioavailability of orally administrated vaccines. Substantial evidence suggests that targeting microfold cells (M cells) within Peyer's patches (PPs) is a prerequisite for vaccine-loaded nanocarriers to induce an effective antigen-specific immune response. Improved understanding of the contribution of M cells to sampling luminal nanoparticles into the underlying gut associated lymphoid tissues would accelerate the development of oral vaccine formulations. Herein, a novel clearing-based whole tissue mount/imaging technique was developed to enable the specific distribution of nanoparticles within ex vivo murine PPs to be quantitatively determined at the cellular level. This revealed that 200 nm nanoparticles modified with M cell targeting ligands (lectin Ulex europaeus agglutinin-1, UEA-1) were translocated into subepithelial domes 7.6 and 16.3 times greater than the non-targeted ones at 60 min and 120 min, respectively. This approach provides a new methodology to quantitatively investigate the transcytotic activity of M cells for particulate formulations, which may aid in the design of improved oral vaccines.
Collapse
Affiliation(s)
- Zhengyang Jia
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia
| | - Anthony Wignall
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Clive Prestidge
- UniSA Clinical and Health Science and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, City West Campus, Adelaide, SA 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute and ARC Centre of Excellence Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Adelaide, SA 5095, Australia.
| |
Collapse
|
19
|
Hutchings C, Phillips JA, Djamgoz MBA. Nerve input to tumours: Pathophysiological consequences of a dynamic relationship. Biochim Biophys Acta Rev Cancer 2020; 1874:188411. [PMID: 32828885 DOI: 10.1016/j.bbcan.2020.188411] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/13/2022]
Abstract
It is well known that tumours arising in different organs are innervated and that 'perineural invasion' (cancer cells escaping from the tumour by following the nerve trunk) is a negative prognostic factor. More surprisingly, increasing evidence suggests that the nerves can provide active inputs to tumours and there is two-way communication between nerves and cancer cells within the tumour microenvironment. Cells of the immune system also interact with the nerves and cancer cells. Thus, the nerve connections can exert significant control over cancer progression and modulating these (physically or chemically) can affect significantly the cancer process. Nerve inputs to tumours are derived mainly from the sympathetic (adrenergic) and the parasympathetic (cholinergic) systems, which are interactive. An important component of the latter is the vagus nerve, the largest of the cranial nerves. Here, we present a two-part review of the nerve inputs to tumours and their effects on tumorigenesis. First, we review briefly some relevant general issues including ultrastructural aspects, stemness, interactions between neurones and primary tumours, and communication between neurones and metastasizing tumour cells. Ultrastructural characteristics include synaptic vesicles, tumour microtubes and gap junctions enabling formation of cellular networks. Second, we evaluate the pathophysiology of the nerve input to five major carcinomas: cancers of prostate, stomach, colon, lung and pancreas. For each cancer, we present (i) the nerve inputs normally present in the cancer organ and (ii) how these interact and influence the cancer process. The best clinical evidence for the role of nerves in promoting tumorigenesis comes from prostate cancer patients where metastatic progression has been shown to be suppressed significantly in cases of spinal cord injury. The balance of the sympathetic and parasympathetic contributions to early versus late tumorigenesis varies amongst the different cancers. Different branches of the vagus provide functional inputs to several of the carcinomas and, in two-way interaction with the sympathetic nervous system, affect different stages of the cancer process. Overall, the impact of the vagus nerve can be 'direct' or 'indirect'. Directly, the effect of the vagus is primarily to promote tumorigenesis and this is mediated through cholinergic receptor mechanisms. Indirectly, pro- and anti-tumour effects can occur by stimulation or inhibition of the sympathetic nervous system, respectively. Less well understood are the 'indirect' anti-tumour effect of the vagus nerve via immunomodulation/inflammation, and the role of sensory innervation. A frequent occurrence in the nerve-tumour interactions is the presence of positive feedback driven by agents like nerve growth factor. We conclude that the nerve inputs to tumours can actively and dynamically impact upon cancer progression and are open to clinical exploitation.
Collapse
Affiliation(s)
- Charlotte Hutchings
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Jade A Phillips
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Mustafa B A Djamgoz
- Imperial College London, Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK; Biotechnology Research Centre, Cyprus International University, Haspolat, Nicosia, TRNC, Mersin 10, Turkey.
| |
Collapse
|
20
|
Compression and stretch sensitive submucosal neurons of the porcine and human colon. Sci Rep 2020; 10:13791. [PMID: 32796868 PMCID: PMC7428018 DOI: 10.1038/s41598-020-70216-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/24/2020] [Indexed: 01/28/2023] Open
Abstract
The pig is commonly believed to be a relevant model for human gut functions-however, there are only a few comparative studies and none on neural control mechanisms. To address this lack we identified as one central aspect mechanosensitive enteric neurons (MEN) in porcine and human colon. We used neuroimaging techniques to record responses to tensile or compressive forces in submucous neurons. Compression and stretch caused Ca-transients and immediate spike discharge in 5-11% of porcine and 15-24% of human enteric neurons. The majority of these MEN exclusively responded to either stimulus quality but about 9% responded to both. Most of the MEN expressed choline acetyltransferase and substance P; nitric oxide synthase-positive MEN primarily occurred in distal colon. The findings reveal common features of MEN in human and pig colon which we interpret as a result of species-independent evolutionary conservation rather than a specific functional proximity between the two species.
Collapse
|
21
|
Gonkowski S, Gajęcka M, Makowska K. Mycotoxins and the Enteric Nervous System. Toxins (Basel) 2020; 12:toxins12070461. [PMID: 32707706 PMCID: PMC7404981 DOI: 10.3390/toxins12070461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by various fungal species. They are commonly found in a wide range of agricultural products. Mycotoxins contained in food enter living organisms and may have harmful effects on many internal organs and systems. The gastrointestinal tract, which first comes into contact with mycotoxins present in food, is particularly vulnerable to the harmful effects of these toxins. One of the lesser-known aspects of the impact of mycotoxins on the gastrointestinal tract is the influence of these substances on gastrointestinal innervation. Therefore, the present study is the first review of current knowledge concerning the influence of mycotoxins on the enteric nervous system, which plays an important role, not only in almost all regulatory processes within the gastrointestinal tract, but also in adaptive and protective reactions in response to pathological and toxic factors in food.
Collapse
Affiliation(s)
- Sławomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-957 Olsztyn, Poland;
| | - Magdalena Gajęcka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland;
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-957 Olsztyn, Poland
- Correspondence:
| |
Collapse
|
22
|
Graham KD, López SH, Sengupta R, Shenoy A, Schneider S, Wright CM, Feldman M, Furth E, Valdivieso F, Lemke A, Wilkins BJ, Naji A, Doolin E, Howard MJ, Heuckeroth RO. Robust, 3-Dimensional Visualization of Human Colon Enteric Nervous System Without Tissue Sectioning. Gastroenterology 2020; 158:2221-2235.e5. [PMID: 32113825 PMCID: PMC7392351 DOI: 10.1053/j.gastro.2020.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.
Collapse
Affiliation(s)
- Kahleb D. Graham
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Cincinnati Children’s Hospital Medical Center and the Department of Pediatrics at University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Silvia Huerta López
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Rajarshi Sengupta
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,American Association for Cancer Research, 615 Chestnut Street, 17th Floor, Philadelphia, PA 19106-4404
| | - Archana Shenoy
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Sabine Schneider
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Christina M. Wright
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| | - Michael Feldman
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Emma Furth
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Federico Valdivieso
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, University of Pennsylvania Medical Center, 3400 Spruce Street, Philadelphia, PA, U.S.A., 19104-4238
| | - Amanda Lemke
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318
| | - Benjamin J. Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A., 19104-4318
| | - Ali Naji
- Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104-4318
| | - Edward Doolin
- Pediatric General, Thoracic and Fetal Surgery, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA, U.S.A. 19104-4318
| | - Marthe J. Howard
- Department of Neurosciences, University of Toledo, Mail Stop # 1007, 3000 Arlington Avenue, Toledo, OH, U.S.A, 43614-2598
| | - Robert O. Heuckeroth
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Abramson Research Center – Suite # 1116I, Philadelphia, PA, U.S.A., 19104-4318,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, 3401 Civic Center Boulevard, Philadelphia, PA, 19104-4318
| |
Collapse
|
23
|
Boschetti E, Malagelada C, Accarino A, Malagelada JR, Cogliandro RF, Gori A, Bonora E, Giancola F, Bianco F, Tugnoli V, Clavenzani P, Azpiroz F, Stanghellini V, Sternini C, De Giorgio R. Enteric neuron density correlates with clinical features of severe gut dysmotility. Am J Physiol Gastrointest Liver Physiol 2019; 317:G793-G801. [PMID: 31545923 PMCID: PMC6962493 DOI: 10.1152/ajpgi.00199.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) symptoms can originate from severe dysmotility due to enteric neuropathies. Current methods used to demonstrate enteric neuropathies are based mainly on classic qualitative histopathological/immunohistochemical evaluation. This study was designed to identify an objective morphometric method for paraffin-embedded tissue samples to quantify the interganglionic distance between neighboring myenteric ganglia immunoreactive for neuron-specific enolase, as well as the number of myenteric and submucosal neuronal cell bodies/ganglion in jejunal specimens of patients with severe GI dysmotility. Jejunal full-thickness biopsies were collected from 32 patients (22 females; 16-77 yr) with well-characterized severe dysmotility and 8 controls (4 females; 47-73 yr). A symptom questionnaire was filled before surgery. Mann-Whitney U test, Kruskal-Wallis coupled with Dunn's posttest and nonparametric linear regression tests were used for analyzing morphometric data and clinical correlations, respectively. Compared with controls, patients with severe dysmotility exhibited a significant increase in myenteric interganglionic distance (P = 0.0005) along with a decrease in the number of myenteric (P < 0.00001) and submucosal (P < 0.0004) neurons. A 50% reduction in the number of submucosal and myenteric neurons correlated with an increased interganglionic distance and severity of dysmotility. Our study proposes a relatively simple tool that can be applied for quantitative evaluation of paraffin sections from patients with severe dysmotility. The finding of an increased interganglionic distance may aid diagnosis and limit the direct quantitative analysis of neurons per ganglion in patients with an interganglionic distance within the control range.NEW & NOTEWORTHY Enteric neuropathies are challenging conditions characterized by a severe impairment of gut physiology, including motility. An accurate, unambiguous assessment of enteric neurons provided by quantitative analysis of routine paraffin sections may help to define neuropathy-related gut dysmotility. We showed that patients with severe gut dysmotility exhibited an increased interganglionic distance associated with a decreased number of myenteric and submucosal neurons, which correlated with symptoms and clinical manifestations of deranged intestinal motility.
Collapse
Affiliation(s)
- Elisa Boschetti
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Carolina Malagelada
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Anna Accarino
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Juan R. Malagelada
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | | | - Alessandra Gori
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elena Bonora
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Fiorella Giancola
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Bianco
- 1Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vitaliano Tugnoli
- 3Department of Biomedical and Neuro Motor Sciences, University of Bologna, Bologna, Italy
| | - Paolo Clavenzani
- 4Department of Veterinary Medicine, University of Bologna, Ozzano, Italy
| | - Fernando Azpiroz
- 2Digestive System Research Unit, University Hospital Vall d'Hebron, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | | | - Catia Sternini
- 5Digestive Disease Division, Departments of Medicine and Neurobiology, University of California, Los Angeles, California
| | | |
Collapse
|
24
|
Coyle D, O'Donnell AM, Tomuschat C, Gillick J, Puri P. The Extent of the Transition Zone in Hirschsprung Disease. J Pediatr Surg 2019; 54:2318-2324. [PMID: 31079866 DOI: 10.1016/j.jpedsurg.2019.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/09/2019] [Accepted: 04/17/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Retained transition zone is a leading cause of obstructive symptoms after pull-through operation in Hirschsprung's disease. OBJECTIVE We aimed to evaluate the extent of the histological transition zone in patients with Hirschsprung's disease. DESIGN We performed an observational study. DAB+ immunohistochemistry for Protein Gene Product 9.5 was used to evaluate the neuronal networks in serial sections of pull-through specimens obtained from children with Hirschsprung's disease (n = 12). Reference ranges for ganglion size/density and nerve trunk diameter were statistically determined using healthy controls obtained from colostomy specimens from children with anorectal malformations (n = 8). The transition zone was defined as ganglionic bowel exhibiting ganglion hypoplasia, hypertrophic nerve trunks, or partial circumference aganglionosis. RESULTS The mean submucosal nerve trunk diameter in controls was 19.56 μm +/- 3.87 μm. The median age at pull-through for Hirschsprung's disease was 5 months (3-14 months). The median length of the transition zone across the population was 8 cm (4-22 cm). Median transition zone extent was significantly longer in patients with long-segment aganglionosis (n = 6) compared to rectosigmoid aganglionosis (n = 6, 13 cm vs 6 cm, p = 0.041). Due to the age of the patients enrolled, long-term follow-up of bowel function is not yet available. CONCLUSION Our data suggest that, in children with rectosigmoid Hirschsprung's disease, the transition zone can extend for up to 13 cm. In children with long-segment disease, a longer transition zone is possible. Extended resection at a minimum 5 cm beyond the most distal ganglionic intra-operative biopsy and intra-operative histological examination of the proximal resection margin are required to minimize transition zone pull-through. LEVEL OF EVIDENCE 2.
Collapse
Affiliation(s)
- David Coyle
- Dept. of Paediatric Surgery, Temple Street Children's University Hospital, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland.
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - John Gillick
- Dept. of Paediatric Surgery, Temple Street Children's University Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| |
Collapse
|
25
|
Fornai M, van den Wijngaard RM, Antonioli L, Pellegrini C, Blandizzi C, de Jonge WJ. Neuronal regulation of intestinal immune functions in health and disease. Neurogastroenterol Motil 2018; 30:e13406. [PMID: 30058092 DOI: 10.1111/nmo.13406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nerve-mucosa interactions control various elements of gastrointestinal functions, including mucosal host defense, gut barrier function, and epithelial cell growth and differentiation. In both intestinal and extra-intestinal diseases, alterations of autonomic nerve activity have been observed to be concurrent with the disease course, such as in inflammatory and functional bowel diseases, and neurodegenerative diseases. This is relevant as the extrinsic autonomic nervous system is increasingly recognized to modulate gut inflammatory responses. The molecular and cellular mechanisms through which the extrinsic and intrinsic nerve pathways may regulate digestive mucosal functions have been investigated in several pre-clinical and clinical studies. PURPOSE The present review focuses on the involvement of neural pathways in gastrointestinal disease, and addresses the current strategies to intervene with neuronal pathway as a means of treatment.
Collapse
Affiliation(s)
- M Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - R M van den Wijngaard
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | - L Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - W J de Jonge
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Schilling F, Geppert CE, Strehl J, Hartmann A, Kuerten S, Brehmer A, Jabari S. Digital pathology imaging and computer-aided diagnostics as a novel tool for standardization of evaluation of aganglionic megacolon (Hirschsprung disease) histopathology. Cell Tissue Res 2018; 375:371-381. [PMID: 30175382 DOI: 10.1007/s00441-018-2911-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
Based on a recently introduced immunohistochemical panel (Bachmann et al. 2015) for aganglionic megacolon (AM), also known as Hirschsprung disease, histopathological diagnosis, we evaluated whether the use of digital pathology and 'machine learning' could help to obtain a reliable diagnosis. Slides were obtained from 31 specimens of 27 patients immunohistochemically stained for MAP2, calretinin, S100β and GLUT1. Slides were digitized by whole slide scanning. We used a Definiens Developer Tissue Studios as software for analysis. We configured necessary parameters in combination with 'machine learning' to identify pathological aberrations. A significant difference between AM- and non-AM-affected tissues was found for calretinin (AM 0.55% vs. non-AM 1.44%) and MAP2 (AM 0.004% vs. non-AM 0.07%) staining measurements and software-based evaluations. In contrast, S100β and GLUT1 staining measurements and software-based evaluations showed no significant differences between AM- and non-AM-affected tissues. However, no difference was found in comparison of suction biopsies with resections. Applying machine learning via an ensemble voting classifier, we achieved an accuracy of 87.5% on the test set. Automated diagnosis of AM by applying digital pathology on immunohistochemical panels was successful for calretinin and MAP2, whereas S100β and GLUT1 were not effective in diagnosis. Our method suggests that software-based approaches are capable of diagnosing AM. Our future challenge will be the improvement of efficiency by reduction of the time-consuming need for large pre-labelled training data. With increasing technical improvement, especially in unsupervised training procedures, this method could be helpful in the future.
Collapse
Affiliation(s)
- Florian Schilling
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany.,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Carol E Geppert
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Johanna Strehl
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Axel Brehmer
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany
| | - Samir Jabari
- Institute of Anatomy and Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany. .,Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 9, 91054, Erlangen, Germany.
| |
Collapse
|
27
|
Shannon K, Vanden Berghe P. The enteric nervous system in PD: gateway, bystander victim, or source of solutions. Cell Tissue Res 2018; 373:313-326. [PMID: 29936550 DOI: 10.1007/s00441-018-2856-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Abstract
Apart from the characteristic and progressive motor- and movement-related problems, Parkinson's disease (PD) patients also suffer from several non-motor symptoms, including gastrointestinal dysfunction. The fact that the enteric nervous system (ENS) controls motility and that one of the typical PD hallmarks, α-synuclein-positive deposits, has also been found in the intestinal wall have rendered the ENS and the gut a popular subject of study in the context of PD. The possibility that these deposits could serve as an early biomarker is obviously of tremendous medical benefit but also the idea that the gut may possibly be a gateway via which the disease is initiated and progressively makes its way via the peripheral nerves to the central nervous system has increased the interest in the ENS-PD link. Furthermore, the fact that gastrointestinal symptoms are present in PD suggests that the ENS might be affected as well. However, despite a large body of literature on the topic, the actual role or the magnitude of involvement of the ENS in PD remains elusive. The multitudes of experimental approaches and animal models have complicated the interpretation of results and the outcome of different studies does not necessarily align well. In this review, we chose to highlight some elements of interest and some items of confusion, particularly those where research should be focusing. We also list a number of open questions in the field that could serve as a guideline for future, preferably concerted research.
Collapse
Affiliation(s)
| | - Pieter Vanden Berghe
- Lab. for Enteric NeuroScience (LENS), Translational Research of Gastrointestinal Disorder (TARGID), CHROMETA, University of Leuven, Leuven, Belgium.
| |
Collapse
|
28
|
Oponowicz A, Kozłowska A, Gonkowski S, Godlewski J, Majewski M. Changes in the Distribution of Cocaine- and Amphetamine-Regulated Transcript-Containing Neural Structures in the Human Colon Affected by the Neoplastic Process. Int J Mol Sci 2018; 19:E414. [PMID: 29385033 PMCID: PMC5855636 DOI: 10.3390/ijms19020414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
The present study analysed changes in the distribution pattern of cocaine- and amphetamine-regulated transcript (CART) in the enteric nervous system (ENS) of the human colon challenged by adenocarcinoma invasion, using the double-labelling immunofluorescence technique. In control specimens, CART immunoreactivity was found in neurons of all studied plexuses, representing 30.1 ± 4.1%, 12.9 ± 5.2%, and 4.1 ± 1.3% of all neurons forming the myenteric plexus (MP), outer submucous plexus (OSP), and inner submucous plexus (ISP), respectively. Tumour growth into the colon wall caused an increase in the relative frequency of CART-like immunoreactive (CART-LI) neurons in enteric plexuses located in the vicinity of the infiltrating neoplasm (to 36.1 ± 6.7%, 32.7 ± 7.3% and 12.1 ± 3.8% of all neurons in MP, OSP and ISP, respectively). The density of CART-LI nerves within particular layers of the intestinal wall did not differ between control and adenocarcinoma-affected areas of the human colon. This is the first detailed description of the CART distribution pattern within the ENS during the adenocarcinoma invasion of the human colon wall. The obtained results suggest that CART probably acts as a neuroprotective factor and may be involved in neuronal plasticity evoked by the progression of a neoplastic process.
Collapse
Affiliation(s)
- Agnieszka Oponowicz
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Sławomir Gonkowski
- Departement of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul Oczapowskiego 13, 10-718 Olsztyn, Poland.
| | - Janusz Godlewski
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, ul. Warszawska 30, 10-561 Olsztyn, Poland.
| |
Collapse
|
29
|
Glišić R, Čakić-Milošević M, Ukropina M. Immunohistochemical study of enteric nervous system in dexamethasone-treated rats. KRAGUJEVAC JOURNAL OF SCIENCE 2018. [DOI: 10.5937/kgjsci1840163g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
30
|
Increased population of immature enteric glial cells in the resected proximal ganglionic bowel of Hirschsprung's disease patients. J Surg Res 2017; 218:150-155. [PMID: 28985842 DOI: 10.1016/j.jss.2017.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/09/2017] [Accepted: 05/18/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Enteric glial cells are essential for normal gastrointestinal function. Abnormalities in glial structure, development, or function lead to disturbances in gastrointestinal physiology. Fatty acid-binding protein 7 (FABP7) is a marker of immature enteric glial cells, whereas S100 is expressed only by mature glial cells. Patients with Hirschsprung's disease (HSCR) often suffer from dysmotility and enterocolitis despite proper surgery. We designed this study to determine the distribution and expression of glial cells in patients with HSCR compared to normal controls. METHODS We investigated FABP7, S100, and PGP 9.5 expressions in both the ganglionic and aganglionic bowel of patients with HSCR (n = 6) versus normal control colon (n = 6). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expressions were quantified using quantitative real-time polymerase chain reaction (qPCR), Western blot analysis, and densitometry. RESULTS qPCR and Western blot analysis demonstrated a significantly increased FABP7 expression in ganglionic specimens compared to control specimen (P < 0.05). Confocal microscopy revealed FABP7+ glia cells lie under the colonic epithelium and in close apposition to enteric neurons in the ganglionic bowel. CONCLUSIONS The significantly increased number of immature enteric glial cells (EGCs) in the ganglionic bowel of HSCR patients may have adverse effect on the function of enteric neurons and intestinal barrier and thus predispose these patients to intestinal motility problems and enterocolitis.
Collapse
|
31
|
Duchalais E, Guilluy C, Nedellec S, Touvron M, Bessard A, Touchefeu Y, Bossard C, Boudin H, Louarn G, Neunlist M, Van Landeghem L. Colorectal Cancer Cells Adhere to and Migrate Along the Neurons of the Enteric Nervous System. Cell Mol Gastroenterol Hepatol 2017; 5:31-49. [PMID: 29188232 PMCID: PMC5696385 DOI: 10.1016/j.jcmgh.2017.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/02/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS In several types of cancers, tumor cells invade adjacent tissues by migrating along the resident nerves of the tumor microenvironment. This process, called perineural invasion, typically occurs along extrinsic nerves, with Schwann cells providing physical guidance for the tumor cells. However, in the colorectal cancer microenvironment, the most abundant nervous structures belong to the nonmyelinated intrinsic enteric nervous system (ENS). In this study, we investigated whether colon cancer cells interact with the ENS. METHODS Tumor epithelial cells (TECs) from human primary colon adenocarcinomas and cell lines were cocultured with primary cultures of ENS and cultures of human ENS plexus explants. By combining confocal and atomic force microscopy, as well as video microscopy, we assessed tumor cell adhesion and migration on the ENS. We identified the adhesion proteins involved using a proteomics approach based on biotin/streptavidin interaction, and their implication was confirmed further using selective blocking antibodies. RESULTS TEC adhered preferentially and with stronger adhesion forces to enteric nervous structures than to mesenchymal cells. TEC adhesion to ENS involved direct interactions with enteric neurons. Enteric neuron removal from ENS cultures led to a significant decrease in tumor cell adhesion. TECs migrated significantly longer and further when adherent on ENS compared with on mesenchymal cells, and their trajectory faithfully followed ENS structures. Blocking N-cadherin and L1CAM decreased TEC migration along ENS structures. CONCLUSIONS Our data show that the enteric neuronal network guides tumor cell migration, partly via L1CAM and N-cadherin. These results open a new avenue of research on the underlying mechanisms and consequences of perineural invasion in colorectal cancer.
Collapse
Key Words
- AFM, atomic force microscope
- Adhesion
- Colorectal Cancer
- DMEM, Dulbecco's modified Eagle medium
- ENS, enteric nervous system
- Enteric Neurons
- GFP, green fluorescent protein
- MCS, multiple cloning site
- Migration
- PBS, phosphate-buffered saline
- TEC, tumor epithelial cell
- Tuj, tubulin III
- pcENS, primary culture enteric nervous system
- α-SMA, α–smooth muscle actin
Collapse
Affiliation(s)
- Emilie Duchalais
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Clinique de Chirurgie Digestive et Endocrinienne, Centre Hospitalier Universitaire de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Correspondence Address correspondence to: Emilie Duchalais, MD, Inserm U1235, 1 Rue Gaston Veil, 44000 Nantes, France. fax: +33 2 40 41 11 10.Inserm U12351 Rue Gaston VeilNantes44000France
| | | | - Steven Nedellec
- Université de Nantes, Nantes, France
- Micropicell, Nantes, France
| | - Melissa Touvron
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Anne Bessard
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Yann Touchefeu
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Céline Bossard
- Université de Nantes, Nantes, France
- Service d’Anatomie et Cytologie Pathologiques, Centre Hospitalier Universitaire de Nantes, France
| | - Hélène Boudin
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Guy Louarn
- Université de Nantes, Nantes, France
- Institut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Nantes, France
| | - Michel Neunlist
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
| | - Laurianne Van Landeghem
- Inserm U1235, Institut des Maladies de l'Appareil Digestif, Nantes, France
- Université de Nantes, Nantes, France
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
32
|
The role of enteric neurons in the development and progression of colorectal cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:420-434. [PMID: 28847715 DOI: 10.1016/j.bbcan.2017.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
The enteric nervous system (ENS) is the intrinsic neural network of the gastrointestinal tract, which is essential for regulating gut functions and intestinal homeostasis. The importance of the ENS is underscored by the existence of severe gastrointestinal diseases, such as Hirschsprung's disease and intestinal pseudo-obstruction, which arise when the ENS fails to develop normally or becomes dysregulated. Moreover, it is known that enteric neurons are involved in intestinal inflammation. However, the role of the ENS in colorectal cancer (CRC) carcinogenesis remains poorly understood, even though processes like perineural invasion and neoneurogenesis are important factors in CRC. Here we summarize how enteric neurons are affected during CRC and discuss the influence of enteric neurons, either direct or indirect, on the development and/or progression of CRC. Finally, we illustrate how the ENS could be targeted as a potential anti-cancer therapy, establishing the ENS as an integral part of the tumor microenvironment.
Collapse
|
33
|
Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 2017; 8:249-269. [PMID: 28694926 PMCID: PMC5483424 DOI: 10.4239/wjd.v8.i6.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients.
Collapse
|
34
|
Veiga-Fernandes H, Mucida D. Neuro-Immune Interactions at Barrier Surfaces. Cell 2017; 165:801-11. [PMID: 27153494 DOI: 10.1016/j.cell.2016.04.041] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 12/23/2022]
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
Barrenschee M, Zorenkov D, Böttner M, Lange C, Cossais F, Scharf AB, Deuschl G, Schneider SA, Ellrichmann M, Fritscher-Ravens A, Wedel T. Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson's disease. Acta Neuropathol Commun 2017; 5:1. [PMID: 28057070 PMCID: PMC5217296 DOI: 10.1186/s40478-016-0408-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/18/2016] [Indexed: 01/16/2023] Open
Abstract
Phosphorylated alpha-synuclein (p-α-syn) containing Lewy bodies (LBs) and Lewy neurites (LNs) are neuropathological hallmarks of Parkinson’s disease (PD) in the central nervous system (CNS). Since they have been also demonstrated in the enteric nervous system (ENS) of PD patients, the aim of the study was to analyze enteric p-α-syn positive aggregates and intestinal gene expression. Submucosal rectal biopsies were obtained from patients with PD and controls and processed for dual-label-immunohistochemistry for p-α-syn and PGP 9.5. p-α-syn positive aggregates in nerve fibers and neuronal somata were subjected to a morphometric analysis. mRNA expression of α-syn and dopaminergic, serotonergic, VIP (vaso intestinal peptide) ergic, cholinergic, muscarinergic neurotransmitter systems were investigated using qPCR. Frequency of p-α-syn positive nerve fibers was comparable between PD and controls. Although neuronal p-α-syn positive aggregates were detectable in both groups, total number and area of p-α-syn positive aggregates were increased in PD patients as was the number of small and large sized aggregates. Increased expression of dopamine receptor D1, VIP and serotonin receptor 3A was observed in PD patients, while serotonin receptor 4 and muscarinic receptor 3 (M3R) were downregulated. M3R expression correlated negative with the number of small sized p-α-syn positive aggregates. The findings strengthen the hypothesis that the CNS pathology of increased p-α-syn in PD also applies to the ENS, if elaborated morphometry is applied and give further insights in altered intestinal gene expression in PD. Although the mere presence of p-α-syn positive aggregates in the ENS should not be regarded as a criterion for PD diagnosis, elaborated morphometric analysis of p-α-syn positive aggregates in gastrointestinal biopsies could serve as a suitable tool for in-vivo diagnosis of PD.
Collapse
|
36
|
Neckel PH, Mattheus U, Hirt B, Just L, Mack AF. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep 2016; 6:34331. [PMID: 27680942 PMCID: PMC5041186 DOI: 10.1038/srep34331] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
Novel techniques, like CLARITY and PACT, render large tissue specimens transparent and thereby suitable for microscopic analysis. We used these techniques to evaluate their potential in the intestine as an exemplary organ with a complex tissue composition. Immunohistochemistry, light sheet-, and confocal scanning-microscopy enabled us to follow complex three-dimensional structures, like nerve fibers, vessels, and epithelial barriers throughout the entire organ. Moreover, in a systematic electron microscopic study, we analyzed the morphology and preservation of tissue on ultrastructural level during the clearing process. We also connect tissue clearing with classical histology and demonstrate that cleared tissues can be stained with Hematoxylin-Eosin and Heidenhain's Azan stain, suggesting potential use in histopathology. These experiments showed that a neutral pH during the clearing process results in much better preservation of tissue ultrastructure and standard stainability. Volume changes of specimens were monitored and quantified during the course of the protocol. Additionally, we employed the technique to visualize the enteric nervous system and the epithelial barrier in post mortem human gut preparations. Our data show the high potential of tissue clearing throughout different tissue types supporting its usefulness in research and diagnosis, and contribute to the technical discussion of ultrastructural tissue-retention.
Collapse
Affiliation(s)
- Peter H. Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Bernhard Hirt
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Lothar Just
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Andreas F. Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Barrenschee M, Lange C, Cossais F, Egberts JH, Becker T, Wedel T, Böttner M. Expression and function of Neuregulin 1 and its signaling system ERBB2/3 in the enteric nervous system. Front Cell Neurosci 2015; 9:360. [PMID: 26441531 PMCID: PMC4585281 DOI: 10.3389/fncel.2015.00360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/28/2015] [Indexed: 12/12/2022] Open
Abstract
Neuregulin 1 (NRG1) is suggested to promote the survival and maintenance of the enteric nervous system (ENS). As deficiency in its corresponding receptor signaling complex ERBB2/ERBB3 leads to postnatal colonic hypo/aganglionosis we assessed the distributional and expressional pattern of the NRG1-ERBB2/ERBB3 system in the human colon and explored the neurotrophic capacity of NRG1 on cultured enteric neurons. Site-specific mRNA expression of the NRG1-ERBB2/3 system was determined in microdissected samples harvested from enteric musculature and ganglia. Localization of NRG1, ERBB2 and ERBB3 was determined by dual-label-immunohistochemistry using pan-neuronal and pan-glial markers. Morphometric analysis was performed on NRG1-stimulated rat enteric nerve cultures to evaluate neurotrophic effects. mRNA expression of the NRG1-ERBB2/3 system was determined by qPCR. Co-localization of NRG1 with neuronal or synaptic markers was analyzed in enteric nerve cultures stimulated with glial cell line-derived neurotrophic factor (GDNF). The NRG1 system was expressed in both neurons and glial cells of enteric ganglia and in nerve fibers. NRG1 significantly enhanced growth parameters in enteric nerve cell cultures and ErB3 mRNA expression was down-regulated upon NRG1 stimulation. GDNF negatively regulates ErbB2 and ErbB3 mRNA expression. The NRG1-ERBB2/3 system is physiologically present in the human ENS and NRG1 acts as a neurotrophic factor for the ENS. The down-regulation of ErbB3/ErbB2 in GDNF stimulated nerve cell cultures points to an interaction of both neurotrophic factors. Thus, the data may provide a basis to assess disturbed signaling components of the NRG1 system in enteric neuropathies.
Collapse
Affiliation(s)
- Martina Barrenschee
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Christina Lange
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - François Cossais
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Jan-Hendrik Egberts
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thomas Becker
- Department of General, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein, Campus Kiel Kiel, Germany
| | - Thilo Wedel
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| | - Martina Böttner
- Neurogastroenterology, Institute of Anatomy, Christian-Albrechts-University of Kiel Kiel, Germany
| |
Collapse
|
38
|
Petto C, Gäbel G, Pfannkuche H. Architecture and Chemical Coding of the Inner and Outer Submucous Plexus in the Colon of Piglets. PLoS One 2015; 10:e0133350. [PMID: 26230272 PMCID: PMC4521800 DOI: 10.1371/journal.pone.0133350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 06/26/2015] [Indexed: 01/27/2023] Open
Abstract
In the porcine colon, the submucous plexus is divided into an inner submucous plexus (ISP) on the epithelial side and an outer submucous plexus (OSP) on the circular muscle side. Although both plexuses are probably involved in the regulation of epithelial functions, they might differ in function and neurochemical coding according to their localization. Therefore, we examined expression and co-localization of different neurotransmitters and neuronal markers in both plexuses as well as in neuronal fibres. Immunohistochemical staining was performed on wholemount preparations of ISP and OSP and on cryostat sections. Antibodies against choline acetyltransferase (ChAT), substance P (SP), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), neuronal nitric oxide synthase (nNOS) and the pan-neuronal markers Hu C/D and neuron specific enolase (NSE) were used. The ISP contained 1,380 ± 131 ganglia per cm2 and 122 ± 12 neurons per ganglion. In contrast, the OSP showed a wider meshwork (215 ± 33 ganglia per cm2) and smaller ganglia (57 ± 3 neurons per ganglion). In the ISP, 42% of all neurons expressed ChAT. About 66% of ChAT-positive neurons co-localized SP. A small number of ISP neurons expressed SOM. Chemical coding in the OSP was more complex. Besides the ChAT/±SP subpopulation (32% of all neurons), a nNOS-immunoreactive population (31%) was detected. Most nitrergic neurons were only immunoreactive for nNOS; 10% co-localized with VIP. A small subpopulation of OSP neurons was immunoreactive for ChAT/nNOS/±VIP. All types of neurotransmitters found in the ISP or OSP were also detected in neuronal fibres within the mucosa. We suppose that the cholinergic population in the ISP is involved in the control of epithelial functions. Regarding neurochemical coding, the OSP shares some similarities with the myenteric plexus. Because of its location and neurochemical characteristics, the OSP may be involved in controlling both the mucosa and circular muscle.
Collapse
Affiliation(s)
- Carola Petto
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Gotthold Gäbel
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Helga Pfannkuche
- Institute of Veterinary Physiology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
- * E-mail:
| |
Collapse
|
39
|
Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter. Histochem Cell Biol 2015; 143:625-35. [PMID: 25578519 DOI: 10.1007/s00418-014-1306-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2014] [Indexed: 12/30/2022]
Abstract
The lower esophageal sphincter (LES) is a specialized, thickened muscle region with a high resting tone mediated by myogenic and neurogenic mechanisms. During swallowing or belching, the LES undergoes strong inhibitory innervation. In the horse, the LES seems to be organized as a "one-way" structure, enabling only the oral-anal progression of food. We characterized the esophageal and gastric pericardial inhibitory and excitatory intramural neurons immunoreactive (IR) for the enzymes neuronal nitric oxide synthase (nNOS) and choline acetyltransferase. Large percentages of myenteric plexus (MP) and submucosal (SMP) plexus nNOS-IR neurons were observed in the esophagus (72 ± 9 and 69 ± 8 %, respectively) and stomach (57 ± 17 and 45 ± 3 %, respectively). In the esophagus, cholinergic MP and SMP neurons were 29 ± 14 and 65 ± 24 vs. 36 ± 8 and 38 ± 20 % in the stomach, respectively. The high percentage of nitrergic inhibitory motor neurons observed in the caudal esophagus reinforces the role of the enteric nervous system in the horse LES relaxation. These findings might allow an evaluation of whether selective groups of enteric neurons are involved in horse neurological disorders such as megaesophagus, equine dysautonomia, and white lethal foal syndrome.
Collapse
|
40
|
Expression and regulation of reelin and its receptors in the enteric nervous system. Mol Cell Neurosci 2014; 61:23-33. [DOI: 10.1016/j.mcn.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/23/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
|
41
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
42
|
Böttner M, Harde J, Barrenschee M, Hellwig I, Vogel I, Ebsen M, Wedel T. GDNF induces synaptic vesicle markers in enteric neurons. Neurosci Res 2013; 77:128-36. [DOI: 10.1016/j.neures.2013.08.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/18/2013] [Accepted: 08/29/2013] [Indexed: 11/25/2022]
|
43
|
Abstract
OBJECTIVE Primary gastrointestinal neuropathies are a heterogeneous group of enteric nervous system (ENS) disorders that continue to cause difficulties in diagnosis and histological interpretation. Recently, an international working group published guidelines for histological techniques and reporting, along with a classification of gastrointestinal neuromuscular pathology. The aim of this article was to review and summarize the key issues for pediatric gastroenterologists on the diagnostic workup of congenital ENS disorders. In addition, we provide further commentary on the continuing controversies in the field. RESULTS Although the diagnostic criteria for Hirschsprung disease are well established, those for other forms of dysganglionosis remain ill-defined. Appropriate tissue sampling, handling, and expert interpretation are crucial to maximize diagnostic accuracy and reduce interobserver variability. The absence of validated age-related normal values for neuronal density, along with the lack of correlation between clinical and histological findings, result in significant diagnostic uncertainties while diagnosing quantitative aberrations such as hypoganglionosis or ultrashort Hirschsprung disease. Intestinal neuronal dysplasia remains a histological description of unclear significance. CONCLUSIONS The evaluation of cellular quantitative or qualitative abnormalities of the ENS for clinical diagnosis remains complex. Such analysis should be carried out in laboratories that have the necessary expertise and access to their own validated reference values.
Collapse
|
44
|
Site-specific gene expression and localization of growth factor ligand receptors RET, GFRα1 and GFRα2 in human adult colon. Cell Tissue Res 2013; 354:371-80. [PMID: 23881409 DOI: 10.1007/s00441-013-1690-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Two of the glial-cell-line-derived neurotrophic factor (GDNF) family ligands (GFLs), namely GDNF and neurturin (NRTN), are essential neurotropic factors for enteric nerve cells. Signal transduction is mediated by a receptor complex composed of GDNF family receptor alpha 1 (GFRα1) for GDNF or GFRα2 for NRTN, together with the tyrosine kinase receptor RET (rearranged during transfection). As both factors and their receptors are crucial for enteric neuron survival, we assess the site-specific gene expression of these GFLs and their corresponding receptors in human adult colon. Full-thickness colonic specimens were obtained after partial colectomy for non-obstructing colorectal carcinoma. Samples were processed for immunohistochemistry and co-localization studies. Site-specific gene expression was determined by real-time quantitative polymerase chain reaction in enteric ganglia and in circular and longitudinal muscle harvested by microdissection. Protein expression of the receptors was mainly localized in the myenteric and submucosal plexus. Dual-label immunohistochemistry with PGP 9.5 as a pan-neuronal marker detected immunoreactivity of the receptors in neuronal somata and ganglionic neuropil. RET immunoreactivity co-localized with neuronal GFRα1 and GFRα2 signals. The dominant source of receptor mRNA expression was in myenteric ganglia, whereas both GFLs showed higher expression in smooth muscle layers. The distribution and expression pattern of GDNF and NRTN and their corresponding receptors in the human adult enteric nervous system indicate a role of both GFLs not only in development but also in the maintenance of neurons in adulthood. The data also provide a basis for the assessment of disturbed signaling components of the GDNF and NRTN system in enteric neuropathies underlying disorders of gastrointestinal motility.
Collapse
|
45
|
Hagl C, Schäfer KH, Hellwig I, Barrenschee M, Harde J, Holtmann M, Porschek S, Egberts JH, Becker T, Wedel T, Böttner M. Expression and function of the Transforming Growth Factor-b system in the human and rat enteric nervous system. Neurogastroenterol Motil 2013; 25:601-e464. [PMID: 23534441 DOI: 10.1111/nmo.12119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/24/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Transforming growth factor-betas (TGF-bs) are pleiotropic growth factors exerting neurotrophic functions upon various neuronal populations of the central nervous system. In contrast, the role of TGF-b isoforms in the enteric nervous system (ENS) is largely unknown. We therefore analyzed the gene expression pattern of the TGF-b system in the human colon and in rat myenteric plexus, and smooth muscle cell cultures and determined the effect of TGF-b isoforms on neuronal differentiation. METHODS Human colonic samples as well as cultured rat myenteric plexus, and smooth muscle cells were assessed for mRNA expression levels of the TGF-b system (TGF-b1-3, TbR-1-3) by qPCR. The colonic wall was separated into mucosa and tunica muscularis and enteric ganglia were isolated by laser microdissection (LMD) to allow site-specific gene expression analysis. Effects of TGF-b isoforms on neurite outgrowth and branching pattern of cultured myenteric neurons were monitored. KEY RESULTS mRNA expression of the TGF-b system was detected in all compartments of the human colonic wall as well as in LMD-isolated myenteric ganglia. Cultured myenteric neurons and smooth muscle cells of rat intestine also showed mRNA expression of all ligands and receptors. Transforming growth factor-b2 treatment increased neurite length and branching pattern in cultured myenteric neurons. CONCLUSIONS & INFERENCES The TGF-b system is abundantly expressed in the human and rat ENS arguing for an auto-/paracrine function of this system on enteric neurons. Transforming growth factor-b2 promotes neuronal differentiation and plasticity characterizing this molecule as a relevant neurotrophic factor for the ENS.
Collapse
Affiliation(s)
- C Hagl
- Department of Informatics and Microsystems Technology, University of Applied Sciences, Kaiserslautern/Zweibrücken, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu YA, Chung YC, Pan ST, Shen MY, Hou YC, Peng SJ, Pasricha PJ, Tang SC. 3-D imaging, illustration, and quantitation of enteric glial network in transparent human colon mucosa. Neurogastroenterol Motil 2013; 25:e324-38. [PMID: 23495930 DOI: 10.1111/nmo.12115] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/15/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enteric glia form a network in the intestinal mucosa and have been suggested to engage in multidirectional interactions with the epithelium, blood vessels, nerves, and immune system. However, due to the dispersed nature of the glial network, standard histology cannot provide a global view of the network architecture. We prepared transparent human colon mucosa for three-dimensional (3-D) confocal microscopy with S100B immunostaining to reveal the location-dependent glial network for qualitative and quantitative analyses. METHODS Full-thickness human colons were acquired from colectomies performed for colorectal cancer. We targeted the mucosa away from the tumor site to characterize the glial network morphology. Optical clearing (use of immersion solution to reduce scattering) was applied to generate transparent specimens for deep-tissue microscopy. KEY RESULTS Two features of the glial network were seen: (i) A dense glial population resides at the crypt base/mucosal boundary in contact with the lymphatic vessels, and (ii) from the base, the glial network elongates along the crypt axis with peri-cryptic and peri-vascular connections toward the opening. We quantified the mucosal glia as the S100B-positive cells with at least two processes extending from the cell body. Examples of the global and in-depth imaging of adenoma were given to illustrate the morphological correlation between the loss of glial fibers and the aberrant crypts. CONCLUSIONS & INFERENCES We have established a useful approach for 3-D imaging, panoramic illustration, and quantitation of the enteric glia in the human colon mucosa to help characterize their roles with mucosal components in health and disease.
Collapse
Affiliation(s)
- Y A Liu
- Connectomics Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Neunlist M, Van Landeghem L, Mahé MM, Derkinderen P, des Varannes SB, Rolli-Derkinderen M. The digestive neuronal-glial-epithelial unit: a new actor in gut health and disease. Nat Rev Gastroenterol Hepatol 2013; 10:90-100. [PMID: 23165236 DOI: 10.1038/nrgastro.2012.221] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The monolayer of columnar epithelial cells lining the gastrointestinal tract--the intestinal epithelial barrier (IEB)--is the largest exchange surface between the body and the external environment. The permeability of the IEB has a central role in the regulation of fluid and nutrient intake as well as in the control of the passage of pathogens. The functions of the IEB are highly regulated by luminal as well as internal components, such as bacteria or immune cells, respectively. Evidence indicates that two cell types of the enteric nervous system (ENS), namely enteric neurons and enteric glial cells, are potent modulators of IEB functions, giving rise to the novel concept of a digestive 'neuronal-glial-epithelial unit' akin to the neuronal-glial-endothelial unit in the brain. In this Review, we summarize findings demonstrating that the ENS is a key regulator of IEB function and is actively involved in pathologies associated with altered barrier function.
Collapse
Affiliation(s)
- Michel Neunlist
- INSERM UMR913, Institut des Maladies de l'Appareil Digestif, Université de Nantes, CHU Hôtel Dieu, 1 place Alexis Ricordeau, 44093 Nantes, France.
| | | | | | | | | | | |
Collapse
|
48
|
Liebl F, Demir IE, Rosenberg R, Boldis A, Yildiz E, Kujundzic K, Kehl T, Dischl D, Schuster T, Maak M, Becker K, Langer R, Laschinger M, Friess H, Ceyhan GO. The severity of neural invasion is associated with shortened survival in colon cancer. Clin Cancer Res 2012; 19:50-61. [PMID: 23147996 DOI: 10.1158/1078-0432.ccr-12-2392] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Neural invasion (NI) is a histopathologic feature of colon cancer that receives little consideration. Therefore, we conducted a morphologic and functional characterization of NI in colon cancer. EXPERIMENTAL DESIGN NI was investigated in 673 patients with colon cancer. Localization and severity of NI was determined and related to patient's prognosis and survival. The neuro-affinity of colon cancer cells (HT29, HCT-116, SW620, and DLD-1) was compared with pancreatic cancer (T3M4 and SU86.86) and rectal cancer cells (CMT-93) in the in vitro three-dimensional (3D)-neural-migration assay and analyzed via live-cell imaging. Immunoreactivity of the neuroplasticity marker GAP-43, and the neurotrophic-chemoattractant factors Artemin and nerve growth factor (NGF), was quantified in colon cancer and pancreatic cancer nerves. Dorsal root ganglia of newborn rats were exposed to supernatants of colon cancer, rectal cancer, and pancreatic cancer cells and neurite density was determined. RESULTS NI was detected in 210 of 673 patients (31.2%). Although increasing NI severity scores were associated with a significantly poorer survival, presence of NI was not an independent prognostic factor in colon cancer. In the 3D migration assay, colon cancer and rectal cancer cells showed much less neurite-targeted migration when compared with pancreatic cancer cells. Supernatants of pancreatic cancer and rectal cancer cells induced a much higher neurite density than those of colon cancer cells. Accordingly, NGF, Artemin, and GAP-43 were much more pronounced in nerves in pancreatic cancer than in colon cancer. CONCLUSION NI is not an independent prognostic factor in colon cancer. The lack of a considerable biologic affinity between colon cancer cells and neurons, the low expression profile of colonic nerves for chemoattractant molecules, and the absence of a major neuroplasticity in colon cancer may explain the low prevalence and impact of NI in colon cancer.
Collapse
Affiliation(s)
- Florian Liebl
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 2012; 124:665-80. [PMID: 22941241 DOI: 10.1007/s00401-012-1040-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Gastrointestinal dysfunction is a prominent non-motor feature of Parkinson's disease (PD) that contributes directly to the morbidity of patients, complicates management of motor symptoms, and may herald incipient PD in patients without motor disability. Although PD has traditionally been considered a disease of dopaminergic neurons in the substantia nigra, analyses of gastrointestinal samples from PD patients have consistently revealed pathology in the enteric nervous system. The relationship of PD pathology to GI dysmotility is poorly understood, and this lack of understanding has led to limited success in developing treatments for PD-related GI symptoms. We have quantitatively compared myenteric neuron density and relative abundance of NO, VIP, and catecholamine neurons between patients with PD and control individuals along the length of the GI tract. In addition, we have examined the frequency of GI α-synuclein neuritic pathology and its co-localization with the same neuronal markers. We have included a comparison with a small population of patients with incidental Lewy bodies found at autopsy. These data indicate that there is no neuronal loss in the myenteric plexus in PD. Lewy body pathology parallels parasympathetic autonomic input from the dorsal motor nucleus of the vagus, not the distribution of extrinsic sympathetic input or intrinsic enteric neurons, and is only rarely co-localized with tyrosine hydroxylase. These data provide a critical background to which further analyses of the effect of PD on the GI tract may be compared and suggest that neuropathology in myenteric neurons is unlikely to be a causative factor in PD-related GI dysmotility.
Collapse
|
50
|
Willot S, Gauthier C, Patey N, Faure C. Nerve growth factor content is increased in the rectal mucosa of children with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol Motil 2012; 24:734-9, e347. [PMID: 22625872 DOI: 10.1111/j.1365-2982.2012.01933.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The enteric nervous system is a complex network that includes, in the digestive mucosa, neuronal bodies and fibers interacting with the immune system and mucosal mast cells (MC). These interactions involve the secretion of messengers, such as the neurotrophin nerve growth factor (NGF), which influence colonic motility and sensitivity, both affected in irritable bowel syndrome (IBS). This study was designed to test the hypothesis that, in children with IBS, colonic mucosal innervation, NGF content, and MC infiltration are altered. We aimed to measure MC infiltration, number of neuronal bodies, distance from MC to nerve fibers, inflammation, and NGF content in rectal mucosa of pediatric patients with IBS as compared with controls. METHODS Rectal biopsies from children (median age: 14 years) with diarrhea-predominant IBS (n = 11) and controls (n = 14) were studied. MC and neuronal mucosal structures were identified by tryptase, CD117 and PGP9.5 immunoreactivity. Inflammatory cells (neutrophils, eosinophils, and lymphocytes) were counted. NGF was quantified in situ by ELISA. KEY RESULTS No mucosal inflammation was detected in IBS. MC infiltration and number of neuronal bodies were not significantly different between IBS and controls. The distance between MC and nerve fibers was not different in IBS compared with controls (5.2 ± 0.3 vs 5.0 ± 0.3 μm). Number of MC in close proximity to nerve fibers (<5 μm) was not different in the two groups. However, in IBS, NGF content was higher than controls (0.93 ± 0.3 vs 0.62 ± 0.3 pg mg(-1) protein, P < 0.05) and significantly correlated with MC number. CONCLUSIONS & INFERENCES Regardless of inflammation, NGF content is increased in rectal mucosa of diarrhea-predominant IBS children.
Collapse
Affiliation(s)
- S Willot
- Division of Gastroenterology, Department of Pediatrics, CHU Ste-Justine, Montréal, QC, Canada
| | | | | | | |
Collapse
|