1
|
Larghi EL, Bracca ABJ, Simonetti SO, Kaufman TS. Recent developments in the total synthesis of natural products using the Ugi multicomponent reactions as the key strategy. Org Biomol Chem 2024; 22:429-465. [PMID: 38126459 DOI: 10.1039/d3ob01837g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The total syntheses of selected natural products using different versions of the Ugi multicomponent reaction is reviewed on a case-by-case basis. The revision covers the period 2008-2023 and includes detailed descriptions of the synthetic sequences, the use of state-of-the-art chemical reagents and strategies, as well as the advantages and limitations of the transformation and some remedial solutions. Relevant data on the isolation and bioactivity of the different natural targets are also briefly provided. The examples clearly evidence the strategic importance of this transformation and its key role in the modern natural products synthetic chemistry toolbox. This methodology proved to be a valuable means for easily building molecular complexity and efficiently delivering step-economic syntheses even of intricate structures, with a promising future.
Collapse
Affiliation(s)
- Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Sebastián O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR) and Facultad de Ciencias Bioquímicas y Farmacéuticas - Universidad Nacional de Rosario, Suipacha 531 (2000), Rosario, Argentina.
| |
Collapse
|
2
|
Bonnet DMV, Tirot L, Grob S, Jullien PE. Methylome Response to Proteasome Inhibition by Pseudomonas syringae Virulence Factor Syringolin A. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:693-704. [PMID: 37414416 DOI: 10.1094/mpmi-06-23-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
DNA methylation is an important epigenetic mark required for proper gene expression and silencing of transposable elements. DNA methylation patterns can be modified by environmental factors such as pathogen infection, in which modification of DNA methylation can be associated with plant resistance. To counter the plant defense pathways, pathogens produce effector molecules, several of which act as proteasome inhibitors. Here, we investigated the effect of proteasome inhibition by the bacterial virulence factor syringolin A (SylA) on genome-wide DNA methylation. We show that SylA treatment results in an increase of DNA methylation at centromeric and pericentromeric regions of Arabidopsis chromosomes. We identify several CHH differentially methylated regions (DMRs) that are enriched in the proximity of transcriptional start sites. SylA treatment does not result in significant changes in small RNA composition. However, significant changes in genome transcriptional activity can be observed, including a strong upregulation of resistance genes that are located on chromosomal arms. We hypothesize that DNA methylation changes could be linked to the upregulation of some atypical members of the de novo DNA methylation pathway, namely AGO3, AGO9, and DRM1. Our data suggests that modification of genome-wide DNA methylation resulting from an inhibition of the proteasome by bacterial effectors could be part of an epi-genomic arms race against pathogens. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Louis Tirot
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Stefan Grob
- Department of Plant and Microbial Biology, University of Zurich and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
3
|
Lu S, Zhang Z, Sharma AR, Nakajima-Shimada J, Harunari E, Oku N, Trianto A, Igarashi Y. Bulbiferamide, an Antitrypanosomal Hexapeptide Cyclized via an N-Acylindole Linkage from a Marine Obligate Microbulbifer. JOURNAL OF NATURAL PRODUCTS 2023; 86:1081-1086. [PMID: 36843290 DOI: 10.1021/acs.jnatprod.2c01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UV absorption spectroscopy-guided fractionation of the culture extract of a marine obligate bacterium of the genus Microbulbifer yielded a novel cyclic hexapeptide, bulbiferamide (1). NMR spectroscopic and mass spectrometric analyses revealed the structure of 1 to be a cyclic tetrapeptide appending a ureido-bridged two amino acid unit. Notably, Trp is a junction residue, forming on one hand a very rare N-aminoacylated indole linkage for cyclization and on the other hand connecting the ureido-containing tail structure, which is an unprecedented way of configuring peptides. The component amino acids were determined to be l by the advanced Marfey's method. Compound 1 displayed growth inhibitory activity against Trypanosoma cruzi epimastigotes with an IC50 value of 4.1 μM, comparable to the currently approved drug benznidazole, while it was not cytotoxic to P388 murine leukemia cells at 100 μM.
Collapse
Affiliation(s)
- Shiyang Lu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Amit Raj Sharma
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Agus Trianto
- Department of Marine Science, Faculty of Fisheries and Marine Science, Diponegoro University, Tembalang Campus, St. Prof. Soedarto SH, Semarang, 50275 Central Java, Indonesia
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
4
|
Hubbell GE, Tepe JJ. Natural product scaffolds as inspiration for the design and synthesis of 20S human proteasome inhibitors. RSC Chem Biol 2020; 1:305-332. [PMID: 33791679 PMCID: PMC8009326 DOI: 10.1039/d0cb00111b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
The 20S proteasome is a valuable target for the treatment of a number of diseases including cancer, neurodegenerative disease, and parasitic infection. In an effort to discover novel inhibitors of the 20S proteasome, many reseaarchers have looked to natural products as potential leads for drug discovery. The following review discusses the efforts made in the field to isolate and identify natural products as inhibitors of the proteasome. In addition, we describe some of the modifications made to natural products in order to discover more potent and selective inhibitors for potential disease treatment.
Collapse
Affiliation(s)
- Grace E. Hubbell
- Department of Chemistry, Michigan State UniversityEast LansingMI 48823USA
| | - Jetze J. Tepe
- Department of Chemistry, Michigan State UniversityEast LansingMI 48823USA
| |
Collapse
|
5
|
Pierce MR, Robinson RM, Ibarra-Rivera TR, Pirrung MC, Dolloff NG, Bachmann AS. Syrbactin proteasome inhibitor TIR-199 overcomes bortezomib chemoresistance and inhibits multiple myeloma tumor growth in vivo. Leuk Res 2019; 88:106271. [PMID: 31778912 DOI: 10.1016/j.leukres.2019.106271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) and mantle cell lymphoma (MCL) are blood cancers that respond to proteasome inhibitors. Three FDA-approved drugs that block the proteasome are currently on the market, bortezomib, carfilzomib, and ixazomib. While these proteasome inhibitors have demonstrated clinical efficacy against refractory and relapsed MM and MCL, they are also associated with considerable adverse effects including peripheral neuropathy and cardiotoxicity, and tumor cells often acquire drug resistance. TIR-199 belongs to the syrbactin class, which constitutes a novel family of irreversible proteasome inhibitors. In this study, we compare TIR-199 head-to-head with three FDA-approved proteasome inhibitors. We demonstrate that TIR-199 selectively inhibits to varying degrees the sub-catalytic proteasomal activities (C-L/β1, T-L/β2, and CT-L/β5) in three actively dividing MM cell lines, with Ki50 (CT-L/β5) values of 14.61 ± 2.68 nM (ARD), 54.59 ± 10.4 nM (U266), and 26.8 ± 5.2 nM (MM.1R). In most instances, this range was comparable with the activity of ixazomib. However, TIR-199 was more effective than bortezomib, carfilzomib, and ixazomib in killing bortezomib-resistant MM and MCL cell lines, as judged by a low resistance index (RI) between 1.7 and 2.2, which implies that TIR-199 indiscriminately inhibits both bortezomib-sensitive and bortezomib-resistant MM and MCL cells at similar concentrations. Importantly, TIR-199 reduced the tumor burden in a MM mouse model (p < 0.01) confirming its potency in vivo. Given the fact that there is still no cure for MM, the further development of TIR-199 or similar molecules that belong to the syrbactin class of proteasome inhibitors is warranted.
Collapse
Affiliation(s)
- Marquicia R Pierce
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Reeder M Robinson
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | | | - Michael C Pirrung
- Department of Chemistry, University of California-Riverside, Riverside, CA 92521, USA; Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA
| | - Nathan G Dolloff
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, USA
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA.
| |
Collapse
|
6
|
Servatius P, Stach T, Kazmaier U. Total Synthesis of Luminmycin A, a Cryptic Natural Product from Photorhabdus Luminescens. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Phil Servatius
- Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| | - Tanja Stach
- Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| | - Uli Kazmaier
- Organic Chemistry; Saarland University; P.O. Box 151150 66041 Saarbrücken Germany
| |
Collapse
|
7
|
Amatuni A, Renata H. Identification of a lysine 4-hydroxylase from the glidobactin biosynthesis and evaluation of its biocatalytic potential. Org Biomol Chem 2019; 17:1736-1739. [PMID: 30320324 DOI: 10.1039/c8ob02054j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the functional characterization of GlbB, a lysine 4-hydroxylase from the glidobactin biosynthetic gene cluster. Despite its narrow substrate specificity, GlbB is able to catalyze the hydroxylation of l-lysine with excellent total turnover number and complete regio- and diastereoselectivity. The synthetic utility of GlbB is illustrated by its use in the efficient preparation of a key dipeptide fragment of glidobactin.
Collapse
Affiliation(s)
- Alexander Amatuni
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
8
|
Huang F, Tang J, He L, Ding X, Huang S, Zhang Y, Sun Y, Xia L. Heterologous expression and antitumor activity analysis of syringolin from Pseudomonas syringae pv. syringae B728a. Microb Cell Fact 2018; 17:31. [PMID: 29482589 PMCID: PMC6389232 DOI: 10.1186/s12934-018-0859-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
Background Syringolin, synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase in Pseudomonas syringae pv. syringae (Pss) B728a, is a novel eukaryotic proteasome inhibitor. Meanwhile, directly modifying large fragments in the PKS/NRPS gene cluster through traditional DNA engineering techniques is very difficult. In this study, we directly cloned the syl gene cluster from Pss B301D-R via Red/ET recombineering to effectively express syringolin in heterologous hosts. Results A 22 kb genomic fragment containing the sylA–sylE gene cluster was cloned into the pASK vector, and the obtained recombinant plasmid was transferred into Streptomyces coelicolor and Streptomyces lividans for the heterologous expression of syringolin. Transcriptional levels of recombinant syl gene in S. coelicolor M145 and S. lividans TK24 were evaluated via RT-PCR and the production of syringolin compounds was detected via LC–MS analysis. The extracts of the engineered bacteria showed cytotoxic activity to B16, 4T1, Meth-A, and HeLa tumor cells. It is noteworthy that the syringolin displayed anticancer activity against C57BL/6 mice with B16 murine melanoma tumor cells. Together, our results herein demonstrate the potential of syrinolin as effective antitumor agent that can treat various cancers without apparent adverse effects. Conclusions This present study is the first to report the heterologous expression of the entire syl gene cluster in Streptomyces strains and the successful expression of syringolin in both S. coelicolor M145 and S. lividans TK24. Syringolin derivatives demonstrated high cytotoxicity in vitro and in vivo. Hence, this paper provided an important foundation for the discovery and production of new antitumor compounds.
Collapse
Affiliation(s)
- Fan Huang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Jianli Tang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Lian He
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shaoya Huang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Youming Zhang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|
9
|
Bian X, Huang F, Wang H, Klefisch T, Müller R, Zhang Y. Heterologous production of glidobactins/luminmycins in Escherichia coli Nissle containing the glidobactin biosynthetic gene cluster from Burkholderia DSM7029. Chembiochem 2014; 15:2221-4. [PMID: 25147087 DOI: 10.1002/cbic.201402199] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Indexed: 11/09/2022]
Abstract
Natural product peptide-based proteasome inhibitors show great potential as anticancer drugs. Here we have cloned the biosynthetic gene cluster of a potent proteasome inhibitor-glidobactin from Burkholderia DSM7029-and successfully detected glidobactins/luminmycins in E. coli Nissle. We have also improved the yield of glidobactin A tenfold by promoter change in a heterologous host. In addition, two new biosynthetic intermediates were identified by comparative MS/MS fragmentation analysis. Identification of acyclic luminmycin E implies substrate specificity of the TE domain for cyclization. The establishment of a heterologous expression system for syrbactins provided the basis for the generation of new syrbactins as proteasome inhibitors by molecular engineering, but the TE domain's specificity cannot be ignored.
Collapse
Affiliation(s)
- Xiaoying Bian
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmaceutical Biotechnology, Saarland University, Campus C2 3, 66123 Saarbrücken, (Germany); Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, ShandaNanlu 27, 250100 Jinan, (China)
| | | | | | | | | | | |
Collapse
|
10
|
Svozil J, Hirsch-Hoffmann M, Dudler R, Gruissem W, Baerenfaller K. Protein abundance changes and ubiquitylation targets identified after inhibition of the proteasome with syringolin A. Mol Cell Proteomics 2014; 13:1523-36. [PMID: 24732913 DOI: 10.1074/mcp.m113.036269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
As proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes. Here, we investigated the response to the inhibition of the proteasome at the protein level treating leaves with the specific inhibitor Syringolin A (SylA) in a daytime specific manner and found 109 accumulated and 140 decreased proteins. The patterns of protein level changes indicate that the accumulating proteins cause proteotoxic stress that triggers various responses. Comparing protein level changes in SylA treated with those in a transgenic line over-expressing a mutated ubiquitin unable to form polyubiquitylated proteins produced little overlap pointing to different response pathways. To distinguish between direct and indirect targets of the UPS we also enriched and identified ubiquitylated proteins after inhibition of the proteasome, revealing a total of 1791 ubiquitylated proteins in leaves and roots and 1209 that were uniquely identified in our study. The comparison of the ubiquitylated proteins with those changing in abundance after SylA-mediated inhibition of the proteasome confirmed the complexity of the response and revealed that some proteins are regulated both at transcriptional and post-transcriptional level. For the ubiquitylated proteins that accumulate in the cytoplasm but are targeted to the plastid or the mitochondrion, we often found peptides in their target sequences, demonstrating that the UPS is involved in controlling organellar protein levels. Attempts to identify the sites of ubiquitylation revealed that the specific properties of this post-translational modification can lead to incorrect peptide spectrum assignments in complex peptide mixtures in which only a small fraction of peptides is expected to carry the ubiquitin footprint. This was confirmed with measurements of synthetically produced peptides and calculating the similarities between the different spectra.
Collapse
Affiliation(s)
- Julia Svozil
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | | | - Robert Dudler
- §Institute of Plant Biology, Zollikerstrasse 107, University of Zurich, CH-8008 Zurich, Switzerland
| | - Wilhelm Gruissem
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Katja Baerenfaller
- From the ‡Department of Biology, Universitaetstrasse 2, ETH Zurich, CH-8092 Zurich, Switzerland;
| |
Collapse
|
11
|
Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. Appl Environ Microbiol 2014; 80:3741-8. [PMID: 24727275 DOI: 10.1128/aem.00395-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P. syringae strains leads to the suppression of host defense pathways requiring proteasome activity, such as the ones mediated by salicylic acid and jasmonic acid. Here we report the discovery of a syl-like gene cluster with some unusual features in the alphaproteobacterial endophyte Rhizobium sp. strain AP16 that encodes a putative syringolin A-like synthetase whose components share 55% to 65% sequence identity (72% to 79% similarity) at the amino acid level. As revealed by average nucleotide identity (ANI) calculations, this strain likely belongs to the same species as biocontrol strain R. rhizogenes K84 (formely known as Agrobacterium radiobacter K84), which, however, carries a nonfunctional deletion remnant of the syl-like gene cluster. Here we present a functional analysis of the syl-like gene cluster of Rhizobium sp. strain AP16 and demonstrate that this endophyte synthesizes syringolin A and some related minor variants, suggesting that proteasome inhibition by syrbactin production can be important not only for pathogens but also for endophytic bacteria in the interaction with their hosts.
Collapse
|
12
|
Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, Ichikawa S. Total Synthesis of Syringolin A and Improvement of Its Biological Activity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Chiba T, Hosono H, Nakagawa K, Asaka M, Takeda H, Matsuda A, Ichikawa S. Total synthesis of syringolin A and improvement of its biological activity. Angew Chem Int Ed Engl 2014; 53:4836-9. [PMID: 24668894 DOI: 10.1002/anie.201402428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Indexed: 11/11/2022]
Abstract
The development process for syringolin A analogues having improved proteasome inhibitory and antitumor activity is described. The strategy was to first establish a convergent synthesis of syringolin A using a rare intramolecular Ugi three-component reaction in the last stage of the synthesis, so as to gain access toa set of structure-based analogues. The inhibitory activity of chymotrypsin-like activity of 20S proteasome was largely improved by targeting the S3 subsite of the β5 subunit. Cytotoxic activity was also improved by installing the membrane-permeable substituent. These biological properties are comparable to those of bortezomib, a clinically used first-line proteasome inhibitor.
Collapse
Affiliation(s)
- Takuya Chiba
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812 (Japan)
| | | | | | | | | | | | | |
Collapse
|
14
|
Dudler R. The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome. Trends Microbiol 2013; 22:28-35. [PMID: 24284310 DOI: 10.1016/j.tim.2013.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022]
Abstract
The ubiquitin-26S proteasome degradation system (UPS) plays a pivotal role in almost all aspects of plant life, including defending against pathogens. Although the proteasome is important for plant immunity, it has been found to be also exploited by pathogens using effectors to increase their virulence. Recent work on the XopJ effector and syringolin A/syrbactins has highlighted host proteasome inhibition as a virulence strategy of pathogens. This review will focus on these recent developments.
Collapse
Affiliation(s)
- Robert Dudler
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland.
| |
Collapse
|
15
|
Hofstetter SS, Dudnik A, Widmer H, Dudler R. Arabidopsis YELLOW STRIPE-LIKE7 (YSL7) and YSL8 transporters mediate uptake of Pseudomonas virulence factor syringolin A into plant cells. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1302-1311. [PMID: 23945001 DOI: 10.1094/mpmi-06-13-0163-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Syringolin A (SylA), a virulence factor secreted by certain strains of the plant pathogen Pseudomonas syringae pv. syringae, is an irreversible proteasome inhibitor imported by plant cells by an unknown transport process. Here, we report that functional expression in yeast of all 17 members of the Arabidopsis oligopeptide transporter family revealed that OLIGOPEPTIDE TRANSPORTER1 (OPT1), OPT2, YELLOW STRIPE-LIKE3 (YSL3), YSL7, and YSL8 rendered yeast cells sensitive to growth inhibition by SylA to different degrees, strongly indicating that these proteins mediated SylA uptake into yeast cells. The greatest SylA sensitivity was conferred by YSL7 and YSL8 expression. An Arabidopsis ysl7 mutant exhibited strongly reduced SylA sensitivity in a root growth inhibition assay and in leaves of ysl7 and ysl8 mutants, SylA-mediated quenching of salicylic-acid-triggered PATHOGENESIS-RELATED GENE1 transcript accumulation was greatly reduced compared with the wild type. These results suggest that YSL7 and YSL8 are major SylA uptake transporters in Arabidopsis. Expression of a YSL homolog of bean, the host of the SylA-producing P. syringae pv. syringae B728a, in yeast also conferred strong SylA sensitivity. Thus, YSL transporters, which are thought to be involved in metal homeostasis, have been hijacked by bacterial pathogens for SylA uptake into host cells.
Collapse
|
16
|
The Orthoester Johnson-Claisen Rearrangement in the Synthesis of Bioactive Molecules, Natural Products, and Synthetic Intermediates - Recent Advances. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Trenner J, Depken C, Weber T, Breder A. Direkte oxidative allylische und vinylische Aminierung von Alkenen mittels Selenkatalyse. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303662] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Trenner J, Depken C, Weber T, Breder A. Direct Oxidative Allylic and Vinylic Amination of Alkenes through Selenium Catalysis. Angew Chem Int Ed Engl 2013; 52:8952-6. [DOI: 10.1002/anie.201303662] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Indexed: 11/11/2022]
|
19
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthese und Pharmakologie von Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207900] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Rentsch A, Landsberg D, Brodmann T, Bülow L, Girbig AK, Kalesse M. Synthesis and pharmacology of proteasome inhibitors. Angew Chem Int Ed Engl 2013; 52:5450-88. [PMID: 23526565 DOI: 10.1002/anie.201207900] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Indexed: 12/17/2022]
Abstract
Shortly after the discovery of the proteasome it was proposed that inhibitors could stabilize proteins which ultimately would trigger apoptosis in tumor cells. The essential questions were whether small molecules would be able to inhibit the proteasome without generating prohibitive side effects and how one would derive these compounds. Fortunately, "Mother Nature" has generated a wide variety of natural products that provide distinct selectivities and specificities. The chemical synthesis of these natural products finally provided access to analogues and optimized drugs of which two different classes have been approved for the treatment of malignancies. Despite these achievements, additional lead structures derived from nature are under investigation and will be discussed with regard to their biological potential and chemical challenges.
Collapse
Affiliation(s)
- Andreas Rentsch
- Institut für Organische Chemie and Centre of Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Dudler R. Manipulation of host proteasomes as a virulence mechanism of plant pathogens. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:521-42. [PMID: 23725468 DOI: 10.1146/annurev-phyto-082712-102312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ubiquitin-26S proteasome degradation system (UPS) in plants is involved in the signal transduction of many cellular processes, including host immune responses triggered by pathogen attack. Attacking pathogens produce effectors that are translocated into host cells, where they interfere with the host's defense signaling in very specific ways. Perhaps not surprising in view of the broad involvement of the host proteasome in plant immunity, certain bacterial effectors exploit or require the host UPS for their action, as currently best studied in Pseudomonas syringae. Intriguingly, some P. syringae strains also secrete the virulence factor syringolin A, which irreversibly inhibits the proteasome by a novel mechanism. Here, the role of the UPS in plant defense and its exploitation by effectors are summarized, and the biology, taxonomic distribution, and emerging implications for virulence strategies of syringolin A and similar compounds are discussed.
Collapse
Affiliation(s)
- Robert Dudler
- Institute of Plant Biology, University of Zurich, 8008 Zurich, Switzerland.
| |
Collapse
|
22
|
Dudnik A, Bigler L, Dudler R. Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A. Microbiol Res 2012; 168:73-6. [PMID: 23079192 DOI: 10.1016/j.micres.2012.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/20/2012] [Accepted: 09/18/2012] [Indexed: 02/03/2023]
Abstract
Syrbactins are cyclic peptide derivatives which are known to inhibit the eukaryotic proteasome by irreversible covalent binding to its catalytic sites. The only two members of this family characterized to date, syringolin A and glidobactin A, are secreted by certain strains of Pseudomonas syringae pv. syringae and strain K481-B101 from the order Burkholderiales, respectively. Syrbactins are the products of mixed non-ribosomal peptide/polyketide synthases encoded by gene clusters with a characteristic architecture. Similar, but not identical gene clusters are present in several other bacterial genomes, including that of Photorhabdus luminescens subsp. laumondii TT01, which is therefore hypothesized to be able to produce a syrbactin-type proteasome inhibitor. Here we report the cloning of the putative syrbactins synthetase encoding gene cluster of Ph. luminescens into a cosmid vector and its heterologous expression in Pseudomonas putida. Analysis of culture supernatants of transformed Ps. putida by HPLC and mass spectrometry revealed the presence of glidobactin A, indicating that the syrbactins-like gene cluster of Ph. luminescens encodes a glidobactin A synthetase and that this organism has the capacity to synthesize glidobactin A.
Collapse
Affiliation(s)
- Alexey Dudnik
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | |
Collapse
|
23
|
Ramel C, Baechler N, Hildbrand M, Meyer M, Schädeli D, Dudler R. Regulation of biosynthesis of syringolin A, a Pseudomonas syringae virulence factor targeting the host proteasome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1198-1208. [PMID: 22852810 DOI: 10.1094/mpmi-03-12-0070-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Many strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae synthesize the virulence factor syringolin A, which irreversibly inactivates the eukaryotic proteasome. Syringolin A, a peptide derivative, is synthesized by a mixed nonribosomal peptide/polyketide synthetase encoded by five clustered genes, sylA to sylE. Biosynthesis of syringolin A, previously shown to be dependent on the GacS/GacA two-component system, occurs in planta and in vitro but only under still culture conditions in a defined medium. Here, we show that the sylC, sylD, and sylE genes of P. syringae pv. syringae B301D-R form an operon transcribed by promoter sequences located between the sylCDE operon and the sylB gene residing on opposite strands. Assays of overlapping sylB and sylCDE promoter deletions translationally fused to the lacZ gene defined promoter sequences required for gene activity both in vitro and in planta. Activation of both promoters depended on the sylA gene encoding a helix-turn-helix (HTH) LuxR-type transcription factor which was shown to directly bind to the promoters. Activity of the sylA gene, in turn, required a functional salA gene, which also encodes an HTH LuxR-type transcription factor. Furthermore, evidence is presented that acyl-homoserine lactone-mediated quorum-sensing regulation is not involved in syringolin A biosynthesis but that oxygen concentration appears to play a role.
Collapse
|
24
|
Archer CR, Groll M, Stein ML, Schellenberg B, Clerc J, Kaiser M, Kondratyuk TP, Pezzuto JM, Dudler R, Bachmann AS. Activity enhancement of the synthetic syrbactin proteasome inhibitor hybrid and biological evaluation in tumor cells. Biochemistry 2012; 51:6880-8. [PMID: 22870914 DOI: 10.1021/bi300841r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Syrbactins belong to a recently emergent class of bacterial natural product inhibitors that irreversibly inhibit the proteasome of eukaryotes by a novel mechanism. The total syntheses of the syrbactin molecules syringolin A, syringolin B, and glidobactin A have been achieved, which allowed the preparation of syrbactin-inspired derivatives, such as the syringolin A-glidobactin A hybrid molecule (SylA-GlbA). To determine the potency of SylA-GlbA, we employed both in vitro and cell culture-based proteasome assays that measure the subcatalytic chymotrypsin-like (CT-L), trypsin-like (T-L), and caspase-like (C-L) activities. We further studied the inhibitory effects of SylA-GlbA on tumor cell growth using a panel of multiple myeloma, neuroblastoma, and ovarian cancer cell lines and showed that SylA-GlbA strongly blocks the activity of NF-κB. To gain more insights into the structure-activity relationship, we cocrystallized SylA-GlbA in complex with the proteasome and determined the X-ray structure. The electron density map displays covalent binding of the Thr1O(γ) atoms of all active sites to the macrolactam ring of the ligand via ether bond formation, thus providing insights into the structure-activity relationship for the improved affinity of SylA-GlbA for the CT-L activity compared to those of the natural compounds SylA and GlbA. Our study revealed that the novel synthetic syrbactin compound represents one of the most potent proteasome inhibitors analyzed to date and therefore exhibits promising properties for improved drug development as an anticancer therapeutic.
Collapse
Affiliation(s)
- Crystal R Archer
- University of Hawaii Cancer Center, 1236 Lauhala Street, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bian X, Huang F, Stewart FA, Xia L, Zhang Y, Müller R. Direct Cloning, Genetic Engineering, and Heterologous Expression of the Syringolin Biosynthetic Gene Cluster inE. colithrough Red/ET Recombineering. Chembiochem 2012; 13:1946-52. [DOI: 10.1002/cbic.201200310] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Indexed: 11/11/2022]
|
26
|
Krahn D, Ottmann C, Kaiser M. The chemistry and biology of syringolins, glidobactins and cepafungins (syrbactins). Nat Prod Rep 2011; 28:1854-67. [PMID: 21904761 DOI: 10.1039/c1np00048a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Syrbactin is a subordinate term for the syringolin, glidobactin and cepafungin natural product families. Their grouping is based on their related molecular frameworks, similar biosynthesis pathways and, most importantly, identical modes-of-action, being irreversible proteasome inhibition. With this report, we aim to review their chemical biology, describing their common, but also differential characteristics.
Collapse
Affiliation(s)
- Daniel Krahn
- Zentrum für Medizinische Biotechnologie, Universität Duisburg-Essen, Germany
| | | | | |
Collapse
|
27
|
Kolodziejek I, Misas-Villamil JC, Kaschani F, Clerc J, Gu C, Krahn D, Niessen S, Verdoes M, Willems LI, Overkleeft HS, Kaiser M, van der Hoorn RA. Proteasome activity imaging and profiling characterizes bacterial effector syringolin A. PLANT PHYSIOLOGY 2011; 155:477-89. [PMID: 21045122 PMCID: PMC3075764 DOI: 10.1104/pp.110.163733] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 11/01/2010] [Indexed: 05/20/2023]
Abstract
Syringolin A (SylA) is a nonribosomal cyclic peptide produced by the bacterial pathogen Pseudomonas syringae pv syringae that can inhibit the eukaryotic proteasome. The proteasome is a multisubunit proteolytic complex that resides in the nucleus and cytoplasm and contains three subunits with different catalytic activities: β1, β2, and β5. Here, we studied how SylA targets the plant proteasome in living cells using activity-based profiling and imaging. We further developed this technology by introducing new, more selective probes and establishing procedures of noninvasive imaging in living Arabidopsis (Arabidopsis thaliana) cells. These studies showed that SylA preferentially targets β2 and β5 of the plant proteasome in vitro and in vivo. Structure-activity analysis revealed that the dipeptide tail of SylA contributes to β2 specificity and identified a nonreactive SylA derivative that proved essential for imaging experiments. Interestingly, subcellular imaging with probes based on epoxomicin and SylA showed that SylA accumulates in the nucleus of the plant cell and suggests that SylA targets the nuclear proteasome. Furthermore, subcellular fractionation studies showed that SylA labels nuclear and cytoplasmic proteasomes. The selectivity of SylA for the catalytic subunits and subcellular compartments is discussed, and the subunit selectivity is explained by crystallographic data.
Collapse
|
28
|
Abstract
A convergent, efficient synthesis of syringolin A has been accomplished in 13 steps from commercially available materials, Garner's aldehyde and L-valine. The unnatural 3,4-dehydrolysine fragment was prepared using successive Johnson-Claisen/Curtius rearrangement reactions. The macrolactamization and late-stage introduction of the side chain will provide convenient access to analogues of this promising proteasome inhibitor.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
29
|
Schellenberg B, Ramel C, Dudler R. Pseudomonas syringae virulence factor syringolin A counteracts stomatal immunity by proteasome inhibition. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1287-93. [PMID: 20831408 DOI: 10.1094/mpmi-04-10-0094] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The peptide derivative syringolin A, a product of a mixed nonribosomal peptide and polyketide synthetase, is secreted by certain strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae. Syringolin A was shown to be a virulence factor for P. syringae pv. syringae B728a because disease symptoms on its host Phaseolus vulgaris (bean) were greatly reduced upon inoculation with syringolin A-negative mutants. Syringolin A's mode of action was recently shown to be irreversible proteasome inhibition. Here, we report that syringolin A-producing bacteria are able to open stomata and, thus, counteract stomatal innate immunity in bean and Arabidopsis. Syringolin A-negative mutants, which induce stomatal closure, can be complemented by exogenous addition of not only syringolin A but also MG132, a well-characterized and structurally unrelated proteasome inhibitor. This demonstrates that proteasome activity is crucial for guard cell function. In Arabidopsis, stomatal immunity was salicylic acid (SA)-dependent and required NPR1, a key regulator of the SA-dependent defense pathway whose proteasome-dependent turnover has been reported to be essential for its function. Thus, elimination of NPR1 turnover through proteasome inhibition by syringolin A is an attractive hypothesis to explain the observed inhibition of stomatal immunity by syringolin A.
Collapse
|
30
|
Ramel C, Tobler M, Meyer M, Bigler L, Ebert MO, Schellenberg B, Dudler R. Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate. BMC BIOCHEMISTRY 2009; 10:26. [PMID: 19863801 PMCID: PMC2773804 DOI: 10.1186/1471-2091-10-26] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND Syringolin A, an important virulence factor in the interaction of the phytopathogenic bacterium Pseudomonas syringae pv. syringae B728a with its host plant Phaseolus vulgaris (bean), was recently shown to irreversibly inhibit eukaryotic proteasomes by a novel mechanism. Syringolin A is synthesized by a mixed non-ribosomal peptide synthetase/polyketide synthetase and consists of a tripeptide part including a twelve-membered ring with an N-terminal valine that is joined to a second valine via a very unusual ureido group. Analysis of sequence and architecture of the syringolin A synthetase gene cluster with the five open reading frames sylA-sylE allowed to formulate a biosynthesis model that explained all structural features of the tripeptide part of syringolin A but left the biosynthesis of the unusual ureido group unaccounted for. RESULTS We have cloned a 22 kb genomic fragment containing the sylA-sylE gene cluster but no other complete gene into the broad host range cosmid pLAFR3. Transfer of the recombinant cosmid into Pseudomonas putida and P. syringae pv. syringae SM was sufficient to direct the biosynthesis of bona fide syringolin A in these heterologous organisms whose genomes do not contain homologous genes. NMR analysis of syringolin A isolated from cultures grown in the presence of NaH(13)CO(3) revealed preferential (13)C-labeling at the ureido carbonyl position. CONCLUSION The results show that no additional syringolin A-specific genes were needed for the biosynthesis of the enigmatic ureido group joining two amino acids. They reveal the source of the ureido carbonyl group to be bicarbonate/carbon dioxide, which we hypothesize is incorporated by carbamylation of valine mediated by the sylC gene product(s). A similar mechanism may also play a role in the biosynthesis of other ureido-group-containing NRPS products known largely from cyanobacteria.
Collapse
Affiliation(s)
- Christina Ramel
- Institute of Plant Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
32
|
Clerc J, Groll M, Illich DJ, Bachmann AS, Huber R, Schellenberg B, Dudler R, Kaiser M. Synthetic and structural studies on syringolin A and B reveal critical determinants of selectivity and potency of proteasome inhibition. Proc Natl Acad Sci U S A 2009; 106:6507-12. [PMID: 19359491 PMCID: PMC2672505 DOI: 10.1073/pnas.0901982106] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Indexed: 11/18/2022] Open
Abstract
Syrbactins, a family of natural products belonging either to the syringolin or glidobactin class, are highly potent proteasome inhibitors. Although sharing similar structural features, they differ in their macrocyclic lactam core structure and exocyclic side chain. These structural variations critically influence inhibitory potency and proteasome subsite selectivity. Here, we describe the total synthesis of syringolin A and B, which together with enzyme kinetic and structural studies, allowed us to elucidate the structural determinants underlying the proteasomal subsite selectivity and binding affinity of syrbactins. These findings were used successfully in the rational design and synthesis of a syringolin A-based lipophilic derivative, which proved to be the most potent syrbactin-based proteasome inhibitor described so far. With a K(i)' of 8.65 +/- 1.13 nM for the chymotryptic activity, this syringolin A derivative displays a 100-fold higher potency than the parent compound syringolin A. In light of the medicinal relevance of proteasome inhibitors as anticancer compounds, the present findings may assist in the rational design and development of syrbactin-based chemotherapeutics.
Collapse
Affiliation(s)
- Jérôme Clerc
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Michael Groll
- Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Damir J. Illich
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - André S. Bachmann
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, 1236 Lauhala Street, Honolulu, HI 96813
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813
| | - Robert Huber
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, 82152 Martinsried, Germany
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
- Zentrum für Medizinische Biotechnologie, Universität Duisburg–Essen, 45117 Essen, Germany; and
| | - Barbara Schellenberg
- Zurich–Basel Plant Science Center, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Robert Dudler
- Zurich–Basel Plant Science Center, Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | - Markus Kaiser
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| |
Collapse
|
33
|
Schellenberg B, Bigler L, Dudler R. Identification of genes involved in the biosynthesis of the cytotoxic compound glidobactin from a soil bacterium. Environ Microbiol 2008; 9:1640-50. [PMID: 17564599 DOI: 10.1111/j.1462-2920.2007.01278.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glidobactins (syn. cepafungins) are a family of structurally related cytotoxic compounds that were isolated from the soil bacterial strain K481-B101 (ATCC 53080; DSM 7029) originally assigned to Polyangium brachysporum and, independently, from an undefined species related to Burkholderia cepacia. Glidobactins are acylated tripeptide derivatives that contain a 12-membered ring structure consisting of the two unique non-proteinogenic amino acids erythro-4-hydroxy-l-lysine and 4(S)-amino-2(E)-pentenoic acid. Here we report the cloning and functional analysis of a gene cluster (glbA-glbH) involved in glidobactin synthesis from K481-B101, which according to its 16S rRNA sequence belongs to the Burkholderiales. The putative encoded proteins include a mixed non-ribosomal peptide/polyketide synthetase whose structure and architecture allowed to build a biosynthetic pathway model explaining the biosynthesis of the unique peptide part of glidobactins. Intriguingly, among the more than 600 bacterial strains whose genome sequence is currently available, homologous gene clusters were found in Burkholderia pseudomallei, the causing agent of melioidosis, and in the insect pathogen Photorhabdus luminescens, strongly suggesting that these organisms are capable to synthesize compounds similar to glidobactins. In addition, a glb gene cluster that was inactivated by transposon-mediated rearrangements was also present in Burkholderia mallei, a very close relative of B. pseudomallei and the causing agent of glanders in horse-like animals.
Collapse
|
34
|
Coleman CS, Rocetes JP, Park DJ, Wallick CJ, Warn-Cramer BJ, Michel K, Dudler R, Bachmann AS. Syringolin A, a new plant elicitor from the phytopathogenic bacterium Pseudomonas syringae pv. syringae, inhibits the proliferation of neuroblastoma and ovarian cancer cells and induces apoptosis. Cell Prolif 2007; 39:599-609. [PMID: 17109642 PMCID: PMC6496920 DOI: 10.1111/j.1365-2184.2006.00402.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Syringolin A is a new plant elicitor produced by the plant pathogen Pseudomonas syringae pv. syringae. The goal of this study was to investigate whether syringolin A exhibits anti-proliferative properties in cancer cells. The treatment of human neuroblastoma (NB) cells (SK-N-SH and LAN-1) and human ovarian cancer cells (SKOV3) with syringolin A (0-100 microm) inhibited cell proliferation in a dose-dependent manner. The IC(50) (50% inhibition) for each cell line ranged between 20 microm and 25 microm. In SK-N-SH cells, the treatment with 20 microm syringolin A led to a rapid (24 h) increase of the apoptosis-associated tumour suppressor protein p53. In addition, we found that the treatment of SK-N-SH cells caused severe morphological changes after 48 h such as rounding of cells and loss of adherence, both conditions observed during apoptosis. The induction of apoptosis by syringolin A was confirmed by both poly (ADP-ribose) polymerase (PARP) cleavage and annexin V assay. Taken together, we show for the first time that the natural product syringolin A exhibits anti-proliferative activity and induces apoptosis. Syringolin A and structurally modified syringolin A derivatives may serve as new lead compounds for the development of novel anticancer drugs.
Collapse
Affiliation(s)
- C S Coleman
- Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Michel K, Abderhalden O, Bruggmann R, Dudler R. Transcriptional changes in powdery mildew infected wheat and Arabidopsis leaves undergoing syringolin-triggered hypersensitive cell death at infection sites. PLANT MOLECULAR BIOLOGY 2006; 62:561-78. [PMID: 16941219 DOI: 10.1007/s11103-006-9045-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 06/26/2006] [Indexed: 05/11/2023]
Abstract
Blumeria graminis f.sp. tritici, the causal agent of powdery mildew in wheat, is an obligate biotrophic fungus that exclusively invades epidermal cells. As previously shown, spraying of a solution of syringolin A, a circular peptide derivative secreted by the phytopathogenic bacterium Pseudomonas syringae pv. syringae, triggers hypersensitive cell death at infection sites in powdery mildew infected wheat. Thus, the fungus is essentially eradicated. Here we show that syringolin A also triggers hypersensitive cell death in Arabidopsis infected with the powdery mildew fungus Erysiphe cichoracearum. To monitor transcriptional changes associated with this effect, we cloned 307 cDNA clones representing 158 unigenes from powdery mildew infected, syringolin A sprayed wheat leaves by a suppression subtractive hybridization cloning procedure. These cDNAs were microarrayed onto glass slides together with 1088 cDNA-AFLP clones from powdery mildew-infected wheat. Microarray hybridization experiments were performed with probes derived from leaves, epidermal tissue, and mesophyll preparations of mildewed or uninfected wheat plants after syringolin A or control treatment. Similar experiments were performed in Arabidopsis using the Affymetrix ATH1 whole genome GeneChip. The results indicate a conserved mode of action of syringolin A as similar gene groups are induced in both species. Prominent groups include genes associated with the proteasomal degradation pathway, mitochondrial and other heat shock genes, genes involved in mitochondrial alternative electron pathways, and genes encoding glycolytic and fermentative enzymes. Surprisingly, in both species the observed transcriptional response to syringolin A was considerably weaker in infected plants as compared to uninfected plants. The results lead to the working hypothesis that cell death observed at infection sites may result from a parasite-induced suppression of the transcriptional response and thus to insufficient production of protective proteins necessary for the recovery of these cells from whatever insult is imposed by syringolin A.
Collapse
Affiliation(s)
- Kathrin Michel
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8000 Zurich, Switzerland
| | | | | | | |
Collapse
|
36
|
Amrein H, Makart S, Granado J, Shakya R, Schneider-Pokorny J, Dudler R. Functional analysis of genes involved in the synthesis of syringolin A by Pseudomonas syringae pv. syringae B301 D-R. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:90-97. [PMID: 14714872 DOI: 10.1094/mpmi.2004.17.1.90] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Strains of the phytopathogenic bacterium Pseudomonas syringae pv. syringae secrete a family of structurally closely related peptide derivatives dubbed syringolins, of which syringolin A is the major variant. The function of syringolins in the interaction of P. syringae pv. syringae with their host plants presently is unknown. It is hypothesized that they may constitute virulence factors. However, syringolins are determinants recognized and reacted to by nonhost plant species, and syringolin A has been shown to induce hypersensitive death of cells colonized by powdery mildew in wheat and, thus, to reprogram a compatible interaction into an incompatible one. Syringolin A is an unusual derivative of a tripeptide that contains a 12-membered ring consisting of the amino acids 5-methyl-4-amino-2-hexenoic acid and 3,4-dehydrolysine, two nonproteinogenic amino acids. Here we report the cloning, sequencing, and analysis of genes involved in the biosynthesis of syringolin A. The genes encode proteins consisting of modules typical for nonribosomal peptide synthetases and type I polyketide synthetases, as well as proteins likely involved in the transcriptional regulation of syringolin A biosynthesis and in syringolin A export. The structure and arrangement of the modules lead to the formulation of a model explaining the synthesis of the tripeptide, including the formation of the two nonproteinogenic amino acids in the ring structure of syringolin A.
Collapse
Affiliation(s)
- Hans Amrein
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
Hassa P, Granado J, Freydl E, Wäspi U, Dudler R. Syringolin-mediated activation of the Pir7b esterase gene in rice cells is suppressed by phosphatase inhibitors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:342-346. [PMID: 10707360 DOI: 10.1094/mpmi.2000.13.3.342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Inoculation of rice plants (Oryza sativa) with the nonhost pathogen Pseudomonas syringae pv. syringae leads to the activation of defense-related genes and ultimately to induced resistance against the rice blast fungus Pyricularia oryzae. One of the molecular determinants of P. syringae pv. syringae that is recognized by the plant cells and evokes these defense responses is syringolin A, an elicitor that is secreted by the bacteria under appropriate conditions. In order to investigate signal transduction events elicited by syringolin A, the response of cultured rice cells to syringolin A application was analyzed. Cultured rice cells were able to sense syringolin A at concentrations in the nanomolar range as observed by the transient accumulation of Pir7b esterase transcripts. Syringolin A-mediated Pir7b transcript accumulation was inhibited by cycloheximide, indicating that de novo protein synthesis was required. Calyculin and okadaic acid, two protein phosphatase inhibitors, blocked Pir7b gene induction, whereas the serine/threonine protein kinase inhibitors staurosporine and K-252a had no effect on Pir7b transcript levels. Actin transcript levels were essentially not affected by inhibitor treatments over the experimental time span. These results imply that dephosphorylation of a phosphoprotein is an important step in the syringolin A-triggered signal transduction pathway.
Collapse
Affiliation(s)
- P Hassa
- Institute of Plant Biology, University of Zurich, Switzerland
| | | | | | | | | |
Collapse
|