1
|
Briolay A, Duboeuf F, Delplace S, Brizuela L, Peyruchaud O, Magne D, Bougault C. Voluntary exercise in mice triggers an anti-osteogenic and pro-tenogenic response in the ankle joint without affecting long bones. Bone Rep 2024; 23:101810. [PMID: 39493871 PMCID: PMC11530850 DOI: 10.1016/j.bonr.2024.101810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024] Open
Abstract
Biomechanical stimulation is proposed to occupy a central place in joint homeostasis, but the precise contribution of exercise remains elusive. We aimed to characterize in vivo the impact of mechanical stimulation on the cell-controlled regulation of ossification within the ankles of healthy mice undergoing mild physical activity. DBA/1 male mice were subjected to voluntary running exercise for two weeks, and compared to mice housed in standard conditions (n = 20 per group). Free access to activity wheels resulted in a running exercise of 5.5 ± 0.8 km/day at 14.5 ± 0.5 m/min. Serum levels of alkaline phosphatase, IL-6, IL-8/Kc, IL-17a, and TNF-α were measured. No change in systemic inflammation was detected. The bone architecture of the femur and the calcaneus was unchanged, as revealed by μCT and histology of the enthesis of the Achilles tendon. mRNAs were extracted from femurs, tibias, and ankle joints before RT-qPCR analysis. The expression of the mechanosensitive genes Sclerostin (Sost) and Periostin (Postn) was not impacted by the exercise in long bones. Oppositely, Sost and Postn levels were modulated by exercise in joints, and osteogenic markers (Col10a1, Runx2, Osx, and Dmp1) were downregulated in the exercise group. In addition, the tenogenic markers Scx, Mkx, and Tnmd were upregulated by exercise. Thus, voluntary exercise affected the phenotype of joint cells without impacting long bones. As gene expression of Bmp2, Bmp4, and Id1 was also reduced in these cells, an off-regulation of BMP signaling could be partly responsible for their mechanosensitive response. Running exercise seemed to preserve the tendon from its progressive ossification, as seen in numerous enthesopathies. This study paves the way to future experiments for investigating the effects of mechanical stimulation in various mouse models.
Collapse
Affiliation(s)
- Anne Briolay
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - François Duboeuf
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - Séverine Delplace
- Universite Littoral-Côte d'Opale, ULR 4490, MABLab, F-62327 Boulogne/Mer, France
| | - Leyre Brizuela
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Olivier Peyruchaud
- Universite Claude Bernard Lyon 1, INSERM, UMR 1033, LYOS, F-69372 Lyon, France
| | - David Magne
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| | - Carole Bougault
- Universite Claude Bernard Lyon 1, CNRS, UMR 5246, ICBMS, F-69622 Villeurbanne, France
| |
Collapse
|
2
|
Wang H, He K, Cheng CK. The Structure, Biology, and Mechanical Function of Tendon/Ligament-Bone Interfaces. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:545-558. [PMID: 38323564 DOI: 10.1089/ten.teb.2023.0295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
After tendon or ligament reconstruction, the interface between the hard bone and soft connective tissue is considerably weakened and is difficult to restore through healing. The tendon/ligament-bone interface is mechanically the weakest point under tensile loading and is often the source of various postoperative complications, such as bone resorption and graft laxity. A comprehensive understanding of the macro- and microfeatures of the native tendon/ligament-bone interface would be beneficial for developing strategies for regenerating the tissue. This article discusses the structural, biological, and mechanical features of the tendon/ligament-bone interfaces and how these can be affected by aging and loading conditions.
Collapse
Affiliation(s)
- Huizhi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
- Center for Intelligent Medical Equipment and Devices, Institute for Innovative Medical Devices, University of Science and Technology of China, Hefei, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Kaixin He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Kung Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Engineering Research Center for Digital Medicine of the Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Timmer KB, Killian ML, Harley BAC. Paracrine signals influence patterns of fibrocartilage differentiation in a lyophilized gelatin hydrogel for applications in rotator cuff repair. Biomater Sci 2024; 12:4806-4822. [PMID: 39150417 PMCID: PMC11404831 DOI: 10.1039/d4bm00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rotator cuff injuries present a clinical challenge for repair due to current limitations in functional regeneration of the native tendon-to-bone enthesis. A biomaterial that can regionally instruct unique tissue-specific phenotypes offers potential to promote enthesis repair. We have recently demonstrated the mechanical benefits of a stratified triphasic biomaterial made up of tendon- and bone-mimetic collagen scaffold compartments connected via a continuous hydrogel, and we now explore the potential of a biologically favorable enthesis hydrogel for this application. Here we report in vitro behavior of human mesenchymal stem cells (hMSCs) within thiolated gelatin (Gel-SH) hydrogels in response to chondrogenic stimuli as well as paracrine signals derived from MSC-seeded bone and tendon scaffold compartments. Chondrogenic differentiation media promoted upregulation of cartilage and entheseal fibrocartilage matrix markers COL2, COLX, and ACAN as well as the enthesis-associated transcription factors SCX, SOX9, and RUNX2 in hMSCs within Gel-SH. Similar effects were observed in response to TGF-β3 and BMP-4, enthesis-associated growth factors known to play a role in entheseal development and maintenance. Conditioned media generated by hMSCs seeded in tendon- and bone-mimetic collagen scaffolds influenced patterns of gene expression regarding enthesis-relevant growth factors, matrix markers, and tendon-to-bone transcription factors for hMSCs within the material. Together, these findings demonstrate that a Gel-SH hydrogel provides a permissive environment for enthesis tissue engineering and highlights the significance of cellular crosstalk between adjacent compartments within a spatially graded biomaterial.
Collapse
Affiliation(s)
- Kyle B Timmer
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
| | - Megan L Killian
- Department of Orthopaedic Surgery, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, Ann Arbor, Michigan 48109, USA
| | - Brendan A C Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, 110 Roger Adams Laboratory, 600 S. Mathews Ave., Urbana, IL 61801, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Camy C, Maurel-Pantel A, Lallemand M, Fovet T, Brioche T, Genovesio C, Chopard A, Pithioux M, Roffino S. Achilles tendon enthesis behavior under cyclic compressive loading: Consequences of unloading and early remobilization. J Biomech 2024; 173:112231. [PMID: 39053291 DOI: 10.1016/j.jbiomech.2024.112231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (Camy et al., 2022), chronic changes in the mechanical load could modify the mechanical response under compressive stress. Therefore, we investigated the ATE fatigue behavior in mice, under cyclic compressive loading, after 14 days of hindlimb suspension and 6 days of reloading. In addition, we performed a qualitative histological study of PGs in ATE fibrocartilage. The mechanical behavior of ATE was impaired in unloaded mice. A significant loss of 27 % in Δd (difference between the maximum and minimum displacements) was observed at the end of the test. In addition, the hysteresis area decreased by approximately 27 % and the stiffness increased by over 45 %. The increased stiffness and loss of viscosity were thrice and almost twice those of the control, respectively. In the reloaded entheses, where the loss of Δd was not significant, we found a significant 28 % decrease in the hysteresis area and a 26 % increase in stiffness, both of which were higher regarding the control condition. These load-dependent changes in the mechanical response seem partly related to changes in PGs in the uncalficied part of the ATE. These findings highlight the importance of managing compressive loading on ATE when performing prophylactic and rehabilitation exercises.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | | - Marylène Lallemand
- Ecole Centrale Marseille, 13013 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Cécile Genovesio
- Aix Marseille Univ, Faculté de Pharmacie, 13005 Marseille, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France; Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France.
| | | |
Collapse
|
5
|
Chen Y, Li Y, Zhu W, Liu Q. Biomimetic gradient scaffolds for the tissue engineering and regeneration of rotator cuff enthesis. Biofabrication 2024; 16:032005. [PMID: 38697099 DOI: 10.1088/1758-5090/ad467d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Rotator cuff tear is one of the most common musculoskeletal disorders, which often results in recurrent shoulder pain and limited movement. Enthesis is a structurally complex and functionally critical interface connecting tendon and bone that plays an essential role in maintaining integrity of the shoulder joint. Despite the availability of advanced surgical procedures for rotator cuff repair, there is a high rate of failure following surgery due to suboptimal enthesis healing and regeneration. Novel strategies based on tissue engineering are gaining popularity in improving tendon-bone interface (TBI) regeneration. Through incorporating physical and biochemical cues into scaffold design which mimics the structure and composition of native enthesis is advantageous to guide specific differentiation of seeding cells and facilitate the formation of functional tissues. In this review, we summarize the current state of research in enthesis tissue engineering highlighting the development and application of biomimetic scaffolds that replicate the gradient TBI. We also discuss the latest techniques for fabricating potential translatable scaffolds such as 3D bioprinting and microfluidic device. While preclinical studies have demonstrated encouraging results of biomimetic gradient scaffolds, the translation of these findings into clinical applications necessitates a comprehensive understanding of their safety and long-term efficacy.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yexin Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Qian Liu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
6
|
Liu N, Jiang J, Liu T, Chen H, Jiang N. Compositional, Structural, and Biomechanical Properties of Three Different Soft Tissue-Hard Tissue Insertions: A Comparative Review. ACS Biomater Sci Eng 2024; 10:2659-2679. [PMID: 38697939 DOI: 10.1021/acsbiomaterials.3c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Connective tissue attaches to bone across an insertion with spatial gradients in components, microstructure, and biomechanics. Due to regional stress concentrations between two mechanically dissimilar materials, the insertion is vulnerable to mechanical damage during joint movements and difficult to repair completely, which remains a significant clinical challenge. Despite interface stress concentrations, the native insertion physiologically functions as the effective load-transfer device between soft tissue and bone. This review summarizes tendon, ligament, and meniscus insertions cross-sectionally, which is novel in this field. Herein, the similarities and differences between the three kinds of insertions in terms of components, microstructure, and biomechanics are compared in great detail. This review begins with describing the basic components existing in the four zones (original soft tissue, uncalcified fibrocartilage, calcified fibrocartilage, and bone) of each kind of insertion, respectively. It then discusses the microstructure constructed from collagen, glycosaminoglycans (GAGs), minerals and others, which provides key support for the biomechanical properties and affects its physiological functions. Finally, the review continues by describing variations in mechanical properties at the millimeter, micrometer, and nanometer scale, which minimize stress concentrations and control stretch at the insertion. In summary, investigating the contrasts between the three has enlightening significance for future directions of repair strategies of insertion diseases and for bioinspired approaches to effective soft-hard interfaces and other tough and robust materials in medicine and engineering.
Collapse
Affiliation(s)
- Nian Liu
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Jialing Jiang
- West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610207, China
| | - Tiancheng Liu
- West China Hospital, Sichuan University, Chengdu, Sichuan 610207, China
| | - Haozhe Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Nan Jiang
- State Key Laboratory of Oral Diseases, & National Clinical Research Center for Oral Disease, & West China Hospital of Stomatology and the Research Center for Nano Biomaterials, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Sabido-Sauri R, Baraliakos X, Aydin SZ. Enthesopathies - Mechanical, inflammatory or both? Best Pract Res Clin Rheumatol 2024; 38:101966. [PMID: 39019747 DOI: 10.1016/j.berh.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/22/2024] [Indexed: 07/19/2024]
Abstract
Entheses have the challenging task of transferring biomechanical forces between tendon and bone, two tissues that differ greatly in composition and mechanical properties. Consequently, entheses are adapted to withstand these forces through continuous repair mechanisms. Locally specialized cells (mechanosensitive tenocytes) are crucial in the repair, physiologically triggering biochemical processes to maintain hemostasis. When repetitive forces cause "material fatigue," or trauma exceeds the entheses' repair capacity, structural changes occur, and patients become symptomatic. Clinical assessment of enthesopathies mainly depends on subjective reports by the patient and lacks specificity, especially in patients with central sensitization syndromes. Ultrasonography has been increasingly used to improve the diagnosis of enthesopathies. In this article, the literature on how biomechanical forces lead to entheseal inflammation, including factors contributing to differentiation into a "clinical enthesitis" state and the value of ultrasound to diagnose enthesopathies will be reviewed, as well as providing clues to overcome the pitfalls of imaging.
Collapse
Affiliation(s)
| | | | - Sibel Zehra Aydin
- Division of Rheumatology, Department of Medicine, University of Ottawa, Canada; Ottawa Hospital Research Institute, Canada.
| |
Collapse
|
8
|
Camy C, Grünewald T, Lamy E, Roseren F, Caumes M, Fovet T, Brioche T, Genovesio C, Chopard A, Pithioux M, Roffino S. Characterization of the mechanical properties of the mouse Achilles tendon enthesis by microindentation. Effects of unloading and subsequent reloading. Bone Rep 2024; 20:101734. [PMID: 38292933 PMCID: PMC10825371 DOI: 10.1016/j.bonr.2024.101734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
The fibrocartilaginous tendon enthesis, i.e. the site where a tendon is attached to bone through a fibrocartilaginous tissue, is considered as a functionally graded interface. However, at local scale, a very limited number of studies have characterized micromechanical properties of this transitional tissue. The first goal of this work was to characterize the micromechanical properties of the mineralized part of the healthy Achilles tendon enthesis (ATE) through microindentation testing and to assess the degree of mineralization and of carbonation of mineral crystals by Raman spectroscopy. Since little is known about enthesis biological plasticity, our second objective was to examine the effects of unloading and reloading, using a mouse hindlimb-unloading model, on both the micromechanical properties and the mineral phase of the ATE. Elastic modulus, hardness, degree of mineralization, and degree of carbonation were assessed after 14 days of hindlimb suspension and again after a subsequent 6 days of reloading. The elastic modulus gradually increased along the mineralized part of the ATE from the tidemark to the subchondral bone, with the same trend being found for hardness. Whereas the degree of carbonation did not differ according to zone of measurement, the degree of mineralization increased by >70 % from tidemark to subchondral bone. Thus, the gradient in micromechanical properties is in part explained by a mineralization gradient. A 14-day unloading period did not appear to affect the gradient of micromechanical properties of the ATE, nor the degree of mineralization or carbonation. However, contrary to a short period of unloading, early return to normal mechanical load reduced the micromechanical properties gradient, regardless of carbonate-to-phosphate ratios, likely due to the more homogeneous degree of mineralization. These findings provide valuable data not only for tissue bioengineering, but also for musculoskeletal clinical studies and microgravity studies focusing on long-term space travel by astronauts.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Tilman Grünewald
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Edouard Lamy
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
| | - Flavy Roseren
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | | | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille Univ, CNRS, ISM, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Mecabio Platform, Department of Orthopaedics and Traumatology, 13009 Marseille, France
- Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | | |
Collapse
|
9
|
Chatterjee M, Evans MK, Bell R, Nguyen PK, Kamalitdinov TB, Korntner S, Kuo CK, Dyment NA, Andarawis-Puri N. Histological and immunohistochemical guide to tendon tissue. J Orthop Res 2023; 41:2114-2132. [PMID: 37321983 DOI: 10.1002/jor.25645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
Tendons are unique dense connective tissues with discrete zones having specific structure and function. They are juxtaposed with other tissues (e.g., bone, muscle, and fat) with different compositional, structural, and mechanical properties. Additionally, tendon properties change drastically with growth and development, disease, aging, and injury. Consequently, there are unique challenges to performing high quality histological assessment of this tissue. To address this need, histological assessment was one of the breakout session topics at the 2022 Orthopaedic Research Society (ORS) Tendon Conference hosted at the University of Pennsylvania. The purpose of the breakout session was to discuss needs from members of the ORS Tendon Section related to histological procedures, data presentation, knowledge dissemination, and guidelines for future work. Therefore, this review provides a brief overview of the outcomes of this discussion and provides a set of guidelines, based on the perspectives from our laboratories, for histological assessment to assist researchers in their quest to utilize these techniques to enhance the outcomes and interpretations of their studies.
Collapse
Affiliation(s)
- Monideepa Chatterjee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Mary K Evans
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rebecca Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| | - Phong K Nguyen
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
| | - Timur B Kamalitdinov
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefanie Korntner
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Catherine K Kuo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Department of Orthopaedics, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Nathaniel A Dyment
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nelly Andarawis-Puri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
10
|
Lin M, Li W, Ni X, Sui Y, Li H, Chen X, Lu Y, Jiang M, Wang C. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol 2023; 11:1250533. [PMID: 37781529 PMCID: PMC10539943 DOI: 10.3389/fbioe.2023.1250533] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-β(TGF-β), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-β and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.
Collapse
Affiliation(s)
- Meina Lin
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Medical School, Shandong Modern University, Jinan, China
| | - Xiang Ni
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Huan Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yongping Lu
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Williams S, Ligas C, Oloff L, Klein TE. The Role of Epigenomics in Mapping Potential Precursors for Foot and Ankle Tendinopathy: A Systematic Review. Foot Ankle Spec 2023; 16:446-454. [PMID: 37165881 DOI: 10.1177/19386400231170967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Tendinopathy of the foot and ankle is a common clinical problem for which the exact etiology is poorly understood. The field of epigenetics has been a recent focus of this investigation. The purpose of this article was to review the genomic advances in foot and ankle tendinopathy that could potentially be used to stratify disease risk and create preventative or therapeutic agents. A multi-database search of PubMed, Cochrane, Google Scholar, and clinicaltrials.gov from January 1, 2000 to July 1, 2022 was performed. A total of 18 articles met inclusion and exclusion criteria for this review. The majority of such research utilized case-control candidate gene association to identify different genetic risk factors associated with chronic tendinopathy. Polymorphisms in collagen genes COL5A1, COL27A1, and COL1A1 were noted at a significantly higher frequency in Achilles tendinopathy versus control groups. Other allelic variations that were observed at an increased incidence in Achilles tendinopathy were TNC and CASP8. The extracellular matrix (ECM) demonstrated macroscopic changes in Achilles tendinopathy, including an increase in aggrecan and biglycan mRNA expression, and increased expression of multiple matrix metalloproteinases. Cytokine expression was also influenced in pathology and aberrantly demonstrated dynamic response to mechanical load. The pathologic accumulation of ECM proteins and cytokine expression alters the adaptive response normal tendon has to physiologic stress, further propagating the risk for tendinopathy. By identifying and understanding the epigenetic mediators that lead to tendinopathy, therapeutic agents can be developed to target the exact underlying etiology and minimize side effects.Level of Evidence: Level IV: Systematic Review of Level II-IV Studies.
Collapse
Affiliation(s)
- Samantha Williams
- Department of Podiatric Surgery, Silicon Valley Reconstructive Foot and Ankle Fellowship, Palo Alto Medical Foundation, Mountain View, California
| | - Chandler Ligas
- Department of Podiatric Surgery, Silicon Valley Reconstructive Foot and Ankle Fellowship, Palo Alto Medical Foundation, Mountain View, California
| | - Lawrence Oloff
- Department of Podiatric Surgery, Silicon Valley Reconstructive Foot and Ankle Fellowship, Palo Alto Medical Foundation, Mountain View, California
- St. Mary's Medical Center, San Francisco, California
| | - Teri E Klein
- Departments of Biomedical Data Science and Medicine, Stanford Center for Biomedical Informatics Research (BMIR), and Stanford University, Stanford, California
| |
Collapse
|
12
|
Tits A, Blouin S, Rummler M, Kaux JF, Drion P, van Lenthe GH, Weinkamer R, Hartmann MA, Ruffoni D. Structural and functional heterogeneity of mineralized fibrocartilage at the Achilles tendon-bone insertion. Acta Biomater 2023; 166:409-418. [PMID: 37088163 DOI: 10.1016/j.actbio.2023.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
A demanding task of the musculoskeletal system is the attachment of tendon to bone at entheses. This region often presents a thin layer of fibrocartilage (FC), mineralized close to the bone and unmineralized close to the tendon. Mineralized FC deserves increased attention, owing to its crucial anchoring task and involvement in enthesis pathologies. Here, we analyzed mineralized FC and subchondral bone at the Achilles tendon-bone insertion of rats. This location features enthesis FC anchoring tendon to bone and sustaining tensile loads, and periosteal FC facilitating bone-tendon sliding with accompanying compressive and shear forces. Using a correlative multimodal investigation, we evaluated potential specificities in mineral content, fiber organization and mechanical properties of enthesis and periosteal FC. Both tissues had a lower degree of mineralization than subchondral bone, yet used the available mineral very efficiently: for the same local mineral content, they had higher stiffness and hardness than bone. We found that enthesis FC was characterized by highly aligned mineralized collagen fibers even far away from the attachment region, whereas periosteal FC had a rich variety of fiber arrangements. Except for an initial steep spatial gradient between unmineralized and mineralized FC, local mechanical properties were surprisingly uniform inside enthesis FC while a modulation in stiffness, independent from mineral content, was observed in periosteal FC. We interpreted these different structure-property relationships as a demonstration of the high versatility of FC, providing high strength at the insertion (to resist tensile loading) and a gradual compliance at the periosteal surface (to resist contact stresses). STATEMENT OF SIGNIFICANCE: Mineralized fibrocartilage (FC) at entheses facilitates the integration of tendon in bone, two strongly dissimilar tissues. We focus on the structure-function relationships of two types of mineralized FC, enthesis and periosteal, which have clearly distinct mechanical demands. By investigating them with multiple high-resolution methods in a correlative manner, we demonstrate differences in fiber architecture and mechanical properties between the two tissues, indicative of their mechanical roles. Our results are relevant both from a medical viewpoint, targeting a clinically relevant location, as well as from a material science perspective, identifying FC as high-performance versatile composite.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery unit, GIGA & Credec, University of Liège, Liège, Belgium
| | | | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium.
| |
Collapse
|
13
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
14
|
Muacevic A, Adler JR, G SN, Karunakaran B, CP K, PK S, Ravichandran A, Raghunath G, Senthilkumar S, Begum Z. Morphometric Analysis of Achilles Tendon Structure and Its Significance: A Cadaveric Study. Cureus 2022; 14:e32172. [PMID: 36605058 PMCID: PMC9808123 DOI: 10.7759/cureus.32172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2022] [Indexed: 12/07/2022] Open
Abstract
INTRODUCTION Achilles tendon is crucial for gait, and chronic Achilles tendinopathy can have a substantial impact on an individual's work and active involvement in physical or sports activity, and overall quality of life. OBJECTIVES This research was to determine the macroscopic and microscopic anatomy of Achilles tendons in cadavers. MATERIALS AND METHODS This experimental study was conducted in the Department of Anatomy, Saveetha Medical College, Thandalam, from March to August 2022. A total of 60 formalin-perfused cadavers (38 males and 22 females) were dissected to study their morphometry (length, width, thickness) and histology. The data was tabulated in MS excel and analyzed statistically using unpaired 't-test and one-way ANOVA in SPSS Software 17.0 (IBM Corp., Armonk, NY). RESULTS The mean length of the Achilles tendon was significantly higher in males than in females and similarly, the length on the right side was significantly higher than on the left side (p<0.005). The width and circumference were statistically higher in females than, males whereas, the histological features were similar in both males and females. CONCLUSION The better understanding of Achilles tendon morphometry in cadavers always aids in the diagnosis and surgical repair of tendinopathy, rupture, and degenerative change. The knowledge will be helpful for the surgeons during the repair and reconstruction of the injured tendon.
Collapse
|
15
|
Gao H, Wang L, Jin H, Lin Z, Li Z, Kang Y, Lyu Y, Dong W, Liu Y, Shi D, Jiang J, Zhao J. Regulating Macrophages through Immunomodulatory Biomaterials Is a Promising Strategy for Promoting Tendon-Bone Healing. J Funct Biomater 2022; 13:243. [PMID: 36412884 PMCID: PMC9703966 DOI: 10.3390/jfb13040243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 08/08/2023] Open
Abstract
The tendon-to-bone interface is a special structure connecting the tendon and bone and is crucial for mechanical load transfer between dissimilar tissues. After an injury, fibrous scar tissues replace the native tendon-to-bone interface, creating a weak spot that needs to endure extra loading, significantly decreasing the mechanical properties of the motor system. Macrophages play a critical role in tendon-bone healing and can be divided into various phenotypes, according to their inducing stimuli and function. During the early stages of tendon-bone healing, M1 macrophages are predominant, while during the later stages, M2 macrophages replace the M1 macrophages. The two macrophage phenotypes play a significant, yet distinct, role in tendon-bone healing. Growing evidence shows that regulating the macrophage phenotypes is able to promote tendon-bone healing. This review aims to summarize the impact of different macrophages on tendon-bone healing and the current immunomodulatory biomaterials for regulating macrophages, which are used to promote tendon-bone healing. Although macrophages are a promising target for tendon-bone healing, the challenges and limitations of macrophages in tendon-bone healing research are discussed, along with directions for further research.
Collapse
Affiliation(s)
- Haihan Gao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liren Wang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haocheng Jin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhiqi Lin
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yuhao Kang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yangbao Lyu
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wenqian Dong
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yefeng Liu
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dingyi Shi
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation Workroom, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
- Regenerative Sports Medicine Lab of the Institute of Microsurgery on Extremities, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
16
|
Camy C, Brioche T, Senni K, Bertaud A, Genovesio C, Lamy E, Fovet T, Chopard A, Pithioux M, Roffino S. Effects of hindlimb unloading and subsequent reloading on the structure and mechanical properties of Achilles tendon-to-bone attachment. FASEB J 2022; 36:e22548. [PMID: 36121701 DOI: 10.1096/fj.202200713r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
While muscle and bone adaptations to deconditioning have been widely described, few studies have focused on the tendon enthesis. Our study examined the effects of mechanical loading on the structure and mechanical properties of the Achilles tendon enthesis. We assessed the fibrocartilage surface area, the organization of collagen, the expression of collagen II, the presence of osteoclasts, and the tensile properties of the mouse enthesis both after 14 days of hindlimb suspension (HU) and after a subsequent 6 days of reloading. Although soleus atrophy was severe after HU, calcified fibrocartilage (CFc) was a little affected. In contrast, we observed a decrease in non-calcified fibrocartilage (UFc) surface area, collagen fiber disorganization, modification of morphological characteristics of the fibrocartilage cells, and altered collagen II distribution. Compared to the control group, restoring normal loads increased both UFc surface area and expression of collagen II, and led to a crimp pattern in collagen. Reloading induced an increase in CFc surface area, probably due to the mineralization front advancing toward the tendon. Functionally, unloading resulted in decreased enthesis stiffness and a shift in site of failure from the osteochondral interface to the bone, whereas 6 days of reloading restored the original elastic properties and site of failure. In the context of spaceflight, our results suggest that care must be taken when performing countermeasure exercises both during missions and during the return to Earth.
Collapse
Affiliation(s)
- Claire Camy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France
| | - Thomas Brioche
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Karim Senni
- Laboratoire EBInnov, Ecole de Biologie Industrielle-EBI, Cergy, France
| | - Alexandrine Bertaud
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Cécile Genovesio
- Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Edouard Lamy
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Laboratoire de Biochimie, Faculté de Pharmacie, Marseille, France
| | - Théo Fovet
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Angèle Chopard
- DMEM, Montpellier University, INRAE, UMR 866, Montpellier, France
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Department of Orthopaedics and Traumatology, Aix Marseille Univ, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| | - Sandrine Roffino
- Aix Marseille University, CNRS, ISM, Institute of Movement Sciences, Marseille, France.,Aix Marseille Univ, APHM, CNRS, Centrale Marseille, ISM, Mecabio Platform, Anatomy Laboratory, Timone, Marseille, France
| |
Collapse
|
17
|
Evaluation of Sodium Relaxation Times and Concentrations in the Achilles Tendon Using MRI. Int J Mol Sci 2022; 23:ijms231810890. [PMID: 36142810 PMCID: PMC9501448 DOI: 10.3390/ijms231810890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Sodium magnetic resonance imaging (MRI) can be used to evaluate the change in the proteoglycan content in Achilles tendons (ATs) of patients with different AT pathologies by measuring the 23Na signal-to-noise ratio (SNR). As 23Na SNR alone is difficult to compare between different studies, because of the high influence of hardware configurations and sequence settings on the SNR, we further set out to measure the apparent tissue sodium content (aTSC) in the AT as a better comparable parameter. Ten healthy controls and one patient with tendinopathy in the AT were examined using a clinical 3 Tesla (T) MRI scanner in conjunction with a dual tuned 1H/23Na surface coil to measure 23Na SNR and aTSC in their ATs. 23Na T1 and T2* of the AT were also measured for three controls to correct for different relaxation behavior. The results were as follows: 23Na SNR = 11.7 ± 2.2, aTSC = 82.2 ± 13.9 mM, 23Na T1 = 20.4 ± 2.4 ms, 23Na T2s* = 1.4 ± 0.4 ms, and 23Na T2l* = 13.9 ± 0.8 ms for the whole AT of healthy controls with significant regional differences. These are the first reported aTSCs and 23Na relaxation times for the AT using sodium MRI and may serve for future comparability in different studies regarding examinations of diseased ATs with sodium MRI.
Collapse
|
18
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Histophysiology of Fibrocartilage. Clin Podiatr Med Surg 2022; 39:363-370. [PMID: 35717055 DOI: 10.1016/j.cpm.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
There are 3 types of cartilage found in the human body: hyaline cartilage, elastic cartilage, and fibrocartilage. Fibrocartilage may be found in intervertebral discs, symphysis pubis, tendinous insertions, acetabular labrums, and the temporomandibular joint. Specifically, in the foot and ankle we mainly see fibrocartilage in tendinous insertions and in areas where tendons wrap around boney prominence. Histologically, fibrocartilage is comprised of an extracellular matrix that contains glycosaminoglycans, proteoglycans, and collagens. This composition allows for a hydrophilic environment, which allows tissue to withstand high compressive forces seen in weight bearing.
Collapse
|
20
|
Advances in Microscopic Studies of Tendinopathy: Literature Review and Current Trends, with Special Reference to Neovascularization Process. J Clin Med 2022; 11:jcm11061572. [PMID: 35329898 PMCID: PMC8949578 DOI: 10.3390/jcm11061572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/05/2023] Open
Abstract
Tendinopathy is a process of chaotic extracellular matrix remodeling followed by increased secretion of enzymes and mediators of inflammation. The histopathological assessment of tendinous tissue is crucial to formulate the diagnosis and establish the severity of tendon degeneration. Nevertheless, the microscopic analysis of tendinous tissue features is often challenging. In this review, we aimed to compare the most popular scales used in tendon pathology assessment and reevaluate the role of the neovascularization process. The following scores were evaluated: the Bonar score, the Movin score, the Astrom and Rausing Score, and the Soslowsky score. Moreover, the role of neovascularization in tendon degeneration was reassessed. The Bonar system is the most commonly used in tendon pathology. According to the literature, hematoxylin and eosin with additional Alcian Blue staining seems to provide satisfactory results. Furthermore, two observers experienced in musculoskeletal pathology are sufficient for tendinopathy microscopic evaluation. The control, due to similar and typical alterations in tendinous tissue, is not necessary. Neovascularization plays an ambiguous role in tendon disorders. The neovascularization process is crucial in the tendon healing process. On the other hand, it is also an important component of the degeneration of tendinous tissue when the regeneration is incomplete and insufficient. The microscopic analysis of tendinous tissue features is often challenging. The assessment of tendinous tissue using the Bonar system is the most universal. The neovascularization variable in tendinopathy scoring systems should be reconsidered due to discrepancies in studies.
Collapse
|
21
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
22
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
23
|
Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021; 13:753-775. [PMID: 34367476 PMCID: PMC8316867 DOI: 10.4252/wjsc.v13.i7.753] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.
Collapse
Affiliation(s)
- Yue Xu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Wan-Xia Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li-Na Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yue-Qing Ming
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yu-Lin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Guo-Xin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
24
|
Weinrich L, Paraskevaidis M, Schleip R, Agres AN, Tsitsilonis S. Does the Calcaneus Serve as Hypomochlion within the Lower Limb by a Myofascial Connection?-A Systematic Review. Life (Basel) 2021; 11:life11080745. [PMID: 34440492 PMCID: PMC8398293 DOI: 10.3390/life11080745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Clinical approaches have depicted interconnectivity between the Achilles tendon and the plantar fascia. This concept has been applied in rehabilitation, prevention, and in conservative management plans, yet potential anatomical and histological connection is not fully understood. (2) Objective: To explore the possible explanation that the calcaneus acts as a hypomochlion. (3) Methods: 2 databases (Pubmed and Livivo) were searched and studies, including those that examined the relationship of the calcaneus to the Achilles tendon and plantar fascia and its biomechanical role. The included studies highlighted either the anatomical, histological, or biomechanical aspect of the lower limb. (4) Results: Seventeen studies were included. Some studies depicted an anatomical connection that slowly declines with age. Others mention a histological similarity and continuity via the paratenon, while a few papers have brought forward mechanical reasoning. (5) Conclusion: The concept of the calcaneus acting as a fulcrum in the lower limb can partially be supported by anatomical, histological, and biomechanical concepts. Despite the plethora of research, a comprehensive understanding is yet to be investigated. Further research exploring the precise interaction is necessary.
Collapse
Affiliation(s)
- Luise Weinrich
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (L.W.); (M.P.)
| | - Melissa Paraskevaidis
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (L.W.); (M.P.)
| | - Robert Schleip
- Technische Universität München, 80333 München, Germany;
- Diploma University of Applied Sciences, 37242 Bad Sooden-Allendorf, Germany
| | - Alison N. Agres
- Julius Wolff Institute, Berlin Institute of Health and Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany; (L.W.); (M.P.)
- Correspondence:
| |
Collapse
|
25
|
Tits A, Ruffoni D. Joining soft tissues to bone: Insights from modeling and simulations. Bone Rep 2021; 14:100742. [PMID: 34150954 PMCID: PMC8190669 DOI: 10.1016/j.bonr.2020.100742] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023] Open
Abstract
Entheses are complex multi-tissue regions of the musculoskeletal system serving the challenging task of connecting highly dissimilar materials such as the compliant tendon to the much stiffer bone, over a very small region. The first aim of this review is to highlight mathematical and computational models that have been developed to investigate the many attachment strategies present at entheses at different length scales. Entheses are also relevant in the medical context due to the high prevalence of orthopedic injuries requiring the reattachment of tendons or ligaments to bone, which are associated with a rather poor long-term clinical outcome. The second aim of the review is to report on the computational works analyzing the whole tendon to bone complex as well as targeting orthopedic relevant issues. Modeling approaches have provided important insights on anchoring mechanisms and surgical repair strategies, that would not have been revealed with experiments alone. We intend to demonstrate the necessity of including, in future models, an enriched description of enthesis biomechanical behavior in order to unravel additional mechanical cues underlying the development, the functioning and the maintaining of such a complex biological interface as well as to enhance the development of novel biomimetic adhesive, attachment procedures or tissue engineered implants.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| |
Collapse
|
26
|
Roffino S, Camy C, Foucault-Bertaud A, Lamy E, Pithioux M, Chopard A. Negative impact of disuse and unloading on tendon enthesis structure and function. LIFE SCIENCES IN SPACE RESEARCH 2021; 29:46-52. [PMID: 33888287 DOI: 10.1016/j.lssr.2021.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Exposure to chronic skeletal muscle disuse and unloading that astronauts experience results in muscle deconditioning and bone remodeling. Tendons involved in the transmission of force from muscles to skeleton are also affected. Understanding the changes that occur in muscle, tendon, and bone is an essential step toward limiting or preventing the deleterious effects of chronic reduction in mechanical load. Numerous reviews have reported the effects of this reduction on both muscle and bone, and to a lesser extent on the tendon. However, none focused on the tendon enthesis, the tendon-to-bone attachment site. While the enthesis structure appears to be determined by mechanical stress, little is known about enthesis plasticity. Our review first looks at the relationship between entheses and mechanical stress, exploring how tensile and compressive loads determine and influence enthesis structure and composition. The second part of this review addresses the deleterious effects of skeletal muscle disuse and unloading on enthesis structure, composition, and function. We discuss the possibility that spaceflight-induced enthesis remodeling could impact both the capacity of the enthesis to withstand compressive stress and its potential weakness. Finally, we point out how altered compressive strength at entheses could expose astronauts to the risk of developing enthesopathies.
Collapse
Affiliation(s)
- S Roffino
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France.
| | - C Camy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Foucault-Bertaud
- INSERM 1263, INRA 1260, C2VN, Aix-Marseille University, Marseille, France
| | - E Lamy
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - M Pithioux
- ISM Inst Movement Sci, Aix-Marseille University, CNRS, Marseille, France
| | - A Chopard
- DMEM, Montpellier University, INRAE, Montpellier, France
| |
Collapse
|
27
|
Higuchi T, Suzuki D, Watanabe T, Fanhchaksai K, Ota K, Yokoo K, Furukawa H, Watanabe H. Versican contributes to ligament formation of knee joints. PLoS One 2021; 16:e0250366. [PMID: 33886644 PMCID: PMC8061984 DOI: 10.1371/journal.pone.0250366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Versican is a large proteoglycan in the extracellular matrix. During embryonic stages, it plays a crucial role in the development of cartilage, heart, and dermis. Previously, we reported that Prx1-Vcan conditional knockout mice, lacking Vcan expression in mesenchymal condensation areas of the limb bud, show the impaired joint formation and delayed cartilage development. Here, we investigated their phenotype in adults and found that they develop swelling of the knee joint. Histologically, their newborn joint exhibited impaired formation of both anterior and posterior cruciate ligaments. Immunostaining revealed a decrease in scleraxis-positive cells in both articular cartilage and ligament of Prx1-Vcan knee joint, spotty patterns of type I collagen, and the presence of type II collagen concomitant with the absence of versican expression. These results suggest that versican expression during the perinatal period is required for cruciate ligaments’ formation and that its depletion affects joint function in later ages.
Collapse
Affiliation(s)
- Tomoko Higuchi
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Daisuke Suzuki
- Department of Health Sciences, Hokkaido Chitose College of Rehabilitation, Chitose, Japan
| | - Takafumi Watanabe
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Kanda Fanhchaksai
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Keiko Ota
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
| | - Kazuhisa Yokoo
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Hiroshi Furukawa
- Department of Plastic Surgery, Aichi Medical University, Nagakute, Japan
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Japan
- * E-mail:
| |
Collapse
|
28
|
Yuan H, Li X, Lee MS, Zhang Z, Li B, Xuan H, Li WJ, Zhang Y. Collagen and chondroitin sulfate functionalized bioinspired fibers for tendon tissue engineering application. Int J Biol Macromol 2020; 170:248-260. [PMID: 33359806 DOI: 10.1016/j.ijbiomac.2020.12.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/26/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Functional tendon tissue engineering depends on harnessing the biochemical and biophysical cues of the native tendon extracellular matrix. In this study, we fabricated highly-aligned poly(L-lactic acid) (PLLA) fibers with surfaces decorated by two of the crucial tendon ECM components, type 1 collagen (COL1) and chondroitin sulfate (CS), through a coaxial stable jet electrospinning approach. Effects of the biomimetic COL1-CS (shell)/PLLA (core) fibers on the tenogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro were investigated. Higher rates of cell spreading and proliferation are observed on the aligned COL1-CS/PLLA fibers compared to that on the plain PLLA fibers. Expression of the tendon-associated genes scleraxis (SCX) and COL1 as well as protein tenomodulin (TNMD) are significantly increased. Introduction of mechanical stimulation gives rise to synergistic effect on tenogenic differentiation of hMSCs. Higher expression of TGF-β2, TGFβR-II, and Smad3 by the cells on the COL1-CS/PLLA fiber substrates are observed, which indicates that COL1-CS/PLLA ultrafine fibers dictate the hMSC tenogenic differentiation through activating the TGF-β signaling pathway. Animal study in rat Achilles tendon repair model corroborated the promoting role of COL1-CS/PLLA in regenerating a tendon-like tissue. Thus, our highly aligned biomimicking fibers may serve as an efficient scaffolding system for functional tendon regeneration.
Collapse
Affiliation(s)
- Huihua Yuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA.
| | - Xiaolei Li
- Department of Orthopedics and Orthopedic Institute, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, Jiangsu 225001, China
| | - Ming-Song Lee
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Biyun Li
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China; College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Wan-Ju Li
- Department of Orthopedics and Rehabilitation, University of Wisconsin-Madison, Madison, WI, USA
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
29
|
Aghaei A, Bochud N, Rosi G, Naili S. Assessing the effective elastic properties of the tendon-to-bone insertion: a multiscale modeling approach. Biomech Model Mechanobiol 2020; 20:433-448. [PMID: 33057842 DOI: 10.1007/s10237-020-01392-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
The interphase joining tendon to bone plays the crucial role of integrating soft to hard tissues, by effectively transferring stresses across two tissues displaying a mismatch in mechanical properties of nearly two orders of magnitude. The outstanding mechanical properties of this interphase are attributed to its complex hierarchical structure, especially by means of competing gradients in mineral content and collagen fibers organization at different length scales. The goal of this study is to develop a multiscale model to describe how the tendon-to-bone insertion derives its overall mechanical behavior. To this end, the effective anisotropic stiffness tensor of the interphase is predicted by modeling its elastic response at different scales, spanning from the nanostructural to the mesostructural levels, using continuum micromechanics methods. The results obtained at a lower scale serve as inputs for the modeling at a higher scale. The obtained predictions are in good agreement with stochastic finite element simulations and experimental trends reported in literature. Such model has implication for the design of bioinspired bi-materials that display the functionally graded properties of the tendon-to-bone insertion.
Collapse
Affiliation(s)
- A Aghaei
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France
- Univ Gustave Eiffel, MSME, F-77454, Marne-la-Vallée, France
| | - N Bochud
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France.
- Univ Gustave Eiffel, MSME, F-77454, Marne-la-Vallée, France.
| | - G Rosi
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France
- Univ Gustave Eiffel, MSME, F-77454, Marne-la-Vallée, France
| | - S Naili
- Univ Paris Est Creteil, CNRS, MSME, F-94010, Creteil, France
- Univ Gustave Eiffel, MSME, F-77454, Marne-la-Vallée, France
| |
Collapse
|
30
|
Friese N, Gierschner MB, Schadzek P, Roger Y, Hoffmann A. Regeneration of Damaged Tendon-Bone Junctions (Entheses)-TAK1 as a Potential Node Factor. Int J Mol Sci 2020; 21:E5177. [PMID: 32707785 PMCID: PMC7432881 DOI: 10.3390/ijms21155177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/10/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Musculoskeletal dysfunctions are highly prevalent due to increasing life expectancy. Consequently, novel solutions to optimize treatment of patients are required. The current major research focus is to develop innovative concepts for single tissues. However, interest is also emerging to generate applications for tissue transitions where highly divergent properties need to work together, as in bone-cartilage or bone-tendon transitions. Finding medical solutions for dysfunctions of such tissue transitions presents an added challenge, both in research and in clinics. This review aims to provide an overview of the anatomical structure of healthy adult entheses and their development during embryogenesis. Subsequently, important scientific progress in restoration of damaged entheses is presented. With respect to enthesis dysfunction, the review further focuses on inflammation. Although molecular, cellular and tissue mechanisms during inflammation are well understood, tissue regeneration in context of inflammation still presents an unmet clinical need and goes along with unresolved biological questions. Furthermore, this review gives particular attention to the potential role of a signaling mediator protein, transforming growth factor beta-activated kinase-1 (TAK1), which is at the node of regenerative and inflammatory signaling and is one example for a less regarded aspect and potential important link between tissue regeneration and inflammation.
Collapse
Affiliation(s)
- Nina Friese
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Mattis Benno Gierschner
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Patrik Schadzek
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Yvonne Roger
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Andrea Hoffmann
- Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, OE 8893, Laboratory for Biomechanics and Biomaterials, Hannover Medical School (MHH), 30625 Hannover, Germany; (N.F.); (M.B.G.); (P.S.); (Y.R.)
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
31
|
Functional anatomy, histology and biomechanics of the human Achilles tendon — A comprehensive review. Ann Anat 2020; 229:151461. [DOI: 10.1016/j.aanat.2020.151461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 11/12/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
|
32
|
Lin CC, Wu PT, Chang CW, Lin RW, Wang GJ, Jou IM, Lai KA. A single-pulsed electromagnetic field enhances collagen synthesis in tendon cells. Med Eng Phys 2020; 77:130-136. [PMID: 31954614 DOI: 10.1016/j.medengphy.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 01/18/2023]
Abstract
Tendinopathy is a progressive pathology of tendon that is characteristic of imbalance between matrix synthesis and degeneration and is often caused by failure to adapt to mechanical loading. Non-steroidal anti-inflammatory medications (NSAIDS) are used as a conventional treatment to alleviate pain and swelling in the short term, but the ideal treatment for tendinopathy remains unclear. Here, we show a single pulsed electromagnetic field (SPEMF, 0.2 Hz) that up-regulated tenogenic gene expression (Col1a1, Col3a1, Scx, Dcn) and down-regulated inflammatory gene expression (Mmp1) in vitro. After five days of SPEMF stimulation (3 min/day), the collagen type I and total collagen synthesis protein levels were significantly increased. Under pro-inflammatory cytokine (IL-1β) irritation, the decreased expression of Col1a1/Col3a1 was up-regulated by SPEMF treatment, and the increased expression of Mmp1 was also reversed. From the above, it can be inferred that SPEMF that enhances matrix synthesis and reduces matrix degeneration may counteract the imbalance in tendinopathy. SPEMF application may be developed as a potential future strategy for therapeutic intervention in tendon disorders.
Collapse
Affiliation(s)
- Chih-Chun Lin
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ting Wu
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Wei Chang
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Wei Lin
- Institute of Food Safety Management, College of Agriculture, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Gwo-Jaw Wang
- Departments of Orthopedics, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Orthopedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - I-Ming Jou
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-An Lai
- Department of Orthopedics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
33
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
34
|
Baldwin M, Snelling S, Dakin S, Carr A. Augmenting endogenous repair of soft tissues with nanofibre scaffolds. J R Soc Interface 2019; 15:rsif.2018.0019. [PMID: 29695606 DOI: 10.1098/rsif.2018.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials.
Collapse
Affiliation(s)
- Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Calejo I, Costa-Almeida R, Gomes ME. Cellular Complexity at the Interface: Challenges in Enthesis Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1144:71-90. [PMID: 30632116 DOI: 10.1007/5584_2018_307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The complex heterogeneous cellular environment found in tendon-to-bone interface makes this structure a challenge for interface tissue engineering. Orthopedic surgeons still face some problems associated with the formation of fibrotic tissue or re-tear occurring after surgical re-attachment of tendons to the bony insertion or the application of grafts. Unfortunately, an understanding of the cellular component of enthesis lags far behind of other well-known musculoskeletal interfaces, which blocks the development of new treatment options for the healing and regeneration of this multifaceted junction. In this chapter, the main characteristics of tendon and bone cell populations are introduced, followed by a brief description of the interfacial cellular niche, highlighting molecular mechanisms governing tendon-to-bone attachment and mineralization. Finally, we describe and critically assess some challenges faced concerning the use of cell-based strategies in tendon-to-bone healing and regeneration.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Costa-Almeida
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
36
|
Guzzoni V, Selistre-de-Araújo HS, Marqueti RDC. Tendon Remodeling in Response to Resistance Training, Anabolic Androgenic Steroids and Aging. Cells 2018; 7:E251. [PMID: 30544536 PMCID: PMC6316563 DOI: 10.3390/cells7120251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET), anabolic androgenic steroids (AAS), and aging are potential factors that affect tendon homeostasis, particularly extracellular matrix (ECM) remodeling. The goal of this review is to aggregate findings regarding the effects of resistance training (RT), AAS, and aging on tendon homeostasis. Data were gathered from our studies regarding the impact of RT, AAS, and aging on the calcaneal tendon (CT) of rats. We demonstrated a series of detrimental effects of AAS and aging on functional and biomechanical parameters, including the volume density of blood vessel cells, adipose tissue cells, tendon calcification, collagen content, the regulation of the major proteins related to the metabolic/development processes of tendons, and ECM remodeling. Conversely, RT seems to mitigate age-related tendon dysfunction. Our results suggest that AAS combined with high-intensity RT exert harmful effects on ECM remodeling, and also instigate molecular and biomechanical adaptations in the CT. Moreover, we provide further information regarding the harmful effects of AAS on tendons at a transcriptional level, and demonstrate the beneficial effects of RT against the age-induced tendon adaptations of rats. Our studies might contribute in terms of clinical approaches in favor of the benefits of ET against tendinopathy conditions, and provide a warning on the harmful effects of the misuse of AAS on tendon development.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Departamento de Biologia Molecular e Celular, Universidade Federal da Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | | | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Science, University of Brasilia, Distrito Federal, Brasília 70840-901, Distrito Federal, Brazil.
| |
Collapse
|
37
|
Efird WM, Fletcher AG, Draeger RW, Spang JT, Dahners LE, Weinhold PS. Deferoxamine-Soaked Suture Improves Angiogenesis and Repair Potential After Acute Injury of the Chicken Achilles Tendon. Orthop J Sports Med 2018; 6:2325967118802792. [PMID: 30370309 PMCID: PMC6201186 DOI: 10.1177/2325967118802792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: A major obstacle to the treatment of soft tissue injuries is the hypovascular
nature of the tissues. Deferoxamine (DFO) has been shown to stimulate
angiogenesis by limiting the degradation of intracellular hypoxia-inducible
factor 1–alpha. Hypothesis: DFO-saturated suture would induce angiogenesis and improve the markers of
early healing in an Achilles tendon repair model. Study Design: Controlled laboratory study. Methods: Broiler hens were randomly assigned to the control (CTL) group or DFO group
(n = 9 per group). The right Achilles tendon was partially transected at its
middle third. The defect was surgically repaired using 3-0 Vicryl suture
soaked in either sterile water (CTL group) or 324 mM DFO solution (DFO
group). All animals were euthanized 2 weeks after the injury, and the tendon
was harvested. Half of the tendon was used to evaluate angiogenesis via
hemoglobin content and tissue repair via DNA content and proteoglycan (PG)
content. The other half of the tendon was sectioned and stained with
hematoxylin and eosin, safranin O, and lectin to evaluate vessel
density. Results: Hemoglobin content (percentage of wet tissue weight) was significantly
increased in the DFO group compared with the CTL group (0.081 ± 0.012 vs
0.063 ± 0.016, respectively; P = .046). DNA content
(percentage of wet tissue weight) was also significantly increased in the
DFO group compared with the CTL group (0.31 ± 0.05 vs 0.23 ± 0.03,
respectively; P = .024). PG content (percentage of wet
tissue weight) was significantly decreased in the DFO group compared with
the CTL group (0.26 ± 0.02 vs 0.33 ± 0.08, respectively; P
= .035). Total chondroid area (number of vessels per mm2 of
tissue area evaluated) was significantly decreased in the DFO group compared
with the CTL group (17.2 ± 6.6 vs 24.6 ± 5.1, respectively;
P = .038). Articular zone vessel density
(vessels/mm2) was significantly increased in the DFO group
compared with the CTL group (7.1 ± 2.5 vs 2.1 ± 0.9, respectively;
P = .026). Conclusion: The significant increase in hemoglobin content as well as articular zone
vessel density in the DFO group compared with the CTL group is evidence of
increased angiogenesis in the fibrocartilaginous region of the tendon
exposed to DFO. The DFO group also displayed a significantly greater level
of DNA and significantly lower level of PG, suggesting enhanced early
healing by fibrous tissue formation. Clinical Relevance: Stimulating angiogenesis by DFO-saturated suture may be clinically useful to
improve healing of poorly vascularized tissues.
Collapse
Affiliation(s)
- William M Efird
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alex G Fletcher
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Reid W Draeger
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Laurence E Dahners
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul S Weinhold
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
38
|
Sevick JL, Abusara Z, Andrews SH, Xu M, Khurshid S, Chatha J, Hart DA, Shrive NG. Fibril deformation under load of the rabbit Achilles tendon and medial collateral ligament femoral entheses. J Orthop Res 2018; 36:2506-2515. [PMID: 29637610 DOI: 10.1002/jor.23912] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 03/30/2018] [Indexed: 02/04/2023]
Abstract
Microscopic visualization under load of the region connecting ligaments/tendons to bone, the enthesis, has been performed previously; however, specific investigation of individual fibril deformation may add insight to such studies. Detailed visualization of fibril deformation would inform on the mechanical strategies employed by this tissue in connecting two mechanically disparate materials. Clinically, an improved understanding of enthesis mechanics may help guide future restorative efforts for torn or injured ligaments/tendons, where the enthesis is often a point of weakness. In this study, a custom ligament/tendon enthesis loading device was designed and built, a unique method of sample preparation was devised, and second harmonic and two-photon fluorescence microscopy were used to capture the fibril-level load response of the rabbit Achilles tendon and medial collateral ligament femoral entheses. A focus was given to investigation of the mechanical problem of fibril embedment. Resultant images indicate a rapid (occurring over approximately 60 μm) change in fibril orientation at the interface of ligament/tendon and calcified fibrocartilage early in the loading regime, before becoming relatively constant. Such a change in fibril angle helps confirm the materially graded region demonstrated by others, while, in this case, providing additional insight into fibril bending. We speculate that the scale of the mechanical problem (i.e., fibril diameters being on the order of 250 nm) allows fibrils to bend over the small (relative to the imaging field of view, but large relative to fibril diameter) distances observed; thus, potentially lessening required embedment lengths. Nevertheless, this behavior merits further investigation to be confirmed. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2506-2515, 2018.
Collapse
Affiliation(s)
- Johnathan L Sevick
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada
| | - Ziad Abusara
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Faculty of Kinesiology, Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Stephen H Andrews
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Minjia Xu
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Saad Khurshid
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Jansher Chatha
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - Nigel G Shrive
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,Department of Civil Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
39
|
Bell R, Robles-Harris M, Anderson M, Laudier D, Schaffler M, Flatow E, Andarawis-Puri N. Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model. Eur Cell Mater 2018; 36:44-56. [PMID: 30058060 PMCID: PMC6350530 DOI: 10.22203/ecm.v036a04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons. The working hypothesis was that, despite the low vascular nature of the tendon, apoptosis would be inhibited, prompting increased production of matrix proteins and restoring tendon mechanical properties. Rats received 2 or 5 d of systemic pan-caspase inhibitor (Q-VD-OPh) or dimethyl sulfoxide (DMSO) carrier control injections starting immediately prior to fatigue loading and were sacrificed at days 7 and 14 post-fatigue-loading. Systemic pan-caspase inhibition for 2 d led to a surprising increase in apoptosis, but inhibition for 5 d increased the population of live cells that could repair the fatigue damage. Further analysis of the 5 d group showed that effective inhibition led to an increased population of cells producing ECM and PCM proteins, although typically in conjunction with oxidative stress markers. Ultimately, inhibition of apoptosis led to further deterioration in mechanical properties of fatigue-damaged tendons.
Collapse
Affiliation(s)
- R. Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - M.A. Robles-Harris
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - M. Anderson
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. Laudier
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M.B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - E.L. Flatow
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N. Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA,Address for correspondence: Nelly Andarawis-Puri, PhD, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14850, NY, USA.
| |
Collapse
|
40
|
Wang X, Xie L, Crane J, Zhen G, Li F, Yang P, Gao M, Deng R, Wang Y, Jia X, Fan C, Wan M, Cao X. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. J Clin Invest 2018; 128:846-860. [PMID: 29355842 PMCID: PMC5785263 DOI: 10.1172/jci96186] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/07/2017] [Indexed: 02/05/2023] Open
Abstract
Enthesopathy is a disorder of bone, tendon, or ligament insertion. It represents one-fourth of all tendon-ligament diseases and is one of the most difficult tendon-ligament disorders to treat. Despite its high prevalence, the exact pathogenesis of this condition remains unknown. Here, we show that TGF-β was activated in both a semi-Achilles tendon transection (SMTS) mouse model and in a dorsiflexion immobilization (DI) mouse model of enthesopathy. High concentrations of active TGF-β recruited mesenchymal stromal stem cells (MSCs) and led to excessive vessel formation, bone deterioration, and fibrocartilage calcification. Transgenic expression of active TGF-β1 in bone also induced enthesopathy with a phenotype similar to that observed in SMTS and DI mice. Systemic inhibition of TGF-β activity by injection of 1D11, a TGF-β-neutralizing antibody, but not a vehicle antibody, attenuated the excessive vessel formation and restored uncoupled bone remodeling in SMTS mice. 1D11-treated SMTS fibrocartilage had increased proteoglycan and decreased collagen X and matrix metalloproteinase 13 expression relative to control antibody treatment. Notably, inducible knockout of the TGF-β type II receptor in mouse MSCs preserved the bone microarchitecture and fibrocartilage composition after SMTS relative to the WT littermate controls. Thus, elevated levels of active TGF-β in the enthesis bone marrow induce the initial pathological changes of enthesopathy, indicating that TGF-β inhibition could be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Liang Xie
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Janet Crane
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Gehua Zhen
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fengfeng Li
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ping Yang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Obstetrics and Gynecology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Manman Gao
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Spinal Surgery/Orthopedic Research Institute, First Affiliated Hospital, Sun Yat-sen University, Guandong, China
| | - Ruoxian Deng
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yiguo Wang
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xiaohua Jia
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Cunyi Fan
- Department of Orthopedic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Mei Wan
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xu Cao
- Department of Orthopedic Surgery, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Novakova SS, Mahalingam VD, Florida SE, Mendias CL, Allen A, Arruda EM, Bedi A, Larkin LM. Tissue-engineered tendon constructs for rotator cuff repair in sheep. J Orthop Res 2018; 36:289-299. [PMID: 28657154 DOI: 10.1002/jor.23642] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 06/25/2017] [Indexed: 02/04/2023]
Abstract
Current rotator cuff repair commonly involves the use of single or double row suture techniques, and despite successful outcomes, failure rates continue to range from 20 to 95%. Failure to regenerate native biomechanical properties at the enthesis is thought to contribute to failure rates. Thus, the need for technologies that improve structural healing of the enthesis after rotator cuff repair is imperative. To address this issue, our lab has previously demonstrated enthesis regeneration using a tissue-engineered graft approach in a sheep anterior cruciate ligament (ACL) repair model. We hypothesized that our tissue-engineered graft designed for ACL repair also will be effective in rotator cuff repair. The goal of this study was to test the efficacy of our Engineered Tissue Graft for Rotator Cuff (ETG-RC) in a rotator cuff tear model in sheep and compare this novel graft technology to the commonly used double row suture repair technique. Following a 6-month recovery, the grafted and contralateral shoulders were removed, imaged using X-ray, and tested biomechanically. Additionally, the infraspinatus muscle, myotendinous junction, enthesis, and humeral head were preserved for histological analysis of muscle, tendon, and enthesis structure. Our results showed that our ETC-RCs reached 31% of the native tendon tangent modulus, which was a modest, non-significant, 11% increase over that of the suture-only repairs. However, the histological analysis showed the regeneration of a native-like enthesis in the ETG-RC-repaired animals. This advanced structural healing may improve over longer times and may diminish recurrence rates of rotator cuff tears and lead to better clinical outcomes. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:289-299, 2018.
Collapse
Affiliation(s)
- Stoyna S Novakova
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200Michigan 48109-2200
| | - Vasudevan D Mahalingam
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200Michigan 48109-2200
| | - Shelby E Florida
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200Michigan 48109-2200
| | - Christopher L Mendias
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200Michigan 48109-2200.,Departments of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109-2200
| | | | - Ellen M Arruda
- Departments of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2200.,Departments of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2200.,Departments of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2200
| | - Asheesh Bedi
- Departments of Orthopaedic Surgery, University of Michigan, Ann Arbor, Michigan 48109-2200
| | - Lisa M Larkin
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200Michigan 48109-2200.,Departments of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2200
| |
Collapse
|
42
|
Takahashi H, Tamaki H, Oyama M, Yamamoto N, Onishi H. Time-Dependent Changes in the Structure of Calcified Fibrocartilage in the Rat Achilles Tendon-Bone Interface With Sciatic Denervation. Anat Rec (Hoboken) 2017; 300:2166-2174. [PMID: 28902469 DOI: 10.1002/ar.23684] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 02/24/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
The enthesis transmits a physiological load from soft to hard tissue via fibrocartilage. The histological alterations induced by this physiological loading remain unclear. This study was performed to examine the histomorphological alterations in the collagen fiber bundle alignment and depth of collagen interdigitation between the calcified fibrocartilage and the bone. We examined the Achilles enthesis of rats with sciatic denervation to explore the mechanical effects of structural changes in the enthesis. The parallelism of the collagen fiber bundles was significantly reduced 8 weeks after denervation. However, the depth of collagen interdigitation significantly increased at 2 and 4 weeks after denervation and then significantly decreased 8 weeks after denervation. In conclusion, a lack of muscle loading induced structural alterations in the distal calcified fibrocartilage. These findings suggest that while structural changes in the enthesis are necessary for the development of physiological loading, structural deformities are required in the long term. Anat Rec, 300:2166-2174, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Mineo Oyama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Occupational Therapy, Niigata University of Health and Welfare, Niigata, Japan
| | - Noriaki Yamamoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Orthopedic Surgery, Niigata Rehabilitation Hospital, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
43
|
Two Unique Cases of Ciprofloxacin-Associated Avulsion of Ligament and Tendon. Am J Phys Med Rehabil 2017; 97:e33-e36. [PMID: 28857901 DOI: 10.1097/phm.0000000000000816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Ciprofloxacin is recognized to have a deleterious relationship with tendons, particularly Achilles tendinopathy, which makes up most case reports. Tendinopathy seems to occur because of induction of collagen-degrading enzymes causing damage and ischemia of the poorly vascularized regions preventing repair. The focus on the relationship of ciprofloxacin and the Achilles tendon leaves patients on fluoroquinolones with non-Achilles tendinopathy symptoms at risk of misdiagnosis. There have not been any documented instances of ligament damage with ciprofloxacin administration in the literature, although ligament and tendon compositions are similar and should have similar susceptibility. This report includes two cases, one presenting with right lateral thumb pain and a medical history of gastroenteritis treated with ciprofloxacin. Physical examination showed swelling of the right metacarpophalangeal joint and ultrasound confirmed disruption of the radial collateral ligament at insertion on first metacarpal; the second case is of a woman presenting with right hip pain in setting of chronic recurrent diverticulitis treated with ciprofloxacin. She received work-up for lumbar disc disease and spondylosis. After standard therapy with pharmacotherapy and physical therapy for radiculopathy failed, magnetic resonance imaging was performed showing near complete avulsion of the right hamstring tendons from the ischial tuberosity.
Collapse
|
44
|
Boys AJ, McCorry MC, Rodeo S, Bonassar LJ, Estroff LA. Next Generation Tissue Engineering of Orthopedic Soft Tissue-to-Bone Interfaces. MRS COMMUNICATIONS 2017; 7:289-308. [PMID: 29333332 PMCID: PMC5761353 DOI: 10.1557/mrc.2017.91] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/28/2017] [Indexed: 05/17/2023]
Abstract
Soft tissue-to-bone interfaces are complex structures that consist of gradients of extracellular matrix materials, cell phenotypes, and biochemical signals. These interfaces, called entheses for ligaments, tendons, and the meniscus, are crucial to joint function, transferring mechanical loads and stabilizing orthopedic joints. When injuries occur to connected soft tissue, the enthesis must be re-established to restore function, but due to structural complexity, repair has proven challenging. Tissue engineering offers a promising solution for regenerating these tissues. This prospective review discusses methodologies for tissue engineering the enthesis, outlined in three key design inputs: materials processing methods, cellular contributions, and biochemical factors.
Collapse
Affiliation(s)
- Alexander J Boys
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
| | | | - Scott Rodeo
- Orthopedic Surgery, Hospital for Special Surgery, New York, NY
- Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, NY
- Tissue Engineering, Regeneration, and Repair Program, Hospital for Special Surgery, New York, NY
- Orthopedic Surgery, Weill Medical College of Cornell University, Cornell University, New York, NY
- New York Giants, East Rutherford, NJ
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY
- Kavli Institute at Cornell, Cornell University, Ithaca, NY
| |
Collapse
|
45
|
Abhari RE, Martins JA, Morris HL, Mouthuy PA, Carr A. Synthetic sutures: Clinical evaluation and future developments. J Biomater Appl 2017; 32:410-421. [PMID: 28714329 DOI: 10.1177/0885328217720641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Today's sutures are the result of a 4000-year innovation process with regard to their materials and manufacturing techniques, yet little has been done to enhance the therapeutic value of the suture itself. In this review, we explore the historical development, regulatory database and clinical literature of sutures to gain a fuller picture of suture advances to date. First, we examine historical shifts in suture manufacturing companies and review suture regulatory databases to understand the forces driving suture development. Second, we gather the existing clinical evidence of suture efficacy from reviewing the clinical literature and the Food and Drug Administration database in order to identify to what extent sutures have been clinically evaluated and the key clinical areas that would benefit from improved suture materials. Finally, we apply tissue engineering and regenerative medicine design hypotheses to suture materials to identify routes by which bioactive sutures can be designed and passed through regulatory hurdles, to improve surgical outcomes. Our review of the clinical literature revealed that many of the sutures currently in use have been available for decades, yet have never been clinically evaluated. Since suture design and development is industry driven, incremental modifications have allowed for a steady outflow of products while maintaining a safe regulatory position and limiting costs. Until recently, there has been little academic interest in suture development, however the rise of regenerative medicine strategies is shifting the suture paradigm from an inert material, which mechanically approximates tissue, to a bioactive material, which also actively promotes cell-directed repair and a positive healing response. These materials hold significant therapeutic potential, but could be associated with an increased regulatory burden, cost, and clinical evaluation compared with current devices.
Collapse
Affiliation(s)
- Roxanna E Abhari
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, UK
| | - Joana A Martins
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, UK
| | - Hayley L Morris
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, UK
| | - Pierre-Alexis Mouthuy
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, UK
| |
Collapse
|
46
|
Xu SY, Li SF, Ni GX. Strenuous Treadmill Running Induces a Chondrocyte Phenotype in Rat Achilles Tendons. Med Sci Monit 2016; 22:3705-3712. [PMID: 27742920 PMCID: PMC5070615 DOI: 10.12659/msm.897726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although tendinopathy is common, its underlying pathogenesis is poorly understood. This study aimed to investigate the possible pathogenesis of tendinopathy. MATERIAL AND METHODS In this study, a total of 24 rats were randomly and evenly divided into a control (CON) group and a strenuous treadmill running (STR) group. Animals in the STR group were subjected to a 12-week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological observation or biochemical analyses. RESULTS Histologically, hypercellularity and round cells, as well as disorganized collagen fibrils, were presented in rat Achilles tendon sections from the STR group. Furthermore, our results showed that the expression of aggrecan, collagen type II (Col II), and Sex-Determining Region Y Box 9 (Sox 9) were markedly increased in the STR group compared with that in the CON group. Additionally, the mRNA expression of bone morphogenetic protein-2 (BMP-2) and biglycan was significantly up-regulated in the STR group in contrast to that in CON group. CONCLUSIONS These results suggest that a 12-week strenuous treadmill running regimen can induce chondrocyte phenotype in rat Achilles tendons through chondrogenic differentiation of tendon stem cells (TSCs) by BMP-2 signaling.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
- Corresponding Author: Guo-Xin Ni, e-mail:
| |
Collapse
|
47
|
Herod TW, Chambers NC, Veres SP. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading. Acta Biomater 2016; 42:296-307. [PMID: 27321189 DOI: 10.1016/j.actbio.2016.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 12/24/2022]
Abstract
UNLABELLED In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. STATEMENT OF SIGNIFICANCE Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa.
Collapse
Affiliation(s)
- Tyler W Herod
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Neil C Chambers
- Division of Engineering, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Samuel P Veres
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada; Division of Engineering, Saint Mary's University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
48
|
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints. MATERIALS 2016; 9:ma9070566. [PMID: 28773688 PMCID: PMC5456843 DOI: 10.3390/ma9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Collapse
|
49
|
Wezenbeek E, Mahieu N, Willems TM, Van Tiggelen D, De Muynck M, De Clercq D, Witvrouw E. What does normal tendon structure look like? New insights into tissue characterization in the Achilles tendon. Scand J Med Sci Sports 2016; 27:746-753. [PMID: 27367438 DOI: 10.1111/sms.12706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2016] [Indexed: 12/27/2022]
Abstract
Recently, ultrasound tissue characterization (UTC) was introduced as a reliable method for quantification of tendon structure. Despite increasing publications on the use of UTC, it is striking that there is a lack of normative data in active adolescents. Therefore, the aim of this study was to provide normative values of the Achilles tendon as quantified by UTC. Seventy physiotherapy students (26 male and 44 female students) with no history of Achilles tendon injuries were recruited. The Achilles tendons were scanned with UTC to characterize tendon structure. This study demonstrated that Achilles tendons of active, healthy adolescents contained 54.6% echo type I, 42.8% echo type II, 2.2% echo type III, and 0.3% echo type IV at midportion. The comparison between insertion and midportion of the tendon showed more echo type II at insertion (P < 0.001). Furthermore, female tendons contained significantly more echo type II, in both insertion and midportion compared with male tendons (P = 0.004 and P = 0.003, respectively). The results of this study, with respect to the MDC (minimum detectable change), highlight differences in the UTC echopattern in the normal population (sex and regional location), which are important considerations for future studies.
Collapse
Affiliation(s)
- E Wezenbeek
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - N Mahieu
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - T M Willems
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium.,Department of Physical Therapy and Orthopedics, Ghent University, Ghent, Belgium
| | - D Van Tiggelen
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium.,Department of Physical Medicine & Rehabilitation, Military Hospital of Base Queen Astrid, Belgian Defence, Brussels, Belgium
| | - M De Muynck
- Department of Physical Medicine and Rehabilitation, Ghent University Hospital, Ghent, Belgium
| | - D De Clercq
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - E Witvrouw
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium.,Department of Physiotherapy, Aspetar, Doha, Qatar
| |
Collapse
|
50
|
Baldino L, Cardea S, Maffulli N, Reverchon E. Regeneration techniques for bone-to-tendon and muscle-to-tendon interfaces reconstruction. Br Med Bull 2016; 117:25-37. [PMID: 26837850 DOI: 10.1093/bmb/ldv056] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The complex structure of the bone-tendon and muscle-tendon junctions makes their reproduction for tissue engineering applications very difficult. Relatively few studies have investigated the characteristics of these regions from a tissue engineering view point. SOURCES OF DATA PubMed, Thomson Reuters, Scopus and Google Scholar databases were searched using various combinations of the keywords 'Tendon', 'Myotendinous junction', 'Osteotendinous junction', 'Tissue engineering' and 'Scaffold'. AREAS OF AGREEMENT The available studies can be divided according to whether the objective is to build an entire composite tissue unit or to assist the recreation of interfaces, such as improving integration of autografts with the surrounding bone or with the muscle. The most used techniques are based on the electrospinning and the self-reorganized constructs process, which were applied to both bone-to-tendon junction (BTJ) and muscle-to-tendon junction (MTJ) regeneration. The use of nanofibers that mimic the hierarchical structure of the extracellular matrix (ECM), eventually functionalized by encapsulation of bioactive components, allowed cell attachment and differentiation. AREAS OF CONTROVERSY There have been no translational investigations. GROWING POINTS There is a need to devise suitable techniques that allow suitable tissue engineering of BTJ and MTJ. AREAS TIMELY FOR DEVELOPING RESEARCH Appropriately planned studies are needed to translate tissue engineering from a scientific challenge to a clinically applicable technique.
Collapse
Affiliation(s)
- Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Stefano Cardea
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine, Surgery and Dentistry, University of Salerno, Via Salvatore Allende, Baronissi, SA 84081, Italy Centre for Sport and Exercise Medicine, Queen Mary University of London, London E1 4DG, UK
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy NANO_MATES, Research Centre for Nanomaterials and Nanotechnology, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| |
Collapse
|