1
|
Takeuchi E, Yamada D, Suzuki S, Saitoh A, Itoh M, Hayashi T, Yamada M, Wada K, Sekiguchi M. Participation of the nucleus accumbens dopaminergic system in the antidepressant-like actions of a diet rich in omega-3 polyunsaturated fatty acids. PLoS One 2020; 15:e0230647. [PMID: 32210469 PMCID: PMC7094879 DOI: 10.1371/journal.pone.0230647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/04/2020] [Indexed: 01/04/2023] Open
Abstract
The beneficial effects of omega (ω)-3 polyunsaturated fatty acid (PUFA) supplementation on major depressive disorder have been actively studied, but the underlying mechanism remains unknown. The present study examined the involvement of the nucleus accumbens (NAc) dopaminergic systems in behavioral changes in mice fed a diet high in ω-3 PUFAs. Mice fed a diet containing about double the amount of ω-3 PUFAs (krill oil (KO) diet) exerted shorter immobility times in the forced swim test (FST) than mice fed a control diet, containing only α-linolenic acid (ALA) as ω-3 PUFAs. The shorter immobility times were observed in both male and female mice. A dopamine metabolite, 3,4-dihydroxyphenylacetic acid, increased in the NAc in male mice fed the KO diet when compared with those fed the control diet. In addition, dopamine, 3-methoxytyramine, and homovanillic acid increased in the NAc in female mice fed the KO diet. Notably, the effects of the KO diet on the immobility time in the FST were abolished by microinjection of sulpiride, an antagonist of D2-like receptors, into the NAc. A similar microinjection of an antagonist selective for D1-like receptors, SKF83566, also abolished the reduction in immobility in the FST. Moreover, we found that tyrosine hydroxylase-positive cells increased in the ventral tegmental area (VTA) in mice fed the KO diet. These results suggest that modulation of the VTA-NAc dopaminergic pathway is one of the mechanisms by which a KO diet rich in ω-3 PUFAs reduces the immobility behavior in the mouse FST.
Collapse
Affiliation(s)
- Eri Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Daisuke Yamada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Suzuki
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Akiyoshi Saitoh
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masayuki Itoh
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Hayashi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Masayuki Sekiguchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- * E-mail: ,
| |
Collapse
|
2
|
Takenouchi Y, Ohtake K, Nobe K, Kasono K. Eicosapentaenoic acid ethyl ester improves endothelial dysfunction in type 2 diabetic mice. Lipids Health Dis 2018; 17:118. [PMID: 29788974 PMCID: PMC5964666 DOI: 10.1186/s12944-018-0770-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background Eicosapentaenoic acid (EPA) is thought to have many beneficial effects, such as anti-atherosclerogenic and anti-inflammatory properties. However, few studies have reported its effects of endothelial dysfunction in diabetes and its direct effects on the aorta. Here, we investigated the effects of EPA treatment on impaired endothelium-dependent relaxation of the aorta in KKAy mice, a model of type 2 diabetes. Methods Male KKAy mice were fed a high-fat (HF) diet for 8 weeks to induce diabetes, after which they were divided into two groups. One group was fed a HF diet, and the other group was fed a HF diet containing EPA ethyl ester (EPA-E, 10 mg/day) for 4 weeks. Then, the vascular reactivities of prepared aortic rings were measured in an organ bath to determine if EPA-E administration changed vascular function in these diabetic mice. In addition, we examined effect of EPA-E and its metabolites to vascular action using aorta separated from C57BL/6 J mice. Results Although EPA-E administration did not change the plasma glucose and insulin levels in diabetic mice, total cholesterol levels were significantly decreased. The aorta extracted from EPA-E untreated diabetic mice showed impaired endothelium-dependent relaxation in response to acetylcholine (ACh). However, EPA-E administration improved the relaxation response to ACh to the control levels observed in non-diabetic C57BL/6 J mice. On the other hand, endothelium-independent relaxation in response to sodium nitroprusside did not significantly differ among these three groups. The enhanced contractile response by phenylephrine in diabetic mice was not altered by the administration of EPA-E. In addition, the direct administration of EPA-E metabolites such as EPA, docosahexaenoic acid, and docosapentaenoic acid led to vasodilation in the aortic rings of C57BL/6 J mice. Conclusion These results showed that chronic EPA-E administration prevented the development of endothelial dysfunction in KKAy mice, partly via the direct action of EPA-E metabolites on the aorta.
Collapse
Affiliation(s)
- Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama, 701-0192, Japan. .,Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan.
| | - Kazuo Ohtake
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| | - Koji Nobe
- Division of Pharmacology, Department of Pharmacology, Toxicology Therapeutics, School of Pharmacy, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Keizo Kasono
- Laboratory of Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| |
Collapse
|
3
|
Ishikado A, Morino K, Nishio Y, Nakagawa F, Mukose A, Sono Y, Yoshioka N, Kondo K, Sekine O, Yoshizaki T, Ugi S, Uzu T, Kawai H, Makino T, Okamura T, Yamamoto M, Kashiwagi A, Maegawa H. 4-Hydroxy hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation. PLoS One 2013; 8:e69415. [PMID: 23936010 PMCID: PMC3720569 DOI: 10.1371/journal.pone.0069415] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/10/2013] [Indexed: 01/11/2023] Open
Abstract
Recent studies have proposed that n-3 polyunsaturated fatty acids (n-3 PUFAs) have direct antioxidant and anti-inflammatory effects in vascular tissue, explaining their cardioprotective effects. However, the molecular mechanisms are not yet fully understood. We tested whether n-3 PUFAs showed antioxidant activity through the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcriptional factor for antioxidant genes. C57BL/6 or Nrf2−/− mice were fed a fish-oil diet for 3 weeks. Fish-oil diet significantly increased the expression of heme oxygenase-1 (HO-1), and endothelium-dependent vasodilation in the aorta of C57BL/6 mice, but not in the Nrf2−/− mice. Furthermore, we observed that 4-hydroxy hexenal (4-HHE), an end-product of n-3 PUFA peroxidation, was significantly increased in the aorta of C57BL/6 mice, accompanied by intra-aortic predominant increase in docosahexaenoic acid (DHA) rather than that in eicosapentaenoic acid (EPA). Human umbilical vein endothelial cells were incubated with DHA or EPA. We found that DHA, but not EPA, markedly increased intracellular 4-HHE, and nuclear expression and DNA binding of Nrf2. Both DHA and 4-HHE also increased the expressions of Nrf2 target genes including HO-1, and the siRNA of Nrf2 abolished these effects. Furthermore, DHA prevented oxidant-induced cellular damage or reactive oxygen species production, and these effects were disappeared by an HO-1 inhibitor or the siRNA of Nrf2. Thus, we found protective effects of DHA through Nrf2 activation in vascular tissue, accompanied by intra-vascular increases in 4-HHE, which may explain the mechanism of the cardioprotective effects of DHA.
Collapse
Affiliation(s)
- Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
- Research & Development Department, Sunstar Inc., Osaka, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiko Nishio
- Department of Diabetes, Metabolism and Endocrinology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| | - Fumiyuki Nakagawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
- Osaka Laboratory, JCL Bioassay Corporation, Osaka, Japan
| | - Atsushi Mukose
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Yoko Sono
- Research & Development Department, Sunstar Inc., Osaka, Japan
| | | | - Keiko Kondo
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Osamu Sekine
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Takeshi Yoshizaki
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Takashi Uzu
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiromichi Kawai
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Tomio Okamura
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Atsunori Kashiwagi
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
4
|
Brand A, Schonfeld E, Isharel I, Yavin E. Docosahexaenoic acid-dependent iron accumulation in oligodendroglia cells protects from hydrogen peroxide-induced damage. J Neurochem 2008; 105:1325-35. [PMID: 18208540 DOI: 10.1111/j.1471-4159.2008.05234.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Iron, a transition metal and essential nutrient, is a typical pro-oxidant forming free radicals, lipid peroxides and causing cell damage when added at high (> or = 50 microM) concentrations to oligodendroglia-like OLN-93 cells that have been enriched for 3 days with 10 microM docosahexaenoic acid (DHA, 22 : 6 n-3). At low (5 microM) iron concentrations lipid peroxides were still formed, but cells turned resistant to 250 microM H2O2, a secondary genotoxic stress. This has been attributed most likely to a time-dependent (16 h preconditioning) increase of cellular antioxidant enzyme activities i.e., glutathione peroxidase (38%) and glutathione reductase (26%). DHA but not arachidonic acid (20 : 4 n-6) supplements induced 3-fold increase in gene expression of divalent metal transporter-1, a transporter protein presumably responsible for the increase in intracellular iron. Elevated iron levels triggered a transient scrambling of membrane lipid asymmetry as evident by an accelerated ethanolamine phosphoglyceride translocation to the outer cell surface. Ethanolamine phosphoglyceride reorientation is proposed to activate certain signaling cascades leading to changes in nuclear transcription, a reaction that could represent a mechanism of preconditioning. These findings may have important implications for understanding the interactive role of iron and DHA in nutritional deficiencies, losses of polyunsaturated fatty acids in the aging brain or excessive iron accumulation in degenerative disorders.
Collapse
Affiliation(s)
- Annette Brand
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel.
| | | | | | | |
Collapse
|
5
|
Zieger MAJ, Gupta MP, Siddiqui RA. Endothelial cell fatty acid unsaturation mediates cold-induced oxidative stress. J Cell Biochem 2007; 99:784-96. [PMID: 16676360 DOI: 10.1002/jcb.20961] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultraprofound hypothermia (< 5 degrees C) induces changes to cell membranes such as liquid-to-gel lipid transitions and oxidative stress that have a negative effect on membrane function and cell survival. We hypothesized that fatty acid substitution of endothelial cell lipids and alterations in their unsaturation would modify cell survival at 0 degrees C, a temperature commonly used during storage and transportation of isolated cells or tissues and organs used in transplantation. Confluent bovine aortic endothelial cells were treated with 18-carbon fatty acids (C18:0, C18:1n-9, C18:2n-6, or C18:3n-3), C20:5n-3 or C22:6n-3 (DHA), and then stored at 0 degrees C without fatty acid supplements. Storage of control cells caused the release of lactate dehydrogenase (LDH) and a threefold increase in lipid peroxidation (LPO) when compared to control cells not exposed to cold. Pre-treating cells with C18:0 decreased the unsaturation of cell lipids and reduced LDH release at 0 degrees C by 50%, but all mono- or poly-unsaturated fatty acids increased injury in a concentration-dependent manner and as the extent of fatty acid unsaturation increased. DHA-treatment increased cell fatty acid unsaturation and caused maximal injury at 0 degrees C, which was prevented by lipophilic antioxidants BHT or vitamin E, the iron chelator deferoxamine, and to a lesser extent by vitamin C. Furthermore, the cold-induced increase in LPO was reduced by C18:0, vitamin E, or DFO but enhanced by DHA. In conclusion, the findings implicate iron catalyzed free radicals and LPO as a predominant mechanism of endothelial cell injury at 0 degrees C, which may be reduced by increasing lipid saturation or treating cells with antioxidants.
Collapse
Affiliation(s)
- Michael A J Zieger
- Methodist Research Institute, Clarian Health Partners, Inc., Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
6
|
|
7
|
Tampo Y, Kotamraju S, Chitambar CR, Kalivendi SV, Keszler A, Joseph J, Kalyanaraman B. Oxidative stress-induced iron signaling is responsible for peroxide-dependent oxidation of dichlorodihydrofluorescein in endothelial cells: role of transferrin receptor-dependent iron uptake in apoptosis. Circ Res 2003; 92:56-63. [PMID: 12522121 DOI: 10.1161/01.res.0000048195.15637.ac] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dichlorodihydrofluorescein (DCFH) is one of the most frequently used probes for detecting intracellular oxidative stress. In this study, we report that H2O2-dependent intracellular oxidation of DCFH to a green fluorescent product, 2',7'-dichlorofluorescein (DCF), required the uptake of extracellular iron transported through a transferrin receptor (TfR) in endothelial cells. H2O2-induced DCF fluorescence was inhibited by the monoclonal IgA-class anti-TfR antibody (42/6) that blocked TfR endocytosis and the iron uptake. H2O2-mediated inactivation of cytosolic aconitase was responsible for activation of iron regulatory protein-1 and increased expression of TfR, resulting in an increased iron uptake into endothelial cells. H2O2-mediated caspase-3 proteolytic activation was inhibited by anti-TfR antibody. Similar results were obtained in the presence of a lipid hydroperoxide. We conclude that hydroperoxide-induced DCFH oxidation and endothelial cell apoptosis required the uptake of extracellular iron by the TfR-dependent iron transport mechanism and that the peroxide-induced iron signaling, in general, has broader implications in oxidative vascular biology.
Collapse
Affiliation(s)
- Yoshiko Tampo
- Biophysics Research Institute and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, Wis 53226, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Glozman S, Cerruti-Harris C, Groner Y, Yavin E. Docosahexaenoic acid-deficient phosphatidyl serine and high alpha-tocopherol in a fetal mouse brain over-expressing Cu/Zn-superoxide dismutase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:135-44. [PMID: 11018466 DOI: 10.1016/s1388-1981(00)00085-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The over-expressed Cu/Zn-superoxide dismutase (Cu/Zn-SOD) gene has been found in some circumstances phenotypically deleterious and associated with oxidative injury-mediated aberrations while in other studies it was considered neuroprotective. In this work we examine a number of biochemical markers in fetal and adult brain from transgenic (tg) mice expressing the human Cu/Zn-SOD gene, which may determine this dual characteristic. These markers include the polyunsaturated fatty acid (PUFA) profile in discrete phospholipid species, the alpha-tocopherol levels, a marker for lipid anti-oxidant status, and thiobarbituric acid reactive substance (TBARS), a marker for the tissue oxidative status. The PUFA profile in choline- and ethanolamine-phosphoglycerides was similar in tg and nontransgenic (ntg) animals of either fetal or adult brain. Serine-phosphoglycerides, however, showed a marked decrease from 20. 07+/-0.53 to 14.92+/-0.87 wt% and 14.52+/-1.15 wt% in docosahexaenoic acid (DHA; 22:6 n3), in the tg 51 and tg 69 fetal brains, respectively, but not in the comparable adult tissues. The alpha-tocopherol levels were significantly higher in the fetal compared to the adult brain. There were no differences in the anti-oxidant levels between the ntg and tg fetal brains, but there were differences in the adult animals; the tg mice were higher by at least two-fold than the control animals. The basal TBARS in the tg 51 fetal brain was 35% lower than that of ntg mouse and in the presence of Fe(2+), brain slices from the former released less TBARS (57% reduction) into the medium than the latter. These results suggest that higher dosages of Cu/Zn-SOD gene are compatible with increased alpha-tocopherol levels, reduced basal TBARS levels and a DHA deficiency in the fetal, but not the adult, tg brain.
Collapse
Affiliation(s)
- S Glozman
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|