1
|
Singh B, Maharjan S, Sindurakar P, Cho KH, Choi YJ, Cho CS. Needle-Free Immunization with Chitosan-Based Systems. Int J Mol Sci 2018; 19:E3639. [PMID: 30463211 PMCID: PMC6274840 DOI: 10.3390/ijms19113639] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/10/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023] Open
Abstract
Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization.
Collapse
Affiliation(s)
- Bijay Singh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
| | - Sushila Maharjan
- Research Institute for Bioscience and Biotechnology, Kathmandu 44600, Nepal.
- Division of Engineering in Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - Princy Sindurakar
- Department of Biology, College of the Holy Cross, Worcester, MA 01610, USA.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
2
|
Intranasal inoculate of influenza virus vaccine against lethal virus challenge. Vaccine 2018; 36:4354-4361. [PMID: 29880240 DOI: 10.1016/j.vaccine.2018.05.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 11/23/2022]
Abstract
Vaccine adjuvants are essential for enhancing immune responses during vaccination. However, only a limited number of safe and effective adjuvants, especially mucosal adjuvants, are available for use in vaccines. The development of a practically applicable mucosal adjuvant is therefore urgently needed. Here, we showed that the non-toxic CTA1-DD adjuvant, which combined the full enzymatic activity of the A1 subunit of cholera toxin (CT) with two immunoglobulin-binding domains of Staphylococcus aureus protein A (SpA), promoted mucosal and systemic humoral and cell-mediated immune responses following intranasal administration with H1N1 split vaccine in mice. We demonstrated that CTA1-DD-adjuvant vaccine provided 100% protection against mortality and greatly reduced morbidity in a mouse model. We also showed that addition of CTA1-DD to the vaccine elicited significantly higher hemagglutination inhibition titers and IgG antibodies in sera than alum adjuvant. Furthermore, CTA1-DD significantly promoted the production of mucosal secretory IgA in lung lavages and vaginal lavages. We also showed that CTA1-DD could be used as a mucosal adjuvant to enhance T cell responses. Our results clearly indicated that CTA1-DD contributed to the elicitation of a protective cell-mediated immune response required for efficacious vaccination against influenza virus, which suggested that this adjuvant could be explored further as a clinically safe mucosal vaccine adjuvant for respiratory diseases and other mucosal diseases.
Collapse
|
3
|
Yang LY, Zhou H, Yang Y, Tong YN, Peng LS, Zhu BH, Diao WB, Zeng H, Sun HW, Zou QM. Protective effects of a nanoemulsion adjuvant vaccine (2C-Staph/NE) administered intranasally against invasive Staphylococcus aureus pneumonia. RSC Adv 2018; 8:9996-10008. [PMID: 35540845 PMCID: PMC9078739 DOI: 10.1039/c7ra13630g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 02/13/2018] [Indexed: 12/03/2022] Open
Abstract
No licensed Staphylococcus aureus (S. aureus) vaccine is currently available. To develop an effective S. aureus vaccine, we selected the recombinant proteins staphylococcal enterotoxin B (rSEB) and manganese transport protein C (rMntC) as vaccine candidates and formulated a 2C-Staph vaccine. Based on the optimised formation of nanoemulsion (NE) technology, we constructed a novel NE adjuvant vaccine, 2C-Staph/NE. The 2C-Staph/NE particles showed a suitable diameter (24.9 ± 0.14 nm), a good protein structure of integrity and specificity, and high thermodynamic stability. 2C-Staph formulated with an NE adjuvant induced higher survival rates than a 2C-Staph/MF59 vaccine in sepsis and pneumonia models. Moreover, intramuscular vaccination with 2C-Staph/NE yielded protection efficacy in a sepsis model, and the intranasal vaccination route induced a potent protective effect in a pneumonia model. Intranasal vaccination with 2C-Staph/NE induced a strong mucosal response with high levels of IgA and IL-17A in bronchoalveolar lavage fluid (BALF), and the IgG levels in the BALF were comparable to those induced by the intramuscular vaccination route. Furthermore, the serum and BALF induced by intranasal administration showed potent opsonophagocytic activity against S. aureus. And, the IL-17A played a protective role in the pneumonia model demonstrated by a cytokine neutralization test. Taken together, our results showed that intranasal administration of 2C-Staph formulated with an NE adjuvant yielded ideal protection in a murine S. aureus pneumonia model.
Collapse
Affiliation(s)
- Liu-Yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Heng Zhou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Ya-Nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Bao-Hang Zhu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Wei-Bo Diao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Hong-Wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University Chongqing 400038 PR China
| |
Collapse
|
4
|
|
5
|
Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases. Microb Pathog 2016; 100:184-194. [PMID: 27671283 DOI: 10.1016/j.micpath.2016.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/18/2016] [Accepted: 09/21/2016] [Indexed: 12/14/2022]
Abstract
DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity.
Collapse
|
6
|
Shukla A, Mishra V, Bhoop BS, Katare OP. Alginate coated chitosan microparticles mediated oral delivery of diphtheria toxoid. (Part A). Systematic optimization, development and characterization. Int J Pharm 2015; 495:220-233. [DOI: 10.1016/j.ijpharm.2015.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/01/2015] [Accepted: 08/08/2015] [Indexed: 12/15/2022]
|
7
|
Jia Y, Krishnan L, Omri A. Nasal and pulmonary vaccine delivery using particulate carriers. Expert Opin Drug Deliv 2015; 12:993-1008. [PMID: 25952104 DOI: 10.1517/17425247.2015.1044435] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Many human pathogens cause respiratory illness by colonizing and invading the respiratory mucosal surfaces. Preventing infection at local sites via mucosally active vaccines is a promising and rational approach for vaccine development. However, stimulating mucosal immunity is often challenging. Particulate adjuvants that can specifically target mucosal immune cells offer a promising opportunity to stimulate local immunity at the nasal and/or pulmonary mucosal surfaces. AREAS COVERED This review analyzes the common causes of respiratory infections, the challenges in the induction of mucosal and systemic responses and current pulmonary and nasal mucosal vaccination strategies. The ability of various particulate adjuvant formulations, including lipid-based particles, polymers and other particulate systems, to be effectively utilized for mucosal vaccine delivery is discussed. EXPERT OPINION Induction of antibody and cell-mediated mucosal immunity that can effectively combat respiratory pathogens remains a challenge. Particulate delivery systems can be developed to target mucosal immune cells and effectively present antigen to evoke a rapid and long-term local immunity in the respiratory mucosa. In particular, particulate delivery systems offer the versatility of being formulated with multiple adjuvants and antigenic cargo, and can be tailored to effectively prime immune responses across the mucosal barrier. The opportunity for rational design of novel subunit particulate vaccines is emerging.
Collapse
Affiliation(s)
- Yimei Jia
- National Research Council of Canada-Human Health Therapeutics , Ottawa, Ontario K1A 0R6 , Canada +1 613 991 3210 ;
| | | | | |
Collapse
|
8
|
Cohen-Kaminsky S, Jambou F. Prospects for a T-cell receptor vaccination against myasthenia gravis. Expert Rev Vaccines 2014; 4:473-92. [PMID: 16117705 DOI: 10.1586/14760584.4.4.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
T-cell receptor (TCR) vaccination has been proposed as a specific therapy against autoimmune diseases. It is already used in clinical trials, which are supported by pharmaceutical companies for the treatment of multiple sclerosis, rheumatoid arthritis and psoriasis. Current vaccine developments are focusing on enhancement of immunogenicity as well as selecting the best route of immunization and adjuvant to favor the therapeutic effect. In the meantime, academic laboratories are tackling the regulatory mechanisms involved in the beneficial effect of the vaccines to further understand how to control the therapeutic tool. Indeed, several examples in experimental models of autoimmune diseases indicate that any specific therapy may rely on a delicate balance between the pathogenic and regulatory mechanisms. This review presents a critical analysis of the potential of such therapy in myasthenia gravis, a prototype antibody-mediated disease. Indeed, a specific pathogenic T-cell target population and a TCR-specific regulatory mechanism mediated by anti-TCR antibodies and involved in protection from the disease have recently been identified in a patient subgroup. The presence of spontaneous anti-TCR antibodies directed against the pathogenic T-cells that may be boosted by a TCR vaccine provides a rationale for such therapy in myasthenia gravis. The development of this vaccine may well benefit from experience gained in the other autoimmune diseases in which clinical trials are ongoing.
Collapse
Affiliation(s)
- Sylvia Cohen-Kaminsky
- UMR 8078 Remodelage Tissulaire et Fonctionnel: Signalisation et Physiopathologie, Institut Paris Sud Cytokines, Université Paris-Sud, Hôpital Marie Lannelongue, 92350 Le Plessis-Robinson, France.
| | | |
Collapse
|
9
|
|
10
|
Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog 2012; 8:e1002966. [PMID: 23093937 PMCID: PMC3475680 DOI: 10.1371/journal.ppat.1002966] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 08/14/2012] [Indexed: 01/05/2023] Open
Abstract
Invasive Salmonella infection is an important health problem that is worsening because of rising antimicrobial resistance and changing Salmonella serovar spectrum. Novel vaccines with broad serovar coverage are needed, but suitable protective antigens remain largely unknown. Here, we tested 37 broadly conserved Salmonella antigens in a mouse typhoid fever model, and identified antigen candidates that conferred partial protection against lethal disease. Antigen properties such as high in vivo abundance or immunodominance in convalescent individuals were not required for protectivity, but all promising antigen candidates were associated with the Salmonella surface. Surprisingly, this was not due to superior immunogenicity of surface antigens compared to internal antigens as had been suggested by previous studies and novel findings for CD4 T cell responses to model antigens. Confocal microscopy of infected tissues revealed that many live Salmonella resided alone in infected host macrophages with no damaged Salmonella releasing internal antigens in their vicinity. In the absence of accessible internal antigens, detection of these infected cells might require CD4 T cell recognition of Salmonella surface-associated antigens that could be processed and presented even from intact Salmonella. In conclusion, our findings might pave the way for development of an efficacious Salmonella vaccine with broad serovar coverage, and suggest a similar crucial role of surface antigens for immunity to both extracellular and intracellular pathogens. Salmonella infections cause extensive morbidity and mortality worldwide. A vaccine that prevents systemic Salmonella infections is urgently needed but suitable antigens remain largely unknown. In this study we identified several antigen candidates that mediated protective immunity to Salmonella in a mouse typhoid fever model. Interestingly, all these antigens were associated with the Salmonella surface. This suggested that similar antigen properties might be relevant for CD4 T cell dependent immunity to intracellular pathogens like Salmonella, as for antibody-dependent immunity to extracellular pathogens. Detailed analysis revealed that Salmonella surface antigens were not generally more immunogenic compared to internal antigens. However, internal antigens were inaccessible for CD4 T cell recognition of a substantial number of infected host cells that contained exclusively live intact Salmonella. Together, these results might pave the way for development of an efficacious Salmonella vaccine, and provide a basis to facilitate antigen identification for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Somedutta Barat
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Yvonne Willer
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
| | - Konstantin Rizos
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Beatrice Claudi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Alain Mazé
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Anne K. Schemmer
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dennis Kirchhoff
- Immunomodulation Group, Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Neil Burton
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
- Junior Group “Mucosal Infections”, Hannover Medical School, Hannover, Germany
- Department of Molecular Biology, Max-Planck-Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
11
|
Rhee JH, Lee SE, Kim SY. Mucosal vaccine adjuvants update. Clin Exp Vaccine Res 2012; 1:50-63. [PMID: 23596577 PMCID: PMC3623511 DOI: 10.7774/cevr.2012.1.1.50] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 05/25/2012] [Accepted: 06/15/2012] [Indexed: 12/16/2022] Open
Abstract
Mucosal vaccination, capable of inducing protective immune responses both in the mucosal and systemic immune compartments, has many advantages and is regarded as a blue ocean in the vaccine industry. Mucosal vaccines can offer lower costs, better accessability, needle-free delivery, and higher capacity of mass immunizations during pandemics. However, only very limited number of mucosal vaccines was approved for human use in the market yet. Generally, induction of immune responses following mucosal immunization requires the co-administration of appropriate adjuvants that can initiate and support the effective collaboration between innate and adaptive immunity. Classically, adjuvant researches were rather empirical than keenly scientific. However, during last several years, fundamental scientific achievements in innate immunity have been translated into the development of new mucosal adjuvants. This review focuses on recent developments in the concepts of adjuvants and innate immunity, mucosal immunity with special interest of vaccine development, and basic and applied researches in mucosal adjuvant.
Collapse
Affiliation(s)
- Joon Haeng Rhee
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea. ; Department of Microbiology and Research Institute of Vibrio Infections, Chonnam National University Medical School, Gwangju, Korea
| | | | | |
Collapse
|
12
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
13
|
Shukla A, Singh B, Katare OP. Significant systemic and mucosal immune response induced on oral delivery of diphtheria toxoid using nano-bilosomes. Br J Pharmacol 2012; 164:820-7. [PMID: 21506959 DOI: 10.1111/j.1476-5381.2011.01452.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Over the last decade apprehension has been growing over the effectiveness of existing parenteral vaccines for diphtheria and has created an interest in the development of a mucosally active vaccine. Oral immunization appears to be an effective alternative, but is not without the inherent disadvantages of antigen destruction and tolerance. Therefore, our objective was to investigate the incorporation of diphtheria toxoid (DTx) into bilosomes, which could provide protection as well as aid transmucosal uptake and subsequent immunization. Another objective was to determine the oral dose that will produce serum antibody titres comparable with those produced by i.m. doses of DTx. EXPERIMENTAL APPROACH Bilosomes containing DTx were prepared by thin film hydration and characterized in vitro for their shape, size, percent antigen entrapment and stability. In the in vivo study the anti-DTx IgG and anti-DTx sIgA response was estimated using elisa, in serum and in various body secretions, respectively, following oral immunization with different doses of DTx entrapped in nano-bilosomes. KEY RESULTS High dose loaded nano-bilosomes (DTxNB3, 2Lf) produced comparable anti-DTx IgG levels in serum to those induced by i.m. alum-adsorbed DTx (0.5Lf). In addition, all the nano-bilosomal preparations elicited a measurable anti-DTx sIgA response in mucosal secretion, whereas i.m. alum-adsorbed DTx (0.5Lf) was unable to elicit this response. CONCLUSIONS AND IMPLICATIONS The orally administered nano-bilosomal DTx formulation produced comparable serum antibody titres to i.m.alum-adsorbed DTx, at a fourfold higher dose and without the induction of tolerance. This approach will provide an effective and comprehensive immune protection against diphtheria with better patient compliance.
Collapse
Affiliation(s)
- Anshuman Shukla
- Drug Delivery Research Group, University Institute of Pharmaceutical Sciences-UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | | | | |
Collapse
|
14
|
Hu J, Ni Y, Dryman BA, Meng XJ, Zhang C. Immunogenicity study of plant-made oral subunit vaccine against porcine reproductive and respiratory syndrome virus (PRRSV). Vaccine 2012; 30:2068-74. [PMID: 22300722 DOI: 10.1016/j.vaccine.2012.01.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/14/2012] [Accepted: 01/19/2012] [Indexed: 01/11/2023]
Abstract
Currently, killed-virus and modified-live PRRSV vaccines are used to control porcine reproductive and respiratory syndrome disease (PRRS). However, very limited efficacy of killed-virus vaccines and serious safety concerns for modified-live virus vaccines demand the development of novel PRRSV vaccines. In this report, we investigated the possibility of using transgenic plants as a cost-effective and scalable system for production and delivery of a viral protein as an oral subunit vaccine against PRRSV. Corn calli were genetically engineered to produce PRRSV viral envelope-associated M protein. Both serum and intestine mucosal antigen-specific antibodies were induced by oral administration of the transgenic plant tissues to mice. In addition, serum and mucosal antibodies showed virus neutralization activity. The neutralization antibody titers after the final boost reached 6.7 in serum and 3.7 in fecal extracts, respectively. A PRRSV-specific IFN-γ response was also detected in splenocytes of vaccinated animals. These results demonstrate that transgenic corn plants are an efficient subunit vaccine production and oral delivery system for generation of both systemic and mucosal immune responses against PRRSV.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Neutralizing/analysis
- Antibodies, Neutralizing/blood
- Antibodies, Viral/analysis
- Antibodies, Viral/blood
- Feces/chemistry
- Female
- Interferon-gamma/metabolism
- Leukocytes, Mononuclear/immunology
- Mice
- Mice, Inbred BALB C
- Mucous Membrane/immunology
- Plants, Genetically Modified/genetics
- Porcine respiratory and reproductive syndrome virus/genetics
- Porcine respiratory and reproductive syndrome virus/immunology
- Spleen/immunology
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Zea mays/genetics
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
15
|
Fundamentals of Vaccine Delivery in Infectious Diseases. FUNDAMENTALS AND APPLICATIONS OF CONTROLLED RELEASE DRUG DELIVERY 2012. [PMCID: PMC7119968 DOI: 10.1007/978-1-4614-0881-9_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Infectious diseases continue to be the major causes of illness, disability, and death. Moreover, in recent years, new infectious agents and diseases are being identified, and some diseases that were previously considered under control have reemerged. Furthermore, antimicrobial resistance has grown rapidly in a variety of hospital as well as community acquired infections. Thus, humanity still faces big challenges in the prevention and control of infectious diseases. Vaccination, generally considered to be the most effective method of preventing infectious diseases, works by presenting a foreign antigen to the immune system to evoke an immune response. The administered antigen can either be a live, but weakened, form of a pathogen (bacteria or virus), a killed or inactivated form of the pathogen, or a purified material such as a protein. However, no vaccine is completely safe; therefore, vaccine safety research and monitoring are necessary to minimize vaccine related harms. From the formulation point of view, the goal continues to be to improve the quality and global availability of vaccine delivery systems. This chapter provides an introduction to vaccine formulation, describes the delivery routes that are utilized, and discusses the factors that affect the safety and stability of a vaccine formulation.
Collapse
|
16
|
Boyapalle S, Mohapatra S, Mohapatra S. Nanotechnology Applications to HIV Vaccines and Microbicides. J Glob Infect Dis 2012; 4:62-8. [PMID: 22529630 PMCID: PMC3326962 DOI: 10.4103/0974-777x.93764] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) remains one of the most serious threats to global health. Today there are no HIV vaccines which can prevent HIV infection. All of the candidates being studied are in the experimental stage. Preventive vaccine candidates are being tested in HIV-negative people to see if they can prevent infection. With of the development of a safe and effective vaccine still likely to be years away, topical microbicide formulations that are applied vaginally and rectally are receiving greater interest as an effective alternative to slow down the global spread of HIV. Current microbicide trials that aim to prevent the sexual transmission of HIV are using gels, creams, rings, films and there is also work underway to explore other types of 'delivery' systems. There have been numerous reports on safety and lack of toxicity of the application of nanotechnology for targeted delivery and slow, sustained release of drugs, proteins, peptides or nucleic acids by any route to maximize effectiveness and minimize adverse effects. The application of nanotechnology for targeting drugs and macromolecules to specific tissues or cells is one of the most important areas in nanomedicine research. Thus far nanoparticles provide a strong platform to combine protein and DNA based vaccines/microbicides and will facilitate the production, preclinical evaluation and clinical testing in the future.
Collapse
Affiliation(s)
- Sandhya Boyapalle
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Subhra Mohapatra
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, Tampa, FL
- Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Shyam Mohapatra
- Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
- Nanomedicine Research Center, University of South Florida Morsani College of Medicine, Tampa, FL
- James A Haley Veteran's Administration Hospital and Medical Center, VA Hospital, Tampa, FL
| |
Collapse
|
17
|
Serum antibodies protect against intraperitoneal challenge with enterotoxigenic Escherichia coli. J Biomed Biotechnol 2011; 2011:632396. [PMID: 22007145 PMCID: PMC3191916 DOI: 10.1155/2011/632396] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/27/2011] [Accepted: 06/17/2011] [Indexed: 12/27/2022] Open
Abstract
To assess whether anticolonization factor antigen I (CFA/I) fimbriae antibodies (Abs) from enterotoxigenic Escherichia coli (ETEC) can protect against various routes of challenge, BALB/c mice were immunized with a live attenuated Salmonella vaccine vector expressing CFA/I fimbriae. Vaccinated mice elicited elevated systemic IgG and mucosal IgA Abs, unlike mice immunized with the empty Salmonella vector. Mice were challenged with wild-type ETEC by the oral, intranasal (i.n.), and intraperitoneal (i.p.) routes. Naïve mice did not succumb to oral challenge, but did to i.n. challenge, as did immunized mice; however, vaccinated mice were protected against i.p. ETEC challenge. Two intramuscular (i.m.) immunizations with CFA/I fimbriae without adjuvant conferred 100% protection against i.p. ETEC challenge, while a single 30 μg dose conferred 88% protection. Bactericidal assays showed that ETEC is highly sensitive to anti-CFA/I sera. These results suggest that parenteral immunization with purified CFA/I fimbriae can induce protective Abs and may represent an alternative method to elicit protective Abs for passive immunity to ETEC.
Collapse
|
18
|
Zhang Y, Yang J, Bao R, Chen Y, Zhou D, He B, Zhong M, Li Y, Liu F, Li Q, Yang Y, Han C, Sun Y, Cao Y, Yan H. Unpolarized release of vaccinia virus and HIV antigen by colchicine treatment enhances intranasal HIV antigen expression and mucosal humoral responses. PLoS One 2011; 6:e24296. [PMID: 21935396 PMCID: PMC3174162 DOI: 10.1371/journal.pone.0024296] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The induction of a strong mucosal immune response is essential to building successful HIV vaccines. Highly attenuated recombinant HIV vaccinia virus can be administered mucosally, but even high doses of immunization have been found unable to induce strong mucosal antibody responses. In order to solve this problem, we studied the interactions of recombinant HIV vaccinia virus Tiantan strain (rVTT-gagpol) in mucosal epithelial cells (specifically Caco-2 cell layers) and in BALB/c mice. We evaluated the impact of this virus on HIV antigen delivery and specific immune responses. The results demonstrated that rVTT-gagpol was able to infect Caco-2 cell layers and both the nasal and lung epithelia in BALB/c mice. The progeny viruses and expressed p24 were released mainly from apical surfaces. In BALB/c mice, the infection was limited to the respiratory system and was not observed in the blood. This showed that polarized distribution limited antigen delivery into the whole body and thus limited immune response. To see if this could be improved upon, we stimulated unpolarized budding of the virus and HIV antigens by treating both Caco-2 cells and BALB/c mice with colchicine. We found that, in BALB/c mice, the degree of infection and antigen expression in the epithelia went up. As a result, specific immune responses increased correspondingly. Together, these data suggest that polarized budding limits antigen delivery and immune responses, but unpolarized distribution can increase antigen expression and delivery and thus enhance specific immune responses. This conclusion can be used to optimize mucosal HIV vaccine strategies.
Collapse
Affiliation(s)
- Yan Zhang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rong Bao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoqing Chen
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Dihan Zhou
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Benxia He
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yaoming Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Liu
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiaoli Li
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Yang
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chen Han
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Sun
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Cao
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, the State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- The State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
19
|
Odumosu O, Nicholas D, Payne K, Langridge W. Cholera toxin B subunit linked to glutamic acid decarboxylase suppresses dendritic cell maturation and function. Vaccine 2011; 29:8451-8. [PMID: 21807047 DOI: 10.1016/j.vaccine.2011.07.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2011] [Revised: 06/29/2011] [Accepted: 07/18/2011] [Indexed: 12/16/2022]
Abstract
Dendritic cells are the largest population of antigen presenting cells in the body. One of their main functions is to regulate the delicate balance between immunity and tolerance responsible for maintenance of immunological homeostasis. Disruption of this delicate balance often results in chronic inflammation responsible for initiation of organ specific autoimmune diseases such as rheumatoid arthritis, multiple sclerosis and type I diabetes. The cholera toxin B subunit (CTB) is a weak mucosal adjuvant known for its ability to stimulate immunity to antigenic proteins. However, conjugation of CTB to many autoantigens can induce immunological tolerance resulting in suppression of autoimmunity. In this study, we examined whether linkage of CTB to a 5kDa C-terminal protein fragment of the major diabetes autoantigen glutamic acid decarboxylase (GAD(35)), can block dendritic cell (DC) functions such as biosynthesis of co-stimulatory factor proteins CD86, CD83, CD80 and CD40 and secretion of inflammatory cytokines. The results of human umbilical cord blood monocyte-derived DC-GAD(35) autoantigen incubation experiments showed that inoculation of immature DCs (iDCs), with CTB-GAD(35) protein dramatically suppressed levels of CD86, CD83, CD80 and CD40 co-stimulatory factor protein biosynthesis in comparison with GAD(35) alone inoculated iDCs. Surprisingly, incubation of iDCs in the presence of the CTB-autoantigen and the strong immunostimulatory molecules PMA and Ionomycin revealed that CTB-GAD(35) was capable of arresting PMA+Ionomycin induced DC maturation. Consistent with this finding, CTB-GAD(35) mediated suppression of DC maturation was accompanied by a dramatic decrease in the secretion of the pro-inflammatory cytokines IL-12/23p40 and IL-6 and a significant increase in secretion of the immunosuppressive cytokine IL-10. Taken together, our experimental data suggest that linkage of the weak adjuvant CTB to the dominant type 1 diabetes autoantigen GAD strongly inhibits DC maturation through the down regulation of major co-stimulatory factors and inflammatory cytokine biosynthesis. These results emphasize the possibility that CTB-autoantigen fusion proteins enhance DC priming of naïve Th0 cell development in the direction of immunosuppressive T lymphocytes. The immunological phenomena observed here establish a basis for improvement of adjuvant augmented multi-component subunit vaccine strategies capable of complete suppression of organ-specific autoimmune diseases in vivo.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | | | | | | |
Collapse
|
20
|
Mucosal immunization with liposome-nucleic acid adjuvants generates effective humoral and cellular immunity. Vaccine 2011; 29:5304-12. [PMID: 21600950 DOI: 10.1016/j.vaccine.2011.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/15/2011] [Accepted: 05/05/2011] [Indexed: 01/07/2023]
Abstract
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8(+) T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.
Collapse
|
21
|
Qi G, Li J, Wang S, Xin S, Du P, Zhang Q, Zhao X. A chimeric peptide of intestinal trefoil factor containing cholesteryl ester transfer protein B cell epitope significantly inhibits atherosclerosis in rabbits after oral administration. Peptides 2011; 32:790-6. [PMID: 21192999 DOI: 10.1016/j.peptides.2010.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 12/19/2010] [Accepted: 12/20/2010] [Indexed: 01/31/2023]
Abstract
Vaccination against cholesteryl ester transfer protein (CETP) is proven to be effective for inhibiting atherosclerosis in animal models. In this study, the proteases-resistant intestinal trefoil factor (TFF3) was used as a molecular vehicle to construct chimeric TFF3 (cTFF3) containing CETP B cell epitope and tetanus toxin helper T cell epitope. It was found that cTFF3 still preserved a trefoil structure, and can resist proteases digestion in vitro. After oral immunization with cTFF3, the CETP-specific IgA and IgG could be found in intestine lavage fluid and serum, and the anti-CETP antibodies could inhibit partial CETP activity to increase high-density lipoprotein cholesterol, decrease low-density lipoprotein cholesterol, and inhibit atherosclerosis in animals. Therefore, TFF3 is a potential molecular vehicle for developing oral peptide vaccines. Our research highlights a novel strategy for developing oral peptide vaccines in the future.
Collapse
Affiliation(s)
- Gaofu Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Identification of new candidates as mucosal vaccine adjuvant in TNF family cytokines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:299-304. [PMID: 21153334 DOI: 10.1007/978-1-4419-6612-4_31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Wang BZ, Xu R, Quan FS, Kang SM, Wang L, Compans RW. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS One 2010; 5:e13972. [PMID: 21124769 PMCID: PMC2993933 DOI: 10.1371/journal.pone.0013972] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 10/18/2010] [Indexed: 12/27/2022] Open
Abstract
We demonstrated previously that the incorporation of a membrane-anchored form of flagellin into influenza virus-like particles (VLPs) improved the immunogenicity of VLPs significantly, inducing partially protective heterosubtypic immunity by intramuscular immunization. Because the efficacy of mucosal vaccination is highly dependent on an adjuvant, and is particularly effective for preventing mucosal infections such as influenza, we determined whether the membrane-anchored flagellin is an efficient adjuvant for VLP vaccines by a mucosal immunization route. We compared the adjuvant effect of membrane-anchored and soluble flagellins for immunization with influenza A/PR8 (H1N1) VLPs by the intranasal route in a mouse model. The results demonstrate that membrane-anchored flagellin is an effective adjuvant for intranasal (IN) immunization, inducing enhanced systemic and mucosal antibody responses. High cellular responses were also observed as shown by cytokine production in splenocyte cultures when stimulated with viral antigens. All mice immunized with flagellin-containing VLPs survived challenge with a high lethal dose of homologous virus as well as a high dose heterosubtypic virus challenge (40 LD50 of A/Philippines/82, H3N2). In contrast, no protection was observed with a standard HA/M1 VLP group upon heterosubtypic challenge. Soluble flagellin exhibited a moderate adjuvant effect when co-administered with VLPs by the mucosal route, as indicated by enhanced systemic and mucosal responses and partial heterosubtypic protection. The membrane-anchored form of flagellin incorporated together with antigen into influenza VLPs is effective as an adjuvant by the mucosal route and unlike standard VLPs, immunization with such chimeric VLPs elicits protective immunity to challenge with a distantly related influenza A virus.
Collapse
Affiliation(s)
- Bao-Zhong Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rui Xu
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Fu-Shi Quan
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sang-Moo Kang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Li Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Richard W. Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
24
|
Stano A, van der Vlies AJ, Martino MM, Swartz MA, Hubbell JA, Simeoni E. PPS nanoparticles as versatile delivery system to induce systemic and broad mucosal immunity after intranasal administration. Vaccine 2010; 29:804-12. [PMID: 21094269 DOI: 10.1016/j.vaccine.2010.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 11/27/2022]
Abstract
Degradable polymer nanoparticles (NPs, 50 nm) based on polypropylene sulfide (PPS) were conjugated to thiolated antigen and adjuvant proteins by reversible disulfide bonds and evaluated in mucosal vaccination. Ovalbumin was used as a model antigen, and antigen-conjugated NPs were administered intranasally in the mouse. We show penetration of nasal mucosae, transit via M cells, and uptake by antigen-presenting cells in the nasal-associated lymphoid tissue. Ovalbumin-conjugated NPs induced cytotoxic T lymphocytic responses in lung and spleen tissues, as well as humoral response in mucosal airways. Co-conjugation of the TLR5 ligand flagellin further enhanced humoral responses in the airways as well as in the distant vaginal and rectal mucosal compartments and induced cellular immune responses with a Th1 bias, in contrast with free flagellin. The PPS NP platform thus appears interesting as a platform for intranasally-administered mucosal vaccination for inducing broad mucosal immunity.
Collapse
Affiliation(s)
- Armando Stano
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Suppression of dendritic cell activation by diabetes autoantigens linked to the cholera toxin B subunit. Immunobiology 2010; 216:447-56. [PMID: 20956025 DOI: 10.1016/j.imbio.2010.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 02/02/2023]
Abstract
Antigen presenting cells, specifically dendritic cells (DCs) are a focal point in the delicate balance between T cell tolerance and immune responses contributing to the onset of type I diabetes (T1D). Weak adjuvant proteins like the cholera toxin B subunit when linked to autoantigens may sufficiently alter the balance of this initial immune response to suppress the development of autoimmunity. To assess adjuvant enhancement of autoantigen mediated immune suppression of Type 1 diabetes, we examined the cholera toxin B subunit (CTB)-proinsulin fusion protein (CTB-INS) activation of immature dendritic cells (iDC) at the earliest detectable stage of the human immune response. In this study, Incubation of human umbilical cord blood monocyte-derived immature DCs with CTB-INS autoantigen fusion protein increased the surface membrane expression of DC Toll-like receptor (TLR-2) while no significant upregulation in TLR-4 expression was detected. Inoculation of iDCs with CTB stimulated the biosynthesis of both CD86 and CD83 co-stimulatory factors demonstrating an immunostimulatory role for CTB in both DC activation and maturation. In contrast, incubation of iDCs with proinsulin partially suppressed CD86 co-stimulatory factor mediated DC activation, while incubation of iDCs with CTB-INS fusion protein completely suppressed iDC biosynthesis of both CD86 and CD83 costimulatory factors. The incubation of iDCs with increasing amounts of insulin did not increase the level of immune suppression but rather activated DC maturation by stimulating increased biosynthesis of both CD86 and CD83 costimulatory factors. Inoculation of iDCs with CTB-INS fusion protein dramatically increased secretion of the immunosuppressive cytokine IL-10 and suppressed synthesis of the pro-inflammatory cytokine IL12/23 p40 subunit protein suggesting that linkage of CTB to insulin (INS) may play an important role in mediating DC guidance of cognate naïve Th0 cell development into immunosuppressive T lymphocytes. Taken together, the experimental data suggests Toll like receptor 2 (TLR-2) plays a dominant role in CTB mediated INS inhibition of DC induced type 1 diabetes onset in human Type 1 diabetes autoimmunity. Further, fusion of CTB to the autoantigen was found to be essential for enhancement of immune suppression as co-delivery of CTB and insulin did not significantly inhibit DC costimulatory factor biosynthesis. The experimental data presented supports the hypotheses that adjuvant enhancement of autoantigen mediated suppression of islet beta cell inflammation is dependent on CTB stimulation of dendritic cell TLR2 receptor activation and co-processing of both CTB and the autoantigen in the same dendritic cell.
Collapse
|
26
|
Impact of ETIF deletion on safety and immunogenicity of equine herpesvirus type 1-vectored vaccines. J Virol 2010; 84:11602-13. [PMID: 20826695 DOI: 10.1128/jvi.00677-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Heterologous gene transfer by viral vector systems is often limited by factors such as preexisting immunity, toxicity, low packaging capacity, or weak immunogenic potential. A novel viral vector system derived from equine herpesvirus type 1 (EHV-1) not only overcomes some of these obstacles but also promotes the robust expression of a delivered transgene and the induction of antigen-specific immune responses. Regarding an enhanced safety profile, we assessed the impact of the gene encoding the sole essential tegument protein, ETIF, on the replication and immunogenicity of recombinant EHVs. The deletion of ETIF severely attenuates replication in permissive RK13 cells and a human lung epithelial cell line but without influencing transgene expression. Whereas the intranasal administration of a recombinant luciferase EHV in BALB/c mice resulted in transgene expression in nasal cavities and lungs for 5 to 6 days, the ETIF deletion limited expression to 2 days and resulted in 30-fold-less luminescence. Attenuated replication was accompanied by a decreased capacity to induce CD8(+) T cells against a delivered HIV Gag transgene in BALB/c mice following repeated intranasal application. However, a single subcutaneous immunization with a gag DNA vaccine primed specific T cells for substantial expansion by two subsequent intranasal booster immunizations with either the gag recombinant ETIF mutant or the parental virus. In addition to inducing Gag-specific serum antibodies, this prime-boost strategy clearly outperformed three sequential immunizations with the parental or EHV-ΔETIF virus or repeated DNA vaccination by inducing substantial specific secretory IgA (sIgA) titers.
Collapse
|
27
|
Odumosu O, Nicholas D, Yano H, Langridge W. AB toxins: a paradigm switch from deadly to desirable. Toxins (Basel) 2010; 2:1612-45. [PMID: 22069653 PMCID: PMC3153263 DOI: 10.3390/toxins2071612] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 06/08/2010] [Accepted: 06/23/2010] [Indexed: 11/16/2022] Open
Abstract
To ensure their survival, a number of bacterial and plant species have evolved a common strategy to capture energy from other biological systems. Being imperfect pathogens, organisms synthesizing multi-subunit AB toxins are responsible for the mortality of millions of people and animals annually. Vaccination against these organisms and their toxins has proved rather ineffective in providing long-term protection from disease. In response to the debilitating effects of AB toxins on epithelial cells of the digestive mucosa, mechanisms underlying toxin immunomodulation of immune responses have become the focus of increasing experimentation. The results of these studies reveal that AB toxins may have a beneficial application as adjuvants for the enhancement of immune protection against infection and autoimmunity. Here, we examine similarities and differences in the structure and function of bacterial and plant AB toxins that underlie their toxicity and their exceptional properties as immunomodulators for stimulating immune responses against infectious disease and for immune suppression of organ-specific autoimmunity.
Collapse
Affiliation(s)
- Oludare Odumosu
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Dequina Nicholas
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
| | - Hiroshi Yano
- Department of Biology, University of Redlands, 1200 East Colton Ave, P.O. Box 3080, Redlands, CA 92373, USA; (H.Y.)
| | - William Langridge
- Center for Health Disparities and Molecular Medicine, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (O.O.)
- Department of Biochemistry, Loma Linda University, School of Medicine, Loma Linda, CA 92354, USA; (D.N.)
- Author to whom correspondence should be addressed; ; Tel.: +1-909-558-1000 (81362); Fax: +1-909-558-0177
| |
Collapse
|
28
|
Immunogenicity and protective efficacy of orally or intranasally administered recombinant Lactobacillus casei expressing ETEC K99. Vaccine 2010; 28:4113-8. [DOI: 10.1016/j.vaccine.2009.05.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/26/2009] [Accepted: 05/31/2009] [Indexed: 11/17/2022]
|
29
|
Muttil P, Prego C, Garcia-Contreras L, Pulliam B, Fallon JK, Wang C, Hickey AJ, Edwards D. Immunization of guinea pigs with novel hepatitis B antigen as nanoparticle aggregate powders administered by the pulmonary route. AAPS JOURNAL 2010; 12:330-7. [PMID: 20419360 DOI: 10.1208/s12248-010-9192-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 04/01/2010] [Indexed: 12/26/2022]
Abstract
Novel nanoparticle-aggregate formulations containing recombinant hepatitis B surface antigen (rHBsAg) were administered to the lungs of guinea pigs and antibodies generated to this antigen evaluated. Preparations of dry powders of: (a) rHBsAg encapsulated within poly(lactic-co-glycolic acid) (PLGA)/polyethylene glycol (PEG) nanoparticles (antigen nanoparticles, AgN(SD)), (b) rHBsAg in a physical mixture with blank PLGA/PEG nanoparticles (antigen nanoparticle admixture (AgNA(SD)), and (c) rHBsAg encapsulated in PLGA/PEG nanoparticles plus free rHBsAg (antigen nanoparticles and free antigen), were generated by spray drying with leucine. Control groups consisted of alum with adsorbed rHBsAg (AlumAg); reconstituted suspensions of spray-dried rHBsAg-loaded PLGA/PEG nanoparticles with leucine; and rHBsAg-loaded PLGA/PEG nanoparticles (AgN). Control preparations were administered by intramuscular injection; AgN was also spray instilled into the lungs. The IgG titers were measured in the serum for 24 weeks after the initial immunization; IgA titers were measured in the bronchio-alveolar lavage fluid. While the highest titer of serum IgG antibody was observed in guinea pigs immunized with AlumAg administered by the IM route, animals immunized with powder formulations via the pulmonary route exhibited high IgA titers. In addition, guinea pigs immunized with AgNA(SD) via the pulmonary route exhibited IgG titers above 1,000 mIU/ml in the serum (IgG titers above 10 mIU/ml is considered protective). Thus, the disadvantages observed with the existing hepatitis B vaccine administered by the parenteral route may be overcome by administering them as novel dry powders to the lungs. In addition, these powders have the advantage of eliciting a high mucosal immune response in the lungs without traditional adjuvants.
Collapse
Affiliation(s)
- Pavan Muttil
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599-7571, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Eurich K, Segawa M, Toei-Shimizu S, Mizoguchi E. Potential role of chitinase 3-like-1 in inflammation-associated carcinogenic changes of epithelial cells. World J Gastroenterol 2009; 15:5249-59. [PMID: 19908331 PMCID: PMC2776850 DOI: 10.3748/wjg.15.5249] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The family of mammalian chitinases includes members both with and without glycohydrolase enzymatic activity against chitin, a polymer of N-acetylglucosamine. Chitin is the structural component of fungi, crustaceans, insects and parasitic nematodes, but is completely absent in mammals. Exposure to antigens containing chitin- or chitin-like structures sometimes induces strong T helper type-I responses in mammals, which may be associated with the induction of mammalian chitinases. Chitinase 3-like-1 (CHI3L1), a member of the mammalian chitinase family, is induced specifically during the course of inflammation in such disorders as inflammatory bowel disease, hepatitis and asthma. In addition, CHI3L1 is expressed and secreted by several types of solid tumors including glioblastoma, colon cancer, breast cancer and malignant melanoma. Although the exact function of CHI3L1 in inflammation and cancer is still largely unknown, CHI3L1 plays a pivotal role in exacerbating the inflammatory processes and in promoting angiogenesis and remodeling of the extracellular matrix. CHI3L1 may be highly involved in the chronic engagement of inflammation which potentiates development of epithelial tumorigenesis presumably by activating the mitogen-activated protein kinase and the protein kinase B signaling pathways. Anti-CHI3L1 antibodies or pan-chitinase inhibitors may have the potential to suppress CHI3L1-mediated chronic inflammation and the subsequent carcinogenic change in epithelial cells.
Collapse
|
31
|
Kayamuro H, Abe Y, Yoshioka Y, Katayama K, Nomura T, Yoshida T, Yamashita K, Yoshikawa T, Kawai Y, Mayumi T, Hiroi T, Itoh N, Nagano K, Kamada H, Tsunoda SI, Tsutsumi Y. The use of a mutant TNF-α as a vaccine adjuvant for the induction of mucosal immune responses. Biomaterials 2009; 30:5869-76. [DOI: 10.1016/j.biomaterials.2009.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|
32
|
Zhang GG, Li DX, Zhang HH, Zeng YM, Chen L. Enhancement of mucosal immune response against the M2eHBc+ antigen in mice with the fusion expression products of LTB and M2eHBc+ through mucosal immunization route. Vet Res Commun 2009; 33:735-47. [PMID: 19462253 DOI: 10.1007/s11259-009-9222-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 04/02/2009] [Indexed: 11/25/2022]
Abstract
M2e is the external domain of M2 protein, a conservative transmembrane protein of the avian influenza A virus. Previous research had shown that the vaccine of the formation particle of M2e and hepatitis B virus core antigen (HBcAg) can fully protect mice against a lethal H5N1 subtype avian influenza virus (AIV) infection. As an effective approach against mucosal tissue infectious agent, mucosal vaccination requires effective and safe adjuvants. Here we have first fused two M2e peptide to the N terminal and the major immunodominant region (MIR) of the HBcAg protein simultaneously to create a fusion gene, named as M2eHBc+, and then inserted B subunit of Escherichia coli heat labile enterotoxin (LTB) into the N terminal of M2eHBc+ to construct the second fusion gene, named as LBM2eHBc+. These two fusion genes can be efficiently expressed in Escherichia coli cell and the yield peptide can self-assemble into virus-like particles (VLP). The mice immunization with two types of the purified particles by intranasal dropping and oral routes revealed that LTB can significantly enhance the mucosal immune responses of mice to co-expression M2eHBc+ particle form antigen.
Collapse
Affiliation(s)
- Guo-guang Zhang
- The Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | | | | | | | | |
Collapse
|
33
|
Vendetti S, Riccomi A, Negri DRM, Veglia F, Sciaraffia E, De Magistris MT. Development of antigen-specific T cells in mediastinal lymph nodes after intranasal immunization. Methods 2009; 49:334-9. [PMID: 19426804 DOI: 10.1016/j.ymeth.2009.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 04/16/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022] Open
Abstract
The power of cholera toxin (CT) as an effective mucosal adjuvant is well established. Because of the high toxicity of CT, its clinical use is unlikely. Therefore, the need to identify effective and non toxic mucosal adjuvants for human use is important. For this purpose, CT is largely used as a reference molecule for testing the efficacy of new candidate adjuvants in animal models. Here, we evaluated the kinetics and the localization of antigen-specific humoral and cellular immune responses elicited by intranasal immunization with tetanus toxoid antigen in the presence of CT. We show that an antigen-specific cellular immune response localized in the mediastinal lymph nodes can be observed already 1 week after the first immunization. The induction of an appreciable titer of an antibody-specific immune response was assessed after two immunizations. Therefore, we suggest that the efficacy of new candidate mucosal adjuvants can be tested by evaluating the cellular immune response in the mediastinal lymph nodes at early stages of immunization.
Collapse
Affiliation(s)
- Silvia Vendetti
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
34
|
Kayamuro H, Yoshioka Y, Abe Y, Katayama K, Yoshida T, Yamashita K, Yoshikawa T, Hiroi T, Itoh N, Kawai Y, Mayumi T, Kamada H, Tsunoda SI, Tsutsumi Y. TNF superfamily member, TL1A, is a potential mucosal vaccine adjuvant. Biochem Biophys Res Commun 2009; 384:296-300. [PMID: 19406102 DOI: 10.1016/j.bbrc.2009.04.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 04/22/2009] [Indexed: 01/01/2023]
Abstract
The identification of cytokine adjuvants capable of inducing an efficient mucosal immune response against viral pathogens has been long anticipated. Here, we attempted to identify the potential of tumor necrosis factor superfamily (TNFS) cytokines to function as mucosal vaccine adjuvants. Sixteen different TNFS cytokines were used to screen mucosal vaccine adjuvants, after which their immune responses were compared. Among the TNFS cytokines, intranasal immunization with OVA plus APRIL, TL1A, and TNF-alpha exhibited stronger immune response than those immunized with OVA alone. TL1A induced the strongest immune response and augmented OVA-specific IgG and IgA responses in serum and mucosal compartments, respectively. The OVA-specific immune response of TL1A was characterized by high levels of serum IgG1 and increased production of IL-4 and IL-5 from splenocytes of immunized mice, suggesting that TL1A might induce Th2-type responses. These findings indicate that TL1A has the most potential as a mucosal adjuvant among the TNFS cytokines.
Collapse
Affiliation(s)
- Hiroyuki Kayamuro
- Laboratory of Pharmaceutical Proteomics, National Institute of Biomedical Innovation (NiBio), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharma S, Mukkur T, Benson HA, Chen Y. Pharmaceutical Aspects of Intranasal Delivery of Vaccines Using Particulate Systems. J Pharm Sci 2009; 98:812-43. [DOI: 10.1002/jps.21493] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Abstract
PURPOSE OF REVIEW Oral immunization with vaccines against intestinal infectious diseases has been extensively explored for several decades. Despite the immunologic and economic rationale behind oral immunization, only a few mucosal vaccines are available for the prevention of mucosal infections. Here, we summarize the current status of such vaccines, with a focus on intestinal infectious diseases, describe alternative approaches, and analyze advantages and difficulties encountered with a broad implementation of these vaccines. RECENT FINDINGS Due to the limited absorption from the intestinal tract and sensitivity to degradation, oral vaccines composed of killed bacteria and viruses or antigens isolated from infectious agents have not been successful. New, live-attenuated bacterial and viral or edible plant-derived vaccines, however, have been recently introduced for this purpose. Furthermore, systemic immunization with vaccines composed of bacterial polysaccharides chemically coupled to suitable protein carriers induces high levels of IgG antibodies, which may provide immunity toward Salmonella typhi, Shigella, and Escherichia coli. SUMMARY Further improvements in antigen-delivery systems, the development of adjuvants that are safe for mucosal application in humans, use of live-attenuated vaccines and microbial vectors, and production of certain vaccines in plant expression systems are likely to contribute to the broader use of oral vaccines in the future.
Collapse
|
37
|
Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect Immun 2008; 76:4222-31. [PMID: 18625734 DOI: 10.1128/iai.00533-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Proteus mirabilis, a gram-negative bacterium, is a frequent cause of complicated urinary tract infections in those with functional or anatomical abnormalities or those subject to long-term catheterization. To systematically identify surface-exposed antigens as potential vaccine candidates, proteins in the outer membrane fraction of bacteria were separated by two-dimensional gel electrophoresis and subjected to Western blotting with sera from mice experimentally infected with P. mirabilis. Protein spots reactive with sera were identified by mass spectrometry, which in conjunction with the newly completed genome sequence of P. mirabilis HI4320, was used to identify surface-exposed antigens. Culture conditions that may mimic in vivo conditions more closely than Luria broth (growth in human urine and under iron limitation and osmotic stress) were also used. Thirty-seven antigens to which a humoral response had been mounted, including 23 outer membrane proteins, were identified. These antigens are presumably expressed during urinary tract infection. Protein targets that are both actively required for virulence and antigenic may serve as protective antigens for vaccination; thus, five representative antigens were selected for use in virulence studies. Strains of P. mirabilis with mutations in three of the corresponding genes (the PMI0047 gene, rafY, and fadL) were not attenuated in the murine model of urinary tract infection. Putative iron acquisition proteins PMI0842 and PMI2596, however, both contribute to fitness in the urinary tract and thus emerge as vaccine candidates.
Collapse
|
38
|
Yang K, Whalen BJ, Tirabassi RS, Selin LK, Levchenko TS, Torchilin VP, Kislauskis EH, Guberski DL. A DNA vaccine prime followed by a liposome-encapsulated protein boost confers enhanced mucosal immune responses and protection. THE JOURNAL OF IMMUNOLOGY 2008; 180:6159-67. [PMID: 18424737 DOI: 10.4049/jimmunol.180.9.6159] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A variety of DNA vaccine prime and recombinant viral boost immunization strategies have been developed to enhance immune responses in humans, but inherent limitations to these strategies exist. There is still an overwhelming need to develop safe and effective approaches that raise broad humoral and T cell-mediated immune responses systemically and on mucosal surfaces. We have developed a novel mucosal immunization regimen that precludes the use of viral vectors yet induces potent T cell responses. Using hepatitis B surface Ag (HBsAg), we observed that vaccination of BALB/c mice with an i.m. HBsAg-DNA vaccine prime followed by an intranasal boost with HBsAg protein encapsulated in biologically inert liposomes enhanced humoral and T cell immune responses, particularly on mucosal surfaces. Intranasal live virus challenge with a recombinant vaccinia virus expressing HBsAg revealed a correlation between T cell immune responses and protection of immunized mice. A shortened immunization protocol was developed that was successful in both adult and neonatal mice. These results support the conclusion that this new approach is capable of generating a Th-type-1-biased, broad spectrum immune response, specifically at mucosal surfaces. The success of this design may provide a safe and effective vaccination alternative for human use.
Collapse
Affiliation(s)
- Kejian Yang
- Oral Vaccine Institute, 10 New Bond Street, Worcester, MA 01606, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Comparison of cholera toxin A2/B and murine interleukin-12 as adjuvants of Toxoplasma multi-antigenic SAG1-ROP2 DNA vaccine. Exp Parasitol 2008; 119:352-7. [PMID: 18442818 DOI: 10.1016/j.exppara.2008.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 11/21/2022]
Abstract
Toxoplasmosis can lead to severe pathology in both humans and animals. However, an effective vaccine for humans has not been successfully developed. In this study, we used multi-antigenic SAG1-ROP2 as a DNA vaccine and cholera toxin A2/B subunit and murine interleukin-12 to compare their effectiveness as genetic adjuvants. Bagg albino/c (BAL/c) mice were immunized intramuscularly with pcDNA3.1-SAG1-ROP2 alone (control group), or pcDNA3.1-SAG1-ROP2 with co-administration of pCTA2/B or pIL-12, respectively. After immunization, the effectiveness of these two adjuvants were compared using lymphocyte proliferation assay, cytokine and antibody measurements. The group co-administered pIL-12 elicited stronger humoral and Th1-type cellular immune responses than those immunized with pcDNA3.1-SAG1-ROP2 alone, while in the group co-administered pCTA2/B there was no obvious enhancement of immunity. When challenged with Toxoplasma gondii RH strain, mice immunized with pIL-12 co-administration had significantly higher survival rates, whereas there was no notable augmentation of immunity in pCTA2/B group. Therefore, since pIL-12 significantly enhanced the antigenicity of multi-antigenic DNA vaccine, this suggests that IL-12 is a better and more effective adjuvant than CTA2/B in this situation.
Collapse
|
40
|
Bermúdez-Humarán LG, Cortes-Perez NG, Ah-Leung S, Lefèvre F, Yang G, Pang Q, Wu C, Zeng Y, Adel-Patient K, Langella P. Current prophylactic and therapeutic uses of a recombinant Lactococcus lactis strain secreting biologically active interleukin-12. J Mol Microbiol Biotechnol 2008; 14:80-9. [PMID: 17957114 DOI: 10.1159/000106086] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The noninvasive and food-grade Gram-positive bacterium Lactococcus lactis is well adapted to deliver medical proteins to the mucosal immune system. In the last decade, the potential of live recombinant lactococci to deliver such proteins to the mucosal immune system has been investigated. This approach offers several advantages over the traditional systemic injection, such as easy administration and the ability to elicit both systemic and mucosal immune responses. This paper reviews the current research and advances made with recombinant L. lactis as live vector for the in situ delivery of biologically active interleukin-12, a potent pleiotropic cytokine with adjuvant properties when co-delivered with vaccinal antigens, at mucosal surfaces. Three well-illustrated examples demonstrate the high potential of interleukin-12-secreting lactococci strains for future prophylactic and therapeutic uses.
Collapse
|
41
|
Bielinska AU, Janczak KW, Landers JJ, Markovitz DM, Montefiori DC, Baker JR. Nasal immunization with a recombinant HIV gp120 and nanoemulsion adjuvant produces Th1 polarized responses and neutralizing antibodies to primary HIV type 1 isolates. AIDS Res Hum Retroviruses 2008; 24:271-81. [PMID: 18260780 DOI: 10.1089/aid.2007.0148] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epidemiological and experimental data suggest that both robust neutralizing antibodies and potent cellular responses play important roles in controlling primary HIV-1 infection. In this study we have investigated the induction of systemic and mucosal immune responses to HIV gp120 monomer immunogen administered intranasally in a novel, oil-in-water nanoemulsion (NE) adjuvant. Mice and guinea pigs intranasally immunized by the application of recombinant HIV gp120 antigen mixed in NE demonstrated robust serum anti-gp120 IgG, as well as bronchial, vaginal, and serum anti-gp120 IgA in mice. The serum of these animals demonstrated antibodies that cross-reacted with heterologous serotypes of gp120 and had significant neutralizing activity against two clade-B laboratory strains of HIV (HIVBaL and HIVSF162) and five primary HIV-1 isolates. The analysis of gp120-specific CTL proliferation, INF-gamma induction, and prevalence of anti-gp120 IgG2 subclass antibodies indicated that nasal vaccination in NE also induced systemic, Th1-polarized cellular immune responses. This study suggests that NE should be evaluated as a mucosal adjuvant for multivalent HIV vaccines.
Collapse
Affiliation(s)
- Anna U. Bielinska
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Katarzyna W. Janczak
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - Jeffrey J. Landers
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| | - David M. Markovitz
- Internal Medicine, Infectious Diseases, University of Michigan, Ann Arbor, Michigan 48109
| | - David C. Montefiori
- Department of Surgery, Laboratory for AIDS Vaccine Research and Development, Duke University Medical Center, Durham, North Carolina 27706
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences (MNIMBS), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
42
|
|
43
|
Bourges D, Zhan Y, Brady JL, Braley H, Caminschi I, Prato S, Villadangos JA, Lew AM. Targeting the gut vascular endothelium induces gut effector CD8 T cell responses via cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:5678-85. [PMID: 17947639 DOI: 10.4049/jimmunol.179.9.5678] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Systemic delivery of Ag usually induces poor mucosal immunity. To improve the CD8 T cell response at mucosal sites, we targeted the Ag to MAdCAM-1, a mucosal addressin cell adhesion molecule expressed mainly by high endothelial venules (HEV) in mesenteric lymph nodes (MLN) and Peyer's patches of gut-associated lymphoid tissue. When chemical conjugates of anti-MAdCAM-1 Ab and model Ag OVA were injected i.v., a greatly enhanced proliferative response of Ag-specific OT-I CD8 T cells was detected in MLN. This was preceded by prolonged accumulation, up to 2 wk, of the anti-MAdCAM OVA conjugate on HEV of Peyer's patches and MLN. In contrast, nontargeted OVA conjugate was very inefficient in inducing OT-I CD8 T cell proliferation in MLN and required at least 20-fold more Ag to induce a comparable response. In addition, MAdCAM targeting elicits an endogenous OVA-specific CD8 T cell response, evident by IFN-gamma production and target killing. Induced response offers protection against an OVA-expressing B cell lymphoma. We propose that the augmentation of gut CD8 T cell responses by MAdCAM targeting is due to both accumulation of Ag in the HEV and conversion of a soluble Ag to a cell-associated one, allowing cross-presentation by DCs.
Collapse
Affiliation(s)
- Dorothee Bourges
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bimczok D, Koch J, Rothkötter HJ. Cholera toxin transiently inhibits porcine T cell proliferation in vitro. Comp Immunol Microbiol Infect Dis 2007; 31:501-14. [PMID: 17920120 DOI: 10.1016/j.cimid.2007.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
Abstract
Cholera toxin (Ctx) is an important mucosal adjuvant with potential experimental applications in pigs. However, little is known about the direct effects of Ctx on porcine immune cells. Therefore, we analysed the influence of Ctx on mitogen-induced lymphocyte proliferation. Ctx inhibited peripheral blood mononuclear cell (PBMC) proliferation with an IC50 of 34+/-17 ng/mL. This inhibition was not due to increased cell death. Lymphoblast formation in cultures stimulated with concanavalin A and Ctx was decreased at 24 h, but had reached the levels of control cultures again at 72 and 120 h, indicating that suppression was transient. Analysis of T cell subsets revealed that Ctx treatment specifically reduced the percentage of CD4-CD8+ and gammadelta T cells, whereas the proportion of CD4+CD8- increased. Furthermore, Ctx caused secretion of IL-10 by PBMC cultures, but depressed TNFalpha secretion.
Collapse
Affiliation(s)
- D Bimczok
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | |
Collapse
|
45
|
Pourasgari F, Ahmadian S, Salmanian AH, Sarbolouki MN, Massumi M. Low cytotoxicity effect of dendrosome as an efficient carrier for rotavirus VP2 gene transferring into a human lung cell line. Mol Biol Rep 2007; 36:105-9. [DOI: 10.1007/s11033-007-9157-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 09/26/2007] [Indexed: 11/29/2022]
|
46
|
Abstract
Vaccination is an important tool for handling healthcare programs both in developed and developing countries. The current global scenario calls for a more-efficacious, acceptable, cost-effective and reliable method of immunization for many fatal diseases. It is hoped that the adoption of oral vaccines will help to provide an effective vaccination strategy, especially in developing countries. Mucosal immunity generated by oral vaccines can serve as a strong first line of defense against most of the pathogens infecting through the mucosal lining. Advances in elucidating the mechanism of action of oral vaccines will facilitate the design of more effective, new generation vaccines. There are promising developments in the use of different agents to effectively deliver the vaccine candidate. It is hoped that ongoing research may be able to set another cardinal point, after polio vaccine, in eradicating infectious diseases.
Collapse
Affiliation(s)
- Mohd Azhar Aziz
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
47
|
Brandtzaeg P. Induction of secretory immunity and memory at mucosal surfaces. Vaccine 2007; 25:5467-84. [PMID: 17227687 DOI: 10.1016/j.vaccine.2006.12.001] [Citation(s) in RCA: 343] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 11/08/2006] [Accepted: 12/01/2006] [Indexed: 11/27/2022]
Abstract
Mucosal epithelia comprise an extensive vulnerable barrier which is reinforced by numerous innate defence mechanisms cooperating intimately with adaptive immunity. Local generation of secretory IgA (SIgA) constitutes the largest humoral immune system of the body. Secretory antibodies function both by performing antigen exclusion at mucosal surfaces and by virus and endotoxin neutralization within epithelial cells without causing tissue damage. SIgA is thus persistently containing commensal bacteria outside the epithelial barrier but can also target invasion of pathogens and penetration of harmful antigens. Resistance to toxin-producing bacteria such as Vibrio cholerae and enterotoxigenic Escherichia coli appears to depend largely on SIgA, and so does herd protection against horizontal faecal-oral spread of enteric pathogens under naïve or immunized conditions--with a substantial innate impact both on cross-reactivity and memory. Like natural infections, live mucosal vaccines or adequate combinations of non-replicating vaccines and mucosal adjuvants, give rise not only to SIgA antibodies but also to longstanding serum IgG and IgA responses. However, there is considerably disparity with regard to migration of memory/effector cells from mucosal inductive sites to secretory effector sites and systemic immune organs. Also, although immunological memory is generated after mucosal priming, this may be masked by a self-limiting response protecting the inductive lymphoid tissue in the gut. The intranasal route of vaccine application targeting nasopharynx-associated lymphoid tissue may be more advantageous for certain infections, but only if successful stimulation is achieved without the use of toxic adjuvants that might reach the central nervous system. The degree of protection obtained after mucosal vaccination ranges from reduction of symptoms to complete inhibition of re-infection. In this scenario, it is often difficult to determine the relative importance of SIgA versus serum antibodies, but infection models in knockout mice strongly support the notion that SIgA exerts a decisive role in protection and cross-protection against a variety of infectious agents. Nevertheless, relatively few mucosal vaccines have been approved for human use, and more basic work is needed in vaccine and adjuvant design, including particulate or live-vectored combinations.
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology, Institute and Department of Pathology, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, N-0027 Oslo, Norway.
| |
Collapse
|
48
|
Bimczok D, Rau H, Wundrack N, Naumann M, Rothkötter HJ, McCullough K, Summerfield A. Cholera toxin promotes the generation of semi-mature porcine monocyte-derived dendritic cells that are unable to stimulate T cells. Vet Res 2007; 38:597-612. [PMID: 17565907 DOI: 10.1051/vetres:2007020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Accepted: 02/16/2007] [Indexed: 01/02/2023] Open
Abstract
Cholera toxin (Ctx) is a powerful mucosal adjuvant with potential applications for oral vaccination of swine. Dendritic cells (DC) play a key role in the decision between immunity and tolerance, and are likely target cells for mediating Ctx functions in vivo. Therefore, we examined the capacity of Ctx to enhance stimulatory activity of porcine monocyte-derived DC (MoDC). Ctx promoted the development of a semi-mature DC phenotype, with decreased levels of MHC class II and CD40, but increased CD80/86 expression. These changes were associated with activation of extracellular signal-regulated kinase (ERK), but not NFkappaB or c-Jun N-terminal kinase (JNK). Functionally, Ctx-priming greatly diminished T cell stimulatory capacity both in antigen-specific and superantigen-induced proliferation assays. The lower proliferation rate was not due to increased apoptosis of either DC or T cells. Ctx suppressed TNFalpha secretion by MoDC, but induced IL-10 production. The observed effects on T cell proliferation could only be partially mimicked by IL-10 alone. However, addition of recombinant TNFalpha to co-cultures of Ctx-primed MoDC and lymphocytes restored lymphocyte proliferation in a concentration-dependent manner. Ctx-primed DC were not actively tolerogenic, since they could not suppress proliferative T cell reactions induced by untreated DC.
Collapse
Affiliation(s)
- Diane Bimczok
- Institute of Anatomy, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Källenius G, Pawlowski A, Brandtzaeg P, Svenson S. Should a new tuberculosis vaccine be administered intranasally? Tuberculosis (Edinb) 2007; 87:257-66. [PMID: 17321797 DOI: 10.1016/j.tube.2006.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 12/14/2006] [Accepted: 12/21/2006] [Indexed: 12/22/2022]
Abstract
Most of the world's population is vaccinated with the only available vaccine against tuberculosis (TB), the Bacillus Calmette-Guérin (BCG) vaccine that was developed almost a century ago. Despite the wide coverage of the BCG vaccine, there are great variations in protective efficacy among different study populations. BCG vaccination protects against childhood forms of TB, but this immunity wanes with age, resulting in none, or insufficient, protection against adult pulmonary TB (PTB). PTB is the major disease manifestation of TB in adults and it causes death at the most productive age, further adding to poverty in already impoverished countries. Therefore, new more effective vaccines and novel immunisation strategies are urgently needed. The most common route of TB is by inhalation of tubercle bacilli leading to the establishment of a primary infection in the lung. Immunising through the nasal mucosal surface should therefore have advantage over other routes, as such vaccine administration elicits protective immune responses also in the lung, i.e. at the site of primary infection. Several new TB-vaccine candidates have been evaluated for their protective efficacy in animal models using the mucosal route of immunisation. In formulating such vaccines, the adjuvants and delivery systems are crucially important.
Collapse
Affiliation(s)
- Gunilla Källenius
- Department of Bacteriology, Swedish Institute for Infectious Disease Control, 17182 Solna, Sweden.
| | | | | | | |
Collapse
|
50
|
Abstract
Vaccination is one of the most efficient ways to eradicate some infectious diseases in humans and animals. The material traditionally used as vaccines is attenuated or inactivated pathogens. This approach is sometimes limited by the fact that the material for vaccination is not efficient, not available, or generating deleterious side effects. A possible theoretical alternative is the use of recombinant proteins from the pathogens. This implies that the proteins having the capacity to vaccinate have been identified and that they can be produced in sufficient quantity at a low cost. Genetically modified organisms harboring pathogen genes can fulfil these conditions. Microorganisms, animal cells as well as transgenic plants and animals can be the source of recombinant vaccines. Each of these systems that are all getting improved has advantages and limits. Adjuvants must generally be added to the recombinant proteins to enhance their vaccinating capacity. This implies that the proteins used to vaccinate have been purified to avoid any immunization against the contaminants. The efficiency of a recombinant vaccine is poorly predictable. Multiple proteins and various modes of administration must therefore be empirically evaluated on a case-by-case basis. The structure of the recombinant proteins, the composition of the adjuvants and the mode of administration of the vaccines have a strong and not fully predictable impact on the immune response as well as the protection level against pathogens. Recombinant proteins can theoretically also be used as carriers for epitopes from other pathogens. The increasing knowledge of pathogen genomes and the availability of efficient systems to prepare large amounts of recombinant proteins greatly facilitate the potential use of recombinant proteins as vaccines. The present review is a critical analysis of the state of the art in this field.
Collapse
Affiliation(s)
- Eric Soler
- Cell Biology Department, Erasmus MC, dr. Molewaterplein 50, 3015 GE, Rotterdam, The Netherlands.
| | | |
Collapse
|