1
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
2
|
Stijlemans B, Schoovaerts M, De Baetselier P, Magez S, De Trez C. The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Front Immunol 2022; 13:865395. [PMID: 35464430 PMCID: PMC9022210 DOI: 10.3389/fimmu.2022.865395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
African trypanosomes are extracellular flagellated unicellular protozoan parasites transmitted by tsetse flies and causing Sleeping Sickness disease in humans and Nagana disease in cattle and other livestock. These diseases are usually characterized by the development of a fatal chronic inflammatory disease if left untreated. During African trypanosome infection and many other infectious diseases, the immune response is mediating a see-saw balance between effective/protective immunity and excessive infection-induced inflammation that can cause collateral tissue damage. African trypanosomes are known to trigger a strong type I pro-inflammatory response, which contributes to peak parasitaemia control, but this can culminate into the development of immunopathologies, such as anaemia and liver injury, if not tightly controlled. In this context, the macrophage migration inhibitory factor (MIF) and the interleukin-10 (IL-10) cytokines may operate as a molecular “Yin-Yang” in the modulation of the host immune microenvironment during African trypanosome infection, and possibly other infectious diseases. MIF is a pleiotropic pro-inflammatory cytokine and critical upstream mediator of immune and inflammatory responses, associated with exaggerated inflammation and immunopathology. For example, it plays a crucial role in the pro-inflammatory response against African trypanosomes and other pathogens, thereby promoting the development of immunopathologies. On the other hand, IL-10 is an anti-inflammatory cytokine, acting as a master regulator of inflammation during both African trypanosomiasis and other diseases. IL-10 is crucial to counteract the strong MIF-induced pro-inflammatory response, leading to pathology control. Hence, novel strategies capable of blocking MIF and/or promoting IL-10 receptor signaling pathways, could potentially be used as therapy to counteract immunopathology development during African trypanosome infection, as well as during other infectious conditions. Together, this review aims at summarizing the current knowledge on the opposite immunopathological molecular “Yin-Yang” switch roles of MIF and IL-10 in the modulation of the host immune microenvironment during infection, and more particularly during African trypanosomiasis as a paradigm.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Maxime Schoovaerts
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, Vlaams Instituut voor Biotechnologie (VIB) Centre for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory of Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
3
|
Mendes B, Minori K, Consonni SR, Andrews NW, Miguel DC. Causative Agents of American Tegumentary Leishmaniasis Are Able to Infect 3T3-L1 Adipocytes In Vitro. Front Cell Infect Microbiol 2022; 12:824494. [PMID: 35186797 PMCID: PMC8855065 DOI: 10.3389/fcimb.2022.824494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Although macrophages have long been considered key players in the course of Leishmania infections, other non-professional phagocytes have lately been shown to maintain low levels of the parasite in safe intracellular niches. Recently, it was demonstrated that the adipose tissue is capable of harboring Old World L. (L.) infantum in mice. However, there is no evidence of experimental adipocyte infection with New World Leishmania species so far. In addition, it was not known whether adipocytes would be permissive for formation of the unique, large and communal parasitophorous vacuoles that are typical of L. (L.) amazonensis in macrophages. Here we evaluated the ability of L. (L.) amazonensis and L. (V.) braziliensis promastigotes and amastigotes to infect 3T3-L1 fibroblast-derived adipocytes (3T3-Ad) using light and transmission electron microscopy. Our results indicate that amastigotes and promastigotes of both species were capable of infecting and surviving inside pre- and fully differentiated 3T3-Ad for up to 144 h. Importantly, L. (L.) amazonensis amastigotes resided in large communal parasitophorous vacuoles in pre-adipocytes, which appeared to be compressed between large lipid droplets in mature adipocytes. In parallel, individual L. (V.) braziliensis amastigotes were detected in single vacuoles 144 h post-infection. We conclude that 3T3-Ad may constitute an environment that supports low loads of viable parasites perhaps contributing to parasite maintenance, since amastigotes of both species recovered from these cells differentiated into replicative promastigotes. Our findings shed light on the potential of a new host cell model that can be relevant to the persistence of New World Leishmania species.
Collapse
Affiliation(s)
- Bruno Mendes
- Department of Animal Biology, Institute of Biology, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Karen Minori
- Department of Animal Biology, Institute of Biology, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Silvio R. Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas – UNICAMP, Campinas, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Danilo C. Miguel
- Department of Animal Biology, Institute of Biology, State University of Campinas – UNICAMP, Campinas, Brazil
- *Correspondence: Danilo C. Miguel,
| |
Collapse
|
4
|
Guimarães TT, Gomes SMR, Albuquerque RAAC, Lima AKC, Braga GF, Souza JB, Assis M, Brito ACS, Santos RF, Da Silva T, Siqueira LM, Ventura BD, Rodrigues LS, Terra R, Da Silva SAG, Dutra PML. Chronic Aerobic Training at Different Volumes in the Modulation of Macrophage Function and in vivo Infection of BALB/c Mice by Leishmania major. Front Microbiol 2021; 12:734355. [PMID: 34616386 PMCID: PMC8489854 DOI: 10.3389/fmicb.2021.734355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022] Open
Abstract
Physical inactivity is one of the main causes of chronic diseases; however, strenuous exercise can induce immunosuppression. Several studies suggest that moderate amounts of exercise lead to a Th1 response, favoring the resolution of infections caused by intracellular microorganisms, while high volumes of exercise tend to direct the response to Th2, favoring infection by them. Leishmaniasis is a parasitic disease promoted by parasites of the Leishmania genus, with clinical manifestations that vary according to the species of the parasite and the immune response of the host. The experimental Leishmania major–BALB/C mouse model provides a good model for the resistance (Th1 response) or susceptibility (Th2 response) that determines the progression of this infection. The aim of this study was to evaluate the effect of aerobic training at different volumes on modulation of in vitro macrophage infection by L. major, as well as to assess the effect of high volume (HV) aerobic training on the development of L. major in vivo in BALB/c mice. Uninfected animals were submitted to various exercise volumes: none (SED), light (LV), moderate (MV), high (HV), very high (VHV), and tapering (TAP). The macrophages of these animals were infected by L. major and the LV and MV groups showed a decrease in the infection factor, while the VHV showed an increase in the infection factor, when treated with LPS. The cytokine concentration pattern measured in the supernatants of these macrophages suggested a predominant Th1 response profile in the LV and MV groups, while the Th2 profile predominated in the VHV and TAP groups. Groups of BALB/C mice infected with L. major were subjected to high volume (iHV) or non-periodized high volume (iNPHV) exercise or kept sedentary (iSED). The exercised animals suffered a significant increase in injuries caused by the parasites. The animals in the group submitted to high volume exercise (iHV) showed visceralization of the infection. These data strongly suggest that a very high volume of aerobic training increased the susceptibility of BALB/C mice to L. major infection, while moderate distribution of training loads promoted immunological balance, better controlling the infection by this parasite.
Collapse
Affiliation(s)
- T T Guimarães
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - S M R Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R A A C Albuquerque
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A K C Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G F Braga
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J B Souza
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Assis
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C S Brito
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R F Santos
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Da Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L M Siqueira
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B D Ventura
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L S Rodrigues
- Laboratory of Immunopathology, Faculty of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Terra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.,Colégio Brigadeiro Newton Braga (CBNB), Diretoria de Ensino (DIRENS), Força Aérea Brasileira (FAB), Rio de Janeiro, Brazil
| | - S A G Da Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P M L Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Pathan S, Singh GP. Synthesis of novel tetrazole tetrahydrobenzo[b]thiophene via Ugi-MCR: As new antileishmanial prototype. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Gonzalez K, Calzada JE, Tomokane TY, Pacheco CMS, Flores GVA, Castro Gomes CM, Pereira Corbett CE, Saldaña A, Laurenti MD. In situ study of cellular immune response in human cutaneous lesions caused by Leishmania (Viannia) panamensis in Panama. Parasite Immunol 2020; 43:e12801. [PMID: 33068443 DOI: 10.1111/pim.12801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
AIMS Leishmaniasis is considered a disease with multiple clinical/immunopathological characteristics, depending on the immunity of the host and the species of the parasite. In Panama, the most prevalent species that causes localized cutaneous leishmaniasis (LCL) is Leishmania (Viannia) panamensis, and its immune response is poorly studied. Therefore, we evaluated by immunohistochemistry, the in situ immune response during this infection. METHODS AND RESULTS Biopsies from Panamanian patients with LCL were collected and processed by histological techniques. Infection by L. (V.) panamensis was demonstrated by isolation in culture and molecular characterization by Hsp70-RFLP. The in situ immune response was assessed by immunohistochemistry. The immune response was characterized by predominance of T cells, mainly CD8 cells that showed positive correlation with IFN-γ and Granzyme B. CD4 cells presented positive correlation with both IFN-γ and IL-13, pointed by mixed cellular immune response. Regulatory response was characterized by FoxP3 cells, which showed positive correlation to IL-10 but not with TGF-β. CONCLUSIONS L. (V.) panamensis infection triggers a mixed cellular immune response, characterized by the presence of pro-inflammatory, anti-inflammatory and regulatory elements in the skin lesion of Panamanian patients. These data contribute to a better understanding of the immunopathogenesis of Leishmania Viannia infection in Panama.
Collapse
Affiliation(s)
- Kadir Gonzalez
- Departamento de Parasitología Molecular, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Panamá.,Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - José Eduardo Calzada
- Departamento de Parasitología Molecular, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Panamá.,Facultad de Medicina Veterinaria, Universidad de Panamá, Panamá, Panamá
| | - Thaise Yumie Tomokane
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carmen Maria Sandoval Pacheco
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Gabriela Venicia Araujo Flores
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Cláudia Maria Castro Gomes
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Carlos Eduardo Pereira Corbett
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Azael Saldaña
- Departamento de Parasitología Molecular, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama, Panamá.,Centro de Investigación y Diagnóstico de Enfermedades Parasitarias, Facultad de Medicina, Universidad de Panamá, Panamá, Panamá
| | - Marcia Dalastra Laurenti
- Departamento de Patologia, Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
7
|
Kröber-Boncardo C, Lorenzen S, Brinker C, Clos J. Casein kinase 1.2 over expression restores stress resistance to Leishmania donovani HSP23 null mutants. Sci Rep 2020; 10:15969. [PMID: 32994468 PMCID: PMC7525241 DOI: 10.1038/s41598-020-72724-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/04/2020] [Indexed: 01/25/2023] Open
Abstract
Leishmania donovani is a trypanosomatidic parasite and causes the lethal kala-azar fever, a neglected tropical disease. The Trypanosomatida are devoid of transcriptional gene regulation and rely on gene copy number variations and translational control for their adaption to changing conditions. To survive at mammalian tissue temperatures, L. donovani relies on the small heat shock protein HSP23, the loss of which renders the parasites stress sensitive and impairs their proliferation. Here, we analysed a spontaneous escape mutant with wild type-like in vitro growth. Further selection of this escape strains resulted in a complete reversion of the phenotype. Whole genome sequencing revealed a correlation between stress tolerance and the massive amplification of a six-gene cluster on chromosome 35, with further analysis showing over expression of the casein kinase 1.2 gene as responsible. In vitro phosphorylation experiments established both HSP23 and the related P23 co-chaperone as substrates and modulators of casein kinase 1.2, providing evidence for another crucial link between chaperones and signal transduction protein kinases in this early branching eukaryote.
Collapse
Affiliation(s)
- Constanze Kröber-Boncardo
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Stephan Lorenzen
- Department of Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christine Brinker
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany
| | - Joachim Clos
- Leishmania Group, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, 20359, Hamburg, Germany.
| |
Collapse
|
8
|
Li X, Körner H, Liu X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front Microbiol 2020; 11:1643. [PMID: 32760383 PMCID: PMC7374010 DOI: 10.3389/fmicb.2020.01643] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
An interesting puzzle is the fact that an infection of a tumor necrosis factor α (TNF)-deficient host with pathogens such as bacteria or parasites that reside intracellularly inevitably ends fatally. Is this due to one specific role of TNF in the immune defense or are different functions responsible for this outcome? In this review we provide an update of the functions of TNF in the defense against the intracellular pathogens Listeria monocytogenes, Mycobacterium tuberculosis, and Leishmania major. Furthermore, we discuss the role of TNF in the generation of proinflammatory macrophages in mouse models of infection and summarize briefly the potential consequences of anti-TNF treatment for infectious diseases.
Collapse
Affiliation(s)
- Xinying Li
- Translational Research Institute, Academy of Medical Science, Henan Provincial People's Hospital, Zhengzhou, China.,School of Life Sciences, Anhui Medical University, Hefei, China
| | - Heinrich Körner
- Key Laboratory of Anti-inflammatory and Immunopharmacology, Institute of Clinical Pharmacology, Ministry of Education, Engineering Technology Research Center of Anti-inflammatory and Immunodrugs in Anhui Province, Anhui Medical University, Hefei, China
| | - Xiaoying Liu
- Translational Research Institute, Academy of Medical Science, Henan Provincial People's Hospital, Zhengzhou, China.,School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
9
|
Mohammed ASA, Tian W, Zhang Y, Peng P, Wang F, Li T. Leishmania lipophosphoglycan components: A potent target for synthetic neoglycoproteins as a vaccine candidate for leishmaniasis. Carbohydr Polym 2020; 237:116120. [PMID: 32241437 DOI: 10.1016/j.carbpol.2020.116120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 03/03/2020] [Indexed: 11/27/2022]
Abstract
Leishmania is an obligate intracellular pathogen that invades phagocytic host cells. Due to its high morbidity and mortality rates, leishmaniasis attracts significant attention. The disease, which is caused by Leishmania parasites, is distributed worldwide, particularly among developing communities, and causes fatal complications if not treated expediently. Unfortunately, the existing treatments are not preventive and do not impede Leishmania infection. Many drugs available for leishmaniasis are becoming less effective due to emerging resistance in some Leishmania species. Other drugs have drawbacks such as low cost-effectiveness, toxicity, and side effects. The World Health Organization (WHO) considers leishmaniasis to be a major public health problem and suggests that the best prevention is to develop a vaccine for this dangerous disease. In this review, we focus on the unique components of lipophosphoglycan (LPG), a component of the Leishmania cell wall, particularly [Galp(1 → 4)-β-[Manp-(1 → 2)-α-Manp-(1 → 2)-α]-Manp] in the cryptic tetrasaccharide cap, and on synthetic approaches as a potent candidate for a leishmaniasis vaccine.
Collapse
Affiliation(s)
- Aiman Saleh A Mohammed
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Weilu Tian
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Youqin Zhang
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Peng Peng
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| | - Tianlu Li
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China; National Glycoengineering Research Center, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
10
|
Leishmania spp. seropositivity in Austrian soldiers returning from the Kosovo. Wien Klin Wochenschr 2020; 132:47-49. [PMID: 31912288 PMCID: PMC6978428 DOI: 10.1007/s00508-019-01598-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022]
Abstract
Leishmaniasis is a severe vector-borne disease with two main clinical forms, visceral leishmaniasis and cutaneous leishmaniasis. Both forms of leishmaniasis are also endemic in Mediterranean countries including the Balkan region from where mainly visceral leishmaniasis is reported. Austrian soldiers returning from Kosovo were screened for anti-Leishmania antibodies to assess the risk of infection during operations. Anti-Leishmania antibodies were detected in more than 20% of the soldiers investigated, which indicates a considerable risk of infection during missions in this area and thus suggests the application of protective measures.
Collapse
|
11
|
Conceição-Silva F, Morgado FN. Leishmania Spp-Host Interaction: There Is Always an Onset, but Is There an End? Front Cell Infect Microbiol 2019; 9:330. [PMID: 31608245 PMCID: PMC6761226 DOI: 10.3389/fcimb.2019.00330] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/04/2019] [Indexed: 01/09/2023] Open
Abstract
For a long time Leishmaniasis had been considered as a neglected tropical disease. Recently, it has become a priority in public health all over the world for different aspects such as geographic spread, number of population living at risk of infection as well as the potential lethality and/or the development of disfiguring lesions in the, respectively, visceral and tegumentary forms of the disease. As a result, several groups have been bending over this issue and many valuable data have been published. Nevertheless, parasite-host interactions are still not fully known and, consequently, we do not entirely understand the infection dynamics and parasite persistence. This knowledge may point targets for modulation or blockage, being very useful in the development of measures to interfere in the course of infection/ disease and to minimize the risks and morbidity. In the present review we will discuss some aspects of the Leishmania spp-mammalian host interaction in the onset of infection and after the clinical cure of the lesions. We will also examine the information already available concerning the parasite strategy to evade immune response mainly at the beginning of the infection, as well as during the parasite persistence. This knowledge can improve the conditions of treatment, follow-up and cure control of patients, minimizing the potential damages this protozoosis can cause to infected individuals.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| | - Fernanda N Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute, IOC/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Terra R, Alves PJF, Lima AKC, Gomes SMR, Rodrigues LS, Salerno VP, Da-Silva SAG, Dutra PML. Immunomodulation From Moderate Exercise Promotes Control of Experimental Cutaneous Leishmaniasis. Front Cell Infect Microbiol 2019; 9:115. [PMID: 31131262 PMCID: PMC6510011 DOI: 10.3389/fcimb.2019.00115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/02/2019] [Indexed: 12/11/2022] Open
Abstract
Physical exercise has been described as an important tool in the prevention and treatment of numerous diseases as it promotes a range of responses and adaptations in several biological systems, including the immune system. Studies on the effect of exercise on the immune system could play a critical role in improving public health. Current literature suggests that moderate intensity exercise can modulate the Th1/Th2 dichotomy directing the immune system to a Th1 cellular immune response, which favors the resolution of infections caused by intracellular microorganisms. Leishmaniasis is a group of diseases presenting a wide spectrum of clinical manifestations that range from self-limiting lesions to visceral injuries whose severity can lead to death. The etiological agents responsible for this group of diseases are protozoa of the genus Leishmania. Infections by the parasite Leishmania major in mice (Balb/c) provide a prototype model for the polarization of CD4+ T cell responses of both Th1 (resistance) or Th2 (susceptibility), which determines the progression of infections. The aim of this study was to evaluate the effect of exercise on the development of L. major experimental infections by scanning the pattern of immune response caused by exercise. Groups of Balb/c mice infected with L. major were divided into groups that preformed a physical exercise of swimming three times a week or were sedentary along with treatment or not with the reference drug, meglumine antimoniate. Animals in groups submitted to physical exercise did not appear to develop lesions and presented a significantly lower parasite load independent of drug treatment. They also showed a positive delayed hypersensitivity response to a specific Leishmania antigen compared to control animals. The IFN-γ/IL-4 and IFN-γ/IL10 ratios in trained animals were clearly tilted to a Th1 response in lymph node cells. These data suggest that moderate intensity exercise is able to modulate the Th1 response that provides a protective effect against the development of leishmanial lesions.
Collapse
Affiliation(s)
- Rodrigo Terra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro J. F. Alves
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana K. C. Lima
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shayane M. R. Gomes
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana S. Rodrigues
- Discipline of General Pathology, Department of Pathology and Laboratories, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Verônica P. Salerno
- Laboratory of Exercise Biochemistry and Molecular Motors, School of Physical Education and Sports, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia A. G. Da-Silva
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia M. L. Dutra
- Discipline of Parasitology, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Metacyclogenesis of Leishmania (Viannia) guyanensis: a comprehensive study of the main transformation features in axenic culture and purification of metacyclic promastigotes by negative selection with Bauhinia purpurea lectin. Parasitology 2018; 146:716-727. [PMID: 30588899 DOI: 10.1017/s0031182018002111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leishmania (Viannia) guyanensis is one species that causes cutaneous leishmaniasis in the New World. The incidence of infections with this parasite is probably underestimated and few studies exist on this species, despite its epidemiological importance. In particular, there are no studies concerning L. guyanensis metacyclogenesis and no technique for obtaining metacyclic promastigotes for this species is presently available. Here, we have studied L. guyanensis metacyclogenesis in axenic culture, describing the main changes that occur during this process, namely, in morphology and size, sensitivity to complement-mediated lysis, surface carbohydrates and infectivity to macrophages. We have shown that metacyclogenesis in L. guyanensis promastigotes is basically complete on the 4th day of culture, as determined by decreased body size, increased flagellum length, resistance to complement-mediated lysis and infectivity. We have also found that only a fraction of the parasites is agglutinated by Bauhinia purpurea lectin. The non-agglutinated parasites, which also peaked on the 4th day of culture, had all morphological traits typical of the metacyclic stage. This is the first report describing metacyclogenesis in L. guyanensis axenic promastigotes and a simple and efficient method for the purification of metacyclic forms. Furthermore, a model of human macrophage infection with L. guyanensis was established.
Collapse
|
14
|
Upadhyay A, Kushwaha P, Gupta S, Dodda RP, Ramalingam K, Kant R, Goyal N, Sashidhara KV. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur J Med Chem 2018; 154:172-181. [DOI: 10.1016/j.ejmech.2018.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 05/09/2018] [Indexed: 12/23/2022]
|
15
|
|
16
|
Khan ZUH, Khan A, Chen Y, Shah NS, Muhammad N, Khan AU, Tahir K, Khan FU, Murtaza B, Hassan SU, Qaisrani SA, Wan P. Biomedical applications of green synthesized Nobel metal nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:150-164. [DOI: 10.1016/j.jphotobiol.2017.05.034] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/23/2017] [Accepted: 05/23/2017] [Indexed: 11/26/2022]
|
17
|
Purohit P, Pandey AK, Singh D, Chouhan PS, Ramalingam K, Shukla M, Goyal N, Lal J, Chauhan PMS. An insight into tetrahydro-β-carboline-tetrazole hybrids: synthesis and bioevaluation as potent antileishmanial agents. MEDCHEMCOMM 2017; 8:1824-1834. [PMID: 30108893 DOI: 10.1039/c7md00125h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
A series of 2,3,4,9-tetrahydro-β-carboline tetrazole derivatives (14a-u) have been synthesized utilizing the Ugi multicomponent reaction and were identified as potential antileishmanial chemotypes. Most of the screened derivatives exhibited significant in vitro activity against the promastigote (IC50 from 0.59 ± 0.35 to 31 ± 1.27 μM) and intracellular amastigote forms (IC50 from 1.57 ± 0.12 to 17.6 ± 0.2 μM) of L. donovani, and their activity is comparable with standard drugs miltefosine and sodium stibogluconate. The most active compound 14t was further studied in vivo against the L. donovani/golden hamster model at a dose of 50 mg kg-1 through the intraperitoneal route for 5 consecutive days, which displayed 75.04 ± 7.28% inhibition of splenic parasite burden. Pharmacokinetics of compound 14t was studied in the golden Syrian hamster, and following a 50 mg kg-1 oral dose, the compound was detected in hamster serum for up to 24 h. It exhibited a large volume of distribution (651.8 L kg-1), high clearance (43.2 L h-1 kg-1) and long mean residence time (10 h).
Collapse
Affiliation(s)
- Pooja Purohit
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Anand Kumar Pandey
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Deepti Singh
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Pradeep Singh Chouhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| | - Karthik Ramalingam
- Division of Biochemistry , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India
| | - Mahendra Shukla
- Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Neena Goyal
- Division of Biochemistry , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India
| | - Jawahar Lal
- Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Prem M S Chauhan
- Medicinal and Process Chemistry Division , CSIR-Central Drug Research Institute , Lucknow-226031 , U.P. , India . ; ; ; Tel: +522 2771940, Extn: 4659, 4660
| |
Collapse
|
18
|
The role of monocytes in models of infection by protozoan parasites. Mol Immunol 2017; 88:174-184. [PMID: 28704704 DOI: 10.1016/j.molimm.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/29/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
The confirmation of developmental differences between tissue macrophages and peripheral monocytes has changed our view of the functions and dynamics of these two important components of the innate immune system. It has been demonstrated conclusively that homeostasis of tissue resident macrophages is maintained by a low proliferative turn over. During an inflammatory response, bone marrow derived monocytes enter the tissue in large numbers and take part in the defense against the pathogens. After the destruction of invading pathogens, these cells disappear and tissue resident macrophages can be detected again. This new appreciation of the innate immune response has not only answered many outstanding questions regarding the role of the different myeloid cell types in inflammation, but also opened up new areas of research relating to the tissue- and pathogen-specific fate of the inflammatory macrophages or dendritic cells (DCs), and the transfer of this knowledge from mouse models to the human immune system. Nevertheless, there is still confusion in infection models, and especially in studies of human infections, as to what extent these recent observations and findings influence previous interpretations of data. This review will focus on insights from mouse models, summarize the literature on the ontogeny of macrophages and monocytes, explain the role of frequently used monocyte markers and effector molecules, and finally, discuss the role of inflammatory monocytes/macrophages/DCs in two experimental parasitic diseases.
Collapse
|
19
|
Immunopathological characterization of human cutaneous leishmaniasis lesions caused by Leishmania (Viannia) spp. in Amazonian Brazil. Parasitol Res 2017; 116:1423-1431. [PMID: 28224222 DOI: 10.1007/s00436-017-5403-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 02/03/2017] [Indexed: 10/20/2022]
Abstract
American cutaneous leishmaniasis (ACL) is a chronic infectious disease caused by different protozoan species of Leishmania, and it is endemic in both tropical and subtropical countries. Using immunohistochemistry, we investigate the density of CD68+, lysozyme+, CD1a+, factor XIIIa+, CD4+, CD8+, CD56+, interferon (IFN)-γ+, and inducible NO synthase (iNOS+) cells. These cells were analyzed from 22 biopsy samples obtained from the lesions of ACL patients, whose infection was caused by Leishmania (Viannia) spp. Histopathological analysis showed dense mononuclear inflammatory infiltration in the dermis, which was composed of lymphocytes, macrophages, plasma cells, and discrete tissue parasitism. Granulomatous reactions were also present in the majority of cases. The density of the activated macrophages was higher than that of inactivated macrophages in the lesions. The density of Langerhans cells (CD1a+) was lower than that of dermal dendrocytes (factor XIIIa+). The density of CD8+ T lymphocytes was higher than that of CD4+ T lymphocytes. The cellular density of these immunological markers in relation to the species of Leishmania demonstrated that L. (Viannia) sp. lesions had higher IFN-γ expression than that Leishmania (Viania) braziliensis lesions. The evaluation of these markers, according to disease progression, did not reveal any significant differences. L. (Viannia) sp. infection leads to a favorable immune response in the host, as predominantly represented by lysozyme+, factor XIIIa+, CD8+ T cells, and the expression of (IFN)-γ+ at the lesion site.
Collapse
|
20
|
Anand D, Yadav PK, Patel OPS, Parmar N, Maurya RK, Vishwakarma P, Raju KSR, Taneja I, Wahajuddin M, Kar S, Yadav PP. Antileishmanial Activity of Pyrazolopyridine Derivatives and Their Potential as an Adjunct Therapy with Miltefosine. J Med Chem 2017; 60:1041-1059. [DOI: 10.1021/acs.jmedchem.6b01447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Pawan Kumar Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Naveen Parmar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | | | - Preeti Vishwakarma
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Kanumuri S. R. Raju
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Isha Taneja
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - M. Wahajuddin
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Susanta Kar
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| | - Prem P. Yadav
- Academy of Scientific and Innovative Research, Anusandhan Bhawan, New Delhi 110025, India
| |
Collapse
|
21
|
Montserrat-Sangrà S, Alborch L, Ordeix L, Solano-Gallego L. TLR-2 and TLR-4 transcriptions in unstimulated blood from dogs with leishmaniosis due to Leishmania infantum at the time of diagnosis and during follow-up treatment. Vet Parasitol 2016; 228:172-179. [PMID: 27692322 DOI: 10.1016/j.vetpar.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 02/01/2023]
Abstract
Innate immunity, in particular, the role of toll-like receptors (TLRs), has not been extensively studied in canine L. infantum infection. The main aim of this study was to determine the transcription of TLR2 and TLR4 in the blood of dogs with natural clinical leishmaniosis at the time of diagnosis and during treatment follow-up and subsequently correlate these findings with clinical, serological and parasitological data. Forty-six Leishmania-seropositive sick dogs with a high antibody level at the time of diagnosis were studied and compared with 34 healthy seronegative dogs. Twenty-two of these sick dogs were treated with meglumine antimoniate and allopurinol and followed-up at 30, 180 and 365days following the start of treatment. Clinical status was defined by a thorough physical examination, complete blood count, biochemistry profile, electrophoresis of serum proteins, and urinary protein/creatinine ratio (UPC). EDTA blood was stored in RNAlater® solution before RNA extraction and cDNA production were performed. TLR2, TLR4 and three reference genes (HPRT-1, CG14980 and SDHA) were studied in each blood sample by real time PCR. The relative quantification of TLR2 was higher (mean 3.5) in sick dogs when compared with seronegative healthy dogs (mean 1.3; P=0.0001) while the relative quantification of TLR4 was similar in both groups. In addition, the relative quantification of TLR2 significantly decreased during follow-up at all time points compared with day 0 whereas no changes were observed with TLR4 transcription. A significant positive correlation was noted between TLR2 and UPC, total protein, beta and gamma globulins, specific L. infantum antibodies and blood parasite load while a negative correlation was observed with albumin, albumin/globulin ratio, hematocrit and hemoglobin. TLR4 transcript did not correlate with any parameter. These findings indicate an up-regulation of TLR2 transcription in unstimulated blood in naturally infected sick dogs as compared to healthy dogs suggesting active innate immune and proinflammatory responses. In addition, TLR2 transcription is reduced with clinical improvement during treatment. In contrast, TLR4 transcription appears to be similar among groups at the time of diagnosis with no changes during treatment follow-up suggesting a less important role for this TLR in clinical canine leishmaniosis.
Collapse
Affiliation(s)
- Sara Montserrat-Sangrà
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Lorena Alborch
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Laura Ordeix
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain; Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
22
|
Lage DP, Martins VT, Duarte MC, Costa LE, Tavares GDSV, Ramos FF, Chávez-Fumagalli MA, Menezes-Souza D, Roatt BM, Tavares CAP, Coelho EAF. Cross-protective efficacy of Leishmania infantum LiHyD protein against tegumentary leishmaniasis caused by Leishmania major and Leishmania braziliensis species. Acta Trop 2016; 158:220-230. [PMID: 26976272 DOI: 10.1016/j.actatropica.2016.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/25/2016] [Accepted: 03/10/2016] [Indexed: 11/19/2022]
Abstract
Vaccination can be considered the most cost-effective strategy to control neglected diseases, but nowadays there is not an effective vaccine available against leishmaniasis. In the present study, a vaccine based on the combination of the Leishmania-specific hypothetical protein (LiHyD) with saponin was tested in BALB/c mice against infection caused by Leishmania major and Leishmania braziliensis species. This antigen was firstly identified in Leishmania infantum and showed to be protective against infection of BALB/c mice using this parasite species. The immunogenicity of rLiHyD/saponin vaccine was evaluated, and the results showed that immunized mice produced high levels of IFN-γ, IL-12 and GM-CSF after in vitro stimulation with rLiHyD, as well as by using L. major or L. braziliensis protein extracts. After challenge, vaccinated animals showed significant reductions in the infected footpad swellings, as well as in the parasite burden in the infection site, liver, spleen, and infected paws draining lymph nodes, when compared to those that were inoculated with the vaccine diluent (saline) or immunized with saponin. The immunization of rLiHyD without adjuvant was not protective against both challenges. The partial protection obtained by the rLiHyD/saponin vaccine was associated with a parasite-specific IL-12-dependent IFN-γ secretion, which was produced mainly by CD4(+) T cells. In these animals, a decrease in the parasite-mediated IL-4 and IL-10 responses, associated with the presence of high levels of LiHyD- and parasite-specific IgG2a isotype antibodies, were also observed. The present study showed that a hypothetical protein that was firstly identified in L. infantum, when combined to a Th1 adjuvant, was able to confer a cross-protection against highly infective stationary-phase promastigotes of two Leishmania species causing tegumentary leishmaniasis.
Collapse
Affiliation(s)
- Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian Tamietti Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lourena Emanuele Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele de Sousa Vieira Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Fonseca Ramos
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel Angel Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Alberto Pereira Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
23
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
24
|
Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures. mBio 2016; 7:mBio.00027-16. [PMID: 27165796 PMCID: PMC4959658 DOI: 10.1128/mbio.00027-16] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly.
Collapse
|
25
|
Abstract
Diseases caused by Leishmania present a worldwide problem, and current therapeutic approaches are unable to achieve a sterile cure. Leishmania is able to persist in host cells by evading or exploiting host immune mechanisms. A thorough understanding of these mechanisms could lead to better strategies for effective management of Leishmania infections. Current research has focused on parasite modification of host cell signaling pathways, entry into phagocytic cells, and modulation of cytokine and chemokine profiles that alter immune cell activation and trafficking to sites of infection. Immuno-therapeutic approaches that target these mechanisms of immune evasion by Leishmania offer promising areas for preclinical and clinical research.
Collapse
|
26
|
Costa DL, Lima-Júnior DS, Nascimento MS, Sacramento LA, Almeida RP, Carregaro V, Silva JS. CCR2 signaling contributes to the differentiation of protective inflammatory dendritic cells in Leishmania braziliensis infection. J Leukoc Biol 2016; 100:423-32. [PMID: 26884611 DOI: 10.1189/jlb.4a0715-288r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/26/2016] [Indexed: 12/11/2022] Open
Abstract
In vertebrate hosts, Leishmania braziliensis parasites infect mainly mononuclear phagocytic system cells, which when activated by T helper cell type 1 cytokines produce nitric oxide and kill the pathogens. Chemokine (C-C motif) receptor 2 is a chemokine receptor that binds primarily chemokine (C-C motif) ligand 2 and has an important role in the recruitment of monocytic phagocytes. Although it has been reported that Leishmania braziliensis infection induces CCR2 expression in the lesions, the role of CCR2 during Leishmania braziliensis infection remains unknown. Here, we showed that CCR2 has a role in mediating protection against Leishmania braziliensis infection in mice. The absence of CCR2 resulted in increased susceptibility to infection and was associated with low amounts of Ly6C(+) inflammatory dendritic cells in the lesions, which we found to be the major sources of tumor necrosis factor production and induced nitric oxide synthase expression in C57BL/6 mice lesions. Consequently, CCR2(-/-) mice showed decreased tumor necrosis factor production and induced nitric oxide synthase expression, resulting in impaired parasite elimination. We also demonstrated that CCR2 has a role in directly mediating the differentiation of monocytes into inflammatory dendritic cells at the infection sites, contributing to the accumulation of inflammatory dendritic cells in Leishmania braziliensis lesions and subsequent control of parasite replication. Therefore, these data provide new information on the role of chemokines during the immune response to infections and identify a potential target for therapeutic interventions in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Diego L Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Djalma S Lima-Júnior
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Manuela S Nascimento
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Laís A Sacramento
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - Roque P Almeida
- Department of Internal Medicine and Pathology, Center for Biological and Health Sciences, Federal University of Sergipe, Aracajú, SE, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; and
| |
Collapse
|
27
|
Jumba BN, Anjili CO, Makwali J, Ingonga J, Nyamao R, Marango S, Choge JK, Khayeka-Wandabwa C. Evaluation of leishmanicidal activity and cytotoxicity of Ricinus communis and Azadirachta indica extracts from western Kenya: in vitro and in vivo assays. BMC Res Notes 2015; 8:650. [PMID: 26541197 PMCID: PMC4635543 DOI: 10.1186/s13104-015-1605-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite advances to targeted leishmanicidal chemotherapy, defies around severe toxicity, recent emergence of resistant variants and absence of rational vaccine still persist. This necessitates search and/or progressive validation of accessible medicinal remedies including plant based. The study examined both in vivo and in vitro response of L. major infection to combined therapy of Ricinus communis and Azadirachta indica extracts in BALB/c mice as the mouse model. A comparative study design was applied. RESULTS BALB/c mice, treated with combination therapy resulted in significantly (p < 0.05) larger reduction of lesion than those treated with monotherapies. The spleno-somatic index was found to be significantly low with combination therapy than monotherapies. Antiparasitic effect of A. indica and R. communis on amastigote with a 50 % inhibitory concentration (IC50) was of 11.5 and 16.5 µg mL(-1) respectively while combination therapy gave 9.0 µg ml(-1) compared to the standard drugs, Pentostam and amphotericin B which had an IC50 of 6.5 and 4.5 µg ml(-1) respectively. Optimal efficacy of A. indica and R. communis was 72 and 59.5 % respectively, combination therapy gave 88 %, while Pentostam and amphotericin B had 98 and 92 % respectively against amastigotes. Against promastigotes A. indica and R. Communis gave an IC50 of 10.1, 25.5 µg mL(-1) respectively, while combination, 12.2 µg mL(-1) against 4.1 and 5.0 µg ml(-1) for Pentostam and amphotericin B respectively. The optimal efficacy of the compounds against promastigotes was 78.0, 61.5 and 91.2 % (A. indica, R. communis and A. indica + R. communis respectively) against 96.5 and 98 % for Pentostam and amphotericin B respectively. The concentrations at optimal efficacy were significantly different (p < 0.05) among the test compounds. An evaluation of the IC50 values of the combination therapies clearly reveals synergistic effects. CONCLUSION Combination therapy of A. indica and R. communis had best antileishmanial activity than the monotherapies. The active ingredients of both R. communis and A. indica need to be fractionated, and studied further for activity against Leishmania parasites.
Collapse
Affiliation(s)
- Bernard N Jumba
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya. .,Applied Science Department, Sigalagala National Polytechnic, P. O. Box 2966, Kakamega, Kenya. .,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, P.O Box 190, Kakamega, 50100, Kenya.
| | - Christopher O Anjili
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya.
| | - Judith Makwali
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya.
| | - Johnstone Ingonga
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya.
| | - Rose Nyamao
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya.
| | - Sylvia Marango
- Department of Biological Science (Parasitology), University of Eldoret, P.O Box 1125-30100, Eldoret, Kenya.
| | - Joseph K Choge
- University of Kabianga, P.O. Box 2030-20200, Kericho, Kenya.
| | - Christopher Khayeka-Wandabwa
- Centre for Biotechnology Research and Development (CBRD), Kenya Medical Research Institute (KEMRI), P.O Box 54840-00200, Nairobi, Kenya. .,Institute of Tropical Medicine and Infectious Diseases-KEMRI (ITROMID-KEMRI), Jomo Kenyatta University of Agriculture and Technology (JKUAT), P.O. Box 62000-00200, Nairobi, Kenya. .,African Population and Health Research Center (APHRC), P.O. Box 10787-00100, Nairobi, Kenya.
| |
Collapse
|
28
|
Schmid M, Dufner B, Dürk J, Bedal K, Stricker K, Prokoph LA, Koch C, Wege AK, Zirpel H, van Zandbergen G, Ecker R, Boghiu B, Ritter U. An Emerging Approach for Parallel Quantification of Intracellular Protozoan Parasites and Host Cell Characterization Using TissueFAXS Cytometry. PLoS One 2015; 10:e0139866. [PMID: 26488169 PMCID: PMC4619545 DOI: 10.1371/journal.pone.0139866] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/17/2015] [Indexed: 01/16/2023] Open
Abstract
Characterization of host-pathogen interactions is a fundamental approach in microbiological and immunological oriented disciplines. It is commonly accepted that host cells start to change their phenotype after engulfing pathogens. Techniques such as real time PCR or ELISA were used to characterize the genes encoding proteins that are associated either with pathogen elimination or immune escape mechanisms. Most of such studies were performed in vitro using primary host cells or cell lines. Consequently, the data generated with such approaches reflect the global RNA expression or protein amount recovered from all cells in culture. This is justified when all host cells harbor an equal amount of pathogens under experimental conditions. However, the uptake of pathogens by phagocytic cells is not synchronized. Consequently, there are host cells incorporating different amounts of pathogens that might result in distinct pathogen-induced protein biosynthesis. Therefore, we established a technique able to detect and quantify the number of pathogens in the corresponding host cells using immunofluorescence-based high throughput analysis. Paired with multicolor staining of molecules of interest it is now possible to analyze the infection profile of host cell populations and the corresponding phenotype of the host cells as a result of parasite load.
Collapse
Affiliation(s)
- Maximilian Schmid
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Bianca Dufner
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Julius Dürk
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Konstanze Bedal
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Kristina Stricker
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Lukas Ali Prokoph
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Christoph Koch
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Anja K. Wege
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
| | - Henner Zirpel
- Division of Immunology, Paul-Ehrlich-Institute, Langen, Germany
| | - Ger van Zandbergen
- Department of Gynecology and Obstetrics, University of Regensburg, Regensburg, Germany
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | - Uwe Ritter
- Institute of Immunology, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
29
|
Nash AA, Dalziel RG, Fitzgerald JR. Recovery from Infection. MIMS' PATHOGENESIS OF INFECTIOUS DISEASE 2015. [PMCID: PMC7173530 DOI: 10.1016/b978-0-12-397188-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Dendritic cell profile induced by Schistosoma mansoni antigen in cutaneous leishmaniasis patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:743069. [PMID: 25309922 PMCID: PMC4182898 DOI: 10.1155/2014/743069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022]
Abstract
The inflammatory response in cutaneous leishmaniasis (CL), although responsible for controlling the infection, is associated with the pathogenesis of disease. Conversely, the immune response induced by S. mansoni antigens is able to prevent immune-mediated diseases. The aim of this study was to evaluate the potential of the S. mansoni Sm29 antigen to change the profile of monocyte-derived dendritic cells (MoDCs) from subjects with cutaneous leishmaniasis (CL) in vitro. Monocytes derived from the peripheral blood mononuclear cells of twelve patients were cultured with GM-CSF and IL-4 for differentiation into dendritic cells and then stimulated with soluble Leishmania antigen (SLA) in the presence or absence of Sm29 antigen. The expression of surface molecules associated with maturation and activation (HLA-DR, CD40, CD83, CD80, and CD86), inflammation (IL-12, TNF), and downregulation (IL-10, IL-10R) was evaluated using flow cytometry. We observed that the frequencies of HLA-DR, CD83, CD80, and CD86 as well as of IL-10 and IL-10R on MoDCs were higher in cultures stimulated with Sm29, compared to the unstimulated cell cultures. Our results indicate that the Sm29 antigen is able to activate regulatory MoDCs in patients with cutaneous leishmaniasis. It might be useful to control the inflammatory process associated with this disease.
Collapse
|
31
|
Shivahare R, Vishwakarma P, Parmar N, Yadav PK, Haq W, Srivastava M, Gupta S, Kar S. Combination of liposomal CpG oligodeoxynucleotide 2006 and miltefosine induces strong cell-mediated immunity during experimental visceral leishmaniasis. PLoS One 2014; 9:e94596. [PMID: 24732039 PMCID: PMC3986403 DOI: 10.1371/journal.pone.0094596] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/18/2014] [Indexed: 01/07/2023] Open
Abstract
Immuno-modulators in combination with antileishmanial drug miltefosine is a better therapeutic approach for treatment of Visceral Leishmaniasis (VL) as it not only reduces the dose of miltefosine but also shortens the treatment regimen. However, immunological mechanisms behind the perceived benefits of this combination therapy have not been investigated in detail. In the present study, we hypothesized that potential use of drugs that target the host in addition to the parasite might represent an alternative strategy for combination therapy. We investigated immune responses generated in Leishmania donovani infected animals (hamsters and mice) treated with combination of CpG-ODN-2006 and miltefosine at short dose regimen. Infected animals were administered CpG-ODN-2006 (0.4 mg/kg, single dose), as free and liposomal form, either alone or in combination with miltefosine for 5 consecutive days and parasite clearance was evaluated at day 4 and 7 post treatment. Animals that received liposomal CpG-ODN-2006 (lipo-CpG-ODN-2006) and sub-curative miltefosine (5 mg/kg) showed the best inhibition of parasite multiplication (∼97%) which was associated with a biased Th1 immune response in. Moreover, compared to all the other treated groups, we observed increased mRNA expression levels of pro-inflammatory cytokines (IFN-γ, TNF-α and IL-12) and significantly suppressed levels of Th2 cytokines (IL-10 and TGF-β) on day 4 post treatment in animals that underwent combination therapy with lipo-CpG-ODN-2006 and sub-curative miltefosine. Additionally, same therapy also induced heightened iNOS mRNA levels and NO generation, increased IgG2 antibody level and strong T-cell response in these hamsters compared with all the other treated groups. Collectively, our results suggest that combination of lipo-CpG-ODN-2006 and sub-curative miltefosine generates protective T-cell response in an animal model of visceral leishmaniasis which is characterized by strong Th1 biased immune response thereby underlining our hypothesis that combination therapy, at short dose regimen can be used as a novel way of treating visceral leishmaniasis.
Collapse
Affiliation(s)
- Rahul Shivahare
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Preeti Vishwakarma
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Naveen Parmar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Pawan Kumar Yadav
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Wahajul Haq
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mrigank Srivastava
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Suman Gupta
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Susanta Kar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
- * E-mail:
| |
Collapse
|
32
|
Shivahare R, Korthikunta V, Chandasana H, Suthar MK, Agnihotri P, Vishwakarma P, Chaitanya TK, Kancharla P, Khaliq T, Gupta S, Bhatta RS, Pratap JV, Saxena JK, Gupta S, Tadigoppula N. Synthesis, Structure–Activity Relationships, and Biological Studies of Chromenochalcones as Potential Antileishmanial Agents. J Med Chem 2014; 57:3342-57. [DOI: 10.1021/jm401893j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rahul Shivahare
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Venkateswarlu Korthikunta
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Hardik Chandasana
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Manish K. Suthar
- Division
of Biochemistry, CSIR−Central Drug Research Institute, Lucknow-226 031, Uttar Pradesh, India
| | - Pragati Agnihotri
- Division
of Molecular and Structural Biology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Telaprolu K. Chaitanya
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Papireddy Kancharla
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Tanvir Khaliq
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Shweta Gupta
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - J. Venkatesh Pratap
- Division
of Molecular and Structural Biology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Jitendra K. Saxena
- Division
of Biochemistry, CSIR−Central Drug Research Institute, Lucknow-226 031, Uttar Pradesh, India
| | - Suman Gupta
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Narender Tadigoppula
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| |
Collapse
|
33
|
Katara GK, Raj A, Kumar R, Avishek K, Kaushal H, Ansari NA, Bumb RA, Salotra P. Analysis of localized immune responses reveals presence of Th17 and Treg cells in cutaneous leishmaniasis due to Leishmania tropica. BMC Immunol 2013; 14:52. [PMID: 24267152 PMCID: PMC3840658 DOI: 10.1186/1471-2172-14-52] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/13/2013] [Indexed: 12/26/2022] Open
Abstract
Purpose The interaction between the Leishmania parasite and the host cell involves complex, multifaceted processes. The disease severity in cutaneous leishmaniasis (CL) is largely dependent on the causative species. Most of the information on immune responses in human CL is available with respect to L. major infection and is lacking for L. tropica species. In this study, we employed cytokine/chemokine/receptor membrane cDNA array to capture comprehensive picture of immuno-determinants in localized human tissue during L. tropica infection. Expression of selected molecules was evaluated by real time PCR in dermal lesion tissues at pre- and post treatment stages. Plasma IL-17 level was estimated by sandwich ELISA. Results The cDNA array analysis identified several immuno-determinants in tissue lesions of Indian CL including cytokines (IFN-γ, TNF-α, IL-1β, IL-10, IL-13), chemokines (IL-8, CCL2, CCL3, CCL4) and apoptotic molecules (Fas, TRAIL, IRF-1). Elevated mRNA levels of Th17 (IL-17, IL-23 and RORγt) and Treg (CD25, CTLA-4 and Foxp3) markers were observed in lesion tissues of CL patients compared to the control group, which subsided post treatment. Plasma IL-17 levels were found to be significantly higher in CL samples compared to controls. Conclusions In addition to defining comprehensive immunological responses inside lesion tissues of CL patients, our study demonstrated the presence of Th17 and Treg cells in CL caused by L. tropica.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Poonam Salotra
- National Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi 110029, India.
| |
Collapse
|
34
|
Chauhan K, Sharma M, Shivahare R, Debnath U, Gupta S, Prabhakar YS, Chauhan PMS. Discovery of triazine mimetics as potent antileishmanial agents. ACS Med Chem Lett 2013; 4:1108-13. [PMID: 24900613 DOI: 10.1021/ml400317e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/01/2013] [Indexed: 01/16/2023] Open
Abstract
The World Health Organization has classified the leishmaniasis as a major tropical disease. The discovery of new compounds for leishmaniasis is therefore a pressing concern for the anti-infective research program. We have synthesized 19 compounds of triazine dimers as novel antileishmanial agents. Most of the synthesized derivatives exhibited better activity against intracellular amastigotes (IC50 ranging from 0.77 to 10.32 μM) than the control, pentamidine (IC50 = 13.68 μM), and are not toxic to Vero cells. Compounds 14 and 15 showed significant in vivo inhibition of 74.41% and 62.64%, respectively, in L. donovani/hamster model. Moreover, expansion of Th1-type and suppression of Th2-type immune responses proved that compound 14 stimulates mouse macrophages to prevent the progression of leishmania parasite. The molecular docking studies involving PTR1 protein PDB further validated the concepts involved in the design of these compounds. Among the investigated analogues, compound 14 has emerged as the potential one to enlarge the scope of the study.
Collapse
Affiliation(s)
- Kuldeep Chauhan
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Moni Sharma
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Rahul Shivahare
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Utsab Debnath
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Suman Gupta
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Yenamandra S. Prabhakar
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Prem M. S. Chauhan
- Medicinal and Process Chemistry Division and ‡Division of Parasitology, CSIR—Central Drug Research Institute, Lucknow 226031, U.P., India
| |
Collapse
|
35
|
2,3,7,8-tetrachlorodibenzo-p-dioxin slows the progression of experimental cutaneous Leishmaniasis in susceptible BALB/c and SCID mice. PLoS One 2013; 8:e76259. [PMID: 24098456 PMCID: PMC3788076 DOI: 10.1371/journal.pone.0076259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/22/2013] [Indexed: 12/01/2022] Open
Abstract
In a model of experimental cutaneous leishmaniasis, pre-exposure of Leishmania major-resistant mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor agonist, causes suppression of the protective anti-parasite T helper 1 response while paradoxically also reducing parasite burdens in those animals. In this study, we examined if TCDD exposure could also reduce parasite burdens in L. major-susceptible BALB/c mice. In the highest dose group (160 µg/Kg), TCDD treatment caused a significant reduction of parasite burdens by 10-fold after three weeks while also causing a significant lymphoid atrophy indicating suppression of the non-protective T helper 2 response. A dose-dependent delay of foot lesion progression was also observed such that lesion size in the highest dose group was less than half that of controls after 35 days of infection. Importantly, although TCDD exposure initially reduced disease severity and prolonged the course of disease by as much as three fold in some animals, this effect was transitory and TCDD did not induce resistance to L. major infection. Because TCDD exposure reduced L. major burdens in both resistant and susceptible mice, we hypothesized that TCDD reduces L. major burdens in mice by a mechanism that does not involve adaptive immunity. To test this, severe combined immunodeficient (SCID) mice were used. In mice infected with a moderate number of L. major (10,000), TCDD treatment caused a time- and dose-dependent decrease of parasite burdens by nearly 100-fold after six weeks in the highest dose group (200 µg/Kg). A significant and dose-dependent delay of foot lesion progression was also observed in these animals. These results indicate that TCDD exposure can reduce the severity of leishmanial disease in mice independent of adaptive immunity.
Collapse
|
36
|
Rodrigues EHG, Soares FCDS, Werkhäuser RP, de Brito MEF, Fernandes O, Abath FGC, Brandão A. The compositional landscape of minicircle sequences isolated from active lesions and scars of American cutaneous leishmaniasis. Parasit Vectors 2013; 6:228. [PMID: 23924509 PMCID: PMC3750493 DOI: 10.1186/1756-3305-6-228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 08/02/2013] [Indexed: 11/15/2022] Open
Abstract
Background American cutaneous leishmaniasis (ACL) is characterized by cutaneous lesions that heal spontaneously or after specific treatment. This paper reports on the analysis of kDNA minicircle sequences from clinical samples (typical lesions and scars) that were PCR-amplified with specific primers for Leishmania species of the subgenus Viannia. Methods From 56 clinical isolates we obtained a single amplified fragment (ca. 790 bp), which after cloning and sequencing resulted in 290 minicircle sequences from both active lesions and scars. We aimed to get a compositional profile of these sequences in clinical samples and evaluate the corresponding compositional changes. Sequences were analyzed with the compseq and wordcount (Emboss package) to get the composition of di-, tri-, tetra-, penta- and hexanucleotides. Additionally, we built a nucleotide dictionary with words of 7, 8, 9 and 10 nucleotides. Results This compositional analysis showed that minicircles amplified from active cutaneous lesions and scars have a distinct compositional profile as viewed by nucleotide composition of words up to 10mer. With regard to the most frequent nucleotide words above length 6, there is also a distinct pattern for 7, 8, 9 and 10mer. Conclusion These results indicate that minicircle sequences can be monitored upon direct exposure to a selection/stressing environment (e.g. chemical action) by evaluating their nucleotide compositional profile. It might be useful as a molecular tool in research concerning the evolution of infecting Leishmania in both vector and vertebrate hosts.
Collapse
|
37
|
Sharma M, Chauhan K, Shivahare R, Vishwakarma P, Suthar MK, Sharma A, Gupta S, Saxena JK, Lal J, Chandra P, Kumar B, Chauhan PMS. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J Med Chem 2013; 56:4374-92. [PMID: 23611626 DOI: 10.1021/jm400053v] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The high potential of quinazolinone containing natural products and their derivatives in medicinal chemistry led us to discover four novel series of 53 compounds of quinazolinone based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal activity against intracellular amastigotes (IC50 from 0.65 ± 0.2 to 7.76 ± 2.1 μM) as compared to miltefosine (IC50 = 8.4 ± 2.1 μM) and nontoxic toward the J-774A.1 cell line and Vero cells. Moreover, activation of Th1 type and suppression of Th2 type immune responses and induction in nitric oxide generation proved that 8a and 8g induce murine macrophages to prevent survival of parasites. Compounds 8a and 8g exhibited significant in vivo inhibition of parasite 73.15 ± 12.69% and 80.93 ± 10.50% against Leishmania donovani /hamster model. Our results indicate that compounds 8a, 8g, and 9f represent a new structural lead for this serious and neglected disease.
Collapse
Affiliation(s)
- Moni Sharma
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226 001, U.P., India
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vinogradov SN, Bailly X, Smith DR, Tinajero-Trejo M, Poole RK, Hoogewijs D. Microbial eukaryote globins. Adv Microb Physiol 2013; 63:391-446. [PMID: 24054801 DOI: 10.1016/b978-0-12-407693-8.00009-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bioinformatics survey of about 120 protist and 240 fungal genomes and transcriptomes revealed a broad array of globins, representing five of the eight subfamilies identified in bacteria. Most conspicuous is the absence of protoglobins and globin-coupled sensors, except for a two-domain globin in Leishmanias, that comprises a nucleotidyl cyclase domain, and the virtual absence of truncated group 3 globins. In contrast to bacteria, co-occurrence of more than two globin subfamilies appears to be rare in protists. Although globins were lacking in the Apicomplexa and the Microsporidia intracellular pathogens, they occurred in the pathogenic Trypanosomatidae, Stramenopiles and certain fungi. Flavohaemoglobins (FHbs) and related single-domain globins occur across the protist groups. Fungi are unique in having FHbs co-occurring with sensor single-domain globins (SSDgbs). Obligately biotrophic fungi covered in our analysis lack globins. Furthermore, SSDgbs occur only in a heterolobosean amoeba, Naegleria and the stramenopile Hyphochytrium. Of the three subfamilies of truncated Mb-fold globins, TrHb1s appear to be the most widespread, occurring as multiple copies in chlorophyte and ciliophora genomes, many as multidomain proteins. Although the ciliates appear to have only TrHb1s, the chlorophytes have Mb-like globins and TrHb2s, both closely related to the corresponding plant globins. The presently available number of protist genomes is inadequate to provide a definitive census of their globins. Bayesian molecular analyses of single-domain 3/3 Mb-fold globins suggest a close relationship of chlorophyte and haptophyte globins, including choanoflagellate and Capsaspora globins to land plant symbiotic and non-symbiotic haemoglobins and to vertebrate neuroglobins.
Collapse
|
39
|
Delgado-Ortega M, Marc D, Dupont J, Trapp S, Berri M, Meurens F. SOCS proteins in infectious diseases of mammals. Vet Immunol Immunopathol 2012; 151:1-19. [PMID: 23219158 PMCID: PMC7112700 DOI: 10.1016/j.vetimm.2012.11.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 10/31/2012] [Accepted: 11/13/2012] [Indexed: 12/17/2022]
Abstract
As for most biological processes, the immune response to microbial infections has to be tightly controlled to remain beneficial for the host. Inflammation is one of the major consequences of the host's immune response. For its orchestration, this process requires a fine-tuned interplay between interleukins, endothelial cells and various types of recruited immune cells. Suppressors of cytokine signalling (SOCS) proteins are crucially involved in the complex control of the inflammatory response through their actions on various signalling pathways including the JAK/STAT and NF-κB pathways. Due to their cytokine regulatory functions, they are frequent targets for exploitation by infectious agents trying to escape the host's immune response. This review article aims to summarize our current knowledge regarding SOCS family members in the different mammalian species studied so far, and to display their complex molecular interactions with microbial pathogens.
Collapse
Affiliation(s)
- Mario Delgado-Ortega
- Institut National de la Recherche Agronomique (INRA), UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
40
|
Santarém N, Silvestre R, Tavares J, Silva M, Cabral S, Maciel J, Cordeiro-da-Silva A. Immune response regulation by leishmania secreted and nonsecreted antigens. J Biomed Biotechnol 2012; 2007:85154. [PMID: 17710243 PMCID: PMC1940321 DOI: 10.1155/2007/85154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/06/2007] [Accepted: 04/29/2007] [Indexed: 11/17/2022] Open
Abstract
Leishmania infection consists in two sequential events, the host cell colonization followed by the proliferation/dissemination of the parasite. In this review, we discuss the importance of two distinct sets of molecules, the secreted and/or surface and the nonsecreted antigens. The importance of the immune response against secreted and surface antigens is noted in the establishment of the infection and we dissect the contribution of the nonsecreted antigens in the immunopathology associated with leishmaniasis, showing the importance of these panantigens during the course of the infection. As a further example of proteins belonging to these two different groups, we include several laboratorial observations on Leishmania Sir2 and LicTXNPx as excreted/secreted proteins and LmS3arp and
LimTXNPx as nonsecreted/panantigens. The role of these two groups of antigens in the immune response observed during the infection is discussed.
Collapse
Affiliation(s)
- Nuno Santarém
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Ricardo Silvestre
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Tavares
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marta Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sofia Cabral
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Joana Maciel
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Departamento de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4099-030 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- *Anabela Cordeiro-da-Silva:
| |
Collapse
|
41
|
Azevedo E, Oliveira LT, Castro Lima AK, Terra R, Dutra PML, Salerno VP. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va. J Parasitol Res 2012; 2012:275436. [PMID: 22792440 PMCID: PMC3391898 DOI: 10.1155/2012/275436] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 11/18/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.
Collapse
Affiliation(s)
- Elisama Azevedo
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Microbiologia Médica, Faculdade de Ciências Médicas, UERJ, 20550-170 Rio de Janerio, RJ, Brazil
| | - Leandro Teixeira Oliveira
- Departamento Biociências, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, 21941-599 Rio de Janerio, RJ, Brazil
| | - Ana Karina Castro Lima
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Microbiologia Médica, Faculdade de Ciências Médicas, UERJ, 20550-170 Rio de Janerio, RJ, Brazil
| | - Rodrigo Terra
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Biodinâmica do Movimento, EEFD, UFRJ, 21941-599 Rio de Janerio, RJ, Brazil
| | - Patrícia Maria Lourenço Dutra
- Laboratório de Imunologia e Bioquímica de Protozoários, Departamento de Microbiologia, Imunologia e Parasitologia, FCM, UERJ, Avenida Professor Manuel de Abreu 444 5° andar. Vila Isabel, 20550-170 Rio de Janeiro, RJ, Brazil
| | - Verônica P. Salerno
- Departamento Biociências, Escola de Educação Física e Desportos, Universidade Federal do Rio de Janeiro, 21941-599 Rio de Janerio, RJ, Brazil
| |
Collapse
|
42
|
Das A, Ali N. Vaccine Development Against Leishmania donovani. Front Immunol 2012; 3:99. [PMID: 22615707 PMCID: PMC3351671 DOI: 10.3389/fimmu.2012.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for protection against this lethal infection.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology Kolkata, India
| | | |
Collapse
|
43
|
Alexander J, Brombacher F. T helper1/t helper2 cells and resistance/susceptibility to leishmania infection: is this paradigm still relevant? Front Immunol 2012; 3:80. [PMID: 22566961 PMCID: PMC3342373 DOI: 10.3389/fimmu.2012.00080] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/28/2012] [Indexed: 11/13/2022] Open
Abstract
Work in large part on Leishmania major in the 1980s identified two distinct apparently counter-regulatory CD4+ T cell populations, T helper (h)1 and Th2, that controlled resistance/susceptibility to infection respectively. However, the generation of IL-4−/− mice in the 1990s questioned the paramount role of this Th2 archetypal cytokine in the non-healing response to Leishmania infection. The more recent characterization of CD4+ T cell regulatory populations and further effector CD4+ T helper populations, Th17, Th9, and T follicular (f)h cells as well as the acknowledged plasticity in T helper cell function has further added to the complexity of host pathogen interactions. These interactions are complicated by the multiplicity of cells that respond to CD4+ T cell subset signatory cytokines, as well as the diversity of Leishmania species that are often subject to significantly different immune-regulatory controls. In this article we review current knowledge with regard to the role of CD4+ T cells and their products during Leishmania infection. In particular we update on our studies using conditional IL-4Rα gene-deficient mice that have allowed dissection of the cell interplay dictating the disease outcomes of the major Leishmania species infecting humans.
Collapse
Affiliation(s)
- James Alexander
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | | |
Collapse
|
44
|
Tacchini-Cottier F, Weinkopff T, Launois P. Does T Helper Differentiation Correlate with Resistance or Susceptibility to Infection with L. major? Some Insights From the Murine Model. Front Immunol 2012; 3:32. [PMID: 22566916 PMCID: PMC3342012 DOI: 10.3389/fimmu.2012.00032] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 02/13/2012] [Indexed: 11/13/2022] Open
Abstract
The murine model of Leishmania major infection has been an invaluable tool in understanding T helper differentiation in vivo. The initial evidence for a role of distinct CD4+ T helper subsets in the outcome of infection was first obtained with this experimental model. The development of CD4+ Th1 cells was associated with resolution of the lesion, control of parasite replication, and resistance to re-infection in most of the mouse strains investigated (i.e., C57BL/6). In contrast, differentiation of CD4+ Th2 cells correlated with the development of unhealing lesions, and failure to control parasite load in a few strains (i.e., BALB/c). Since these first reports, an incredible amount of effort has been devoted to understanding the various parameters involved in the differentiation of these, and more recently discovered T helper subsets such as Th17 and T regulatory cells. The discovery of cross-talk between T helper subsets, as well as their plasticity force us to reevaluate the events driving a protective/deleterious T helper immune response following infection with L. major in mice. In this review, we describe the individual contributions of each of these CD4+ T helper subsets following L. major inoculation, emphasizing recent advances in the field, such as the impact of different substrains of L. major on the pathogenesis of disease.
Collapse
Affiliation(s)
- Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Center, University of Lausanne Epalinges, Switzerland
| | | | | |
Collapse
|
45
|
Probst CM, Silva RA, Menezes JPB, Almeida TF, Gomes IN, Dallabona AC, Ozaki LS, Buck GA, Pavoni DP, Krieger MA, Veras PST. A comparison of two distinct murine macrophage gene expression profiles in response to Leishmania amazonensis infection. BMC Microbiol 2012; 12:22. [PMID: 22321871 PMCID: PMC3313874 DOI: 10.1186/1471-2180-12-22] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022] Open
Abstract
Background The experimental murine model of leishmaniasis has been widely used to characterize the immune response against Leishmania. CBA mice develop severe lesions, while C57BL/6 present small chronic lesions under L. amazonensis infection. Employing a transcriptomic approach combined with biological network analysis, the gene expression profiles of C57BL/6 and CBA macrophages, before and after L. amazonensis infection in vitro, were compared. These strains were selected due to their different degrees of susceptibility to this parasite. Results The genes expressed by C57BL/6 and CBA macrophages, before and after infection, differ greatly, both with respect to absolute number as well as cell function. Uninfected C57BL/6 macrophages express genes involved in the deactivation pathway of macrophages at lower levels, while genes related to the activation of the host immune inflammatory response, including apoptosis and phagocytosis, have elevated expression levels. Several genes that participate in the apoptosis process were also observed to be up-regulated in C57BL/6 macrophages infected with L. amazonensis, which is very likely related to the capacity of these cells to control parasite infection. By contrast, genes involved in lipid metabolism were found to be up-regulated in CBA macrophages in response to infection, which supports the notion that L. amazonensis probably modulates parasitophorous vacuoles in order to survive and multiply in host cells. Conclusion The transcriptomic profiles of C57BL/6 macrophages, before and after infection, were shown to be involved in the macrophage pathway of activation, which may aid in the control of L. amazonensis infection, in contrast to the profiles of CBA cells.
Collapse
Affiliation(s)
- Christian M Probst
- Laboratório de Genômica Funcional, Instituto Carlos Chagas, ICC-FIOCRUZ,Paraná, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bafica AMB, Cardoso LS, Oliveira SC, Loukas A, Varela GT, Oliveira RR, Bacellar O, Carvalho EM, Araújo MI. Schistosoma mansoni antigens alter the cytokine response in vitro during cutaneous leishmaniasis. Mem Inst Oswaldo Cruz 2011; 106:856-63. [DOI: 10.1590/s0074-02762011000700012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 07/08/2011] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Olívia Bacellar
- Universidade Federal da Bahia, Brasil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais
| | - Edgar Marcelino Carvalho
- Universidade Federal da Bahia, Brasil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais; Escola Bahiana de Medicina e Saúde Pública, Brasil
| | - Maria Ilma Araújo
- Universidade Federal da Bahia, Brasil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais; Escola Bahiana de Medicina e Saúde Pública, Brasil
| |
Collapse
|
47
|
Vaccine candidates for leishmaniasis: A review. Int Immunopharmacol 2011; 11:1464-88. [DOI: 10.1016/j.intimp.2011.05.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 04/13/2011] [Accepted: 05/09/2011] [Indexed: 01/08/2023]
|
48
|
Toll-like receptors participate in macrophage activation and intracellular control of Leishmania (Viannia) panamensis. Infect Immun 2011; 79:2871-9. [PMID: 21518783 DOI: 10.1128/iai.01388-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Toll-like receptors (TLRs) play a central role in macrophage activation and control of parasitic infections. Their contribution to the outcome of Leishmania infection is just beginning to be deciphered. We examined the interaction of Leishmania panamensis with TLRs in the activation of host macrophages. L. panamensis infection resulted in upregulation of TLR1, TLR2, TLR3, and TLR4 expression and induced tumor necrosis factor alpha (TNF-α) secretion by human primary macrophages at comparable levels and kinetics to those of specific TLR ligands. The TLR dependence of the host cell response was substantiated by the absence of TNF-α production in MyD88/TRIF(-/-) murine bone marrow-derived macrophages and mouse macrophage cell lines in response to promastigotes and amastigotes. Systematic screening of TLR-deficient macrophages revealed that TNF-α production was completely abrogated in TLR4(-/-) macrophages, consistent with the increased intracellular parasite survival at early time points of infection. TNF-α secretion was significantly reduced in macrophages lacking endosomal TLRs but was unaltered by a lack of TLR2 or MD-2. Together, these findings support the participation of TLR4 and endosomal TLRs in the activation of host macrophages by L. panamensis and in the early control of infection.
Collapse
|
49
|
Costa DL, Carregaro V, Lima-Júnior DS, Silva NM, Milanezi CM, Cardoso CR, Giudice Â, de Jesus AR, Carvalho EM, Almeida RP, Silva JS. BALB/c mice infected with antimony treatment refractory isolate of Leishmania braziliensis present severe lesions due to IL-4 production. PLoS Negl Trop Dis 2011; 5:e965. [PMID: 21390155 PMCID: PMC3046967 DOI: 10.1371/journal.pntd.0000965] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 01/13/2011] [Indexed: 11/18/2022] Open
Abstract
Background Leishmania braziliensis is the main causative agent of cutaneous leishmaniasis in Brazil. Protection against infection is related to development of Th1 responses, but the mechanisms that mediate susceptibility are still poorly understood. Murine models have been the most important tools in understanding the immunopathogenesis of L. major infection and have shown that Th2 responses favor parasite survival. In contrast, L. braziliensis–infected mice develop strong Th1 responses and easily resolve the infection, thus making the study of factors affecting susceptibility to this parasite difficult. Methodology/Principal Findings Here, we describe an experimental model for the evaluation of the mechanisms mediating susceptibility to L. braziliensis infection. BALB/c mice were inoculated with stationary phase promastigotes of L. braziliensis, isolates LTCP393(R) and LTCP15171(S), which are resistant and susceptible to antimony and nitric oxide (NO), respectively. Mice inoculated with LTCP393(R) presented larger lesions that healed more slowly and contained higher parasite loads than lesions caused by LTCP15171(S). Inflammatory infiltrates in the lesions and production of IFN-γ, TNF-α, IL-10 and TGF-β were similar in mice inoculated with either isolate, indicating that these factors did not contribute to the different disease manifestations observed. In contrast, IL-4 production was strongly increased in LTCP393(R)-inoculated animals and also arginase I (Arg I) expression. Moreover, anti-IL-4 monoclonal antibody (mAb) treatment resulted in decreased lesion thickness and parasite burden in animals inoculated with LTCP393(R), but not in those inoculated with LTCP15171(S). Conclusion/Significance We conclude that the ability of L. braziliensis isolates to induce Th2 responses affects the susceptibility to infection with these isolates and contributes to the increased virulence and severity of disease associated with them. Since these data reflect what happens in human infection, this model could be useful to study the pathogenesis of the L. braziliensis infection, as well as to design new strategies of therapeutic intervention. Leishmaniasis is a neglected disease that affects more than 12 million people worldwide. In Brazil, the cutaneous disease is more prevalent with about 28,000 new cases reported each year, and L. braziliensis is the main causative agent. The interesting data about the infection with this parasite is the wide variety of clinical manifestations that ranges from single ulcerated lesions to mucocutaneous and disseminated disease. However, experimental models to study the infection with this parasite are difficult to develop due to high resistance of most mouse strains to the infection, and the mechanisms underlying the distinct manifestations remain poorly understood. Here, the authors use a mouse experimental model of infection with different L. braziliensis isolates, known to induce diseases with distinct severity in the human hosts, to elucidate immune mechanisms that may be involved in the different manifestations. They showed that distinct parasite isolates may modulate host response, and increased IL-4 production and Arg I expression was related to more severe disease, resulting in longer length of disease with larger lesions and reduced parasite clearance. These findings may be useful in the identification of immunological targets to control L. braziliensis infection and potential clinical markers of disease progression.
Collapse
Affiliation(s)
- Diego L. Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Djalma S. Lima-Júnior
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Neide M. Silva
- Biomedical Sciences Institute, Federal University of Uberlândia, Uberlândia, Brazil
| | - Cristiane M. Milanezi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina R. Cardoso
- Department of Biological Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Ângela Giudice
- Immunology Service, Professor Edgar Santos Universitary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Amélia R. de Jesus
- Department of Internal Medicine and Pathology, Federal University of Sergipe, Aracajú, Brazil
| | - Edgar M. Carvalho
- Immunology Service, Professor Edgar Santos Universitary Hospital, Federal University of Bahia, Salvador, Brazil
| | - Roque P. Almeida
- Department of Internal Medicine and Pathology, Federal University of Sergipe, Aracajú, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
50
|
Reybier K, Ribaut C, Coste A, Launay J, Fabre PL, Nepveu F. Characterization of oxidative stress in Leishmaniasis-infected or LPS-stimulated macrophages using electrochemical impedance spectroscopy. Biosens Bioelectron 2010; 25:2566-72. [DOI: 10.1016/j.bios.2010.04.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
|