1
|
Wathoni N, Puluhulawa LE, Joni IM, Muchtaridi M, Mohammed AFA, Elamin KM, Milanda T, Gozali D. Monoclonal antibody as a targeting mediator for nanoparticle targeted delivery system for lung cancer. Drug Deliv 2022; 29:2959-2970. [PMID: 36085575 PMCID: PMC9467540 DOI: 10.1080/10717544.2022.2120566] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Lung cancer is the second most common type of cancer after breast cancer. It ranks first in terms of mortality rate among all types of cancer. Lung cancer therapies are still being developed, one of which makes use of nanoparticle technology. However, conjugation with specific ligands capable of delivering drugs more precisely to cancer sites is still required to enhance nanoparticle targeting performance. Monoclonal antibodies are one type of mediator that can actively target nanoparticles. Due to the large number of antigens on the surface of cancer cells, monoclonal antibodies are widely used to deliver nanoparticles and improve drug targeting to cancer cells. Unfortunately, these antibodies have some drawbacks, such as rapid elimination, which results in a short half-life and ineffective dose. As a result, many of them are formulated in nanoparticles to minimize their major drawbacks and enhance drug targeting. This review summarizes and discusses articles on developing and applying various types of monoclonal antibody ligand nanoparticles as lung cancer target drugs. This review will serve as a guide for the choice of nanoparticle systems containing monoclonal antibody ligands for drug delivery in lung cancer therapy.
Collapse
Affiliation(s)
- Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
| | - Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - I Made Joni
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ahmed Fouad Abdelwahab Mohammed
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
- Graduate school of Pharmaceutical sciences, Kumamoto University, Kumamoto, Japan
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tiana Milanda
- Departement of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dolih Gozali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
2
|
An open-label phase I dose-escalation study of the safety and pharmacokinetics of DMUC4064A in patients with platinum-resistant ovarian cancer. Gynecol Oncol 2021; 163:473-480. [PMID: 34627611 DOI: 10.1016/j.ygyno.2021.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES MUC16 is overexpressed in the majority of human epithelial ovarian cancers (OC). DMUC4064A is a humanized anti-MUC16 monoclonal antibody conjugated to the microtubule-disrupting agent monomethyl auristatin E. This trial assessed the safety, tolerability, pharmacokinetics, and preliminary activity of DMUC4064A in patients with platinum-resistant OC. METHODS DMUC4064A was administered once every 3 weeks to patients in 1.0-5.6 mg/kg dose escalation cohorts, followed by cohort expansion at the recommended Phase II dose (RP2D). RESULTS Sixty-five patients were enrolled and received a median of 5 cycles (range 1-20) of DMUC4064A. The maximum tolerated dose was not reached; 5.2 mg/kg was the RP2D based on the overall tolerability profile. The most common adverse events were fatigue, nausea, abdominal pain, constipation, blurred vision, diarrhea, and anemia. Sixteen patients (25%) experienced related grade ≥ 3 toxicities. Twenty-six patients (40%) experienced ocular toxicities. The exposure of acMMAE was dose proportional, with a half-life of ~6 days. Sixteen patients (25%) experienced confirmed objective partial response (PR or CR) starting at ≥3.2 mg/kg dose levels, while 23 (35%) patients had best responses of PR or CR. Overall, the clinical benefit rate was 42% (27 patients with a best response [confirmed and unconfirmed] of CR, or PR or SD lasting ≥6 months). Among the 54 patients with high MUC16 immunohistochemistry scores, the clinical benefit rate was 46% (25 patients). Median progression-free survival was 3.9 months overall. CONCLUSIONS In this Phase I study, DMUC4064A demonstrated a tolerable safety profile along with encouraging efficacy in the indication of platinum-resistant OC.
Collapse
|
3
|
Thuenemann EC, Le DHT, Lomonossoff GP, Steinmetz NF. Bluetongue Virus Particles as Nanoreactors for Enzyme Delivery and Cancer Therapy. Mol Pharm 2021; 18:1150-1156. [PMID: 33566625 DOI: 10.1021/acs.molpharmaceut.0c01053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The side effects of chemotherapy can be reduced by targeting tumor cells with an enzyme (or the corresponding gene) that converts a nontoxic prodrug into a toxic drug inside the tumor cells, also killing the surrounding tumor cells via the bystander effect. Viruses are the most efficient gene delivery vehicles because they have evolved to transfer their own nucleic acids into cells, but their efficiency must be balanced against the risks of infection, the immunogenicity of nucleic acids, and the potential for genomic integration. We therefore tested the effectiveness of genome-free virus-like particles (VLPs) for the delivery of Herpes simplex virus 1 thymidine kinase (HSV1-TK), the most common enzyme used in prodrug conversion therapy. HSV1-TK is typically delivered as a gene, but in the context of VLPs, it must be delivered as a protein. We constructed VLPs and smaller core-like particles (CLPs) based on Bluetongue virus, with HSV1-TK fused to the inner capsid protein VP3. TK-CLPs and TK-VLPs could be produced in large quantities in plants. The TK-VLPs killed human glioblastoma cells efficiently in the presence of ganciclovir, with an IC50 value of 14.8 μM. Conversely, CLPs were ineffective because they remained trapped in the endosomal compartment, in common with many synthetic nanoparticles. VLPs are advantageous because they can escape from endosomes and therefore allow HSV1-TK to access the cytosolic adenosine triphosphate (ATP) required for the phosphorylation of ganciclovir. The VLP delivery strategy of TK protein therefore offers a promising new modality for the treatment of cancer with systemic prodrugs such as ganciclovir.
Collapse
Affiliation(s)
- Eva C Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Duc H T Le
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513 (STO 3.25), 5600 MB Eindhoven, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
4
|
Targeted anticancer prodrug therapy using dextran mediated enzyme–antibody conjugate and β-cyclodextrin-curcumin inclusion complex. Int J Biol Macromol 2020; 160:1029-1041. [DOI: 10.1016/j.ijbiomac.2020.05.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022]
|
5
|
Kafil V, Saei AA, Tohidkia MR, Barar J, Omidi Y. Immunotargeting and therapy of cancer by advanced multivalence antibody scaffolds. J Drug Target 2020; 28:1018-1033. [DOI: 10.1080/1061186x.2020.1772796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Vala Kafil
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jaleh Barar
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Targeted human cytolytic fusion proteins at the cutting edge: harnessing the apoptosis-inducing properties of human enzymes for the selective elimination of tumor cells. Oncotarget 2019; 10:897-915. [PMID: 30783518 PMCID: PMC6368230 DOI: 10.18632/oncotarget.26618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/01/2023] Open
Abstract
Patient-specific targeted therapy represents the holy grail of anti-cancer therapeutics, allowing potent tumor depletion without detrimental off-target toxicities. Disease-specific monoclonal antibodies have been employed to bind to oncogenic cell-surface receptors, representing the earliest form of immunotherapy. Targeted drug delivery was first achieved by means of antibody-drug conjugates, which exploit the differential expression of tumor-associated antigens as a guiding mechanism for the specific delivery of chemically-conjugated chemotherapeutic agents to diseased target cells. Biotechnological advances have expanded the repertoire of immunology-based tumor-targeting strategies, also paving the way for the next intuitive step in targeted drug delivery: the construction of recombinant protein drugs consisting of an antibody-based targeting domain genetically fused with a cytotoxic peptide, known as an immunotoxin. However, the most potent protein toxins have typically been derived from bacterial or plant virulence factors and commonly feature both off-target toxicity and immunogenicity in human patients. Further refinement of immunotoxin technology thus led to the replacement of monoclonal antibodies with humanized antibody derivatives, including the substitution of non-human toxic peptides with human cytolytic proteins. Preclinically tested human cytolytic fusion proteins (hCFPs) have proven promising as non-immunogenic combinatory anti-cancer agents, however they still require further enhancement to achieve convincing candidacy as a single-mode therapeutic. To date, a portfolio of highly potent human toxins has been established; ranging from microtubule-associated protein tau (MAP tau), RNases, granzyme B (GrB) and death-associated protein kinase (DAPk). In this review, we discuss the most recent findings on the use of these apoptosis-inducing hCFPs for the treatment of various cancers.
Collapse
|
7
|
Zhi X, Liu P, Li Y, Li P, Yuan J, Lin J. One-step fabricated keratin nanoparticles as pH and redox-responsive drug nanocarriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1920-1934. [DOI: 10.1080/09205063.2018.1519987] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Xuelian Zhi
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Pengcheng Liu
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Yanmei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Pengfei Li
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiang Yuan
- Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Jiantao Lin
- College of pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Bzymek KP, Ma Y, Avery KN, Horne DA, Williams JC. Meditope-Fab interaction: threading the hole. Acta Crystallogr F Struct Biol Commun 2017; 73:688-694. [PMID: 29199990 PMCID: PMC5713674 DOI: 10.1107/s2053230x17016272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/10/2017] [Indexed: 06/06/2024] Open
Abstract
Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.
Collapse
Affiliation(s)
- Krzysztof P. Bzymek
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - Yuelong Ma
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - Kendra N. Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - David A. Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| | - John C. Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91101, USA
| |
Collapse
|
9
|
Yefremova Y, Danquah BD, Opuni KF, El-Kased R, Koy C, Glocker MO. Mass spectrometric characterization of protein structures and protein complexes in condensed and gas phase. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2017; 23:445-459. [PMID: 29183193 DOI: 10.1177/1469066717722256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Proteins are essential for almost all physiological processes of life. They serve a myriad of functions which are as varied as their unique amino acid sequences and their corresponding three-dimensional structures. To fulfill their tasks, most proteins depend on stable physical associations, in the form of protein complexes that evolved between themselves and other proteins. In solution (condensed phase), proteins and/or protein complexes are in constant energy exchange with the surrounding solvent. Albeit methods to describe in-solution thermodynamic properties of proteins and of protein complexes are well established and broadly applied, they do not provide a broad enough access to life-science experimentalists to study all their proteins' properties at leisure. This leaves great desire to add novel methods to the analytical biochemist's toolbox. The development of electrospray ionization created the opportunity to characterize protein higher order structures and protein complexes rather elegantly by simultaneously lessening the need of sophisticated sample preparation steps. Electrospray mass spectrometry enabled us to translate proteins and protein complexes very efficiently into the gas phase under mild conditions, retaining both, intact protein complexes, and gross protein structures upon phase transition. Moreover, in the environment of the mass spectrometer (gas phase, in vacuo), analyte molecules are free of interactions with surrounding solvent molecules and, therefore, the energy of inter- and intramolecular forces can be studied independently from interference of the solvating environment. Provided that gas phase methods can give information which is relevant for understanding in-solution processes, gas phase protein structure studies and/or investigations on the characterization of protein complexes has rapidly gained more and more attention from the bioanalytical scientific community. Recent reports have shown that electrospray mass spectrometry provides direct access to six prime protein complex properties: stabilities, compositions, binding surfaces (epitopes), disassembly processes, stoichiometries, and thermodynamic parameters.
Collapse
Affiliation(s)
- Yelena Yefremova
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | - Bright D Danquah
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | | - Reham El-Kased
- 3 Microbiology and Immunology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- 1 Proteome Center Rostock, University of Rostock, Rostock, Germany
| | | |
Collapse
|
10
|
Bzymek KP, Avery KA, Ma Y, Horne DA, Williams JC. Natural and non-natural amino-acid side-chain substitutions: affinity and diffraction studies of meditope-Fab complexes. Acta Crystallogr F Struct Biol Commun 2016; 72:820-830. [PMID: 27834791 PMCID: PMC5101583 DOI: 10.1107/s2053230x16016149] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Herein, multiple crystal structures of meditope peptide derivatives incorporating natural and unnatural amino acids bound to the cetuximab Fab domain are presented. The affinity of each derivative was determined by surface plasmon resonance and correlated to the atomic structure. Overall, it was observed that the hydrophobic residues in the meditope peptide, Phe3, Leu5 and Leu10, could accommodate a number of moderate substitutions, but these invariably reduced the overall affinity and half-life of the interaction. In one case, the substitution of Phe3 by histidine led to a change in the rotamer conformation, in which the imidazole ring flipped to a solvent-exposed position. Based on this observation, Phe3 was substituted by diphenylalanine and it was found that the phenyl rings in this variant mimic the superposition of the Phe3 and His3 structures, producing a moderate increase, of 1.4-fold, in the half-life of the complex. In addition, it was observed that substitution of Leu5 by tyrosine and glutamate strongly reduced the affinity, whereas the substitution of Leu5 by diphenylalanine moderately reduced the half-life (by approximately fivefold). Finally, it was observed that substitution of Arg8 and Arg9 by citrulline dramatically reduced the overall affinity, presumably owing to lost electrostatic interactions. Taken together, these studies provide insight into the meditope-cetuximab interaction at the atomic level.
Collapse
Affiliation(s)
- Krzysztof P. Bzymek
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010, USA
| | - Kendra A. Avery
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010, USA
| | - Yuelong Ma
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010, USA
| | - David A. Horne
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010, USA
| | - John C. Williams
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, 1710 Flower Street, Duarte, CA 91010, USA
| |
Collapse
|
11
|
Arakawa T, Kurosawa Y, Storms M, Maruyama T, Okumura CJ, Maluf NK. Biophysical characterization of a model antibody drug conjugate. Drug Discov Ther 2016; 10:211-7. [PMID: 27534450 DOI: 10.5582/ddt.2016.01042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Antibody drug conjugates (ADC) are important next-generation biopharmaceuticals and thus require stringent structure characterization as is the case for monoclonal antibodies. We have tested several biophysical techniques, i.e., circular dichroism, analytical ultracentrifugation, differential scanning calorimetry and fluorescence spectroscopy, to characterize a fluorescein-labeled monoclonal antibody as a model ADC. These techniques indicated possible small structure and stability changes by the conjugation, while largely retaining the tertiary structure of the antibody, consistent with unaltered biological activities. Thus, the above biophysical techniques are effective at detecting changes in the structural properties of ADC.
Collapse
|
12
|
Büyüktimkin B, Stewart J, Tabanor K, Kiptoo P, Siahaan TJ. Protein and Peptide Conjugates for Targeting Therapeutics and Diagnostics to Specific Cells. Drug Deliv 2016. [DOI: 10.1002/9781118833322.ch20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
13
|
Abstract
Non-Hodgkin lymphoma symbolizes a heterogeneous group of diseases resulting from malignant transformation of lymphocytes with differing patterns of behavior and responses to treatment. The potential curability of non-Hodgkin lymphoma differs among the various histologic subtypes and is associated in part with the stage at presentation. CD19 antigen is a type I transmembrane glycoprotein belonging to the immunoglobulin Ig superfamily. CD19 is specifically expressed in normal and neoplastic B-cells. Recent study showed that in a mouse model, CD19 and c-Myc synergize functionally to accelerate B-cell lymphomagenesis, which is associated with increased disease severity. Specificity is the most important challenge in cancer therapeutics. Antibody–drug conjugates have the prospect of enhancing the therapeutic efficacy over unconjugated monoclonal antibodies through the selective delivery of cytotoxic agents to cancer cells. The ubiquitous expression of CD19 in these tumors, especially at an earlier stage and the property of efficient internalization, makes CD19 an attractive and affective target for antibody–drug conjugate therapy as compared to CD20. SAR3419 (huB4-DM4) is a novel antibody–drug conjugate that is composed of a humanized monoclonal IgG1 anti-CD19 antibody (huB4) attached to the potent cytotoxic drug, a maytansine derivative (DM4), through a cleavable disulfide cross-linking agent N-Succinimidyl-4-2-pyridyldithio butanoic acid (SPDB). The preclinical efficacy of maytansine derivative–anti-CD19 conjugate was demonstrated in our laboratory, and SAR3419 was found to be more effective than CHOP in a xenograft model. Phase I trials have also been conducted on the basis of preclinical studies that demonstrated promising antitumor activity with acceptable safety results in human B-cell lymphoma models. Additional trials are ongoing and will provide additional insight into the full potential of this novel drug.
Collapse
Affiliation(s)
- Ali Raufi
- Lymphoma Research Laboratory, Wayne State University School of Medicine (WSU-SOM), Gordon Scott Hall for Basic Medical Sciences, Detroit, MI, USA
| | | | | |
Collapse
|
14
|
Pharmacokinetics, pharmacodynamics and physiologically-based pharmacokinetic modelling of monoclonal antibodies. Clin Pharmacokinet 2013; 52:83-124. [PMID: 23299465 DOI: 10.1007/s40262-012-0027-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of monoclonal antibodies (mAbs) and their functional derivatives represents a growing segment of the development pipeline in the pharmaceutical industry. More than 25 mAbs and derivatives have been approved for a variety of therapeutic applications. In addition, around 500 mAbs and derivatives are currently in different stages of development. mAbs are considered to be large molecule therapeutics (in general, they are 2-3 orders of magnitude larger than small chemical molecule therapeutics), but they are not just big chemicals. These compounds demonstrate much more complex pharmacokinetic and pharmacodynamic behaviour than small molecules. Because of their large size and relatively poor membrane permeability and instability in the conditions of the gastrointestinal tract, parenteral administration is the most usual route of administration. The rate and extent of mAb distribution is very slow and depends on extravasation in tissue, distribution within the particular tissue, and degradation. Elimination primarily happens via catabolism to peptides and amino acids. Although not definitive, work has been published to define the human tissues mainly involved in the elimination of mAbs, and it seems that many cells throughout the body are involved. mAbs can be targeted against many soluble or membrane-bound targets, thus these compounds may act by a variety of mechanisms to achieve their pharmacological effect. mAbs targeting soluble antigen generally exhibit linear elimination, whereas those targeting membrane-bound antigen often exhibit non-linear elimination, mainly due to target-mediated drug disposition (TMDD). The high-affinity interaction of mAbs and their derivatives with the pharmacological target can often result in non-linear pharmacokinetics. Because of species differences (particularly due to differences in target affinity and abundance) in the pharmacokinetics and pharmacodynamics of mAbs, pharmacokinetic/pharmacodynamic modelling of mAbs has been used routinely to expedite the development of mAbs and their derivatives and has been utilized to help in the selection of appropriate dose regimens. Although modelling approaches have helped to explain variability in both pharmacokinetic and pharmacodynamic properties of these drugs, there is a clear need for more complex models to improve understanding of pharmacokinetic processes and pharmacodynamic interactions of mAbs with the immune system. There are different approaches applied to physiologically based pharmacokinetic (PBPK) modelling of mAbs and important differences between the models developed. Some key additional features that need to be accounted for in PBPK models of mAbs are neonatal Fc receptor (FcRn; an important salvage mechanism for antibodies) binding, TMDD and lymph flow. Several models have been described incorporating some or all of these features and the use of PBPK models are expected to expand over the next few years.
Collapse
|
15
|
Boyraz B, Sendur MAN, Aksoy S, Babacan T, Roach EC, Kizilarslanoglu MC, Petekkaya I, Altundag K. Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr Med Res Opin 2013; 29:405-14. [PMID: 23402224 DOI: 10.1185/03007995.2013.775113] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Trastuzumab emtansine (T-DM1), a novel drug developed for the treatment of HER2-positive breast cancer, is a human epidermal growth factor receptor (HER2) targeted antibody drug conjugate, composed of trastuzumab, a stable thioether linker, and the potent cytotoxic agent DM1 (derivative of maytansine). It has been shown that, in preclinical studies, it has anti-tumor activity in trastuzumab refractory cancer cells. In this review, we aim to show the clinical data about trastuzumab-DM1 (T-DM1) therapy and to discuss the therapy advantages for the management of patients with HER2-positive breast cancer. SCOPE T-DM1 showed positive results in clinical studies of HER2-positive metastatic breast cancer. PubMed database, ASCO and San Antonio Breast Cancer Symposium Meeting abstracts were searched up to September 2012 by using the terms 'trastuzumab emtansine (T-DM1) and anti-HER2 treatment'; papers which were considered relevant for the aim of this review were selected by the authors. FINDINGS The phase III randomized trial EMILIA has shown that T-DM1 provided objective tumor responses and significantly improved progression free survival and overall survival compared to lapatinib and capacitabine combination in HER2-positive metastatic breast cancer patients treated with a prior taxane and trastuzumab regimen. It is believed that T-DM1 will play a role in the management of patients with advanced and early stage HER2-positive breast cancer, but this awaits further study. In particular, the ongoing phase III trials MARIANNE and TH3RESA will further give information about the place of T-DM1 in the treatment algorithms for HER2-positive disease. CONCLUSION The trials of T-DM1 as a single agent and in combination with other chemotherapies have shown clinical activity and a favorable safety profile in patients with HER2-positive metastatic breast cancer. There are ongoing studies of T-DM1 showing an increasing tendency towards moving the study of these agents to earlier stages of HER2-positive breast cancer.
Collapse
Affiliation(s)
- Baris Boyraz
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
He Y, Friese OV, Schlittler MR, Wang Q, Yang X, Bass LA, Jones MT. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product. J Chromatogr A 2012; 1262:122-9. [DOI: 10.1016/j.chroma.2012.09.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
|
18
|
Deepagan VG, Sarmento B, Menon D, Nascimento A, Jayasree A, Sreeranganathan M, Koyakutty M, Nair SV, Rangasamy J. In vitro targeted imaging and delivery of camptothecin using cetuximab-conjugated multifunctional PLGA-ZnS nanoparticles. Nanomedicine (Lond) 2012; 7:507-19. [DOI: 10.2217/nnm.11.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Targeted cancer therapy has been extensively developed to improve the quality of treatment by reducing the systemic exposure of cytotoxic drug. Polymeric nanoparticles with conjugated targeting agents are widely investigated because they offer tunability in particle size, drug release profile and biocompatibility. Materials & methods: Here, we have prepared targeted multifunctional nanoparticles composed of a poly(lactic-co-glycolic acid) matrix, ZnS:Mn2+ quantum dots and camptothecin, and targeted them to EGF receptor overexpressing cells with a cetuximab antibody. Results: Physicochemical characterization of multifunctional nanoparticles showed stable particles with sizes of <200 nm. In vitro drug release and blood contact studies showed a sustained release profile, with limited hemolysis. In vitro cytotoxicity and cell uptake studies were carried out in A549, KB and MFC-7 cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, FACS, fluorescent microscopic images and spectroflourimetry. Conclusion: Our studies revealed higher camptothecin activity and uptake in cell lines that overexpress the EGF receptor. All these results suggest that anti-EGF receptor cetuximab-conjugated poly(lactic-co-glycolic acid) multifunctional nanoparticles can be used as a potential nanomedicine against cancer.
Collapse
Affiliation(s)
- Veerasikku Gopal Deepagan
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Bruno Sarmento
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua Anibal Cunha 164, 4050-047 Porto, Portugal
- CICS, Health Sciences Research Center, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Deepthy Menon
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Ana Nascimento
- CICS, Health Sciences Research Center, Department of Pharmaceutical Sciences, Instituto Superior de Ciências da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Aswathy Jayasree
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Maya Sreeranganathan
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| | - Jayakumar Rangasamy
- Amrita Centre for Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Cochin-682041, India
| |
Collapse
|
19
|
Burris HA, Tibbitts J, Holden SN, Sliwkowski MX, Lewis Phillips GD. Trastuzumab emtansine (T-DM1): a novel agent for targeting HER2+ breast cancer. Clin Breast Cancer 2011; 11:275-82. [PMID: 21729661 DOI: 10.1016/j.clbc.2011.03.018] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/02/2011] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
Increased understanding of the molecular mechanisms of tumorigenesis has led to the development of novel agents that target tumor cells with minimal effects on normal cells. The success of this approach is exemplified by the development of monoclonal antibodies directed toward antigens expressed selectively by tumor cells. The conjugation of these monoclonal antibodies with potent cytotoxic drugs has the potential to further improve efficacy while retaining a favorable safety profile. Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) currently in clinical development. It combines the humanized antibody trastuzumab, which targets the human epidermal growth factor receptor 2 (HER2) receptor on cancer cells, and the potent antimicrotubule agent DM1 using a unique highly stable linker. When T-DM1 binds to HER2, a proportion of the receptors are thought to be internalized by the process of receptor endocytosis, followed by the intracellular release of an active form of DM1, which in turn kills the tumor cell. This review presents the rationale for the development of T-DM1 and summarizes the preclinical and clinical data for this novel agent for the treatment of breast cancer.
Collapse
|
20
|
Burris HA. Trastuzumab emtansine: a novel antibody-drug conjugate for HER2-positive breast cancer. Expert Opin Biol Ther 2011; 11:807-19. [PMID: 21506905 DOI: 10.1517/14712598.2011.580273] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate (ADC) that combines intracellular delivery of the potent cytotoxic agent, DM1 (a derivative of maytansine) with the antitumor activity of trastuzumab. While there are several ADCs in Phase III development, T-DM1 is the only one in which the targeting antibody has antitumor properties. T-DM1 is also the only ADC that is directed toward the human EGFR 2 (HER2). Effective therapies are limited in HER2-positive advanced or metastatic breast cancer (MBC), particularly following progression on available HER2-targeted therapies. AREAS COVERED The mechanisms of action, preclinical efficacy and clinical profile of T-DM1 are reported. The latest preclinical and clinical data for T-DM1 are examined. EXPERT OPINION T-DM1 has significant antitumor potency in vitro and in vivo, which is maintained in tumors resistant to trastuzumab or lapatinib. In Phase I and II trials, T-DM1 provided objective tumor responses and was well tolerated across various lines of therapy in patients with HER2-positive MBC. In addition, it showed similar efficacy to trastuzumab plus docetaxel in first-line MBC. Ongoing trials (including two Phase III studies) are investigating T-DM1 as single-agent therapy or combined with other chemotherapeutic or biologic agents, and the results should help to define the place of T-DM1 within current treatment algorithms for HER2-positive disease.
Collapse
Affiliation(s)
- Howard A Burris
- Drug Development, Sarah Cannon Research Institute, 250 25th Avenue North, Suite 110, Nashville, TN 37203-1632, USA.
| |
Collapse
|
21
|
Kurmi BD, Kayat J, Gajbhiye V, Tekade RK, Jain NK. Micro- and nanocarrier-mediated lung targeting. Expert Opin Drug Deliv 2010; 7:781-94. [PMID: 20560777 DOI: 10.1517/17425247.2010.492212] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Drug delivery to lungs appears to be an attractive proposition on account of the large surface area of the alveolar region; it provides tremendous opportunities to improve drug therapies both systemically and locally using new drug delivery systems. Administration of drugs directly to the lungs is the most appropriate route in the treatment of asthma and other pulmonary diseases such as tuberculosis, chronic obstructive pulmonary disease and lung cancer. AREAS COVERED IN THIS REVIEW This review focuses on the utilization of nano- and microcarriers such as microspheres, nanoparticles, liposomes, niosomes and dendrimers for targeted delivery of bioactive molecules to lungs. WHAT THE READER WILL GAIN This review sheds light on the current status of nano- and microcarrier-mediated lung targeting of bioactive compounds. TAKE HOME MESSAGE The literature review shows that carriers could supplement sustained drug delivery to the lungs, extended duration of action, reduced therapeutic dose, improved patient compliance, and reduced adverse effects of highly toxic drugs. There is still a need to identify more specific receptors that are present exclusively in the lungs. The identification of such receptors may also facilitate drug targeting to further specific parts of the lungs, such as bronchioles and alveoli.
Collapse
Affiliation(s)
- Balak D Kurmi
- Dr Hari Singh Gour University, Department of Pharmaceutical Sciences, Pharmaceutics Research Laboratory, Sagar 470 003, India
| | | | | | | | | |
Collapse
|
22
|
Nagane M, Shimizu S, Mori E, Kataoka S, Shiokawa Y. Predominant antitumor effects by fully human anti-TRAIL-receptor 2 (DR5) monoclonal antibodies in human glioma cells in vitro and in vivo. Neuro Oncol 2010; 12:687-700. [PMID: 20511188 PMCID: PMC2940669 DOI: 10.1093/neuonc/nop069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 10/29/2009] [Indexed: 11/12/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo2 L) preferentially induces apoptosis in human tumor cells through its cognate death receptors DR4 or DR5, thereby being investigated as a potential agent for cancer therapy. Here, we applied fully human anti-human TRAIL receptor monoclonal antibodies (mAbs) to specifically target one of death receptors for TRAIL in human glioma cells, which could also reduce potential TRAIL-induced toxicity in humans. Twelve human glioma cell lines treated with several fully human anti-human TRAIL receptor mAbs were sensitive to only anti-DR5 mAbs, whereas they were totally insensitive to anti-DR4 mAb. Treatment with anti-DR5 mAbs exerted rapid cytotoxicity and lead to apoptosis induction. The cellular sensitivity was closely associated with cell-surface expression of DR5. Expression of c-FLIP(L), Akt, and Cyclin D1 significantly correlated with sensitivity to anti-DR5 mAbs. Primary cultures of glioma cells were also relatively resistant to anti-DR5 mAbs, exhibiting both lower DR5 and higher c-FLIP(L) expression. Downregulation of c-FLIP(L) expression resulted in the sensitization of human glioma cells to anti-DR5 mAbs, whereas overexpression of c-FLIP(L) conferred resistance to anti-DR5 mAb. Treatment of tumor-burden nude mice with the direct agonist anti-DR5 mAb KMTR2 significantly suppressed growth of subcutaneous glioma xenografts leading to complete regression. Similarly, treatment of nude mice bearing intracerebral glioma xenografts with KMTR2 significantly elongated lifespan without tumor recurrence. These results suggest that DR5 is the predominant TRAIL receptor mediating apoptotic signals in human glioma cells, and sensitivity to anti-DR5 mAbs was determined at least in part by the expression level of c-FLIP(L) and Akt. Specific targeting of death receptor pathway through DR5 using fully human mAbs might provide a novel therapeutic strategy for intractable malignant gliomas.
Collapse
Affiliation(s)
- Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | |
Collapse
|
23
|
Courtois A, Simon-Colin C, Boisset C, Berthou C, Deslandes E, Guézennec J, Bordron A. Floridoside extracted from the red alga Mastocarpus stellatus is a potent activator of the classical complement pathway. Mar Drugs 2008; 6:407-17. [PMID: 19005576 PMCID: PMC2579733 DOI: 10.3390/md20080019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 06/05/2008] [Indexed: 11/25/2022] Open
Abstract
Many biological properties of algae have been found to have useful applications in human health, particularly in the fields of oncology and immunology. Floridoside, extracted from the red alga Mastocarpus stellatus, has a structure similar to the xenoantigen Gal alpha 1–3 Gal. This xenoantigen has been described to induce a high immune response in human xenografts and is mediated by natural anti-gal antibodies that activate the classical complement pathway. Based on this property, we analyzed the potential activities of floridoside on the immune system. We demonstrated that floridoside activates a complement cascade via the classical complement pathway, through the recruitment and activation of natural IgM. This algal molecule could represent an important step in the development of a potent new anticomplementary agent for use in therapeutic complement depletion.
Collapse
Affiliation(s)
- Anthony Courtois
- Biotechnologies and Marine Molecules laboratory, IFREMER – Brest Center, Technopôle Brest-Iroise, France; E-mails:
(A.C.);
(C.S.-C);
(C.B.);
(J.G.)
- Cellular Therapy and Immunobiology of Cancer laboratory, EA2216, Brest University Hospital, France; E-mails:
(C.B.);
(A.B.)
| | - Christelle Simon-Colin
- Biotechnologies and Marine Molecules laboratory, IFREMER – Brest Center, Technopôle Brest-Iroise, France; E-mails:
(A.C.);
(C.S.-C);
(C.B.);
(J.G.)
| | - Claire Boisset
- Biotechnologies and Marine Molecules laboratory, IFREMER – Brest Center, Technopôle Brest-Iroise, France; E-mails:
(A.C.);
(C.S.-C);
(C.B.);
(J.G.)
| | - Christian Berthou
- Cellular Therapy and Immunobiology of Cancer laboratory, EA2216, Brest University Hospital, France; E-mails:
(C.B.);
(A.B.)
| | - Eric Deslandes
- Ecophysiology and Biotechnology of Halophytes and marine Algae laboratory (LEBHAM), European Institute of Marine Studies, University of Western Brittany, Technopôle de Brest-Iroise E-mail:
(E.D.)
| | - Jean Guézennec
- Biotechnologies and Marine Molecules laboratory, IFREMER – Brest Center, Technopôle Brest-Iroise, France; E-mails:
(A.C.);
(C.S.-C);
(C.B.);
(J.G.)
| | - Anne Bordron
- Cellular Therapy and Immunobiology of Cancer laboratory, EA2216, Brest University Hospital, France; E-mails:
(C.B.);
(A.B.)
- * Author to whom correspondence should be addressed. Tel., +33-298-22-30-28; Fax, +33-298-22-30- 28; E-mail:
| |
Collapse
|
24
|
Floridoside Extracted from the Red Alga Mastocarpus stellatus Is a Potent Activator of the Classical Complement Pathway. Mar Drugs 2008. [DOI: 10.3390/md6030407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev 2008; 60:863-75. [PMID: 18308418 DOI: 10.1016/j.addr.2007.11.006] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/22/2007] [Indexed: 02/02/2023]
Abstract
Targeted delivery of drug molecules to organs or special sites is one of the most challenging research areas in pharmaceutical sciences. By developing colloidal delivery systems such as liposomes, micelles and nanoparticles a new frontier was opened for improving drug delivery. Nanoparticles with their special characteristics such as small particle size, large surface area and the capability of changing their surface properties have numerous advantages compared with other delivery systems. Targeted nanoparticle delivery to the lungs is an emerging area of interest. This article reviews research performed over the last decades on the application of nanoparticles administered via different routes of administration for treatment or diagnostic purposes. Nanotoxicological aspects of pulmonary delivery are also discussed.
Collapse
|
26
|
Crosby IT, Pietersz GA, Ripper JA. Synthesis of Succinimidoalkylbenzaldehyde Analogues: Potential Bifunctional Linkers for Bioconjugation. Aust J Chem 2008. [DOI: 10.1071/ch07404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of novel 4-substituted benzaldehydes containing a succinimide moiety were synthesized as potential bifunctional linkers for the purpose of binding therapeutic drugs to antibodies raised against cancer cells. These potential benzaldehyde linkers varied in the nature of the para functionality so as to provide a range of potential acid labilities. Synthesis of the linkers involved a Williamson ether formation to make the ether linker 1, a Sonagoshira palladium-catalyzed coupling to synthesize the skeleton of the alkyl linker 2, and formation of an amide bond directly from a methyl ester gave the 4-substituted amide linker 3. As an example of the type of acetal that can be produced using these linkers, uridine was used as an analogue of the cytotoxic compound 5-fluorouridine to give the cyclic acetals 19–21.
Collapse
|
27
|
Reig F, Haro I, Polo D, Egea MA, Alsina MA. Interfacial interactions of hydrophobic peptides with lipid bilayers. J Colloid Interface Sci 2007; 246:60-9. [PMID: 16290384 DOI: 10.1006/jcis.2001.8056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2001] [Accepted: 10/22/2001] [Indexed: 11/22/2022]
Abstract
Four hydrophobic laminin-related peptides and their corresponding parent peptides were synthesized to use them to target liposomes to tumoral cells. The peptide sequence was YIGSR((NH(2))), and hydrophobic residues linked to the alpha-amino terminal end were decanoyl, myristoyl, stearoyl, and cholesteryl-succinoyl. Before use in biological systems, a physicochemical study was carried out in order to determine their interaction with DPPC bilayers that could compromise both the toxicity and the stability of liposomal preparations. The experiments were based on DSC, fluorescence polarization, outer-membrane destabilization, and vesicle leakage. These peptides showed in general a low interaction with the vesicles, promoting in all cases the rigidification of bilayers. This lack of strong disturbances in the ordered state of phospholipid molecules seems more likely due to the similarity of peptide acyl chains with those of lipids than to the absence of interactions. The bulkiness of cholesteryl derivative as well as its tendency toward aggregation resulted in weak interaction levels except in thermograms. The binding of peptides to the surface of liposomes loaded with doxorubicin resulted in preparations with good entrapment yields and small size, required for long circulating vesicles (especially for the myristoyl derivative). The alternative method based on the reaction of parent peptide to the surface of liposomes through an amide linkage was slightly more efficient when the peptide was linked to the carboxy-terminal end of the DSPE-PEG-COOH-containing liposomes. Nevertheless, the final decision must be made with the simplicity of the procedure and reduction in losses during all the steps of the processes taken into consideration.
Collapse
Affiliation(s)
- Francesca Reig
- Department of Peptides, Institute for Biological and Ambiental Chemistry, CSIC, Spain
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Rupp U, Schoendorf-Holland E, Eichbaum M, Schuetz F, Lauschner I, Schmidt P, Staab A, Hanft G, Huober J, Sinn HP, Sohn C, Schneeweiss A. Safety and pharmacokinetics of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer: final results of a phase I study. Anticancer Drugs 2007; 18:477-85. [PMID: 17351401 DOI: 10.1097/cad.0b013e32801403f4] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the safety, pharmacokinetics and preliminary efficacy of bivatuzumab mertansine in patients with CD44v6-positive metastatic breast cancer. Anthracycline and taxane-pretreated patients with metastatic breast cancer that expressed CD44v6 received one single infusion of bivatuzumab mertansine and were observed for 21 days within one treatment course. Starting dose was 25 mg/m, while dose was escalated by increments of 25 mg/m. Patients who experienced a disease stabilization were eligible for further courses with bivatuzumab mertansine. Blood serum samples were taken throughout the treatment period for pharmacokinetic analysis. Twenty-four patients were treated at eight different dose levels (25-200 mg/m), seven of these patients received more than one course of bivatuzumab mertansine. Two dose-limiting toxicities occurred: one patient treated with 125 mg/m developed transient National Cancer Institute Common Toxicity Criteria grade 4 elevation of liver enzymes; another patient treated at 175 mg/m experienced National Cancer Institute Common Toxicity Criteria grade 3 vomiting. She died from renal failure, which might have been caused by deterioration of pre-existing renal insufficiency. The most common toxicities were transient and mild skin disorders in 75% of patients. As a consequence of one fatal toxic epidermal necrolysis that occurred in a study running in parallel, the clinical trials programme of bivatuzumab mertansine was discontinued. None of the patients developed antibodies against bivatuzumab mertansine. No objective responses were observed. Disease stabilization was achieved in 50% of patients independently of dose level. In conclusion, bivatuzumab mertansine targets CD44v6 and appears to stabilize heavily pretreated metastatic breast cancer that expresses CD44v6. The maximum tolerated dose could not be determined in this trial as the sponsor discontinued the clinical development of bivatuzumab mertansine.
Collapse
Affiliation(s)
- Ute Rupp
- Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kocbek P, Obermajer N, Cegnar M, Kos J, Kristl J. Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. J Control Release 2007; 120:18-26. [PMID: 17509712 DOI: 10.1016/j.jconrel.2007.03.012] [Citation(s) in RCA: 289] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/07/2007] [Accepted: 03/15/2007] [Indexed: 11/26/2022]
Abstract
Targeting drugs to their sites of action is still a major challenge in pharmaceutical research. In this study, polylactic-co-glycolic acid (PLGA) immuno-nanoparticles were prepared for targeting invasive epithelial breast tumour cells. Monoclonal antibody (mAb) was used as a homing ligand and was attached to the nanoparticle surface either covalently or non-covalently. The presence of mAb on the nanoparticle surface, its stability and recognition properties were tested. Protein assay, surface plasmon resonance, flow cytometry and fluorescence-immunostaining confirmed the presence of mAb on nanoparticles in both cases. However, a binding assay using cell lysate revealed that the recognition properties were preserved only for nanoparticles with adsorbed mAb. These nanoparticles were more likely to be bound to the targeted cells than non-coated nanoparticles. Both types of nanoparticles entered the target MCF-10A neoT cells in mono-culture. In co-culture of MCF-10A neoT and Caco-2 cells immuno-nanoparticles were localized solely to MCF-10A neoT cells, whereas non-coated nanoparticles were distributed randomly. Immuno-nanoparticles entered only MCF-10A neoT cells, while non-coated nanoparticles were taken up by both cell types, indicating specific targeting of the immuno-nanoparticles. In conclusion, we demonstrate a method by which mAbs can be bound to nanoparticles without detriment to their targeting ability. Furthermore, the results show the effectiveness of the new carrier system for targeted delivery of small or large active substances into cells or tissues of interest.
Collapse
Affiliation(s)
- Petra Kocbek
- University of Ljubljana, Faculty of Pharmacy, Askerceva 7, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
31
|
Reinsberg J. Detection of human antibodies generated against therapeutic antibodies used in tumor therapy. Methods Mol Biol 2007; 378:195-204. [PMID: 18605087 DOI: 10.1007/978-1-59745-323-3_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Application of monoclonal antibodies (MAb) for therapeutic purpose may induce the formation of human antibodies directed against the immunogenic epitopes, which are presented on the therapeutic MAb. Formation of such human antibodies mostly is an undesired side effect, but in the case of newly developed immunotherapeutic tumor treatment strategies it represents the underlying therapeutic effect. Especially the formation of so-called "internal image" antibodies, which are directed against the antigen-combining site (paratope) of the therapeutic antibody, is supposed to evoke specific immune responses against tumor antigens mediated via idiotype-anti-idiotype interactions within the immunoregulatory network. For the monitoring of the immune response after antibody application, the newly formed human antibodies can be measured with immunoassay procedures involving the applied therapeutic antibody as test antibody. Because the original antigen is directed against the therapeutic antibody and inhibits the binding of "internal image" antibodies, a special assay design is needed to avoid interferences with samples containing the antigen. We describe an immunoassay procedure that allows the correct quantification of antiidiotypic antibodies including "internal image" antibodies that are not affected by the original antigen or other serum components that may interact with the therapeutic antibody.
Collapse
Affiliation(s)
- Jochen Reinsberg
- Department of Gynecological Endocrinology and Reproductive Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
32
|
Madec D, Férézou JP. The Application of [γ-(Silyloxy)allylidene]ditin to the Efficient Synthesis of the Chromophore of the Neocarzinostatin Dihydroxycyclopentene-Based Dienediyne Core. European J Org Chem 2006. [DOI: 10.1002/ejoc.200500353] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
DiJoseph JF, Goad ME, Dougher MM, Boghaert ER, Kunz A, Hamann PR, Damle NK. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res 2005; 10:8620-9. [PMID: 15623646 DOI: 10.1158/1078-0432.ccr-04-1134] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE CMC-544 is a CD22-targeted immunoconjugate of calicheamicin and exerts a potent cytotoxic effect against CD22+ B-cell lymphoma. This study evaluated antitumor efficacy of CMC-544 against systemically disseminated B-cell lymphoma. EXPERIMENTAL DESIGN Scid mice received i.v. injections of CD22+ Ramos B-cell lymphoma cells for their systemic dissemination. CMC-544, G5/44, CD33-targeted CMA-676 (control conjugate) or rituximab were given i.p. 3, 9, 15, or 21 days after B-cell lymphoma dissemination. Diseased mice were monitored daily for hind-limb paralysis and death. Histopathological examination of CMC-544-treated and vehicle-treated diseased mice was also performed. RESULTS Mice with disseminated B-cell lymphoma developed hind-limb paralysis within 35 days. When given up to 15 days after B-cell lymphoma dissemination, CMC-544 extended survival of the diseased mice to >100 days, and these mice were considered cured. CMC-544 was efficacious when given during both the early initiation phase and the late established phase of the disease. A single dose of CMC-544 was effective in delaying the occurrence of hind-limb paralysis. In contrast, neither CMA-676 nor unconjugated G5/44 was effective. Rituximab was effective when given early in the disease process but not when the disease was established. Histopathological analysis revealed B-cell lymphoma infiltration in brain, spinal cord, bone marrow, and kidney in vehicle-treated but not in CMC-544-treated diseased mice. Consistent with its efficacy against the disseminated B-cell lymphoma, CMC-544 also caused regression of established Ramos B-cell lymphoma xenografts in scid mice. CONCLUSIONS CMC-544 confers strong therapeutic activity against systemic disseminated B-cell lymphoma and protects mice from hind-limb paralysis and death. These results support clinical evaluation of CMC-544 in the treatment of CD22+ lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antibodies, Monoclonal, Murine-Derived
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Adhesion Molecules/metabolism
- Hindlimb
- Humans
- Immunoconjugates/therapeutic use
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Inotuzumab Ozogamicin
- Lectins/metabolism
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/pathology
- Lymphoma, B-Cell/therapy
- Male
- Mice
- Mice, SCID
- Paralysis/etiology
- Rituximab
- Sialic Acid Binding Ig-like Lectin 2
- Survival Rate
- Transplantation, Heterologous
Collapse
Affiliation(s)
- John F DiJoseph
- Oncology Discovery, Wyeth Research, Pearl River, New York 10965, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
De J, Chang YC, Samli KN, Schisler JC, Newgard CB, Johnston SA, Brown KC. Isolation of a mycoplasma-specific binding peptide from an unbiased phage-displayed peptide library. MOLECULAR BIOSYSTEMS 2005; 1:149-57. [PMID: 16880978 DOI: 10.1039/b504572j] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An important goal in medicine is the development of methods for cell-specific targeting of therapeutic molecules to pathogens or pathogen-infected cells. However, little progress has been made in cell-specific targeting of bacterially infected cells. Using a phage display approach, we have isolated a 20-mer peptide that binds to Mycoplasma arginini infected pancreatic beta-cells in tissue culture. This peptide binds to M. arginini infected beta-cells 200 times better than a control phage and is specific for the infected cells. Furthermore, transferring the M. arginini contamination to another cell line renders the newly infected cell line susceptible to peptide binding. Immunolocalization experiments suggest that the peptide is binding to M. arginini adhered to the cell surface. The free synthetic peptide retains its binding in the absence of the phage vehicle and tetramerization of the peptide increases its affinity for the infected cells. Efforts have been made to use this peptide to eliminate Mycoplasma from infected cell lines using ferromagnetic beads coated with the selected peptide. A ten-fold reduction of infection was accomplished with one fractionation via this approach. Our results suggest that this peptide, isolated from an unbiased selection, may be of utility for the detection and reduction of Mycoplasma infection in cultured cells. Furthermore, a general implication of our findings is that phage display methods may be useful for identifying peptides that target a broad array of other biological pathogens in a specific fashion.
Collapse
Affiliation(s)
- Jitakshi De
- Center for Translational Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The U.S. Food and Drug administration (FDA) has approved several polyclonal antibody preparations and at least 18 monoclonal antibody preparations (antibodies, antibody fragments, antibody fusion proteins, etc.). These drugs, which may be considered as a diverse group of therapeutic proteins, are associated with several interesting pharmacokinetic characteristics. Saturable binding with target antigen may influence antibody disposition, potentially leading to nonlinear distribution and elimination. Independent of antigen interaction, concentration-dependent elimination may be expected for IgG antibodies, due to the influence of the Brambell receptor, FcRn, which protects IgG from catabolism. Antibody administration may induce the development of an endogenous antibody response, which may alter the pharmacokinetics of the therapeutic antibody. Additionally, the pharmacodynamics of antibodies are also complex; these drugs may be used for a wide array of therapeutic applications, and effects may be achieved by a variety of mechanisms. This article provides an overview of many of the complexities associated with antibody pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Evelyn D Lobo
- Global PK/PD and Trial Simulations, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
36
|
Yuh EL, Shulman SG, Mehta SA, Xie J, Chen L, Frenkel V, Bednarski MD, Li KCP. Delivery of systemic chemotherapeutic agent to tumors by using focused ultrasound: study in a murine model. Radiology 2005; 234:431-7. [PMID: 15671000 DOI: 10.1148/radiol.2342030889] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To quantitatively determine the delivery of systemic liposomal doxorubicin to tumors treated with pulsed high-intensity focused ultrasound and to study the mechanism underlying this delivery in a murine model. MATERIALS AND METHODS All animal work was performed in compliance with guidelines and approval of institutional animal care committee. C3H mice received subcutaneous injections in the flank of a cell suspension of SCC7, a murine squamous cell carcinoma cell line; mice (n = 32) in drug delivery study received unilateral injections, whereas mice (n = 10) in mechanistic study received bilateral injections. Tumors were treated when they reached 1 cm(3) in volume. In the drug delivery study, doxorubicin hydrochloride liposomes were injected into the tail vein: Mice received therapy with doxorubicin injections and high-intensity focused ultrasound, doxorubicin injections alone, or neither form of therapy (controls). Tumors were removed, and the doxorubicin content was assayed with fluorescent spectrophotometry. In the mechanistic study, all mice received an injection of 500-kDa dextran-fluorescein isothyocyanate into the tail vein, and half of them were exposed to high-intensity focused ultrasound prior to injection. Contralateral tumors served as controls for each group. Extravasation of dextran-fluorescein isothyocyanate was observed by using in vivo confocal microscopy. RESULTS Mean doxorubicin concentration in tumors treated with pulsed high-intensity focused ultrasound was 9.4 microg . g(-1) +/- 2.1 (standard deviation), and it was significantly higher (124% [9.4 microg . g(-1)/4.2 microg . g(-1)]) than in those that were not treated with high-intensity focused ultrasound (4.2 microg . g(-1) +/- 0.95) (P < .001, unpaired two-tailed Student t test). Extravasation of dextran-fluorescein isothyocyanate was observed in the vasculature of tumors treated with high-intensity focused ultrasound but not in that of untreated tumors. CONCLUSION Pulsed high-intensity focused ultrasound is an effective method of targeting systemic drug delivery to tumor tissue. Potential mechanisms for producing the observed enhancement are discussed.
Collapse
Affiliation(s)
- Esther L Yuh
- Lucas Magnetic Resonance Imaging and Sprectroscopy Research Center, Department of Radiology, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Smith J, Kontermann RE, Embleton J, Kumar S. Antibody phage display technologies with special reference to angiogenesis. FASEB J 2005; 19:331-41. [PMID: 15746176 DOI: 10.1096/fj.04-2863rev] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The presence of blood vessels is a prerequisite for normal development, tissue growth, and tissue repair. However, its abnormal occurrence or absence can also potentiate disease processes. Angiogenic therapies have been used to stimulate blood vessel growth in ischemic conditions such as severe end-stage peripheral vascular disease, ischemic heart disease and stroke and for inhibition of angiogenesis in tumors. The targeting and identification of novel endothelial cell (EC) markers that can ultimately be used in angiogenic strategies is an expanding field but is limited by the availability of reagents. For instance repeated injection of mouse monoclonal antibodies (Mabs) against angiogenic EC, can result in the production of autoantibodies. Therefore, these mouse Mabs cannot be used for therapeutic purposes. Phage display technology was employed in this context to select antibodies, proteins, and peptides against known or novel EC antigens. Furthermore, technologies have been developed that enable the specific targeting of epitopes on cells including the endothelium with high-affinity/avidity antibodies. The focus for these antibody targeting strategies are markers that are unique or up-regulated on angiogenic EC including the vascular endothelial growth factor receptor (VEGFR) KDR, endoglin (CD105), and the extracellular domain B (ED-B) domain of fibronectin (FN). These markers are reviewed herein.
Collapse
Affiliation(s)
- Julia Smith
- University of Manchester, Stopford Building, Oxford Rd, Manchester, M13 9PT, UK.
| | | | | | | |
Collapse
|
38
|
Bouvier E, Schmidt F, Monneret C. Prodrogues glucuronylées du paclitaxel (Taxol®) activables au niveau des tumeurs. ANNALES PHARMACEUTIQUES FRANÇAISES 2005; 63:53-62. [PMID: 15803101 DOI: 10.1016/s0003-4509(05)82251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Three glucuronyl prodrugs of paclitaxel have been synthesized in order to be activated by the B-glucuronidase present within the necrotic areas of tumors. As three compartments containing prodrugs, they include a specifier, a self immolative spacer and the drug. In vitro testing clearly indicates that the two former prodrugs are stable and are more or less detoxified. As expected, in the presence of E. coli B-glucuronidase, the glycosidic linkage is hydrolyzed with a rate depending on the nature of the spacer but, once this hydrolysis has occurred, the self immolative spacer is soon eliminated leading to the liberation of the paclitaxel.
Collapse
Affiliation(s)
- E Bouvier
- Umr 176 Cnrs/Institut Curie, Laboratoire de pharmacochimie, Section de Recherche, 26, rue d'Ulm, F75248 Paris Cedex 05, France
| | | | | |
Collapse
|
39
|
DiJoseph JF, Popplewell A, Tickle S, Ladyman H, Lawson A, Kunz A, Khandke K, Armellino DC, Boghaert ER, Hamann PR, Zinkewich-Peotti K, Stephens S, Weir N, Damle NK. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 2005; 54:11-24. [PMID: 15693135 PMCID: PMC11033002 DOI: 10.1007/s00262-004-0572-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 05/21/2004] [Indexed: 11/29/2022]
Abstract
Antibody-targeted chemotherapy with immunoconjugates of calicheamicin is a clinically validated strategy in cancer therapy. This study describes the selection of a murine anti-CD22 mAb, m5/44, as a targeting agent, its conjugation to a derivative of calicheamicin (CalichDM) via either acid-labile or acid-stable linkers, the antitumor activity of CalichDM conjugated to m5/44, and its subsequent humanization by CDR grafting. Murine IgG1 mAb m5/44 was selected based on its subnanomolar affinity for CD22 and ability to be internalized into B cells. CalichDM conjugated to m5/44 caused potent growth inhibition of CD22+ human B-cell lymphomas (BCLs) in vitro. The conjugate of m5/44 with an acid-labile linker was more potent than an acid-stable conjugate, a nonbinding conjugate with a similar acid-labile linker, or unconjugated CalichDMH in inhibiting BCL growth. CalichDM conjugated to m5/44 caused regression of established BCL xenografts in nude mice. In contrast, both unconjugated m5/44 and a nonbinding conjugate were ineffective against these xenografts. Based on the potent antitumor activity of m5/44-CalichDM conjugates, m5/44 was humanized by CDR grafting to create g5/44, an IgG4 anti-CD22 antibody. Both m5/44 and g5/44 bound CD22 with subnanomolar affinity. Competitive blocking with previously characterized murine anti-CD22 mAbs suggested that g5/44 recognizes epitope A located within the first N-terminal Ig-like domain of human CD22. Antitumor efficacy of CalichDM conjugated to g5/44 against BCL xenografts was more potent than its murine counterpart. Based on these results, a calicheamicin conjugate of g5/44, CMC-544, was selected for further development as a targeted chemotherapeutic agent for the treatment of B-cell malignancies.
Collapse
MESH Headings
- Amino Acid Sequence
- Aminoglycosides/chemistry
- Aminoglycosides/immunology
- Aminoglycosides/therapeutic use
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, CD/immunology
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antineoplastic Agents/immunology
- Antineoplastic Agents/therapeutic use
- Binding, Competitive
- Cell Adhesion Molecules/immunology
- Cell Line, Tumor
- Epitopes/immunology
- Female
- Humans
- Immunoconjugates/immunology
- Immunoconjugates/therapeutic use
- Lectins/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Molecular Sequence Data
- Sialic Acid Binding Ig-like Lectin 2
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- John F. DiJoseph
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | | | | | | | | | - Arthur Kunz
- Chemical Sciences, Wyeth Research, Pearl River, New York USA
| | - Kiran Khandke
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Douglas C. Armellino
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | - Erwin R. Boghaert
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| | | | | | | | | | - Nitin K. Damle
- Oncology Discovery, Wyeth Research, 200/4604, 401 North Middletown Road, Pearl River, NY 10965 USA
| |
Collapse
|
40
|
van Roon JAG, Bijlsma JWJ, van de Winkel JGJ, Lafeber FPJG. Depletion of synovial macrophages in rheumatoid arthritis by an anti-FcgammaRI-calicheamicin immunoconjugate. Ann Rheum Dis 2004; 64:865-70. [PMID: 15539412 PMCID: PMC1755535 DOI: 10.1136/ard.2004.028845] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Monocytes/macrophages have an important and versatile role in joint inflammation and destruction in rheumatoid arthritis (RA). OBJECTIVE To determine the efficiency of monocyte/macrophage elimination by a new drug conjugated antibody (CD64-calicheamicin (CD64-CaMi)) directed to the high affinity receptor for IgG (FcgammaRI). METHODS Mononuclear cells from peripheral blood and synovial fluid of patients with RA were cultured in the presence of CD64-CaMi. Cell death of monocytes/macrophages was measured by analysis of phenotypic changes (light scatter patterns, CD14 expression, and FcgammaRI expression) and nuclear DNA fragmentation. The selectivity of CD64-CaMi was checked by using FcgammaRI deficient and FcgammaRI transfected cell lines. In addition, the indirect effect of CD64-CaMi-induced macrophage cell death on arthritogenic T(h1) cell activity was determined. RESULTS Inflammatory macrophages from RA synovial fluid, expressing increased FcgammaRI levels, were efficiently killed by CD64-CaMi through induction of DNA fragmentation. CD64-CaMi-induced cell death of monocytes/macrophages from peripheral blood of patients with RA proved less efficient. Induction of synovial macrophage death by CD64-CaMi was accompanied by efficient inhibition of proinflammatory T(h1) cytokine production. CONCLUSION Together, the presented data suggest that elimination of macrophages through a new FcgammaRI directed CD64-CaMi is feasible. Because monocytes from peripheral blood are also eliminated by this immunoconjugate, additional experimental studies should validate its potential for local (intra-articular) application in the treatment of RA.
Collapse
Affiliation(s)
- J A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, F02.127, PO Box 85500, 3508 GA Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Zhou X, Chang YC, Oyama T, McGuire MJ, Brown KC. Cell-Specific Delivery of a Chemotherapeutic to Lung Cancer Cells. J Am Chem Soc 2004; 126:15656-7. [PMID: 15571383 DOI: 10.1021/ja0446496] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that lung cancer-targeting peptides isolated from a peptide library can be used to deliver an active chemotherapeutic in a cell-specific fashion. The peptides were removed from the context of the phage and placed on a pegylated tetrameric scaffold. The tetrameric peptides were shown to block uptake of their cognate phage. The tetrameric peptides were coupled to doxorubicin, and their cytotoxicity against a panel of different cell lines was tested. Our data demonstrate that these targeting peptides can deliver an active anticancer agent in a cell-specific fashion, resulting in an increase of the therapeutic index of the targeted drug compared to systemic delivery. The efficacy of the peptide conjugate correlates to the affinity of the targeting peptide for a particular cell line. As such, we have demonstrated that cell-specific targeted drugs can be synthesized, even when the cell surface target is unknown.
Collapse
Affiliation(s)
- Xin Zhou
- Center for Biomedical Inventions and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9185, USA
| | | | | | | | | |
Collapse
|
42
|
Nissim A, Gofur Y, Vessillier S, Adams G, Chernajovsky Y. Methods for targeting biologicals to specific disease sites. Trends Mol Med 2004; 10:269-74. [PMID: 15177191 DOI: 10.1016/j.molmed.2004.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytokines are mediators of cell communication. Their therapeutic use requires frequent high doses to achieve effective local biological levels. However, the clinical use of some cytokines is limited because of their pleiotropism, which can result in unwanted side effects. Here, we review novel protein engineering technologies that overcome these limitations and enable the targeting of cytokines to specific sites. One such technology uses antibody-based recognition to direct the cytokine to a particular tissue, and another creates encapsulated latent cytokines that are released only at the site of disease. The latter method requires the overexpression of matrix-metalloproteinases, thereby exploiting the severity of the pathological process to regulate drug delivery. Because these technologies are based on the expression of fusion proteins, their application can be extended to other biologicals and can be delivered by gene therapy.
Collapse
Affiliation(s)
- Ahuva Nissim
- Bone and Joint Research Unit, William Harvey Research Institute, Barts and The London, Queen Mary's School of Medicine and Dentistry, University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | | | | | | |
Collapse
|
43
|
Cheng TL, Liao KW, Tzou SC, Cheng CM, Chen BM, Roffler SR. Hapten-directed targeting to single-chain antibody receptors. Cancer Gene Ther 2004; 11:380-8. [PMID: 15044963 DOI: 10.1038/sj.cgt.7700712] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Artificial recombinant receptors may be useful for selectively targeting imaging and therapeutic agents to sites of gene expression. To evaluate this approach, we developed transgenes to express highly on cells a single-chain antibody (scFv) against the hapten 4-ethoxymethylene-2-phenyl-2-oxazoline-5-one (phOx). A phOx enzyme conjugate was created by covalently attaching phOx molecules to polyethylene glycol (PEG)-modified beta-glucuronidase. Cells expressing phOx scFv but not control scFv receptors were selectively killed after exposure to ss-glucuronidase derivatized with phOx and PEG (phOx-beta G-PEG) and a glucuronide prodrug (p-hydroxy aniline mustard beta-D-glucuronide, HAMG) of p-hydroxyaniline mustard. Targeted activation of HAMG produced bystander killing of receptor-negative cells in mixed populations containing as few as 10% phOx-receptor-positive cells. Functional phOx scFv receptors were stably expressed on B16-F1 melanoma tumors in vivo. Treatment of mice bearing established phOx-receptor-positive tumors with phOx-beta G-PEG and HAMG significantly (P< or =.0005) suppressed tumor growth as compared with treatment with beta G-PEG and HAMG or prodrug alone. phOx was unstable in the serum, suggesting alternative haptens may be more suitable for in vivo applications. Our results show that therapeutic agents can be targeted to artificial hapten receptors in vitro and in vivo. The expression of artificial receptors on target cells may allow preferential delivery of therapeutic or imaging molecules to sites of transgene expression.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- School of Biomedical Science and Environmental Biology, and MedicoGenomic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, Popplewell AG, Stephens S, Frost P, Damle NK. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004; 103:1807-14. [PMID: 14615373 DOI: 10.1182/blood-2003-07-2466] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AbstractAntibody-targeted chemotherapy with gemtuzumab ozogamicin (CMA-676, a CD33-targeted immunoconjugate of N-acetyl-γ-calicheamicin dimethyl hydrazide [CalichDMH], a potent DNA-binding cytotoxic antitumor antibiotic) is a clinically validated therapeutic option for patients with acute myeloid leukemia (AML). Here, we describe the preclinical profile of another immunoconjugate of CalichDMH, CMC-544, targeted to CD22 expressed by B-lymphoid malignancies. CMC-544 comprises a humanized IgG4 anti-CD22 monoclonal antibody (mAb), G5/44, covalently linked to CalichDMH via an acid-labile 4-(4′-acetylphenoxy) butanoic acid (AcBut) linker. Both CMC-544 and unconjugated G5/44 bound human CD22 with subnanomolar affinity. CMC-544, but not unconjugated G5/44, exerted potent cytotoxicity against CD22+ B-cell lymphoma (BCL) cell lines (inhibitory concentration of 50%: 6-600 pM CalichDMH). CMC-544 caused a potent inhibition of growth of small but established BCL xenografts leading to cures (therapeutic index > 10). CMC-544 prevented the establishment of BCL xenografts and also caused regression of large BCLs (> 1.5 g tumor mass). In contrast, unconjugated CalichDMH, unconjugated G5/44, and an isotype-matched control conjugate, CMA-676, were ineffective against these BCL xenografts. Thus, CD22-targeted delivery of CalichDMH is a potent and effective preclinical therapeutic strategy for BCLs. The strong antitumor profile of CMC-544 supports its clinical evaluation as a treatment option for B-lymphoid malignancies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized
- Antigens, CD/biosynthesis
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antineoplastic Agents/pharmacology
- Cell Adhesion Molecules
- Cell Line, Tumor
- Female
- Humans
- Immunoconjugates/therapeutic use
- Immunoglobulin G/metabolism
- Immunotherapy/methods
- Inhibitory Concentration 50
- Inotuzumab Ozogamicin
- Lectins/biosynthesis
- Lectins/metabolism
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/therapy
- Lymphoma, Non-Hodgkin/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Models, Chemical
- Neoplasm Transplantation
- Protein Binding
- Sialic Acid Binding Ig-like Lectin 2
- Time Factors
Collapse
Affiliation(s)
- John F DiJoseph
- Department of Oncology Discovery, Wyeth Research, Pearl River, NY 10965, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Abstract
An immunoconjugate of doxorubicin (adriamycin) and a tumor-specific monoclonal antibody, BR96-DOX (now SGN-15) targets chemotherapy to cells that express the LewisY antigen. This immunoconjugate is internalized into lysosomes in antigen-expressing cells, with release of free doxorubicin after hydrolysis of the acid-labile linker. We review our studies using BR96-DOX in a human small-cell lung carcinoma intracerebral xenograft model in nude rats. We have found that the immunoconjugate is effective against intracerebral tumors when delivery is enhanced with osmotic disruption of the blood-brain barrier (BBB). Enhanced delivery of BR96-DOX with BBB opening can work together with radiotherapy to increase antitumor efficacy, which is maximally effective if immunoconjugate is administered prior to radiotherapy. In heterogeneous brain tumors, enhanced delivery of BR96-DOX significantly reduced tumor volumes, but local release of doxorubicin by targeting antigen expressing cells shows modest cytotoxicity against adjacent non-expressor cells. Although BR96-DOX is not effective against glioma cells tested, it does provide a model for drug-immunoconjugate therapy of gliomas. Our studies in a rat brain tumor model point out the importance of optimized delivery, antigenic heterogeneity, and bystander effect for brain tumor therapy. We review additional studies of drug-mAb immunoconjugates pertinent to the treatment of gliomas.
Collapse
Affiliation(s)
- Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, OR 97201, USA.
| | | |
Collapse
|
47
|
Neuwelt EA, Thrun LA, Walker-Rosenfeld S, Cave AT, Muldoon LL. Effect of Antigenic Heterogeneity on the Efficacy of Enhanced Delivery of Antibody-targeted Chemotherapy in a Human Lung Cancer Intracerebral Xenograft Model in Rats. Neurosurgery 2003. [DOI: 10.1227/01.neu.0000093428.35072.f0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Edward A. Neuwelt
- Departments of Neurology and Neurosurgery, Oregon Health & Science University, and Veterans Administration Medical Center, Portland, Oregon
| | - Lori A. Thrun
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | | | - Andrew T. Cave
- Department of Neurology, Oregon Health & Science University, Portland, Oregon
| | - Leslie L. Muldoon
- Departments of Neurology and Cell and Developmental Biology, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
48
|
Tanaka T, Lobato MN, Rabbitts TH. Single domain intracellular antibodies: a minimal fragment for direct in vivo selection of antigen-specific intrabodies. J Mol Biol 2003; 331:1109-20. [PMID: 12927545 DOI: 10.1016/s0022-2836(03)00836-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
There is a major need in target validation and therapeutic applications for molecules that can interfere with protein function inside cells. Intracellular antibodies (intrabodies) can bind to specific targets in cells but isolation of intrabodies is currently difficult. Intrabodies are normally single chain Fv fragments comprising variable domains of the immunoglobulin heavy (VH) and light chains (VL). We now demonstrate that single VH domains have excellent intracellular properties of solubility, stability and expression within the cells of higher organisms and can exhibit specific antigen recognition in vivo. We have used this intracellular single variable domain (IDab) format, based on a previously characterised intrabody consensus scaffold, to generate diverse intrabody libraries for direct in vivo screening. IDabs were isolated using two distinct antigens and affinities of isolated IDabs ranged between 20 nM and 200 nM. Moreover, IDabs selected for binding to the RAS protein could inhibit RAS-dependent oncogenic transformation of NIH3T3 cells. The IDab format is therefore ideal for in vivo intrabody use. This approach to intrabodies obviates the need for phage antibody libraries, avoids the requirement for production of antigen in vitro and allows for direct selection of intrabodies in vivo.
Collapse
Affiliation(s)
- Tomoyuki Tanaka
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, UK
| | | | | |
Collapse
|
49
|
Rosenkranz AA, Lunin VG, Gulak PV, Sergienko OV, Shumiantseva MA, Voronina OL, Gilyazova DG, John AP, Kofner AA, Mironov AF, Jans DA, Sobolev AS. Recombinant modular transporters for cell-specific nuclear delivery of locally acting drugs enhance photosensitizer activity. FASEB J 2003; 17:1121-3. [PMID: 12692081 DOI: 10.1096/fj.02-0888fje] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The search for new pharmaceuticals that are specific for diseased rather than normal cells in the case of cancer and viral disease has raised interest in locally acting drugs that act over short distances within the cell and for which different cell compartments have distinct sensitivities. Thus, photosensitizers (PSs) used in anti-cancer therapy should ideally be transported to the most sensitive subcellular compartments in order for their action to be most pronounced. Here we describe the design, production, and characterization of the effects of bacterially expressed modular recombinant transporters for PSs comprising 1) alpha-melanocyte-stimulating hormone as an internalizable, cell-specific ligand; 2) an optimized nuclear localization sequence of the SV40 large T-antigen; 3) an Escherichia coli hemoglobin-like protein as a carrier; and 4) an endosomolytic amphipathic polypeptide, the translocation domain of diphtheria toxin. These modular transporters delivered PSs into the nuclei, the most vulnerable sites for the action of PSs, of murine melanoma cells, but not non-MSH receptor-overexpressing cells, to result in cytotoxic effects several orders of magnitude greater than those of nonmodified PSs. The modular fusion proteins described here for the first time, capable of cell-specific targeting to particular subcellular compartments to increase drug efficacy, represent new pharmaceuticals with general application.
Collapse
Affiliation(s)
- Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
To enable scFvs as multi-drug carriers, we designed and synthesized dendritic linker molecules bearing up to nine chlorambucil residues at the branch ends. A maleimide group was used at the focal point of the dendron for easy linkage to the scFv. Originally designed molecules showed poor water solubility. To address this problem, a lysine residue with an unprotected carboxylic acid group was inserted into the dendron branches. The new molecules showed excellent water solubility and are now suitable for conjugation. Such dendritic molecules will allow studies to understand the relationship between the drug/antibody ratio and the potency of the immunoconjugates. The dendritic approach could also be applied to drugs other than chlorambucil and carriers other than scFvs to greatly increase the drug/carrier ratio.
Collapse
Affiliation(s)
- Chengzao Sun
- Department of Chemistry, The Scripps Research Institute and the Skaggs Institute for Chemical Biology, 10550N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|