1
|
Maj W, Pertile G, Różalska S, Skic K, Frąc M. The role of food preservatives in shaping metabolic profile and chemical sensitivity of fungi - an extensive study on crucial mycological food contaminants from the genus Neosartorya (Aspergillus spp.). Food Chem 2024; 453:139583. [PMID: 38772305 DOI: 10.1016/j.foodchem.2024.139583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
Food preservatives are crucial in fruit production, but fungal resistance is a challenge. The main objective was to compare the sensitivity of Neosartorya spp. isolates to preservatives used in food security applications and to assess the role of metabolic properties in shaping Neosartorya spp. resistance. Sodium metabisulfite, potassium sorbate, sodium bisulfite and sorbic acid showed inhibitory effects, with sodium metabisulfite the most effective. Tested metabolic profiles included fungal growth intensity and utilization of amines and amides, amino acids, polymers, carbohydrates and carboxylic acids. Significant decreases in the utilization of all tested organic compound guilds were observed after fungal exposure to food preservatives compared to the control. Although the current investigation was limited in the number of predominately carbohydrate substrates and the breadth of metabolic responses, extensive sensitivity panels are logical step in establishing a course of action against spoilage agents in food production being important approach for innovative food chemistry.
Collapse
Affiliation(s)
- Wiktoria Maj
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Banacha Street 12/16, 90-237 Łódź, Poland
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
2
|
Katsoulis O, Pitts OR, Singanayagam A. The airway mycobiome and interactions with immunity in health and chronic lung disease. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae009. [PMID: 39206335 PMCID: PMC11357796 DOI: 10.1093/oxfimm/iqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
The existence of commensal fungi that reside within the respiratory tract, termed the airway mycobiome, has only recently been discovered. Studies are beginning to characterize the spectrum of fungi that inhabit the human upper and lower respiratory tract but heterogeneous sampling and analysis techniques have limited the generalizability of findings to date. In this review, we discuss existing studies that have examined the respiratory mycobiota in healthy individuals and in those with inflammatory lung conditions such as asthma, chronic obstructive pulmonary disease and cystic fibrosis. Associations between specific fungi and features of disease pathogenesis are emerging but the precise functional consequences imparted by mycobiota upon the immune system remain poorly understood. It is imperative that further research is conducted in this important area as a more detailed understanding could facilitate the development of novel approaches to manipulating the mycobiome for therapeutic benefit.
Collapse
Affiliation(s)
- Orestis Katsoulis
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Oliver R Pitts
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2DD, UK
- National Heart and Lung Institute, Imperial College London, London SW7 2DD, UK
| |
Collapse
|
3
|
Illek B, Fischer H, Machen TE, Hari G, Clemons KV, Sass G, Ferreira JAG, Stevens DA. Protective role of CFTR during fungal infection of cystic fibrosis bronchial epithelial cells with Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1196581. [PMID: 37680748 PMCID: PMC10482090 DOI: 10.3389/fcimb.2023.1196581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Lung infection with the fungus Aspergillus fumigatus (Af) is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function. We established a fungal epithelial co-culture model to examine the impact of Af infection on CF bronchial epithelial barrier function using Af strains 10AF and AF293-GFP, and the CFBE41o- cell line homozygous for the F508del mutation with (CF+CFTR) and without (CF) normal CFTR expression. Following exposure of the epithelial surface to Af conidia, formation of germlings (early stages of fungal growth) was detected after 9-12 hours and hyphae (mature fungal growth) after 12-24 hours. During fungal morphogenesis, bronchial epithelial cells showed signs of damage including rounding, and partial detachment after 24 hours. Fluorescently labeled conidia were internalized after 6 hours and more internalized conidia were observed in CF compared to CF+CFTR cells. Infection of the apical surface with 10AF conidia, germlings, or hyphae was performed to determine growth stage-specific effects on tight junction protein zona occludens protein 1 (ZO-1) expression and transepithelial electrical resistance (TER). In response to infection with conidia or germlings, epithelial barrier function degraded time-dependently (based on ZO-1 immunofluorescence and TER) with a delayed onset in CF+CFTR cell monolayers and required viable fungi and apical application. Infection with hyphae caused an earlier onset and faster rate of decline in TER compared to conidia and germlings. Gliotoxin, a major Af virulence factor, caused a rapid decline in TER and induced a transient chloride secretory response in CF+CFTR but not CF cells. Our findings suggest growth and internalization of Af result in deleterious effects on bronchial epithelial barrier function that occurred more rapidly in the absence of CFTR. Bronchial epithelial barrier breakdown was time-dependent and morphotype-specific and mimicked by acute administration of gliotoxin. Our study also suggests a protective role for CFTR by turning on CFTR-dependent chloride transport in response to gliotoxin, a mechanism that will support mucociliary clearance, and could delay the loss of epithelial integrity during fungal development in vivo.
Collapse
Affiliation(s)
- Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Horst Fischer
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Gopika Hari
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States
| | - Jose A. G. Ferreira
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| |
Collapse
|
4
|
Yu C, Kotsimbos T. Respiratory Infection and Inflammation in Cystic Fibrosis: A Dynamic Interplay among the Host, Microbes, and Environment for the Ages. Int J Mol Sci 2023; 24:ijms24044052. [PMID: 36835487 PMCID: PMC9966804 DOI: 10.3390/ijms24044052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
The interplay between airway inflammation and infection is now recognized as a major factor in the pathobiology in cystic fibrosis (CF). A proinflammatory environment is seen throughout the CF airway resulting in classic marked and enduring neutrophilic infiltrations, irreversibly damaging the lung. Although this is seen to occur early, independent of infection, respiratory microbes arising at different timepoints in life and the world environment perpetuate this hyperinflammatory state. Several selective pressures have allowed for the CF gene to persist until today despite an early mortality. Comprehensive care systems, which have been a cornerstone of therapy for the past few decades, are now revolutionized by CF transmembrane conductance regulator (CTFR) modulators. The effects of these small-molecule agents cannot be overstated and can be seen as early as in utero. For an understanding of the future, this review looks into CF studies spanning the historical and present period.
Collapse
Affiliation(s)
- Christiaan Yu
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: ; Tel.: +61-3-9076-20000
| | - Tom Kotsimbos
- Department of Respiratory Medicine, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Medicine, Monash University, Alfred Campus, Melbourne, VIC 3004, Australia
| |
Collapse
|
5
|
Xu X, Ding F, Hu X, Yang F, Zhang T, Dong J, Xue Y, Liu T, Wang J, Jin Q. Upper respiratory tract mycobiome alterations in different kinds of pulmonary disease. Front Microbiol 2023; 14:1117779. [PMID: 37032908 PMCID: PMC10076636 DOI: 10.3389/fmicb.2023.1117779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction The human respiratory tract is considered to be a polymicrobial niche, and an imbalance in the microorganism composition is normally associated with several respiratory diseases. In addition to the well-studied bacteriome, the existence of fungal species in the respiratory tract has drawn increasing attention and has been suggested to have a significant clinical impact. However, the understanding of the respiratory fungal microbiota (mycobiome) in pulmonary diseases is still insufficient. Methods In this study, we investigated the fungal community composition of oropharynx swab (OS) samples from patients with five kinds of pulmonary disease, including interstitial lung disease (ILD), bacterial pneumonia (BP), fungal pneumonia (FP), asthma (AS) and lung cancer (LC), and compared them with healthy controls (HCs), based on high-throughput sequencing of the amplified fungal internal transcribed spacer (ITS) region. Results The results showed significant differences in fungal composition and abundance between disease groups and HCs. Malassezia was the most significant genus, which was much more abundant in pulmonary diseases than in the control. In addition, many common taxa were shared among different disease groups, but differences in taxa abundance and specific species in distinct disease groups were also observed. Based on linear discriminant analysis effect size (LefSe), each group had its characteristic species. Furthermore, some species showed a significant correlation with the patient clinical characteristics. Discussion Our study deepened our understanding of the respiratory tract mycobiome in some diseases that are less studied and identified the commonalities and differences among different kinds of pulmonary disease. These results would provide the solid basis for further investigation of the association between the mycobiome and pathogenicity of pulmonary diseases.
Collapse
Affiliation(s)
- Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fangping Ding
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiangqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Tao Liu,
| | - Jing Wang
- Division of Pulmonary and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Jing Wang,
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Qi Jin,
| |
Collapse
|
6
|
Hong G. Progress and challenges in fungal lung disease in cystic fibrosis. Curr Opin Pulm Med 2022; 28:584-590. [PMID: 36101907 PMCID: PMC9547960 DOI: 10.1097/mcp.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review is an overview of the recent progress made for the diagnosis and understanding of fungal lung disease in people with cystic fibrosis (CF), with a focus on Aspergillus fumigatus , the most common filamentous fungus in the CF airway. Currently, the longstanding question of the clinical significance of Aspergillus fumigatus and other fungi in CF respiratory cultures, in the absence of allergy, remains. Clinical criteria and biomarkers are needed to classify fungal lung disease and determine who may warrant therapy. RECENT FINDINGS Several retrospective and prospective studies have described the prevalence of A. fumigatus and other fungi in the CF lung and factors contributing to the changes in fungal epidemiology. Selective fungus culture testing for the detection of fungi in CF sputa has been well studied, yet a standardized fungus culture protocol has yet to be defined. Culture-independent molecular studies and other fungal diagnostic testing have been conducted in the CF population, leading to efforts to better understand the clinical role of these tests. Recent works have aimed to determine whether chronic A. fumigatus colonization is associated with lung disease progression measured by FEV 1 percentage predicted, structural lung disease, lung clearance index and respiratory quality-of-life. However, the existing knowledge gaps remain: definition of a fungal respiratory infection, the association between fungal infection and clinical outcomes, and indications for antifungal therapy. SUMMARY Significant progress has been made for the detection and diagnosis of fungal lung disease. Yet, the role and impact of A. fumigatus and other fungal infections on respiratory health in people with CF remains to be determined.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Hughes DA, Rosenthal M, Cuthbertson L, Ramadan N, Felton I, Simmonds NJ, Loebinger MR, Price H, Armstrong-James D, Elborn JS, Cookson WO, Moffatt MF, Davies JC. An invisible threat? Aspergillus positive cultures and co-infecting bacteria in airway samples. J Cyst Fibros 2022; 22:320-326. [PMID: 35871975 DOI: 10.1016/j.jcf.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Aspergillus fumigatus (Af) infection is associated with poor lung health in chronic suppurative lung diseases but often goes undetected. We hypothesised that inhibition of Af growth by Pseudomonas aeruginosa (Pa) increases the frequency of false-negative Af culture in co-infected people. Using a substantial group of cystic fibrosis (CF) airway samples, we assessed the relationship between Af and bacterial pathogens, additionally comparing fungal culture with next-generation sequencing. METHODS Frequency of co-culture was assessed for 44,554 sputum/BAL cultures, from 1,367 CF patients between the years 2010-2020. In a subgroup, Internal Transcribed Spacer-2 (ITS2) fungal sequencing was used to determine sequencing-positive, culture-negative (S+/C-) rates. RESULTS Pa+ samples were nearly 40% less likely (P<0.0001) than Pa- samples to culture Af, an effect that was also seen with some other Gram-negative isolates. This impact varied with Pa density and appeared to be moderated by Staphylococcus aureus co-infection. Sequencing identified Af-S+/C- for 40.1% of tested sputa. Samples with Pa had higher rates of Af-S+/C- (49.3%) than those without (35.7%; RR 1.38 [1.02-1.93], P<0.05). Af-S+/C- rate was not changed by other common bacterial infections. Pa did not affect the S+/C- rates of Candida, Exophiala or Scedosporium. CONCLUSIONS Pa/ Af co-positive cultures are less common than expected in CF. Our findings suggest an Af-positive culture is less likely in the presence of Pa. Interpretation of negative cultures should be cautious, particularly in Pa-positive samples, and a companion molecular diagnostic could be useful. Further work investigating mechanisms, alternative detection techniques and other chronic suppurative lung diseases is needed.
Collapse
Affiliation(s)
- Dominic A Hughes
- King's College Hospital NHS Foundation Trust, London, UK; National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK.
| | - Mark Rosenthal
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Leah Cuthbertson
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Newara Ramadan
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Imogen Felton
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Nicholas J Simmonds
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Michael R Loebinger
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| | - Henry Price
- Department of Physics, Imperial College London, UK
| | - Darius Armstrong-James
- Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK; Department of Infectious Diseases, Imperial College London, UK
| | | | - William O Cookson
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Miriam F Moffatt
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, Emmanuel Kaye Building, 1B Manresa Road, London SW3 6LR, UK; Royal Brompton Hospital, Guy's & St Thomas' Trust, London, UK
| |
Collapse
|
8
|
de Dios Caballero J, Cantón R, Ponce-Alonso M, García-Clemente MM, Gómez G. de la Pedrosa E, López-Campos JL, Máiz L, del Campo R, Martínez-García MÁ. The Human Mycobiome in Chronic Respiratory Diseases: Current Situation and Future Perspectives. Microorganisms 2022; 10:810. [PMID: 35456861 PMCID: PMC9029612 DOI: 10.3390/microorganisms10040810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 12/15/2022] Open
Abstract
Microbes play an important role in the pathogenesis of chronic lung diseases, such as chronic obstructive pulmonary disease, cystic fibrosis, non-cystic fibrosis bronchiectasis, and asthma. While the role of bacterial pathogens has been extensively studied, the contribution of fungal species to the pathogenesis of chronic lung diseases is much less understood. The recent introduction of next-generation sequencing techniques has revealed the existence of complex microbial lung communities in healthy individuals and patients with chronic respiratory disorders, with fungi being an important part of these communities' structure (mycobiome). There is growing evidence that the components of the lung mycobiome influence the clinical course of chronic respiratory diseases, not only by direct pathogenesis but also by interacting with bacterial species and with the host's physiology. In this article, we review the current knowledge on the role of fungi in chronic respiratory diseases, which was obtained by conventional culture and next-generation sequencing, highlighting the limitations of both techniques and exploring future research areas.
Collapse
Affiliation(s)
- Juan de Dios Caballero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Manuel Ponce-Alonso
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Marta María García-Clemente
- Department of Pneumology, Central Asturias University Hospital, 33011 Oviedo, Spain;
- Principality Asturias Health Research Institute (ISPA), 33011 Oviedo, Spain
| | - Elia Gómez G. de la Pedrosa
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - José Luis López-Campos
- Medical-Surgical Unit for Respiratory Diseases (CIBERES), Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, University of Seville, 41013 Sevilla, Spain;
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
| | - Luis Máiz
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
- Department of Pneumology, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| | - Rosa del Campo
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Health Research Institute, 28034 Madrid, Spain; (J.d.D.C.); (M.P.-A.); (E.G.G.d.l.P.); (R.d.C.)
- CIBER of Infectious Diseases (CIBERINFEC), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Miguel Ángel Martínez-García
- CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, 28029 Madrid, Spain; (L.M.); (M.Á.M.-G.)
- Department of Pneumology, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| |
Collapse
|
9
|
Hung YH, Lai HH, Lin HC, Sun KS, Chen CY. Investigating Factors of False-Positive Results of Aspergillus Galactomannan Assay: A Case-Control Study in Intensive Care Units. Front Pharmacol 2021; 12:747280. [PMID: 34987388 PMCID: PMC8721279 DOI: 10.3389/fphar.2021.747280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Studies on false-positive galactomannan (GM) enzyme immunoassay (EIA) results and treatment for critically ill patients are scarce. Objectives: The study aimed to determine the false-positive rate of GM-EIA and to probe the risk factors of false positivity among patients in the intensive care units (ICUs). Methods: A case-control approach was conducted to review adult patients who had at least one GM-EIA result and were admitted to the ICU. Those who had no fungal culture were excluded. The clinical characteristics and critical care between patients with false-positive and true-negative GM index (GMI) were compared. Results: Of 206 patients enrolled and with GM-EIA results, 20 (9.7%) were considered to have false-positive antigenemia, including 9 in bronchoalveolar lavages (BAL) and 11 in serum. A total of 148 (71.8%) were true-negatives. After paired grouping of 1:4, factors researched in the previous studies showed no significant difference. However, compared with the true-negatives, patients with positive GM test results but were incompatible with the diagnosis of invasive aspergillosis were more prone to the risk of false positivity due to the use of colistin inhalation. It seemed to be the only factor that significantly increased the risk of false positivity after multivariate analysis (adjusted odds ratio, 35.68; 95% CI, 3.77-337.51, p = 0.002). Conclusions: Colistin inhalation treatment may contribute to false-positive GM-EIA results. The positive GMI among patients receiving colistin nebulization should be interpreted with caution.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Hsiung Lai
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Hui-Chuan Lin
- Department of Pharmacy, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Kuo-Shao Sun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, St. Martin De Porres Hospital, Chiayi, Taiwan
- Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi, Taiwan
| | - Chung-Yu Chen
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi, Taiwan
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Big Data Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Abstract
In the past three decades, fungal respiratory colonization and fungal respiratory infections increasingly raised concern in cystic fibrosis (CF). Reasons for this are a better knowledge of the pathogenicity of fungi, whereby detection is sought in more and more CF centers, but also improvement of detection methods. However, differences in fungal detection rates within and between geographical regions exist and indicate the need for standardization of mycological examination of respiratory secretions. The still existing lack of standardization also complicates the assessment of fungal pathogenicity, relevance of fungal detection and risk factors for fungal infections. Nevertheless, numerous studies have now been conducted on differences in detection methods, epidemiology, risk factors, pathogenicity and therapy of fungal diseases in CF. Meanwhile, some research groups now have classified fungal disease entities in CF and developed diagnostic criteria as well as therapeutic guidelines.The following review presents an overview on fungal species relevant in CF. Cultural detection methods with their respective success rates as well as susceptibility testing will be presented, and the problem of increasing azole resistance in Aspergillus fumigatus will be highlighted. Next, current data and conflicting evidence on the epidemiology and risk factors for fungal diseases in patients with CF will be discussed. Finally, an overview of fungal disease entities in CF with their current definitions, diagnostic criteria and therapeutic options will be presented.
Collapse
|
11
|
The Spectrum of Fungal Colonization and Their Attributable Effects on Cystic Fibrosis Patients with Rare CFTR Genetic Mutations. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic airway colonization by bacteria and fungi is very common in CF patients, causing irreversible lung damage. It is known that rates of fungal infections are much lower than those of bacterial infections, however they can worsen the medical condition of CF patients. In this study, we identify the most common fungal species isolated from 31 adult CF patients in Qatar and analyze their correlation with lung function, pulmonary exacerbations, bronchial asthma, and pancreatic insufficiency. Mycological evaluation, as well as medical records, were reviewed for the patients regularly under the adult CF service at Hamad General Hospital in the period between 2017–2019. All CF patients included in this study carry rare CFTR mutations. The majority of those patients (n = 25) carried the c.3700A>G; I1234V mutation, whereas three patients carried the heterozygous mutation (c.1657C>T and c.1115A>T) and the remaining three carried the homozygous mutation (c.920G>A). Twenty-two of the adult CF participants (70.9%) were colonized with fungal species regardless of the type of the CFTR mutation. Candida and Aspergillus species were the most common, colonizing 81% and 45% of the patients, respectively. For Candida colonized patients, Candida dubliniensis was the most frequently reported species (55.6%), whereas Aspergillus fumigatus colonization was the most common (50.0%) among Aspergillus colonized patients. These identified fungal pathogens were associated with poor lung function, pancreatic insufficiency, and asthma in this cohort. Such colonization could possibly aggravate the most known CF complications, notably pulmonary exacerbations, asthma, and pancreatic insufficiency.
Collapse
|
12
|
Sass G, Shrestha P, Stevens DA. Pseudomonas aeruginosa Virulence Factors Support Voriconazole Effects on Aspergillus fumigatus. Pathogens 2021; 10:pathogens10050519. [PMID: 33925818 PMCID: PMC8146861 DOI: 10.3390/pathogens10050519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa and Aspergillus fumigatus are pathogens that are associated with deterioration of lung function, e.g., in persons with cystic fibrosis (CF). There is evidence that co-infections with these pathogens cause airway inflammation and aggravate pathology in CF lungs. Intermicrobial competition of P. aeruginosa and A. fumigatus has been described, but it is unknown how anti-fungal therapy is affected. The anti-fungal azole voriconazole (VCZ), supernatants of P. aeruginosa laboratory isolates PA14 or PAO1, or clinical isolate Pa10 independently inhibited biofilm metabolism of A. fumigatus isolates 10AF and AF13073. When VCZ and supernatants were combined at their IC50s, synergistic effects on A. fumigatus were found. Synergistic effects were no longer observed when P. aeruginosa supernatants were prepared in the presence of iron, or when P. aeruginosa mutants were lacking the ability to produce pyoverdine and pyochelin. Combination of pure P. aeruginosa products pyoverdine, pyochelin, and pyocyanin with VCZ showed synergistic anti-fungal effects. Combining VCZ with P. aeruginosa supernatants also improved its MIC and MFC against planktonic A. fumigatus. In summary, in the case of P. aeruginosa–A. fumigatus co-infections, it appeared that the P. aeruginosa co-infection facilitated therapy of the Aspergillus; lower concentrations of VCZ might be sufficient to control fungal growth.
Collapse
Affiliation(s)
- Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (P.S.)
| | - Pallabi Shrestha
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (P.S.)
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (G.S.); (P.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
13
|
Curran AK, Hava DL. Allergic Diseases Caused by Aspergillus Species in Patients with Cystic Fibrosis. Antibiotics (Basel) 2021; 10:antibiotics10040357. [PMID: 33800658 PMCID: PMC8067098 DOI: 10.3390/antibiotics10040357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023] Open
Abstract
Aspergillus spp. are spore forming molds; a subset of which are clinically relevant to humans and can cause significant morbidity and mortality. A. fumigatus causes chronic infection in patients with chronic lung disease such as asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). In patients with CF, A. fumigatus infection can lead to allergic disease, such as allergic bronchopulmonary aspergillosis (ABPA) which is associated with high rates of hospitalizations for acute exacerbations and lower lung function. ABPA results from TH2 immune response to Aspergillus antigens produced during hyphal growth, marked by high levels of IgE and eosinophil activation. Clinically, patients with ABPA experience difficulty breathing; exacerbations of disease and are at high risk for bronchiectasis and lung fibrosis. Oral corticosteroids are used to manage aspects of the inflammatory response and antifungal agents are used to reduce fungal burden and lower the exposure to fungal antigens. As the appreciation for the severity of fungal infections has grown, new therapies have emerged that aim to improve treatment and outcomes for patients with CF.
Collapse
Affiliation(s)
| | - David L. Hava
- Synlogic Inc., 301 Binney Street, Cambridge, MA 02142, USA
- Correspondence:
| |
Collapse
|
14
|
Magee LC, Louis M, Khan V, Micalo L, Chaudary N. Managing Fungal Infections in Cystic Fibrosis Patients: Challenges in Clinical Practice. Infect Drug Resist 2021; 14:1141-1153. [PMID: 33790585 PMCID: PMC7998013 DOI: 10.2147/idr.s267219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disease characterized by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) protein. Impairment of the CFTR protein in the respiratory tract results in the formation of thick mucus, development of inflammation, destruction of bronchial tissue, and development of bacterial or fungal infections over time. CF patients are commonly colonized and/or infected with fungal organisms, Candida albicans or Aspergillus fumigatus, with prevalence rates ranging from 5% to 78% in the literature. Risk factors for acquiring fungal organisms include older age, coinfection with Pseudomonas aeruginosa, prolonged use of oral and inhaled antibiotics, and lower forced expiratory volume (FEV1). There are limited data available to differentiate between contamination, colonization, and active infection. Furthermore, the pathogenicity of colonization is variable in the literature as some studies report a decline in lung function associated with fungal colonization whereas others showed no difference. Limited data are available for the eradication of fungal colonization and the treatment of active invasive aspergillosis in adult CF patients. In this review article, we discuss the challenges in clinical practice and current literature available for laboratory findings, clinical diagnosis, and treatment options for fungal infections in adult CF patients.
Collapse
Affiliation(s)
- Lauren C Magee
- Department of Pharmacy, Virginia Commonwealth University Health System, Richmond, VA, USA
| | - Mariam Louis
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, FL, USA
| | - Vaneeza Khan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Lavender Micalo
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nauman Chaudary
- Division of Pulmonary Disease and Critical Care Medicine, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Margalit A, Carolan JC, Kavanagh K. Bacterial Interactions with Aspergillus fumigatus in the Immunocompromised Lung. Microorganisms 2021; 9:microorganisms9020435. [PMID: 33669831 PMCID: PMC7923216 DOI: 10.3390/microorganisms9020435] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
The immunocompromised airways are susceptible to infections caused by a range of pathogens which increases the opportunity for polymicrobial interactions to occur. Pseudomonas aeruginosa and Staphylococcus aureus are the predominant causes of pulmonary infection for individuals with respiratory disorders such as cystic fibrosis (CF). The spore-forming fungus Aspergillus fumigatus, is most frequently isolated with P. aeruginosa, and co-infection results in poor outcomes for patients. It is therefore clinically important to understand how these pathogens interact with each other and how such interactions may contribute to disease progression so that appropriate therapeutic strategies may be developed. Despite its persistence in the airways throughout the life of a patient, A. fumigatus rarely becomes the dominant pathogen. In vitro interaction studies have revealed remarkable insights into the molecular mechanisms that drive agonistic and antagonistic interactions that occur between A. fumigatus and pulmonary bacterial pathogens such as P. aeruginosa. Crucially, these studies demonstrate that although bacteria may predominate in a competitive environment, A. fumigatus has the capacity to persist and contribute to disease.
Collapse
Affiliation(s)
| | | | - Kevin Kavanagh
- Correspondence: ; Tel.: +353-1-708-3859; Fax: +353-1-708-3845
| |
Collapse
|
16
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
17
|
Breuer O, Schultz A, Garratt LW, Turkovic L, Rosenow T, Murray CP, Karpievitch YV, Akesson L, Dalton S, Sly PD, Ranganathan S, Stick SM, Caudri D. Aspergillus Infections and Progression of Structural Lung Disease in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:688-696. [DOI: 10.1164/rccm.201908-1585oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Oded Breuer
- Telethon Kids Institute and
- Department of Pediatrics, Pediatric Pulmonary Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- Department of Respiratory and Sleep Medicine and
| | - Andre Schultz
- Telethon Kids Institute and
- Division of Child Health, Faculty of Medicine and Dentistry, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine and
| | | | | | - Tim Rosenow
- Telethon Kids Institute and
- Division of Child Health, Faculty of Medicine and Dentistry, University of Western Australia, Perth, Western Australia, Australia
| | - Conor P. Murray
- Department of Diagnostic Imaging, Perth Children’s Hospital, Perth, Western Australia, Australia
| | | | - Lauren Akesson
- Telethon Kids Institute and
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Samuel Dalton
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - Peter D. Sly
- Children’s Health and Environment Program, Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Sarath Ranganathan
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Department of Respiratory Medicine, Royal Children’s Hospital, Parkville, Victoria, Australia
- Murdoch Children’s Research Institute, Parkville, Victoria, Australia; and
| | - Stephen M. Stick
- Telethon Kids Institute and
- Division of Child Health, Faculty of Medicine and Dentistry, University of Western Australia, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine and
| | - Daan Caudri
- Telethon Kids Institute and
- Department of Respiratory and Sleep Medicine and
- Department of Pediatrics/Respiratory Medicine, Erasmus Medical Center–Sophia, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Hong G, Alby K, Ng SCW, Fleck V, Kubrak C, Rubenstein RC, Dorgan DJ, Kawut SM, Hadjiliadis D. The presence of Aspergillus fumigatus is associated with worse respiratory quality of life in cystic fibrosis. J Cyst Fibros 2019; 19:125-130. [PMID: 31446018 DOI: 10.1016/j.jcf.2019.08.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/09/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND The clinical effects of Aspergillus fumigatus in the cystic fibrosis (CF) airway, with the exception of allergic bronchopulmonary aspergillosis, is unclear. METHODS CF adolescents and adults (age 14 years and older) underwent bacterial and semi-selective fungal culture testing to determine the prevalence of fungi in the CF respiratory tract and the independent association between the presence of Aspergillus fumigatus and clinical characteristics. RESULTS Aspergillus fumigatus (10.3%) and Candida species (57.8%) were the most common filamentous fungi and yeast seen respectively in the sputa of 206 individuals with CF. Inhaled corticosteroid (ICS) use was more common in Aspergillus fumigatus-positive than Aspergillus fumigatusnegative (100% versus 75.8%, p = .01). Aspergillus fumigatus was significantly associated with lower respiratory domain score (β -8.74, 95% CI -16.6, -0.88, p = .03), representing worse respiratory-related quality of life, accounting for demographics, disease characteristics, and the presence of a pulmonary exacerbation. CONCLUSION The presence of Aspergillus fumigatus in CF sputum was associated with worse respiratory quality of life in CF in a crosssectional, single center study. Longitudinal analysis examining the clinical implications of Aspergillus fumigatus on respiratory health over time is needed.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Kevin Alby
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Sharon C W Ng
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Victoria Fleck
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Christina Kubrak
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ronald C Rubenstein
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Daniel J Dorgan
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven M Kawut
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis Hadjiliadis
- Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
19
|
Husain S, Camargo JF. Invasive Aspergillosis in solid-organ transplant recipients: Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 2019; 33:e13544. [PMID: 30900296 DOI: 10.1111/ctr.13544] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022]
Abstract
These updated AST-IDCOP guidelines provide information on epidemiology, diagnosis, and management of Aspergillus after organ transplantation. Aspergillus is the most common invasive mold infection in solid-organ transplant (SOT) recipients, and it is the most common invasive fungal infection among lung transplant recipients. Time from transplant to diagnosis of invasive aspergillosis (IA) is variable, but most cases present within the first year post-transplant, with shortest time to onset among liver and heart transplant recipients. The overall 12-week mortality of IA in SOT exceeds 20%; prognosis is worse among those with central nervous system involvement or disseminated disease. Bronchoalveolar lavage galactomannan is preferred for the diagnosis of IA in lung and non-lung transplant recipients, in combination with other diagnostic modalities (eg, chest CT scan, culture). Voriconazole remains the drug of choice to treat IA, with isavuconazole and lipid formulations of amphotericin B regarded as alternative agents. The role of combination antifungals for primary therapy of IA remains controversial. Either universal prophylaxis or preemptive therapy is recommended in lung transplant recipients, whereas targeted prophylaxis is favored in liver and heart transplant recipients. In these guidelines, we also discuss newer antifungals and diagnostic tests, antifungal susceptibility testing, and special patient populations.
Collapse
Affiliation(s)
- Shahid Husain
- Division of Infectious Diseases, Multi-Organ Transplant Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jose F Camargo
- Department of Medicine, Division of Infectious Diseases, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
20
|
Warris A, Bercusson A, Armstrong-James D. Aspergillus colonization and antifungal immunity in cystic fibrosis patients. Med Mycol 2019; 57:S118-S126. [PMID: 30816976 DOI: 10.1093/mmy/myy074] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/20/2018] [Accepted: 07/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF), caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, is the most common inherited life-limiting disease in North European people affecting 90,000 people worldwide. Progressive lung damage caused by recurrent infection and chronic airway inflammation is the major determinant of survival with a median age at death of 29 years. Approximately 60% of CF patients are infected with Aspergillus fumigatus, a ubiquitous environmental fungus, and its presence has been associated with accelerated lung function decline. Half of the patients infected with Aspergillus are <18 years of age. Yet time of acquisition of this fungus and determinants of CF-related Aspergillus disease severity and progression are not known. CFTR expression has been demonstrated in cells of the innate and adaptive immune system and has shown to be critical for normal function. Research delineating the role of CFTR-deficient phagocytes in Aspergillus persistence and infection in the CF lung, has only recently received attention. In this concise review we aim to present the current understanding with respect to when people with CF acquire infection with A. fumigatus and antifungal immune responses by CF immune cells.
Collapse
Affiliation(s)
- Adilia Warris
- MRC Centre for Medical Mycology, Aberdeen Fungal Group, University of Aberdeen, United Kingdom
| | - Amelia Bercusson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | | |
Collapse
|
21
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
22
|
Hong G, Lechtzin N, Hadjiliadis D, Kawut SM. Inhaled antibiotic use is associated with Scedosporium/Lomentospora species isolation in cystic fibrosis. Pediatr Pulmonol 2019; 54:133-140. [PMID: 30549449 PMCID: PMC8115015 DOI: 10.1002/ppul.24210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Prevalence of fungi has been rising in the cystic fibrosis (CF) population. Scedosporium species (spp) is the second most common mold seen in the CF respiratory tract. However, the characteristics associated with Scedosporium isolation and its clinical implications are poorly understood. The goal of this study was to determine clinical factors associated with Scedosporium spp to better understand the mechanisms that may contribute to the emergence of filamentous fungi in CF. METHODS We conducted a retrospective cohort study of subjects followed in the CF Foundation Patient Registry between January 1, 2010 and December 31, 2012. Patients under 6 years of age, history of solid organ transplantation, and insufficient respiratory culture data were excluded. We used a multivariable logistic regression model to determine demographic data and baseline disease characteristics, medications and co-infections associated with Scedosporium spp recovery in CF sputum. RESULTS Among 19 023 subjects, prevalence of Scedosporium spp was 615 (3.2%). Older age (odds ratio [OR] 1.16, 95% confidence interval [CI] 1.07, 1.26) and white race (OR 1.69, 95% CI 1.09, 2.63) were the demographic factors associated with Scedosporium spp isolation. Inhaled antibiotic use had a significant association with Scedosporium isolation (OR 2.01, 95% CI 1.61, 2.52). For every additional course of intravenous antibiotics, the odds of Scedosporium isolation increased by 8% (OR 1.08, 95% CI 1.03, 1.14). CONCLUSIONS The association between inhaled antibiotics and Scedosporium informs us that chronic inhaled antibiotics may be playing a role in Scedosporium isolation. Further investigation to better characterize this relationship is necessary.
Collapse
Affiliation(s)
- Gina Hong
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Noah Lechtzin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Denis Hadjiliadis
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven M Kawut
- Department of Medicine, Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Tracy MC, Moss RB. The myriad challenges of respiratory fungal infection in cystic fibrosis. Pediatr Pulmonol 2018; 53:S75-S85. [PMID: 29992775 DOI: 10.1002/ppul.24126] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/21/2018] [Indexed: 12/27/2022]
Abstract
Fungal infection in cystic fibrosis (CF) is a recognized challenge, with many areas requiring further investigation. Consensus definitions exist for allergic bronchopulmonary aspergillus in CF, but the full scope of clinically relevant non-allergic fungal disease in CF-asymptomatic colonization, transient or chronic infection localized to endobronchial mucus plugs or airway tissue, and invasive disease-is yet to be clearly defined. Recent advances in mycological culture and non-culture identification have expanded the list of both potential pathogens and community commensals in the lower respiratory tract. Here we aim to outline the current understanding of fungal presence in the CF respiratory tract, risk factors for acquiring fungi, host-pathogen interactions that influence the role of fungi from bystander to pathogen, advances in the diagnostic approaches to isolating and identifying fungi in CF respiratory samples, challenges of classifying clinical phenotypes of CF patients with fungi, and current treatment approaches. Development and validation of biomarkers characteristic of different fungal clinical phenotypes, and controlled trials of antifungal agents in well-characterized target populations, remain central challenges to surmount and goals to be achieved.
Collapse
Affiliation(s)
- Michael C Tracy
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| | - Richard B Moss
- Center for Excellence in Pulmonary Biology, Division of Pulmonary, Asthma and Sleep Medicine, Department of Pediatrics, Stanford University Medical School, Palo Alto, California
| |
Collapse
|
24
|
Delhaes L, Touati K, Faure-Cognet O, Cornet M, Botterel F, Dannaoui E, Morio F, Le Pape P, Grenouillet F, Favennec L, Le Gal S, Nevez G, Duhamel A, Borman A, Saegeman V, Lagrou K, Gomez E, Carro ML, Canton R, Campana S, Buzina W, Chen S, Meyer W, Roilides E, Simitsopoulou M, Manso E, Cariani L, Biffi A, Fiscarelli E, Ricciotti G, Pihet M, Bouchara JP. Prevalence, geographic risk factor, and development of a standardized protocol for fungal isolation in cystic fibrosis: Results from the international prospective study "MFIP". J Cyst Fibros 2018; 18:212-220. [PMID: 30348610 DOI: 10.1016/j.jcf.2018.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/07/2018] [Accepted: 10/01/2018] [Indexed: 01/18/2023]
Affiliation(s)
| | - Kada Touati
- University & CHU of Lille, F-59000 Lille, France
| | - Odile Faure-Cognet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | - Muriel Cornet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | - Veroniek Saegeman
- University of Leuven, National Reference center for Mycosis, Belgium
| | - Katrien Lagrou
- University of Leuven, National Reference center for Mycosis, Belgium
| | - Elia Gomez
- Hosital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Madrid, Spain
| | - Maiz-Luis Carro
- Hosital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Madrid, Spain
| | - Rafael Canton
- Hosital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Madrid, Spain
| | | | | | - Sharon Chen
- Molecular Mycology Research Laboratory, Marie Bashir Institute for Biosecurity and Emerging Infections, University of Sydney, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Marie Bashir Institute for Biosecurity and Emerging Infections, University of Sydney, Australia
| | | | | | | | - Lisa Cariani
- Microbiology and Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italy
| | - Arianna Biffi
- Microbiology and Cystic Fibrosis Microbiology Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Italy
| | | | | | | | | |
Collapse
|
25
|
Zhao J, Cheng W, He X, Liu Y. The co-colonization prevalence of Pseudomonas aeruginosa and Aspergillus fumigatus in cystic fibrosis: A systematic review and meta-analysis. Microb Pathog 2018; 125:122-128. [PMID: 30217514 DOI: 10.1016/j.micpath.2018.09.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE The co-colonization prevalence of P. aeruginosa and A. fumigatus in cystic fibrosis (CF) has been inconsistently reported. The purpose of this systematic review and meta-analysis was to estimate the overall co-colonization prevalence of P. aeruginosa and A. fumigatus in CF. METHODS The Embase, PubMed and Web of Science databases were systematically searched for studies reporting the co-colonization prevalence of P. aeruginosa and A. fumigatus in CF. The co-colonization prevalence of two pathogenic microorganisms in the individual studies was assessed by calculating the proportion and 95% confidence interval (CI). The random effects model was used to calculate the pooled prevalence. The I2 test was used to assess statistical heterogeneity. The funnel plot and two statistical methods were used to assess publication bias. RESULTS Twenty-three eligible studies were included in this analysis. The pooled co-colonization prevalence of P. aeruginosa and A. fumigatus in CF patients was 15.8% (95% CI: 9.9-21.8). The co-colonization prevalence of P. aeruginosa and A. fumigatus chronic colonization was lower than that of intermittent colonization, higher in sputum cultures than in bronchoalveolar lavage (BAL) cultures, and lower in children than in adults. There was a statistically significant difference in co-colonization prevalence among studies from different decades, but the prevalence was similar in different geographical regions and with different study types. CONCLUSIONS The co-colonization prevalence of P. aeruginosa and A. fumigatus in the lower respiratory tract of CF patients was high. The anti-infective treatment in exacerbation of CF should be considered to cover the two pathogenic microorganisms simultaneously. Large-scale research is still needed to obtain more accurate co-colonization data.
Collapse
Affiliation(s)
- Jingming Zhao
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China.
| | - Wei Cheng
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China
| | - Xigang He
- Department of Respiratory Medicine, People's Hospital of Rizhao Lanshan, 566#, Lanshan Xi Road, Lanshan District, Rizhao, 276807, PR China
| | - Yanli Liu
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, 16#, Jiangsu Road, Qingdao, 266003, PR China
| |
Collapse
|
26
|
Quinn RA, Comstock W, Zhang T, Morton JT, da Silva R, Tran A, Aksenov A, Nothias LF, Wangpraseurt D, Melnik AV, Ackermann G, Conrad D, Klapper I, Knight R, Dorrestein PC. Niche partitioning of a pathogenic microbiome driven by chemical gradients. SCIENCE ADVANCES 2018; 4:eaau1908. [PMID: 30263961 PMCID: PMC6157970 DOI: 10.1126/sciadv.aau1908] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 05/25/2023]
Abstract
Environmental microbial communities are stratified by chemical gradients that shape the structure and function of these systems. Similar chemical gradients exist in the human body, but how they influence these microbial systems is more poorly understood. Understanding these effects can be particularly important for dysbiotic shifts in microbiome structure that are often associated with disease. We show that pH and oxygen strongly partition the microbial community from a diseased human lung into two mutually exclusive communities of pathogens and anaerobes. Antimicrobial treatment disrupted this chemical partitioning, causing complex death, survival, and resistance outcomes that were highly dependent on the individual microorganism and on community stratification. These effects were mathematically modeled, enabling a predictive understanding of this complex polymicrobial system. Harnessing the power of these chemical gradients could be a drug-free method of shaping microbial communities in the human body from undesirable dysbiotic states.
Collapse
Affiliation(s)
- Robert A. Quinn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA 92093, USA
| | - William Comstock
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Tianyu Zhang
- Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717, USA
| | - James T. Morton
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ricardo da Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alda Tran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexander Aksenov
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA 92093, USA
| | - Louis-Felix Nothias
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Daniel Wangpraseurt
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, USA
| | - Alexey V. Melnik
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gail Ackermann
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Douglas Conrad
- Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Isaac Klapper
- Department of Mathematics, Temple University, Philadelphia, PA 19122, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
27
|
Wise SK, Kingdom TT, McKean L, DelGaudio JM, Venkatraman G. Presence of Fungus in Sinus Cultures of Cystic Fibrosis Patients. ACTA ACUST UNITED AC 2018. [DOI: 10.1177/194589240501900108] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Sinonasal pathology is nearly universal in the cystic fibrosis (CF) population. The bacteriology of sinus cultures from CF patients and the implications of sinus bacterial pathogens in this group have been studied; however, sinus fungal isolates from CF patients have not been examined in the literature. Methods We reviewed 30 consecutive CF patients undergoing endoscopic sinus surgery at our institution for the presence of fungal isolates obtained from the sinuses at the time of surgery. Results Thirty-three percent of fungal cultures were positive in this sample; in addition, two patients were newly diagnosed with allergic fungal sinusitis. Conclusion We examine the possible implications of positive fungal sinus cultures in the CF population.
Collapse
Affiliation(s)
- Sarah K. Wise
- Department of Otolaryngology–Head and Neck Surgery, The Emory Clinic, Atlanta, Georgia
| | - Todd T. Kingdom
- Department of Otolaryngology–Head and Neck Surgery, University of Colorado Health Science Center, Denver, Colorado
| | - Lawrence McKean
- Cystic Fibrosis Center, Children's Healthcare of Atlanta at Egleston, Atlanta, Georgia
| | - John M. DelGaudio
- Department of Otolaryngology–Head and Neck Surgery, The Emory Clinic, Atlanta, Georgia
| | - Giridhar Venkatraman
- Department of Otolaryngology–Head and Neck Surgery, The Emory Clinic, Atlanta, Georgia
| |
Collapse
|
28
|
Träger J, Melichar VO, Meyer R, Rauh M, Bogdan C, Held J. Serum (1→3)-β-D-glucan and galactomannan levels in patients with cystic fibrosis: a retrospective cohort study. BMC Pulm Med 2018; 18:52. [PMID: 29587700 PMCID: PMC5870392 DOI: 10.1186/s12890-018-0614-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Background Aspergillus fumigatus is frequently encountered in sputum samples of patients with cystic fibrosis (CF), which traditionally has been interpreted as saprophytic airway colonization. However, this mere bystander role has been challenged by recent data. There is now evidence that Aspergillus fumigatus accelerates the decline of pulmonary function. (1→3)-β-D-glucan (BDG) and galactomannan (GM) are highly sensitive fungal biomarkers that are used to diagnose invasive fungal disease. However, their diagnostic value in CF patients is largely unknown. Methods We conducted a retrospective cohort study on 104 CF patients to determine whether serum BDG and GM levels correlate with parameters such as Aspergillus-positive sputum cultures and lung function. Results Aspergillus fumigatus was persistently detected in 22 of the 104 CF patients (21%). Mean serum BDG and GM levels in the Aspergillus-positive patients were significantly higher than in those without persistent Aspergillus detection (89 versus 40 pg/ml [p = 0.022] and 0.30 versus 0.15 ODI [p = 0.013], respectively). 27 and 7 patients had elevated BDG (≥ 60 pg/ml) or GM levels (> 0.5 ODI), respectivly. BDG and GM levels showed a significant correlation (p = 0.004). Patients with increased serum concentrations of BDG were more frequently Aspergillus-positive (40.7 versus 14.3%, p = 0.004) and had a significantly lower forced expiratory volume in one second (FEV1) than patients with a normal BDG (61.6 versus 77.1%, p = 0.007). In the multivariate analysis, BDG but not GM or the growth of A. fumigatus, proved to be an independent predictor for the FEV1. Conclusions CF patients with persistent Aspergillus detection have elevated BDG and GM levels which ranged between healthy and invasively infected patients. Serum BDG may be superior to GM and fungal culture in predicting an impaired lung function in CF patients.
Collapse
Affiliation(s)
- Johannes Träger
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Volker Otto Melichar
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Renate Meyer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Manfred Rauh
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany
| | - Jürgen Held
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054, Erlangen, Germany.
| |
Collapse
|
29
|
Hong G, Psoter KJ, Jennings MT, Merlo CA, Boyle MP, Hadjiliadis D, Kawut SM, Lechtzin N. Risk factors for persistent Aspergillus respiratory isolation in cystic fibrosis. J Cyst Fibros 2018; 17:624-630. [PMID: 29444760 DOI: 10.1016/j.jcf.2018.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Aspergillus species are increasingly detected in the respiratory tracts of individuals with cystic fibrosis (CF), and chronic Aspergillus fumigatus is associated with more frequent hospitalizations for pulmonary exacerbations. However, patient and clinical factors that may contribute to the acquisition of persistent Aspergillus infection have yet to be identified. The objective of this study was to identify risk factors for development of Aspergillus respiratory isolation in CF. METHODS A retrospective cohort study of participants in the CF Foundation Patient Registry between 2006 and 2012 was conducted. Generalized estimating equation models were used to evaluate the association between the development of persistent Aspergillus respiratory isolation and individual level demographic and clinical characteristics. RESULTS Among 16,095 individuals with CF followed from 2006 to 2012, 1541 (9.6%) subjects developed persistent Aspergillus isolation. White race (Odds Ratio [OR] 1.74, 95% confidence interval 1.23, 2.48, p<0.001) and pancreatic insufficiency (OR 1.50, 95% CI 1.09, 2.06, p<0.001) were found to be risk factors for persistent Aspergillus isolation. Chronic therapies, including inhaled antibiotics (OR 1.33; 95% CI 1.21, 1.46), macrolides (OR 1.23, 95% CI 1.14, 1.32, p<0.001), and inhaled corticosteroids (OR 1.13, 95% CI 1.04, 1.20, p<0.001) were also independently associated with an increased risk for persistent Aspergillus isolation. CONCLUSIONS We identified macrolides and inhaled antibiotics, which individually have been shown to improve CF outcomes, and inhaled corticosteroids as risk factors for developing persistent Aspergillus isolation. Further work is needed to determine whether these associations are causal or due to confounding by other factors.
Collapse
Affiliation(s)
- Gina Hong
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States.
| | - Kevin J Psoter
- Johns Hopkins School of Medicine, Department of Pediatrics, Division of General Pediatrics and Adolescent Medicine, Baltimore, MD, United States
| | - Mark T Jennings
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Christian A Merlo
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| | - Michael P Boyle
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States; Cystic Fibrosis Foundation, Bethesda, MD, United States
| | - Denis Hadjiliadis
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Steven M Kawut
- University of Pennsylvania Perelman School of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Philadelphia, PA, United States
| | - Noah Lechtzin
- Johns Hopkins School of Medicine, Department of Medicine, Division of Pulmonary and Critical Care Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Fungi in Bronchiectasis: A Concise Review. Int J Mol Sci 2018; 19:ijms19010142. [PMID: 29300314 PMCID: PMC5796091 DOI: 10.3390/ijms19010142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022] Open
Abstract
Although the spectrum of fungal pathology has been studied extensively in immunosuppressed patients, little is known about the epidemiology, risk factors, and management of fungal infections in chronic pulmonary diseases like bronchiectasis. In bronchiectasis patients, deteriorated mucociliary clearance—generally due to prior colonization by bacterial pathogens—and thick mucosity propitiate, the persistence of fungal spores in the respiratory tract. The most prevalent fungi in these patients are Candida albicans and Aspergillus fumigatus; these are almost always isolated with bacterial pathogens like Haemophillus influenzae and Pseudomonas aeruginosa, making very difficult to define their clinical significance. Analysis of the mycobiome enables us to detect a greater diversity of microorganisms than with conventional cultures. The results have shown a reduced fungal diversity in most chronic respiratory diseases, and that this finding correlates with poorer lung function. Increased knowledge of both the mycobiome and the complex interactions between the fungal, viral, and bacterial microbiota, including mycobacteria, will further our understanding of the mycobiome’s relationship with the pathogeny of bronchiectasis and the development of innovative therapies to combat it.
Collapse
|
31
|
Fungal Pathogens in CF Airways: Leave or Treat? Mycopathologia 2017; 183:119-137. [PMID: 28770417 DOI: 10.1007/s11046-017-0184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/22/2017] [Indexed: 02/07/2023]
Abstract
Chronic airway infection plays an essential role in the progress of cystic fibrosis (CF) lung disease. In the past decades, mainly bacterial pathogens, such as Pseudomonas aeruginosa, have been the focus of researchers and clinicians. However, fungi are frequently detected in CF airways and there is an increasing body of evidence that fungal pathogens might play a role in CF lung disease. Several studies have shown an association of fungi, particularly Aspergillus fumigatus and Candida albicans, with the course of lung disease in CF patients. Mechanistically, in vitro and in vivo studies suggest that an impaired immune response to fungal pathogens in CF airways renders them more susceptible to fungi. However, it remains elusive whether fungi are actively involved in CF lung disease pathologies or whether they rather reflect a dysregulated airway colonization and act as microbial bystanders. A key issue for dissecting the role of fungi in CF lung disease is the distinction of dynamic fungal-host interaction entities, namely colonization, sensitization or infection. This review summarizes key findings on pathophysiological mechanisms and the clinical impact of fungi in CF lung disease.
Collapse
|
32
|
Aspergillus Species in Bronchiectasis: Challenges in the Cystic Fibrosis and Non-cystic Fibrosis Airways. Mycopathologia 2017; 183:45-59. [DOI: 10.1007/s11046-017-0143-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/08/2017] [Indexed: 12/26/2022]
|
33
|
Reece E, Segurado R, Jackson A, McClean S, Renwick J, Greally P. Co-colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa is associated with poorer health in cystic fibrosis patients: an Irish registry analysis. BMC Pulm Med 2017; 17:70. [PMID: 28431569 PMCID: PMC5401475 DOI: 10.1186/s12890-017-0416-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/18/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary infection is the main cause of death in cystic fibrosis (CF). Aspergillus fumigatus (AF) and Pseudomonas aeruginosa (PA) are the most prevalent fungal and bacterial pathogens isolated from the CF airway, respectively. Our aim was to determine the effect of different colonisation profiles of AF and PA on the clinical status of patients with CF. METHODS A retrospective analysis of data from the Cystic Fibrosis Registry of Ireland from 2013 was performed to determine the effect of intermittent and persistent colonisation with AF or PA or co-colonisation with both microorganisms on clinical outcome measures in patients with CF. Key outcomes measured included forced expiratory volume in one second (FEV1), number of hospitalisations, respiratory exacerbations and antimicrobials prescribed, and complications of CF, including CF related diabetes (CFRD) and allergic bronchopulmonary aspergillosis (ABPA). RESULTS The prevalence of AF and PA colonisation were 11% (5% persistent, 6% intermittent) and 31% (19% persistent, 12% intermittent) in the Irish CF population, respectively. Co-colonisation with both pathogens was associated with a 13.8% reduction in FEV1 (p = 0.016), higher levels of exacerbations (p = 0.042), hospitalisations (p = 0.023) and antimicrobial usage (p = 0.014) compared to non-colonised patients and these clinical outcomes were comparable to those persistently colonised with PA. Intermittent and persistent AF colonisation were not associated with poorer clinical outcomes or ABPA. Patients with persistent PA had a higher prevalence of CFRD diagnosis (p = 0.012). CONCLUSIONS CF patients co-colonised with AF and PA had poor clinical outcomes comparable to patients persistently colonised with PA, emphasising the clinical significance of co-colonisation with these microorganisms.
Collapse
Affiliation(s)
- Emma Reece
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Trinity Centre for Health Science, Tallaght Hospital, Dublin 24, Ireland
| | - Ricardo Segurado
- UCD CSTAR, School of Public Health, Physiotherapy and Sports Science, UCD, Dublin 4, Ireland
| | - Abaigeal Jackson
- Cystic Fibrosis Registry of Ireland, Woodview house, UCD Belfield, Dublin 4, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin 24, Ireland.,School of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 24, Ireland
| | - Julie Renwick
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, Trinity Centre for Health Science, Tallaght Hospital, Dublin 24, Ireland.
| | - Peter Greally
- Cystic Fibrosis Registry of Ireland, Woodview house, UCD Belfield, Dublin 4, Ireland.,Department of Respiratory Medicine, The National Children's Hospital, Tallaght hospital, Dublin 24, Ireland
| |
Collapse
|
34
|
Erles K, Mugford A, Barfield D, Leeb T, Kook PH. Systemic Scedosporium prolificans infection in an 11-month-old Border collie with cobalamin deficiency secondary to selective cobalamin malabsorption (canine Imerslund-Gräsbeck syndrome). J Small Anim Pract 2017; 59:253-256. [PMID: 28390190 DOI: 10.1111/jsap.12678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/09/2016] [Accepted: 09/17/2016] [Indexed: 11/28/2022]
Abstract
An 11-month-old Border collie presented collapsed and continued to deteriorate rapidly despite supportive treatment. The dog had a history of failure to thrive and recurring respiratory infection. Laboratory abnormalities included neutrophilic leucocytosis, Heinz body anaemia, hyperammonaemia, hyperbilirubinaemia, proteinuria and hypocobalaminaemia. Post-mortem examination revealed multi-focal necrosis within the heart, kidneys, pancreas, liver, meninges and cerebral cortex. Fungal hyphae in lesions were identified as Scedosporium prolificans following culture. Subsequent genotyping confirmed that the dog carried the CUBN:c.8392delC mutation in a homozygous state, verifying hereditary cobalamin deficiency (a.k.a. Imerslund-Gräsbeck syndrome). Cobalamin deficiency may have been a predisposing factor for the development of systemic fungal infection in this dog.
Collapse
Affiliation(s)
- K Erles
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - A Mugford
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - D Barfield
- Department of Clinical Science and Services, The Royal Veterinary College, Hatfield AL9 7TA, UK
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Berne, 3012 Berne, Switzerland
| | - P H Kook
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
35
|
Use of Selective Fungal Culture Media Increases Rates of Detection of Fungi in the Respiratory Tract of Cystic Fibrosis Patients. J Clin Microbiol 2017; 55:1122-1130. [PMID: 28100601 DOI: 10.1128/jcm.02182-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/13/2017] [Indexed: 01/26/2023] Open
Abstract
The prevalence of fungi in the respiratory tracts of cystic fibrosis (CF) patients has risen. However, fungal surveillance is not routinely performed in most clinical centers in the United States, which may lead to an underestimation of the true prevalence of the problem. We conducted a prospective study comparing the rates of detection for clinically important fungi (CIF), defined as Aspergillus, Scedosporium, and Trichosporon species and Exophiala dermatitidis, in CF sputa using standard bacterial and selective fungal culture media, including Sabouraud dextrose agar with gentamicin (SDA), inhibitory mold agar (IMA), and brain heart infusion (BHI) agar with chloramphenicol and gentamicin. We described the prevalence of these fungi in an adult CF population. A total of 487 CF respiratory samples were collected from 211 unique participants. CIF were detected in 184 (37.8%) samples. Only 26.1% of CIF-positive samples were detected in bacterial culture medium, whereas greater rates of detection for fungi were found in IMA (65.8%; P < 0.001), in SDA (at 30°C, 64.7%; P = 0.005), and in BHI agar (63.0%; P = 0.001). The prevalences of Aspergillus and Scedosporium species were 40.8% and 5.2%, respectively, which are greater than the nationally reported prevalence numbers of 20.4% and 1.9%. Selective fungal culture media and longer incubation periods yielded higher rates of detection for CIF in CF sputum samples compared with that detected in bacterial culture medium, resulting in an underdetection of fungi by bacterial culture alone. The prevalence of fungi in CF may be better estimated by using selective fungal culture media, and this may translate to important clinical decisions.
Collapse
|
36
|
Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res 2017; 179:84-96. [PMID: 27559681 DOI: 10.1016/j.trsl.2016.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Significant advances in culture-independent methods have expanded our knowledge about the diversity of the lung microbial environment. Complex microorganisms and microbial communities can now be identified in the distal airways in a variety of respiratory diseases, including cystic fibrosis (CF) and the posttransplantation lung. Although there are significant methodologic concerns about sampling the lung microbiome, several studies have now shown that the microbiome of the lower respiratory tract is distinct from the upper airway. CF is a disease characterized by chronic airway infections that lead to significant morbidity and mortality. Traditional culture-dependent methods have identified a select group of pathogens that cause exacerbations in CF, but studies using bacterial 16S rRNA gene-based microarrays have shown that the CF microbiome is an intricate and dynamic bacterial ecosystem, which influences both host immune health and disease pathogenesis. These microbial communities can shift with external influences, including antibiotic exposure. In addition, there have been a number of studies suggesting a link between the gut microbiome and respiratory health in CF. Compared with CF, there is significantly less knowledge about the microbiome of the transplanted lung. Risk factors for bronchiolitis obliterans syndrome, one of the leading causes of death, include microbial infections. Lung transplant patients have a unique lung microbiome that is different than the pretransplanted microbiome and changes with time. Understanding the host-pathogen interactions in these diseases may suggest targeted therapies and improve long-term survival in these patients.
Collapse
|
37
|
Weckmann M, Schultheiss C, Hollaender A, Bobis I, Rupp J, Kopp MV. Treatment with rhDNase in patients with cystic fibrosis alters in-vitro CHIT-1 activity of isolated leucocytes. Clin Exp Immunol 2016; 185:382-91. [PMID: 27324468 DOI: 10.1111/cei.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 11/28/2022] Open
Abstract
Recent data suggest a possible relationship between cystic fibrosis (CF) pharmacotherapy, Aspergillus fumigatus colonization (AC) and/or allergic bronchopulmonary aspergillosis (ABPA). The aim of this study was to determine if anti-fungal defence mechanisms are influenced by CF pharmacotherapy, i.e. if (1) neutrophils form CF and non-CF donors differ in their ability to produce chitotriosidase (CHIT-1); (2) if incubation of isolated neutrophils with azithromycin, salbutamol, prednisolone or rhDNase might influence the CHIT-1 activity; and (3) if NETosis and neutrophil killing efficiency is influenced by rhDNase. Neutrophils were isolated from the blood of CF patients (n = 19; mean age 26·8 years or healthy, non-CF donors (n = 20; 38·7 years) and stimulated with phorbol-12-myristate-13-acetate (PMA), azithromycin, salbutamol, prednisolone or rhDNase. CHIT-1 enzyme activity was measured with a fluorescent substrate. NETosis was induced by PMA and neutrophil killing efficiency was assessed by a hyphae recovery assay. Neutrophil CHIT-1 activity was comparable in the presence or absence of PMA stimulation in both CF and non-CF donors. PMA stimulation and preincubation with rhDNase increased CHIT-1 activity in culture supernatants from non-CF and CF donors. However, this increase was significant in non-CF donors but not in CF patients (P < 0·05). RhDNase reduced the number of NETs in PMA-stimulated neutrophils and decreased the killing efficiency of leucocytes in our in-vitro model. Azithromycin, salbutamol or prednisolone had no effect on CHIT-1 activity. Stimulation of isolated leucocytes with PMA and treatment with rhDNase interfered with anti-fungal defence mechanisms. However, the impact of our findings for treatment in CF patients needs to be proved in a clinical cohort.
Collapse
Affiliation(s)
- M Weckmann
- Department of Pediatric Allergy and Pulmonology, Clinic of Pediatrics UKSH, University of Luebeck, Luebeck.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)
| | - C Schultheiss
- Department of Pediatric Allergy and Pulmonology, Clinic of Pediatrics UKSH, University of Luebeck, Luebeck.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)
| | - A Hollaender
- Department of Pediatric Allergy and Pulmonology, Clinic of Pediatrics UKSH, University of Luebeck, Luebeck.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)
| | - I Bobis
- Clinic of Internal Medicine, UKSH, University of Kiel, Kiel
| | - J Rupp
- Department of Molecular and Clinical Infectious Diseases, University of Luebeck, Luebeck, Germany
| | - M V Kopp
- Department of Pediatric Allergy and Pulmonology, Clinic of Pediatrics UKSH, University of Luebeck, Luebeck.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
38
|
Saunders RV, Modha DE, Claydon A, Gaillard EA. Chronic Aspergillus fumigatus colonization of the pediatric cystic fibrosis airway is common and may be associated with a more rapid decline in lung function. Med Mycol 2016; 54:537-43. [PMID: 26782645 DOI: 10.1093/mmy/myv119] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 11/12/2022] Open
Abstract
Filamentous fungi are commonly isolated from the respiratory tract of CF patients, but their clinical significance is uncertain and the reported incidence variable. We report on the degree of Aspergillus fumigatus airway colonization in a tertiary pediatric CF cohort, evaluate the sensitivity of routine clinical sampling at detecting A. fumigatus, and compare lung function of A. fumigatus-colonized and non-colonized children.We carried out an 8-year retrospective cohort analysis using local databases, examining 1024 respiratory microbiological specimens from 45 children. Nineteen (42%) had a positive A. fumigatus culture at least once during the 8-year period, with 10 (22%) children persistently colonized. Overall, 29% of 48 bronchoalveolar lavage (BAL) samples tested positive for A. fumigatus, compared with 14% of 976 sputum samples. Of 33 children for whom lung function data were available during the study period, seven were classed as having severe lung disease, of whom four (57%) were persistently colonized with A. fumigatus.We conclude that chronic A. fumigatus colonization of the CF airway is common, and may be associated with worse lung function. In our practice, BAL appears superior at detecting lower airway A. fumigatus compared to sputum samples.
Collapse
Affiliation(s)
- Rosalind V Saunders
- University Hospitals of Leicester NHS Trust, Department of Clinical Microbiology, Infirmary Square, Leicester, UK
| | - Deborah E Modha
- University Hospitals of Leicester NHS Trust, Department of Clinical Microbiology, Infirmary Square, Leicester, UK
| | - Alison Claydon
- Children's Hospital, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK
| | - Erol A Gaillard
- University of Leicester, Dept. of Infection, Immunity and Inflammation, University Road, Leicester, UK Children's Hospital, University Hospitals of Leicester NHS Trust, Infirmary Square, Leicester, UK Institute for Lung Health, NIHR Leicester Respiratory Biomedical Research Unit, Leicester, UK
| |
Collapse
|
39
|
Aspergillus fumigatus chronic colonization and lung function decline in cystic fibrosis may have a two-way relationship. Eur J Clin Microbiol Infect Dis 2015; 34:2235-41. [PMID: 26319147 DOI: 10.1007/s10096-015-2474-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 10/23/2022]
Abstract
Aspergillus fumigatus is commonly found in cystic fibrosis (CF) airways. Our aim was to assess the relationship between A. fumigatus chronic colonization and lung function in CF patients. A case-control study of CF patients born from 1989 to 2002 was performed. Medical records were reviewed from the time of initial diagnosis until December 2013. Chronic colonization was defined as two or more positive sputum cultures in a given year. Each patient chronically colonized with A. fumigatus was matched with three control patients (never colonized by A. fumigatus) for age, sex, and year of birth (±3 years). A number of parameters were recorded and analyzed prospectively. The primary outcome measure was the difference in forced expiratory volume in 1 s (FEV1) in percent predicted between groups. Linear mixed models were used for longitudinal analyses to evaluate the relationship between A. fumigatus chronic colonization and lung function during a 7-year period and study the lung function 4 years before the time of enrollment (t0). Twenty patients had chronic colonization and were matched with 60 controls. A significant difference in lung function was detected throughout the 7-year period after adjustment for confounders (est = 8.66, p = 0.020). Four years before t0, FEV1 baseline was the only factor associated with the course of lung function (est = 0.64, p < 0.001) and was significantly different between groups (p = 0.001). In conclusion, a decreased FEV1 baseline appears to be a risk factor for chronic colonization by A. fumigatus, which, in turn, may cause a faster deterioration of lung function.
Collapse
|
40
|
Dunne K, Prior AR, Murphy K, Wall N, Leen G, Rogers TR, Elnazir B, Greally P, Renwick J, Murphy P. Emergence of persistent Aspergillus terreus colonisation in a child with cystic fibrosis. Med Mycol Case Rep 2015; 9:26-30. [PMID: 26288746 PMCID: PMC4534713 DOI: 10.1016/j.mmcr.2015.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/07/2015] [Accepted: 07/23/2015] [Indexed: 11/28/2022] Open
Affiliation(s)
- Katie Dunne
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland ; Department of Clinical Microbiology, Trinity Centre for Health Science, Tallaght hospital, Trinity College Dublin, Dublin 24, Ireland
| | - Anna-Rose Prior
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| | - Kate Murphy
- Department of Clinical Microbiology, Trinity Centre for Health Science, Tallaght hospital, Trinity College Dublin, Dublin 24, Ireland
| | - Niall Wall
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| | - Geraldine Leen
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Basil Elnazir
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| | - Peter Greally
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland
| | - Julie Renwick
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland ; Department of Clinical Microbiology, Trinity Centre for Health Science, Tallaght hospital, Trinity College Dublin, Dublin 24, Ireland
| | - Philip Murphy
- The National Children's Hospital, Tallaght Hospital, Tallaght, Dublin 24, Ireland ; Department of Clinical Microbiology, Trinity Centre for Health Science, Tallaght hospital, Trinity College Dublin, Dublin 24, Ireland
| |
Collapse
|
41
|
Kang SH, Dalcin PDTR, Piltcher OB, Migliavacca RDO. Chronic rhinosinusitis and nasal polyposis in cystic fibrosis: update on diagnosis and treatment. J Bras Pneumol 2015; 41:65-76. [PMID: 25750676 PMCID: PMC4350827 DOI: 10.1590/s1806-37132015000100009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/06/2014] [Indexed: 01/17/2023] Open
Abstract
Although cystic fibrosis (CF) is an irreversible genetic disease, advances in treatment have increased the life expectancy of CF patients. Upper airway involvement, which is mainly due to pathological changes in the paranasal sinuses, is prevalent in CF patients, although many are only mildly symptomatic (with few symptoms). The objective of this literature review was to discuss the pathophysiology and current therapeutic management of chronic rhinosinusitis (CRS) in CF patients. The review was based on current evidence, which was classified in accordance with the Oxford Centre for Evidence-Based Medicine criteria. When symptomatic, CRS with nasal polyps can affect quality of life and can lead to pulmonary exacerbations, given that the paranasal sinuses can be colonized with pathogenic bacteria, especially Pseudomonas aeruginosa. Infection with P. aeruginosa plays a crucial role in morbidity and mortality after lung transplantation in CF patients. Although clinical treatment of the upper airways is recommended as initial management, this recommendation is often extrapolated from studies of CRS in the general population. When sinonasal disease is refractory to noninvasive therapy, surgery is indicated. Further studies are needed in order to gain a better understanding of upper airway involvement and improve the management of CRS in CF patients, with the objective of preserving lung function and avoiding unnecessary invasive procedures.
Collapse
Affiliation(s)
- Suzie Hyeona Kang
- Federal University of Rio Grande do Sul, School of Medicine, Porto Alegre, Brazil. Graduate Program in Pulmonology, Federal University of Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Paulo de Tarso Roth Dalcin
- Federal University of Rio Grande do Sul, School of Medicine, Porto Alegre, Brazil. Graduate Program in Pulmonology, Federal University of Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Otavio Bejzman Piltcher
- Federal University of Rio Grande do Sul, School of Medicine, Department of Ophthalmology and Otolaryngology, Porto Alegre, Brazil. Department of Ophthalmology and Otolaryngology, Federal University of Rio Grande do Sul School of Medicine, Porto Alegre, Brazil
| | - Raphaella de Oliveira Migliavacca
- Federal University of Rio Grande do Sul, School of Medicine, Department of Otolaryngology and Head & Neck Surgery, Porto Alegre, Brazil. Department of Otolaryngology and Head & Neck Surgery, Federal University of Rio Grande do Sul School of Medicine Hospital de Clínicas, Porto Alegre, Brazil
| |
Collapse
|
42
|
Smith K, Rajendran R, Kerr S, Lappin DF, Mackay WG, Williams C, Ramage G. Aspergillus fumigatus enhances elastase production in Pseudomonas aeruginosa co-cultures. Med Mycol 2015; 53:645-55. [PMID: 26162475 DOI: 10.1093/mmy/myv048] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023] Open
Abstract
In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis.
Collapse
Affiliation(s)
- Karen Smith
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Stephen Kerr
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - David F Lappin
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - William G Mackay
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Craig Williams
- Institute of Healthcare Associated Infection, School of Health, Nursing and Midwifery, University of the West of Scotland, United Kingdom
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
43
|
Consensus national sur la prescription de l’azithromycine dans la mucoviscidose. Rev Mal Respir 2015; 32:557-65. [DOI: 10.1016/j.rmr.2014.10.733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 10/19/2014] [Indexed: 01/22/2023]
|
44
|
M�iz L, Vendrell M, Olveira C, Gir�n R, Nieto R, Mart�nez-Garc�a M�. Prevalence and Factors Associated with Isolation of Aspergillus and Candida from Sputum in Patients with Non-Cystic Fibrosis Bronchiectasis. Respiration 2015; 89:396-403. [DOI: 10.1159/000381289] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
|
45
|
|
46
|
Touati K, Nguyen DNL, Delhaes L. The Airway Colonization by Opportunistic Filamentous Fungi in Patients with Cystic Fibrosis: Recent Updates. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Noni M, Katelari A, Dimopoulos G, Kourlaba G, Spoulou V, Alexandrou-Athanassoulis H, Doudounakis SE, Tzoumaka-Bakoula C. Inhaled corticosteroids and Aspergillus fumigatus isolation in cystic fibrosis. Med Mycol 2014; 52:715-22. [PMID: 25056962 DOI: 10.1093/mmy/myu038] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aspergillus fumigatus isolation in cultures from respiratory specimens of patients with cystic fibrosis (CF) is quite common; however, the role of A. fumigatus as a pathogen and whether its presence is associated with progression of pulmonary disease remain unclear. We investigated the association between inhaled corticosteroids and the recovery of A. fumigatus by performing a retrospective cohort study of CF patients born between 1988 and 1996. The patients' medical records from their first visit to the CF Center until December 2010 were reviewed. Outcomes were the occurrence of A. fumigatus first isolation, chronic colonization, or the last visit at the CF Center. A number of possible confounders were included in the multivariate logistic regression analysis in order to identify an independent association between inhaled corticosteroids and colonization status. A total of 121 patients were included in the study. Thirty-nine patients (32.2%) had at least one positive culture and 14 (11.6%) developed chronic colonization. Multivariate logistic regression analysis was used to determine the independent effect of inhaled corticosteroids on the odds of first isolation (odds ratio [OR], 1.165; 95% confidence interval [CI], 1.015-1.337; P = 0.029) and chronic colonization (OR, 1.180; 95% CI, 1.029-1.353; P = 0.018). In conclusion, A. fumigatus first isolation and chronic colonization are associated with the duration of inhaled corticosteroid treatment.
Collapse
Affiliation(s)
- Maria Noni
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Anna Katelari
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - George Dimopoulos
- Department of Critical Care, University Hospital "Attikon," Medical School, University of Athens, Athens, Greece
| | - Georgia Kourlaba
- Department of Cystic Fibrosis, "Aghia Sophia" Children's Hospital, Medical School, University of Athens, Athens, Greece
| | - Vana Spoulou
- Department of Infectious Diseases, "Aghia Sophia" Children's Hospital, Athens, Greece
| | | | | | - Chryssa Tzoumaka-Bakoula
- Department of Pediatrics, "P & A Kyriakou" Children's Hospital, Medical School, University of Athens, Athens, Greece
| |
Collapse
|
48
|
Abstract
BACKGROUND Aspergillus fumigatus (Af) sensitization and persistent carriage are deleterious to lung function, but no consensus has been reached defining these medical entities. This work aimed to identify possible predictive factors for patients who become sensitized to Af, compared with a control group of non-sensitized Af carriers. METHODS Between 1995 and 2007, 117 pediatric patients were evaluated. Demographic data, CFTR gene mutations, body mass index and FEV1 were recorded. The presence of Af in sputum, the levels of Af-precipitin, total IgE (t-IgE) and specific IgE to Af (Af-IgE) were determined. Patients were divided into 2 groups: (1) "sensitization": level of Af-IgE > 0.35 IU/mL with t-IgE level < 500 IU/mL and (2) "persistent or transient carriage": Af-IgE level ≤ 0.35 IU/mL with either an Af transient or persistent positive culture. A survival analysis was performed with the appearance of Af-IgE in serum as an outcome variable. RESULTS Severe mutation (hazard ratio = 3.2), FEV1 baseline over 70% of theoretical value (hazard ratio = 4.9), absence of Pa colonization, catalase activity and previous azithromycin administration (hazard ratio = 9.8, 4.1 and 1.9, respectively) were predictive factors for sensitization. We propose a timeline of the biological events and a tree diagram for risk calculation. CONCLUSIONS Two profiles of cystic fibrosis patients can be envisaged: (1) patients with nonsevere mutation but low FEV1 baselines are becoming colonized with Af or (2) patients with high FEV1 baselines who present with severe mutation are more susceptible to the Af sensitization and then to the presentation of an allergic bronchopulmonary aspergillosis event.
Collapse
|
49
|
Immunoevasive Aspergillus virulence factors. Mycopathologia 2014; 178:363-70. [PMID: 24972669 DOI: 10.1007/s11046-014-9768-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/02/2014] [Indexed: 01/20/2023]
Abstract
Individuals with structural lung disease or defective immunity are predisposed to Aspergillus-associated disease. Manifestations range from allergic to cavitary or angio-invasive syndromes. Despite daily spore inhalation, immunocompetence facilitates clearance through initiation of innate and adaptive host responses. These include mechanical barriers, phagocyte activation, antimicrobial peptide release and pattern recognition receptor activation. Adaptive responses include Th1 and Th2 approaches. Understanding Aspergillus virulence mechanisms remains critical to the development of effective research and treatment strategies to counteract the fungi. Major virulence factors relate to fungal structure, protease release and allergens; however, mechanisms utilized to evade immune recognition continue to be important in establishing infection. These include the fungal rodlet layer, dihydroxynaphthalene-melanin, detoxifying systems for reactive oxygen species and toxin release. One major immunoevasive toxin, gliotoxin, plays a key role in mediating Aspergillus-associated colonization in the context of cystic fibrosis. Here, it down-regulates vitamin D receptor expression which following itraconazole therapy is rescued concurrent with decreased Th2 cytokine (IL-5 and IL-13) concentrations in the CF airway. This review focuses on the interaction between Aspergillus pathogenic mechanisms, host immune responses and the immunoevasive strategies employed by the organism during disease states such as that observed in cystic fibrosis.
Collapse
|
50
|
Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol 2014; 52:161-73. [PMID: 24625547 DOI: 10.1016/j.biocel.2014.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/25/2022]
Abstract
Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|