1
|
Mushtaq M, Mahmood M, Jabbar U, Kim UH. Essential role of CD38 in platelet aggregation through the PKC-mediated internalization and activation. BIOIMPACTS : BI 2023; 14:27780. [PMID: 38505670 PMCID: PMC10945299 DOI: 10.34172/bi.2023.27780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 03/21/2024]
Abstract
Introduction CD38 is a multifunctional enzyme with a potent Ca2+ mobilizing effect, cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). Here, we aimed to demonstrate the role of CD38 in platelets via protein kinase C (PKC)-mediated internalization and activation. Methods Mouse platelets were used in this study. Thrombin, an agonist of platelet function, provoked a prompt and long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i), resulting from an interplay of multifold Ca2+ mobilizing messengers.The signaling pathway was delineated using different inhibitors and techniques such as platelet aggregation assay, intracellular calcium measurements, immunoprecipitation, immunoblotting, and flow cytometry. Results We observed a sequential formation of cADPR and NAADP through CD38 activation by PKC of non-muscle myosin heavy chain IIA (MHCIIA), resulting in phospholipase C (PLC) activation in the thrombin-stimulated platelets. These findings reveal that PKC is fundamental in activating CD38 and elicits a physiological response in the murine platelets. Conclusion PKC is involved in many signaling pathways. Specifically, PKC is involved in the internalization of CD38 via MHCIIA in CD38+/+ wild-type (WT) and CD38-/- knockout mice (KO). CD38 generates calcium-mobilizing agents that act on specific receptors of the calcium stores. Calcium triggered platelet aggregation while serving as a secondary messenger.
Collapse
Affiliation(s)
- Mazhar Mushtaq
- Basic Medical Sciences, Sulaiman Al Rajhi University, Al-Qaseem, Kingdom of Saudi Arabia
| | - Maira Mahmood
- Department of Biochemistry, FMH College of Medicine and Dentistry, Lahore, Pakistan
| | - Uzma Jabbar
- Department of Biochemistry, Gujranwala Medical College, Gujranwala, Pakistan
| | - Uh-Hyun Kim
- Department of Biochemistry, Chonbuk National University, Chonbuk, South Korea
| |
Collapse
|
2
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Mao J, Zhu K, Long Z, Zhang H, Xiao B, Xi W, Wang Y, Huang J, Liu J, Shi X, Jiang H, Lu T, Wen Y, Zhang N, Meng Q, Zhou H, Ruan Z, Wang J, Luo C, Xi X. Targeting the RT loop of Src SH3 in Platelets Prevents Thrombosis without Compromising Hemostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103228. [PMID: 35023301 PMCID: PMC8895158 DOI: 10.1002/advs.202103228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/30/2021] [Indexed: 05/05/2023]
Abstract
Conventional antiplatelet agents indiscriminately inhibit both thrombosis and hemostasis, and the increased bleeding risk thus hampers their use at more aggressive dosages to achieve adequate effect. Blocking integrin αIIbβ3 outside-in signaling by separating the β3/Src interaction, yet to be proven in vivo, may nonetheless resolve this dilemma. Identification of a specific druggable target for this strategy remains a fundamental challenge as Src SH3 is known to be responsible for binding to not only integrin β3 but also the proteins containing the PXXP motif. In vitro and in vivo mutational analyses show that the residues, especially E97, in the RT loop of Src SH3 are critical for interacting with β3. DCDBS84, a small molecule resulting from structure-based virtual screening, is structurally validated to be directed toward the projected target. It specifically disrupts β3/Src interaction without affecting canonical PXXP binding and thus inhibits the outside-in signaling-regulated platelet functions. Treatment of mice with DCDBS84 causes a profound inhibition of thrombosis, equivalent to that induced by extremely high doses of αIIbβ3 antagonist, but does not compromise primary hemostasis. Specific targets are revealed for a preferential inhibition of thrombosis that may lead to new classes of potent antithrombotics without hemorrhagic side effects.
Collapse
Affiliation(s)
- Jianhua Mao
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Kongkai Zhu
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Zhangbiao Long
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huimin Zhang
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai201210China
| | - Bing Xiao
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Wenda Xi
- Shanghai Institute of HypertensionRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yun Wang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jiansong Huang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingqiu Liu
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Xiaofeng Shi
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hao Jiang
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Tian Lu
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Yi Wen
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Naixia Zhang
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Qian Meng
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Hu Zhou
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
| | - Zheng Ruan
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jin Wang
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Cheng Luo
- Drug Discovery and Design Centerthe Center for Chemical BiologyState Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai201203China
- School of Life Science and TechnologyShanghai Tech UniversityShanghai201210China
- School of Pharmaceutical Science and TechnologyHangzhou Institute for Advanced StudyUCASHangzhou310024China
| | - Xiaodong Xi
- State Key Laboratory of Medical GenomicsShanghai Institute of HematologyCollaborative Innovation Center of HematologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
4
|
Vasilev F, Ezhova Y, Chun JT. Signaling Enzymes and Ion Channels Being Modulated by the Actin Cytoskeleton at the Plasma Membrane. Int J Mol Sci 2021; 22:ijms221910366. [PMID: 34638705 PMCID: PMC8508623 DOI: 10.3390/ijms221910366] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
A cell should deal with the changing external environment or the neighboring cells. Inevitably, the cell surface receives and transduces a number of signals to produce apt responses. Typically, cell surface receptors are activated, and during this process, the subplasmalemmal actin cytoskeleton is often rearranged. An intriguing point is that some signaling enzymes and ion channels are physically associated with the actin cytoskeleton, raising the possibility that the subtle changes of the local actin cytoskeleton can, in turn, modulate the activities of these proteins. In this study, we reviewed the early and new experimental evidence supporting the notion of actin-regulated enzyme and ion channel activities in various cell types including the cells of immune response, neurons, oocytes, hepatocytes, and epithelial cells, with a special emphasis on the Ca2+ signaling pathway that depends on the synthesis of inositol 1,4,5-trisphosphate. Some of the features that are commonly found in diverse cells from a wide spectrum of the animal species suggest that fine-tuning of the activities of the enzymes and ion channels by the actin cytoskeleton may be an important strategy to inhibit or enhance the function of these signaling proteins.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Rue St Denis, Montreal, QC H2X 0A9, Canada
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| | - Yulia Ezhova
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
- Correspondence: (F.V.); (J.T.C.); Tel.: +1-514-249-5862 (F.V.); +39-081-583-3407 (J.T.C.)
| |
Collapse
|
5
|
Aneskievich BJ, Shamilov R, Vinogradova O. Intrinsic disorder in integral membrane proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:101-134. [PMID: 34656327 DOI: 10.1016/bs.pmbts.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The well-defined roles and specific protein-protein interactions of many integral membrane proteins (IMPs), such as those functioning as receptors for extracellular matrix proteins and soluble growth factors, easily align with considering IMP structure as a classical "lock-and-key" concept. Nevertheless, continued advances in understanding protein conformation, such as those which established the widespread existence of intrinsically disordered proteins (IDPs) and especially intrinsically disordered regions (IDRs) in otherwise three-dimensionally organized proteins, call for ongoing reevaluation of transmembrane proteins. Here, we present basic traits of IDPs and IDRs, and, for some select single-span IMPs, consider the potential functional advantages intrinsic disorder might provide and the possible conformational impact of disease-associated mutations. For transmembrane proteins in general, we highlight several investigational approaches, such as biophysical and computational methods, stressing the importance of integrating them to produce a more-complete mechanistic model of disorder-containing IMPs. These procedures, when synergized with in-cell assessments, will likely be key in translating in silico and in vitro results to improved understanding of IMP conformational flexibility in normal cell physiology as well as disease, and will help to extend their potential as therapeutic targets.
Collapse
Affiliation(s)
- Brian J Aneskievich
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Rambon Shamilov
- Graduate Program in Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States.
| |
Collapse
|
6
|
Jeon BR, Irfan M, Kim M, Lee SE, Lee JH, Rhee MH. Schizonepeta tenuifolia inhibits collagen stimulated platelet function via suppressing MAPK and Akt signaling. J Biomed Res 2019; 33:250. [PMID: 30783025 PMCID: PMC6813526 DOI: 10.7555/jbr.32.20180031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
The prevalence of cardiovascular diseases (CVDs) is increasing at a rapid pace in developed countries, and CVDs are the leading cause of morbidity and mortality. Natural products and ethnomedicine have been shown to reduce the risk of CVDs. Schizonepeta (S.) tenuifolia is a medicinal plant widely used in China, Korea, and Japan and is known to exhibit anti-inflammatory, antioxidant, and immunomodulatory activities. We hypothesized that given herbal plant exhibit pharmacological activities against CVDs, we specifically explored its effects on platelet function. Platelet aggregation was evaluated using standard light transmission aggregometry. Intracellular calcium mobilization was assessed using Fura-2/AM, and granule secretion (ATP release) was measured in a luminometer. Fibrinogen binding to integrin αⅡbβ3, was assessed using flow cytometry. Phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules and activation of the protein kinase B (Akt) was assessed using Western blot assays. S. tenuifolia, extract potently and significantly inhibited platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αⅡbβ3. Moreover, all extracts significantly inhibited MAPK and Akt phosphorylation. S. tenuifolia extract inhibited platelet aggregation and granule secretion, and attenuated collagen mediated GPVI downstream signaling, indicating the potential therapeutic effects of these plant extracts on the cardiovascular system and platelet function. We suggest that S. tenuifolia extract may be a potent candidate to treat platelet-related CVDs and to be used as an antiplatelet and antithrombotic agent.
Collapse
Affiliation(s)
- Bo-Ra Jeon
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Irfan
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Minki Kim
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Eun Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong 27709, Republic of Korea
| | - Jeong Hoon Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Eumseong 27709, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Physiology and Cell Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
7
|
|
8
|
Astilbe chinensis Modulates Platelet Function via Impaired MAPK and PLC γ2 Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3835021. [PMID: 30174701 PMCID: PMC6098923 DOI: 10.1155/2018/3835021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023]
Abstract
Background Platelets play major role in maintaining hemostasis while hyperactivation of platelets may lead to arterial thrombosis. Natural products and ethnomedicine have been shown to reduce the risk of cardiovascular diseases (CVDs). Astilbe chinensis is a perennial herb found in China, Korea, Russia, and Japan, which is also known for its medicinal effects, and has been used in Korean traditional medicine to treat inflammation, cancer, chronic bronchitis, and headache. We hypothesized that given herbal plant exhibits pharmacological activities against CVDs, and we specifically explored their effects on platelet function. Methodology Platelet aggregation was evaluated using standard light-transmission aggregometry. Intracellular calcium mobilization was assessed using Fura-2/AM, and granule secretion (ATP release) was measured in a luminometer. Fibrinogen binding to integrin αIIbβ3 was assessed using flow cytometry. Phosphorylation of mitogen-activated protein kinase (MAPK) signaling molecules and activation of the phosphoinositide 3-kinase (PI3K)/Akt were assessed using western blots, and further, glycoprotein VI (GPVI) signaling components were studied using immunoprecipitation. Key Results A. chinensis extracts potently and significantly inhibited platelet aggregation, calcium mobilization, granule secretion, and fibrinogen binding to integrin αIIbβ3. Moreover, it significantly inhibited MAPK phosphorylation and expression of GPVI downstream signaling molecules. Conclusion A. chinensis extract inhibited platelet aggregation and granule secretion and attenuated GPVI downstream signaling, indicating the potential therapeutic effects of this plant extract on the cardiovascular system and platelet function. We suggest that given plant extract may be a potent candidate to treat platelet-related CVDs and to be used as antiplatelet agent.
Collapse
|
9
|
Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel) 2017; 9:cancers9100133. [PMID: 28956830 PMCID: PMC5664072 DOI: 10.3390/cancers9100133] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Platelets are small anucleated cell fragments that ensure the arrest of bleeding after a vessel wall injury. They are also involved in non-hemostatic function such as development, immunity, inflammation, and in the hematogeneous phase of metastasis. While the role of platelets in tumor metastasis has been recognized for 60 years, the molecular mechanism underlying this process remains largely unclear. Platelets physically and functionally interact with various tumor cells through surface receptors including integrins. Platelets express five integrins at their surface, namely α2β1, α5β1, α6β1, αvβ3, and αIIbβ3, which bind preferentially to collagen, fibronectin, laminin, vitronectin, and fibrinogen, respectively. The main role of platelet integrins is to ensure platelet adhesion and aggregation at sites of vascular injury. Two of these, α6β1 and αIIbβ3, were proposed to participate in platelet–tumor cell interaction and in tumor metastasis. It has also been reported that pharmacological agents targeting both integrins efficiently reduce experimental metastasis, suggesting that platelet integrins may represent new anti-metastatic targets. This review focuses on the role of platelet integrins in tumor metastasis and discusses whether these receptors may represent new potential targets for novel anti-metastatic approaches.
Collapse
|
10
|
Feng W, Valiyaveettil M, Dudiki T, Mahabeleshwar GH, Andre P, Podrez EA, Byzova TV. β 3 phosphorylation of platelet α IIbβ 3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 2017; 15:22. [PMID: 28860945 PMCID: PMC5576334 DOI: 10.1186/s12959-017-0145-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background It is well accepted that functional activity of platelet integrin αIIbβ3 is crucial for hemostasis and thrombosis. The β3 subunit of the complex undergoes tyrosine phosphorylation shown to be critical for outside-in integrin signaling and platelet clot retraction ex vivo. However, the role of this important signaling event in other aspects of prothrombotic platelet function is unknown. Method Here, we assess the role of β3 tyrosine phosphorylation in platelet function regulation with a knock-in mouse strain, where two β3 cytoplasmic tyrosines are mutated to phenylalanine (DiYF). We employed platelet transfusion technique and intravital microscopy for observing the cellular events involved in specific steps of thrombus growth to investigate in detail the role of β3 tyrosine phosphorylation in arterial thrombosis in vivo. Results Upon injury, DiYF mice exhibited delayed arterial occlusion and unstable thrombus formation. The mean thrombus volume in DiYF mice formed on collagen was only 50% of that in WT. This effect was attributed to DiYF platelets but not to other blood cells and endothelium, which also carry these mutations. Transfusion of isolated DiYF but not WT platelets into irradiated WT mice resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion times. DiYF platelets exhibited reduced adhesion to collagen under in vitro shear conditions compared to WT platelets. Decreased platelet microparticle release after activation, both in vitro and in vivo, were observed in DiYF mice compared to WT mice. Conclusion β3 tyrosine phosphorylation of platelet αIIbβ3 regulates both platelet pro-thrombotic activity and the formation of a stable platelet thrombus, as well as arterial microparticle release.
Collapse
Affiliation(s)
- Weiyi Feng
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Manojkumar Valiyaveettil
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,US Army Medical Materiel Development Activity, 1430 Veterans Drive, Fort Detrick, Frederick, MD 21702 USA
| | - Tejasvi Dudiki
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | | | | | - Eugene A Podrez
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| |
Collapse
|
11
|
Abstract
Integrin αIIbβ3 is a highly abundant heterodimeric platelet receptor that can transmit information bidirectionally across the plasma membrane, and plays a critical role in hemostasis and thrombosis. Upon platelet activation, inside-out signaling pathways increase the affinity of αIIbβ3 for fibrinogen and other ligands. Ligand binding and integrin clustering subsequently stimulate outside-in signaling, which initiates and amplifies a range of cellular events driving essential platelet processes such as spreading, thrombus consolidation, and clot retraction. Integrin αIIbβ3 has served as an excellent model for the study of integrin biology, and it has become clear that integrin outside-in signaling is highly complex and involves a vast array of enzymes, signaling adaptors, and cytoskeletal components. In this review, we provide a concise but comprehensive overview of αIIbβ3 outside-in signaling, focusing on the key players involved, and how they cooperate to orchestrate this critical aspect of platelet biology. We also discuss gaps in the current understanding of αIIbβ3 outside-in signaling and highlight avenues for future investigation.
Collapse
|
12
|
Lin X, Vinogradova O. Phospho-Tyrosine(s) vs. Phosphatidylinositol Binding in Shc Mediated Integrin Signaling. ACTA ACUST UNITED AC 2015; 5:17-31. [PMID: 25893141 PMCID: PMC4397963 DOI: 10.4236/ajmb.2015.52003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Shc adaptor protein, particularly its p52 isoform, has been identified as a primary signaling partner for the tyrosine(s)-phosphorylated cytoplasmic tails of activated β3 integrins. Inspired by our recent structure of the Shc PTB domain in complex with a bi-phosphorylated peptide derived from β3 cytoplasmic tail, we have initiated the investigation of Shc interaction with phospholipids of the membrane. We are particularly focused on PtdIns and their effects on Shc mediated integrin signaling in vitro. Here we present thermodynamic profiles and molecular details of the interactions between Shc, integrin, and PtdIns, all of which have been studied by ITC and solution NMR methods. A model of p52 Shc interaction with phosphorylated β3 integrin cytoplasmic tail at the cytosolic face of the plasma membrane is proposed based on these data.
Collapse
Affiliation(s)
- Xiaochen Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, USA
| | - Olga Vinogradova
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut at Storrs, Storrs, USA
| |
Collapse
|
13
|
Gahmberg CG, Grönholm M, Uotila LM. Regulation of integrin activity by phosphorylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:85-96. [PMID: 25023169 DOI: 10.1007/978-94-017-9153-3_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Integrins are heterodimeric complex type I membrane proteins involved in cellular adhesion and signaling. They exist as inactive molecules in resting cells, and need activation to become adhesive. Although much is known about their structure, and a large number of interacting molecules have been described, we still only partially understand how their activities are regulated. In this review we focus on the leukocyte-specific β2-integrins and, specifically, on the role of integrin phosphorylation in the regulation of activity. Phosphorylation reactions can be fast and reversible, thus enabling strictly directed regulatory activities both time-wise and locally in specific regions of the plasma membrane in different leukocytes.
Collapse
Affiliation(s)
- Carl G Gahmberg
- Division of Biochemistry and Biotechnology, Department of Biosciences, University of Helsinki, Viikinkaari 5, 00014, Helsinki, Finland,
| | | | | |
Collapse
|
14
|
Abstract
Src family kinases (SFKs) play a central role in mediating the rapid response of platelets to vascular injury. They transmit activation signals from a diverse repertoire of platelet surface receptors, including the integrin αIIbβ3, the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex GPVI-FcR γ-chain, and the von Willebrand factor receptor complex GPIb-IX-V, which are essential for thrombus growth and stability. Ligand-mediated clustering of these receptors triggers an increase in SFK activity and downstream tyrosine phosphorylation of enzymes, adaptors, and cytoskeletal proteins that collectively propagate the signal and coordinate platelet activation. A growing body of evidence has established that SFKs also contribute to Gq- and Gi-coupled receptor signaling that synergizes with primary activation signals to maximally activate platelets and render them prothrombotic. Interestingly, SFKs concomitantly activate inhibitory pathways that limit platelet activation and thrombus size. In this review, we discuss past discoveries that laid the foundation for this fundamental area of platelet signal transduction, recent progress in our understanding of the distinct and overlapping functions of SFKs in platelets, and new avenues of research into mechanisms of SFK regulation. We also highlight the thrombotic and hemostatic consequences of targeting platelet SFKs.
Collapse
|
15
|
Magruder HT, Quinn JA, Schwartzbauer JE, Reichner J, Huang A, Filardo EJ. The G protein-coupled estrogen receptor-1, GPER-1, promotes fibrillogenesis via a Shc-dependent pathway resulting in anchorage-independent growth. Discov Oncol 2014; 5:390-404. [PMID: 25096985 DOI: 10.1007/s12672-014-0195-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023] Open
Abstract
The G protein-coupled estrogen receptor-1, GPER-1, coordinates fibronectin (FN) matrix assembly and release of heparan-bound epidermal growth factor (HB-EGF). This mechanism of action results in the recruitment of FN-engaged integrin α5β1 to fibrillar adhesions and the formation of integrin α5β1-Shc adaptor protein complexes. Here, we show that GPER-1 stimulation of murine 4 T1 or human SKBR3 breast cancer cells with 17β-estradiol (E2β) promotes the formation of focal adhesions and actin stress fibers and results in increased cellular adhesion and haptotaxis on FN, but not collagen. These actions are also induced by the xenoestrogen, bisphenol A, and the estrogen receptor (ER) antagonist, ICI 182, 780, but not the inactive stereoisomer, 17α-estradiol (E2α). In addition, we show that GPER-1 stimulation of breast cancer cells allows for FN-dependent, anchorage-independent growth and FN fibril formation in "hanging drop" assays, indicating that these GPER-1-mediated actions occur independently of adhesion to solid substrata. Stable expression of Shc mutant Y317F lacking its primary tyrosyl phosphorylation site disrupts E2β-induced focal adhesion and actin stress fiber formation and abolishes E2β-enhanced haptotaxis on FN and anchorage-dependent growth. Collectively, these data demonstrate that E2β action via GPER-1 enhances cellular adhesivity and FN matrix assembly and allows for anchorage-independent growth, cellular events that may allow for cellular survival, and tumor progression.
Collapse
Affiliation(s)
- Hilary T Magruder
- Division of Hematology and Oncology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Murine paired immunoglobulin-like receptors B (PIRB), as the ortholog of human leukocyte immunoglobulin-like receptor B2 (LILRB2), is involved in a variety of biological functions. Here, we found that PIRB and LILRB2 were expressed in mouse and human platelets, respectively. PIRB intracellular domain deletion (PIRB-TM) mice had thrombocythemia and significantly higher proportions of megakaryocytes in bone marrow. Agonist-induced aggregation and spreading on immobilized fibrinogen were facilitated in PIRB-TM platelets. The rate of clot retraction in platelet-rich plasma containing PIRB-TM platelets was also increased. Characterization of signaling confirmed that PIRB associated with phosphatases Shp1/2 in platelets. The phosphorylation of Shp1/2 was significantly downregulated in PIRB-TM platelets stimulated with collagen-related peptide (CRP) or on spreading. The results further revealed that the phosphorylation levels of the linker for activation of T cells, SH2 domain-containing leukocyte protein of 76kDa, and phospholipase C were enhanced in PIRB-TM platelets stimulated with CRP. The phosphorylation levels of FAK Y397 and integrin β3 Y759 were also enhanced in PIRB-TM platelet spread on fibrinogen. The PIRB/LILRB2 ligand angiopoietin-like-protein 2 (ANGPTL2) was expressed and stored in platelet α-granules. ANGPTL2 inhibited agonist-induced platelet aggregation and spreading on fibrinogen. The data presented here reveal that PIRB and its ligand ANGPTL2 possess an antithrombotic function by suppressing collagen receptor glycoprotein VI and integrin αIIbβ3-mediated signaling.
Collapse
|
17
|
Ryu SY, Kim S. Evaluation of CK2 inhibitor (E)-3-(2,3,4,5-tetrabromophenyl)acrylic acid (TBCA) in regulation of platelet function. Eur J Pharmacol 2013; 720:391-400. [DOI: 10.1016/j.ejphar.2013.09.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 09/10/2013] [Accepted: 09/22/2013] [Indexed: 11/25/2022]
|
18
|
Keane C, Petersen HJ, Tilley D, Haworth J, Cox D, Jenkinson HF, Kerrigan SW. Multiple sites on Streptococcus gordonii surface protein PadA bind to platelet GPIIbIIIa. Thromb Haemost 2013; 110:1278-1287. [PMID: 24136582 DOI: 10.1160/th13-07-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 11/05/2022]
Abstract
Infective endocarditis is a life threatening disease caused by a bacterial infection of the endocardial surfaces of the heart. The oral pathogen, Streptococcus gordonii is amongst the most common pathogens isolated from infective endocarditis patients. Previously we identified a novel cell wall protein expressed on S. gordonii called platelet adherence protein A (PadA) that specifically interacts with platelet GPIIb/IIIa. The interaction between PadA and GPIIb/IIIa resulted in firm platelet adhesion, dense granule secretion and platelet spreading on immobilised S. gordonii. This study set out to identify specific motifs on the PadA protein that interacts with platelet GPIIb/IIIa. Proteomic analysis of the PadA protein identified two short amino acid motifs which have been previously shown to be important for fibrinogen binding to GPIIb/IIIa and contributing to the generation of outside-in signalling. Site directed mutagenesis on the PadA protein in which ₄₅₄AGD was substituted to AAA, and the ₃₈₃RGT was substituted to AAA suggests the RGT motif has no role in supporting platelet adhesion however plays a role in dense granule secretion and platelet spreading. In contrast to this the AGD motif has no role to play in supporting firm platelet adhesion or dense granule secretion however plays a role in platelet spreading. These results suggest that multiple sites on S. gordonii PadA interact with GPIIb/IIIa to mediate a number of platelet responses that likely contribute to the thrombotic complications of infective endocarditis.
Collapse
Affiliation(s)
- Ciara Keane
- Cardiovascular Infection Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Helen J Petersen
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, England
| | - Dorothea Tilley
- Cardiovascular Infection Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jennifer Haworth
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, England
| | - Dermot Cox
- Cardiovascular Infection Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS12LY, England
| | - Steve W Kerrigan
- Cardiovascular Infection Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
19
|
Chlorin e6 Prevents ADP-Induced Platelet Aggregation by Decreasing PI3K-Akt Phosphorylation and Promoting cAMP Production. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:569160. [PMID: 23997795 PMCID: PMC3755423 DOI: 10.1155/2013/569160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023]
Abstract
A number of reagents that prevent thrombosis have been developed but were found to have serious side effects. Therefore, we sought to identify complementary and alternative medicinal materials that are safe and have long-term efficacy. In the present studies, we have assessed the ability of chlorine e6 (CE6) to inhibit ADP-induced aggregation of rat platelets and elucidated the underlying mechanism. CE6 inhibited platelet aggregation induced by 10 µM ADP in a concentration-dependent manner and decreased intracellular calcium mobilization and granule secretion (i.e., ATP and serotonin release). Western blotting revealed that CE6 strongly inhibited the phosphorylations of PI3K, Akt, c-Jun N-terminal kinase (JNK), and different mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2 (ERK1/2) as well as p38-MAPK. Our study also demonstrated that CE6 significantly elevated intracellular cAMP levels and decreased thromboxane A2 formation in a concentration-dependent manner. Furthermore, we determined that CE6 initiated the activation of PKA, an effector of cAMP. Taken together, our findings indicate that CE6 may inhibit ADP-induced platelet activation by elevating cAMP levels and suppressing PI3K/Akt activity. Finally, these results suggest that CE6 could be developed as therapeutic agent that helps prevent thrombosis and ischemia.
Collapse
|
20
|
Katyal P, Puthenveetil R, Vinogradova O. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase. Protein Sci 2013; 22:1358-65. [PMID: 23913837 DOI: 10.1002/pro.2323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 01/08/2023]
Abstract
Src kinase plays an important role in integrin signaling by regulating cytoskeletal organization and cell remodeling. Previous in vivo studies have revealed that the SH3 domain of c-Src kinase directly associates with the C-terminus of β3 integrin cytoplasmic tail. Here, we explore this binding interface with a combination of different spectroscopic and computational methods. Chemical shift mapping, PRE, transferred NOE and CD data were used to obtain a docked model of the complex. This model suggests a different binding mode from the one proposed through previous studies wherein, the C-terminal end of β3 spans the region in between the RT and n-Src loops of SH3 domain. Furthermore, we show that tyrosine phosphorylation of β3 prevents this interaction, supporting the notion of a constitutive interaction between β3 integrin and Src kinase.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | | | | |
Collapse
|
21
|
Brass LF, Tomaiuolo M, Stalker TJ. Harnessing the platelet signaling network to produce an optimal hemostatic response. Hematol Oncol Clin North Am 2013; 27:381-409. [PMID: 23714305 DOI: 10.1016/j.hoc.2013.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Once released into the circulation by megakaryocytes, circulating platelets can undergo rapid activation at sites of vascular injury and resist unwarranted activation, which can lead to heart attacks and strokes. Historically, the signaling mechanisms underlying the regulation of platelet activation have been approached as a collection of individual pathways unique to agonist. This review takes a different approach, casting platelet activation as the product of a signaling network, in which activating and restraining mechanisms interact in a flexible network that regulates platelet adhesiveness, cohesion between platelets, granule secretion, and the formation of a stable hemostatic thrombus.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW In the current review, we summarize recent progress on vasculature-specific function and regulation of integrins and integrin-associated proteins, including advances in our understanding of inside-out integrin activation. The studies on regulation of integrin activation received new impulse in 2009 with the identification of kindlin protein family members as crucial mediators of integrin inside-out signaling. In the current review, we outline the recent findings on the role of kindlins in the vascular system, as well as new studies that have begun shaping the mechanistic model of kindlins' function. RECENT FINDINGS Several tissue-specific knockout models for integrins and genes associated with the integrin functions have been recently presented, including smooth muscle-specific integrin-linked kinase and endothelial-specific focal adhesion kinase and talin-1 ablation. In the heterozygous animal knockout model, kindlin-2 has been demonstrated as a crucial modulator of angiogenesis and vascular permeability. As a number of articles have advanced our understanding of kindlin function, they are reviewed and discussed in further detail. New findings include an additional lipid-binding site within the kindlin molecule and preferential binding of the nonphosphorylated form of β-integrins. SUMMARY The role of integrins in angiogenesis has been demonstrated to include, in addition to cell adhesion and mechanotransduction, specific signaling functions. The importance of integrin inside-out pathway in vascular physiology has been unequivocally proven, and endothelial permeability is directly regulated by this process. Inhibition of kindlin-dependent steps in the inside-out pathway as an approach to block platelet aggregation should be paralog-specific, as it may have adverse effects on vascular permeability.
Collapse
|
23
|
Deshmukh L, Meller N, Alder N, Byzova T, Vinogradova O. Tyrosine phosphorylation as a conformational switch: a case study of integrin β3 cytoplasmic tail. J Biol Chem 2011; 286:40943-53. [PMID: 21956114 DOI: 10.1074/jbc.m111.231951] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein phosphorylation is vital for many fundamental cellular processes. The actual impact of adding and removing phosphate group(s) is 3-fold: changes in the local/global geometry, alterations in the electrostatic potential and, as the result of both, modified protein-target interactions. Here we present a comprehensive structural investigation of the effects of phosphorylation on the conformational as well as functional states of a crucial cell surface receptor, α(IIb)β(3) integrin. We have analyzed phosphorylated (Tyr(747) and Tyr(759)) β(3) integrin cytoplasmic tail (CT) primarily by NMR, and our data demonstrate that under both aqueous and membrane-mimetic conditions, phosphorylation causes substantial conformational rearrangements. These changes originate from novel ionic interactions and revised phospholipid binding. Under aqueous conditions, the critical Tyr(747) phosphorylation prevents β(3)CT from binding to its heterodimer partner α(IIb)CT, thus likely maintaining an activated state of the receptor. This conclusion was tested in vivo and confirmed by integrin-dependent endothelial cells adhesion assay. Under membrane-mimetic conditions, phosphorylation results in a modified membrane embedding characterized by significant changes in the secondary structure pattern and the overall fold of β(3)CT. Collectively these data provide unique molecular insights into multiple regulatory roles of phosphorylation.
Collapse
Affiliation(s)
- Lalit Deshmukh
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | | | | | |
Collapse
|
24
|
Keane C, Petersen H, Reynolds K, Newman DK, Cox D, Jenkinson HF, Newman PJ, Kerrigan SW. Mechanism of outside-in {alpha}IIb{beta}3-mediated activation of human platelets by the colonizing Bacterium, Streptococcus gordonii. Arterioscler Thromb Vasc Biol 2010; 30:2408-15. [PMID: 21071690 DOI: 10.1161/atvbaha.110.216515] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To better understand the mechanism of platelet recruitment and activation by Streptococcus gordonii. The oral bacterium Streptococcus gordonii, is amongst the most common pathogens isolated from infective endocarditis patients, and has the property of being able to activate platelets, leading to thrombotic complications. The mechanism of platelet recruitment and activation by S. gordonii is poorly understood. METHODS AND RESULTS Infective endocarditis is a bacterial infection of the heart valves that carries a high risk of morbidity and mortality. The oral bacterium, S gordonii, is among the most common pathogens isolated from patients with infective endocarditis and is able to activate platelets, leading to thrombotic complications. Platelets interact with S gordonii via glycoprotein Ibα- and α(IIb)β(3)-recognizing S gordonii surface proteins haemaglutitin salivary antigen (Hsa) and platelet adherence protein A, respectively. The inhibition of glycoprotein Ibα or α(IIb)β(3) using blocking antibodies or deletion of S gordonii Hsa or platelet adherence protein A significantly reduces platelet adhesion. Immunoreceptor tyrosine-based activation motif (ITAM)-containing proteins have recently played a role in transmitting activating signals into platelets. Platelet adhesion to immobilized S gordonii resulted in tyrosine phosphorylation of the ITAM-bearing receptor, FcγRIIa, and phosphorylation of downstream effectors (ie, spleen tyrosine kinase [Syk] and phospholipase C [PLC]-γ2). Tyrosine phosphorylation of FcγRIIa resulted in platelet-dense granule secretion, filopodial and lamellipodial extension, and platelet spreading. Inhibition of FcγRIIa ablated both dense granule release and platelet spreading. CONCLUSIONS Streptococcus gordonii binding to the α(IIb)β(3)/FcγRIIa integrin/ITAM signaling complex results in platelet activation that likely contributes to the thrombotic complications of infective endocarditis.
Collapse
Affiliation(s)
- Ciara Keane
- Cardiovascular Infection Group, Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Deshmukh L, Gorbatyuk V, Vinogradova O. Integrin {beta}3 phosphorylation dictates its complex with the Shc phosphotyrosine-binding (PTB) domain. J Biol Chem 2010; 285:34875-84. [PMID: 20739287 PMCID: PMC2966102 DOI: 10.1074/jbc.m110.159087] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/30/2010] [Indexed: 01/23/2023] Open
Abstract
Adaptor protein Shc plays a key role in mitogen-activated protein kinase (MAPK) signaling pathway, which can be mediated through a number of different receptors including integrins. By specifically recognizing the tyrosine-phosphorylated integrin β(3), Shc has been shown to trigger integrin outside-in signaling, although the structural basis of this interaction remains nebulous. Here we present the detailed structural analysis of Shc phosphotyrosine-binding (PTB) domain in complex with the bi-phosphorylated β(3)integrin cytoplasmic tail (CT). We show that this complex is primarily defined by the phosphorylation state of the integrin C-terminal Tyr(759), which fits neatly into the classical PTB pocket of Shc. In addition, we have identified a novel binding interface which concurrently accommodates phosphorylated Tyr(747) of the highly conserved NPXY motif of β(3). The structure represents the first snapshot of an integrin cytoplasmic tail bound to a target for mediating the outside-in signaling. Detailed comparison with the known Shc PTB structure bound to a target TrkA peptide revealed some significant differences, which shed new light upon the PTB domain specificity.
Collapse
Affiliation(s)
- Lalit Deshmukh
- From the Department of Pharmaceutical Sciences, School of Pharmacy, and
| | - Vitaliy Gorbatyuk
- the BioNMR Facility, Biotechnology-Bioservices Center, University of Connecticut, Storrs, Connecticut 06269-3092
| | - Olga Vinogradova
- From the Department of Pharmaceutical Sciences, School of Pharmacy, and
| |
Collapse
|
26
|
Soung YH, Clifford JL, Chung J. Crosstalk between integrin and receptor tyrosine kinase signaling in breast carcinoma progression. BMB Rep 2010; 43:311-8. [PMID: 20510013 DOI: 10.5483/bmbrep.2010.43.5.311] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
This review explored the mechanism of breast carcinoma progression by focusing on integrins and receptor tyrosine kinases (or growth factor receptors). While the primary role of integrins was previously thought to be solely as mediators of adhesive interactions between cells and extracellular matrices, it is now believed that integrins also regulate signaling pathways that control cancer cell growth, survival, and invasion. A large body of evidence suggests that the cooperation between integrin and receptor tyrosine kinase signaling regulates certain signaling functions that are important for cancer progression. Recent developments on the crosstalk between integrins and receptor tyrosine kinases, and its implication in mammary tumor progression, are discussed.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | |
Collapse
|
27
|
Bledzka K, Bialkowska K, Nie H, Qin J, Byzova T, Wu C, Plow EF, Ma YQ. Tyrosine phosphorylation of integrin beta3 regulates kindlin-2 binding and integrin activation. J Biol Chem 2010; 285:30370-4. [PMID: 20702409 DOI: 10.1074/jbc.c110.134247] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Kindlins are essential for integrin activation in cell systems and do so by working in a cooperative fashion with talin via their direct interaction with integrin β cytoplasmic tails (CTs). Kindlins interact with the membrane-distal NxxY motif, which is distinct from the talin-binding site within the membrane-proximal NxxY motif. The Tyr residues in both motifs can be phosphorylated, and it has been suggested that this modification of the membrane-proximal NxxY motif negatively regulates interaction with the talin head domain. However, the influence of Tyr phosphorylation of the membrane-distal NxxY motif on kindlin binding is unknown. Using mutational analyses and phosphorylated peptides, we show that phosphorylation of the membrane-distal NITY(759) motif in the β(3) CT disrupts kindlin-2 recognition. Phosphorylation of this membrane-distal Tyr also disables the ability of kindlin-2 to coactivate the integrin. In direct binding studies, peptides corresponding to the non-phosphorylated β(3) CT interacted well with kindlin-2, whereas the Tyr(759)-phosphorylated peptide failed to bind kindlin-2 with measurable affinity. These observations indicate that transitions between the phosphorylated and non-phosphorylated states of the integrin β(3) CT determine reactivity with kindlin-2 and govern the role of kindlin-2 in regulating integrin activation.
Collapse
Affiliation(s)
- Kamila Bledzka
- Department of Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Li Z, Zhang H, Lundin L, Thullberg M, Liu Y, Wang Y, Claesson-Welsh L, Strömblad S. p21-activated kinase 4 phosphorylation of integrin beta5 Ser-759 and Ser-762 regulates cell migration. J Biol Chem 2010; 285:23699-710. [PMID: 20507994 DOI: 10.1074/jbc.m110.123497] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Modulation of integrin alphavbeta5 regulates vascular permeability, angiogenesis, and tumor dissemination. In addition, we previously found a role for p21-activated kinase 4 (PAK4) in selective regulation of integrin alphavbeta5-mediated cell motility (Zhang, H., Li, Z., Viklund, E. K., and Strömblad, S. (2002) J. Cell Biol. 158, 1287-1297). This report focuses on the molecular mechanisms of this regulation. We here identified a unique PAK4-binding membrane-proximal integrin beta5-SERS-motif involved in controlling cell attachment and migration. We also mapped the integrin beta5-binding site within PAK4. We found that PAK4 binding to integrin beta5 was not sufficient to promote cell migration, but that PAK4 kinase activity was required for PAK4 promotion of cell motility. Importantly, PAK4 specifically phosphorylated the integrin beta5 subunit at Ser-759 and Ser-762 within the beta5-SERS-motif. Point mutation of these two serine residues abolished the PAK4-induced cell migration, indicating a functional role for these phosphorylations in migration. Our results may give important leads to the functional regulation of integrin alphavbeta5, with implications for vascular permeability, angiogenesis, and cancer dissemination.
Collapse
Affiliation(s)
- Zhilun Li
- Center for Biosciences, Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Huddinge, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Naik MU, Nigam A, Manrai P, Millili P, Czymmek K, Sullivan M, Naik UP. CIB1 deficiency results in impaired thrombosis: the potential role of CIB1 in outside-in signaling through integrin alpha IIb beta 3. J Thromb Haemost 2009; 7:1906-14. [PMID: 19691476 PMCID: PMC7034629 DOI: 10.1111/j.1538-7836.2009.03581.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UNLABELLED Agonist-induced inside-out signaling activates platelet integrin alpha(IIb)beta(3), rendering it to bind plasma fibrinogen (Fg). Fg binding induces outside-in signaling that culminates in platelet aggregation, leading to physiological hemostasis and pathological thrombosis. How outside-in signaling through alpha(IIb)beta(3) regulates hemostasis and thrombosis is not well understood. We have previously shown that CIB1 is involved in regulating alpha(IIb)beta(3) function. OBJECTIVE To determine the in vivo role of CIB1 in the process of hemostasis and thrombosis. METHODS AND RESULTS Genetic ablation of Cib1 significantly increased mouse tail bleeding time. Greater than 50% of the Cib1 null mice showed a rebleeding phenotype. Time taken for complete occlusion of carotid artery upon 10% FeCl(3)-induced injury was significantly delayed in the absence of Cib1. This was also associated with unstable thrombus formation. The inside-out signaling appears normal as ADP-, collagen- and PAR4 peptide-induced aggregation and fibrinogen binding was unaffected. The absence of Cib1 also affected the ability of platelets to spread on immobilized Fg, but not filopodia formation. Spreading could be restored in Cib1 null platelets by the addition of exogenous ADP. Outside-in signaling-dependent tyrosine phosphorylation of the integrin beta(3) subunit was significantly reduced in the absence of Cib1 as determined by Western blot analysis. CONCLUSION Using gene knockout mice, we show for the first time that lack of Cib1 results in impaired thrombosis. CIB1 regulates these processes by affecting platelet spreading, but not platelet filopodia formation. These in vivo and in vitro results clearly show that CIB1 is a key regulator of thrombosis.
Collapse
Affiliation(s)
- M U Naik
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cells govern tissue shape by exerting highly regulated forces at sites of matrix adhesion. As the major force-bearing adhesion-receptor protein, integrins have a central role in how cells sense and respond to the mechanics of their surroundings. Recent studies have shown that a key aspect of mechanotransduction is the cycle by which integrins bind to the matrix at the leading cell edge, attach to the cytoskeleton, transduce mechanical force, aggregate in the plasma membrane as part of increasingly strengthened adhesion complexes, unbind and, ultimately, are recycled. This mechanical cycle enables the transition from early complexes to larger, more stable adhesions that can then rapidly release. Within this mechanical cycle, integrins themselves exhibit intramolecular conformational change that regulates their binding affinity and may also be dependent upon force. How the cell integrates these dynamic elements into a rigidity response is not clear. Here, we focus on the steps in the integrin mechanical cycle that are sensitive to force and closely linked to integrin function, such as the lateral alignment of integrin aggregates and related adhesion components.
Collapse
|
31
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
32
|
Reddy KB, Smith DM, Plow EF. Analysis of Fyn function in hemostasis and alphaIIbbeta3-integrin signaling. J Cell Sci 2008; 121:1641-8. [PMID: 18430780 DOI: 10.1242/jcs.014076] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Recent studies have shown that Src-family kinases (SFKs) play an important role in mediating integrin signalling, and the beta3 subunit of alphaIIbbeta3 integrin has been shown to interact with multiple SFK members. Here, we analyzed the interactions and functional consequences of Fyn and Src binding to alphaIIbbeta3. Fyn associated with the beta3 subunit in resting and thrombin-aggregated platelets, whereas interaction between Src and alphaIIbbeta3 was seen predominantly in resting but not in thrombin-aggregated platelets. We have also observed that Fyn but not Src localized to focal adhesions in CHO cells adherent to fibrinogen through alphaIIbbeta3. On the basis of these differences, we wanted to determine the sequence requirements for the interaction of Fyn and Src within the beta3-cytoplasmic domain. Whereas Src association required the C-terminal region of beta3, Fyn continued to interact with mutants that could no longer associate with Src and that contained as few as 13 membrane-proximal amino acids of the beta3-cytoplasmic tail. Using deletion mutants of beta3-cytoplasmic tails expressed as GST-fusion proteins, we narrowed down the Fyn-binding site even further to the amino acid residues 721-725 (IHDRK) of the beta3-cytoplasmic domain. On the basis of these observations, we explored whether Fyn-/- mice exhibited any abnormalities in hemostasis and platelet function. We found that Fyn-/- mice significantly differed in their second bleeding times compared with wild-type mice, and platelets from Fyn-/- mice exhibited delayed spreading on fibrinogen-coated surfaces. Using mutant forms of Fyn, it appears that its kinase activity is required for its localization to focal adhesions and to mediate alphaIIbbeta3-dependent cell spreading. Our results suggest that Fyn and Src have distinct requirements for interaction with alphaIIbbeta3; and, consequently, the two SFK can mediate different functional responses.
Collapse
Affiliation(s)
- Kumar B Reddy
- Department of Molecular Cardiology and Joseph J Jacobs Center for Thrombosis & Vascular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | |
Collapse
|
33
|
Cerecedo D, Cisneros B, Suárez-Sánchez R, Hernández-González E, Galván I. beta-Dystroglycan modulates the interplay between actin and microtubules in human-adhered platelets. Br J Haematol 2008; 141:517-28. [PMID: 18341635 DOI: 10.1111/j.1365-2141.2008.07048.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To maintain the continuity of an injured blood vessel, platelets change shape, secrete granule contents, adhere, aggregate, and retract in a haemostatic plug. Ordered arrays of microtubules, microfilaments, and associated proteins are responsible for these platelet responses. In full-spread platelets, microfilament bundles in association with other cytoskeleton proteins are anchored in focal contacts. Recent studies in migrating cells suggest that co-ordination and direct physical interaction of microtubules and actin network modulate adhesion development. In platelets, we have proposed a feasible association between these two cytoskeletal systems, as well as the participation of the dystrophin-associated protein complex, as part of the focal adhesion complex. The present study analysed the participation of microtubules and actin during the platelet adhesion process. Confocal microscopy, fluorescence resonance transfer energy and immunoprecipitation assays were used to provide evidence of a cross-talk between these two cytoskeletal systems. Interestingly, beta-dystroglycan was found to act as an interplay protein between actin and microtubules and an additional communication between these two cytoskeleton networks was maintained through proteins of focal adhesion complex. Altogether our data are indicative of a dynamic co-participation of actin filaments and microtubules in modulating focal contacts to achieve platelet function.
Collapse
Affiliation(s)
- Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional (IPN), México.
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Léon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C, Jourdain M, Nonne C, Weber J, Tiedt R, Gratacap MP, Severin S, Cazenave JP, Lanza F, Skoda R, Gachet C. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 2007; 110:3183-91. [PMID: 17664350 DOI: 10.1182/blood-2007-03-080184] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AbstractMutations in the MYH9 gene encoding the nonmuscle myosin heavy chain IIA result in bleeding disorders characterized by a macrothrombocytopenia. To understand the role of myosin in normal platelet functions and in pathology, we generated mice with disruption of MYH9 in megakaryocytes. MYH9Δ mice displayed macrothrombocytopenia with a strong increase in bleeding time and absence of clot retraction. However, platelet aggregation and secretion in response to any agonist were near normal despite absence of initial platelet contraction. By contrast, integrin outside-in signaling was impaired, as observed by a decrease in integrin β3 phosphorylation and PtdIns(3,4)P2 accumulation following stimulation. Upon adhesion on a fibrinogen-coated surface, MYH9Δ platelets were still able to extend lamellipodia but without stress fiber–like formation. As a consequence, thrombus growth and organization, investigated under flow by perfusing whole blood over collagen, were strongly impaired. Thrombus stability was also decreased in vivo in a model of FeCl3-induced injury of carotid arteries. Overall, these results demonstrate that while myosin seems dispensable for aggregation and secretion in suspension, it plays a key role in platelet contractile phenomena and outside-in signaling. These roles of myosin in platelet functions, in addition to thrombocytopenia, account for the strong hemostatic defects observed in MYH9Δ mice.
Collapse
Affiliation(s)
- Catherine Léon
- INSERM U311, Etablissement Français du Sang-Alsace, 10 rue Spielmann, 67065 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Levi M, Hofstra JJ, Opal S. Thrombocytopenia in Intensive Care Patients. Intensive Care Med 2007. [DOI: 10.1007/978-0-387-49518-7_74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Clemmons DR, Maile LA, Ling Y, Yarber J, Busby WH. Role of the integrin alphaVbeta3 in mediating increased smooth muscle cell responsiveness to IGF-I in response to hyperglycemic stress. Growth Horm IGF Res 2007; 17:265-270. [PMID: 17412627 PMCID: PMC2366026 DOI: 10.1016/j.ghir.2007.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Under usual conditions, the role of IGF-I in vascular cell types is to maintain cellular protein synthesis and cell size, and even excess IGF-I does not stimulate proliferation. In pathophysiologic states, such as hyperglycemia, smooth muscle cells (SMC) dedifferentiate and change their responsiveness to IGF-I. During hyperglycemia IGF-I stimulates both SMC migration and proliferation. Our laboratory has investigated the molecular mechanism by which this change is mediated. During hyperglycemia SMC secrete increased concentrations of thrombospondin, vitronectin and osteopontin, ligands for the integrin alphaVbeta3. Activation of alphaVbeta3 stimulates recruitment of a tyrosine phosphatase, SHP-2. Exposure of SMC to IGF-I results in phosphorylation of the transmembrane protein, SHPS-1, which provides a docking site for alphaVbeta3-associated SHP-2. After IGF-I stimulation SHP-2 associates with Src kinase, which associates with the signaling protein Shc. Src phosphorylates Shc, resulting in activation of MAP kinases, which are necessary both for stimulation of cell proliferation and migration. Blocking activation of alphaVbeta3 results in an inability of IGF-I to stimulate Shc phosphorylation. Under conditions of normoglycemia, there are insufficient alphaVbeta3 ligands to recruit SHP-2, and no increase in Shc phosphorylation can be demonstrated in SMC. In contrast, if alphaVbeta3 ligands are added to cells in normal glucose, the signaling events that are necessary for Shc phosphorylation can be reconstituted. Therefore when SMC are exposed to normal glucose they are protected from excessive stimulation of mitogenesis by IGF-I. With hyperglycemia there is a marked increased in alphaVbeta3 ligands and Shc phosphorylation in response to IGF-I is sustained. These findings indicate that in SMC hyperglycemic stress leads to altered IGF-I signaling, which allows the cells to undergo a mitogenic response, and which may contribute to the development of atherosclerosis.
Collapse
Affiliation(s)
- David R Clemmons
- Department of Medicine, Division of Endocrinology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.
| | | | | | | | | |
Collapse
|
38
|
Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 2007; 27:728-39. [PMID: 17272754 DOI: 10.1161/01.atv.0000259359.52265.62] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelet adhesion and aggregation at sites of vascular injury are two key events in hemostasis and thrombosis. Because of exciting advances in genetic engineering, the mouse has become an important and frequently used model to unravel the molecular mechanisms underlying the multistep process leading to the formation of a stable platelet plug. In gene-targeted mice, the crucial importance of platelet adhesion receptors such as glycoprotein Ib alpha or the alphaIIb beta3 integrin has been confirmed and further clarified. Their absence leads to highly impaired thrombus formation, independent of the model used to induce vascular injury. In contrast, the relative contribution of other receptors, such as glycoprotein VI, or of various platelet ligands may be regulated by the severity of injury, the type of vessel injured, and the signaling pathways that are generated. Murine models have also helped improve understanding of the second wave of events that leads to stabilization of the platelet aggregate. Despite the current limitations due to lack of standardization and the virtual absence of thrombosis models in diseased vessels, there is no doubt that the mouse will play a key role in the discovery and characterization of the next generation of antithrombotic agents. This review focuses on key findings about the molecular mechanisms supporting hemostasis and thrombosis that have been obtained with genetically engineered mouse models deficient in various platelet adhesion receptors and ligands. Combination of these models with sophisticated methods allowing direct visualization of platelet-vessel wall interactions after injury greatly contributed to recent advances in the field.
Collapse
|
39
|
|
40
|
|
41
|
Pylayeva Y, Giancotti FG. Development requires activation but not phosphorylation of beta1 integrins. Genes Dev 2006; 20:1057-60. [PMID: 16651652 DOI: 10.1101/gad.1432006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yuliya Pylayeva
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | |
Collapse
|
42
|
Cho J, Mosher DF. Impact of fibronectin assembly on platelet thrombus formation in response to type I collagen and von Willebrand factor. Blood 2006; 108:2229-36. [PMID: 16735600 PMCID: PMC1895571 DOI: 10.1182/blood-2006-02-002063] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasma fibronectin enhances platelet thrombus formation on surfaces coated with collagen. We investigated the role of fibronectin assembly in this process. Platelets adherent to fibrillar type I collagen, but not platelets adherent to von Willebrand factor (VWF), supported assembly of plasma fibronectin under static conditions. At a shear rate of 1250 s(-1), platelets adherent to collagen assembled coperfused plasma fibronectin and formed larger thrombi in a fibronectin-concentration-dependent manner, with a maximum effect at 250 mug/mL. Enhanced thrombus formation on collagen was blocked by a peptide that binds to the N-terminal region of fibronectin and inhibits fibronectin assembly. Cross-linking of fibronectin to collagen prior to exposure to platelets had no effect on thrombus formation. Collagen-induced platelet thrombus formation at a shear rate of 5000 s(-1) required coperfusion with VWF and did not result in assembly of coperfused fibronectin. VWF-mediated increase in platelet thrombi on collagen was not enhanced and indeed was somewhat attenuated by coperfused fibronectin at a shear rate of 5000 s(-1). These results indicate that, at moderately high but not very high shear rates, fibronectin assembly in platelet aggregates that form in response to collagen enhances thrombus formation and serves as an alternative to VWF-mediated enhancement.
Collapse
Affiliation(s)
- Jaehyung Cho
- Department of Medicine, University of Wisconsin-Madison, 4285 Medical Sciences Center, 1300 University Ave, Madison, WI 53706, USA
| | | |
Collapse
|
43
|
Saller F, Burnier L, Schapira M, Angelillo-Scherrer A. Role of the growth arrest-specific gene 6 (gas6) product in thrombus stabilization. Blood Cells Mol Dis 2006; 36:373-8. [PMID: 16564713 DOI: 10.1016/j.bcmd.2005.12.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/09/2005] [Indexed: 10/24/2022]
Abstract
Growth arrest-specific gene 6 (gas6) product enhances the formation of stable platelet macroaggregates in response to various agonists. To determine whether Gas6 amplifies the response to known platelet agonists through one or more of its receptor tyrosine kinases of the Tyro3 family, mice deficient in any one of the Gas6 receptors (Gas6-Rs: Tyro3, Axl, or Mer) were submitted to thrombosis challenge and their platelet function. The loss of any one of the Gas6-Rs protects mice against thromboembolism induced by collagen-epinephrine and stasis-induced thrombosis. Importantly, these mice do not suffer spontaneous bleeding and have a normal bleeding time but a tendency to repetitively re-bleed after transient hemostasis. Re-bleeding in mice lacking any one of the Gas6-Rs is not due to thrombocytopenia or coagulopathy but to a platelet dysfunction characterized by a lack of the second wave of platelet aggregation and an impaired clot retraction, at least in part by reducing outside-in alpha(IIb)beta(3) signaling and platelet granule secretion. The early release of Gas6 by agonists perpetuates platelet activation through its three receptors, reinforcing outside-in alpha(IIb)beta(3) signaling by activation of PI3K and Akt signaling and stimulation of tyrosine phosphorylation of the beta(3) integrin. Furthermore, "trapping" Gas6 prevents pathological thrombosis, which indicates that blocking this novel cross-talk between the Gas6-Rs and alpha(IIb)beta(3) integrin may constitute a novel target for antithrombotic therapy.
Collapse
Affiliation(s)
- François Saller
- Service and Central Laboratory of Hematology, Centre Hospitalier Universitaire Vaudois, rue du Bugnon 46, CH-1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
44
|
Nanda N, Phillips DR. Novel targets for antithrombotic drug discovery. Blood Cells Mol Dis 2006; 36:228-31. [PMID: 16473533 DOI: 10.1016/j.bcmd.2005.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 12/19/2005] [Indexed: 11/29/2022]
Abstract
Platelet aggregation is a dynamic entity, capable of directing its own growth and stability via the activation of signaling cascades that lead to the expression and secretion of various secondary agonists. Recent data using proteomics and genomics strategies have established that signaling pathways during platelet aggregation are triggered by two homophilic adhesion molecules, CD84 and CD150 (SLAM), and by a novel EGF-containing receptor, PEAR1, which are tyrosine-phosphorylated in a platelet-aggregation-dependent fashion (N. Nanda, P. Andre, M. Bao et al., Platelet aggregation induces platelet aggregate stability via SLAM family receptor signaling, Blood 106 (2005) 3028-3034, N. Nanda, M. Bao, H. Lin et al., Platelet Endothelial Aggregation Receptor 1 (PEAR1), a novel epidermal growth factor repeat-containing transmembrane receptor, participates in platelet contact-induced activation, J. Biol. Chem. 280 (2005) 24680-24689). Analysis of SLAM-deficient mice revealed an overall defect in platelet aggregation in vitro and a delayed arterial thrombotic process in vivo. The data indicate that these aggregation co-receptors may function in a "platelet synapse" and may be novel targets for antithrombotic drug discovery.
Collapse
Affiliation(s)
- Nisha Nanda
- Portola Pharmaceuticals Inc., 270 E. Grand Avenue, South San Francisco, CA 94080, USA
| | | |
Collapse
|
45
|
Brass LF, Jiang H, Wu J, Stalker TJ, Zhu L. Contact-dependent signaling events that promote thrombus formation. Blood Cells Mol Dis 2006; 36:157-61. [PMID: 16473534 DOI: 10.1016/j.bcmd.2005.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 12/06/2005] [Indexed: 01/21/2023]
Abstract
There is increasing evidence that formation of a stable hemostatic plug requires adhesive and signaling events that continue beyond the onset of platelet aggregation. These events are facilitated and, in some cases, made possible, by the persistent close contacts between platelets that can only occur when platelets begin to aggregate. Participants include integrins and other cell adhesion molecules, secreted agonists, receptor tyrosine kinases, and protein fragments that are shed from the surface of activated platelets. Collectively, these molecules promote the continued growth and stability of the hemostatic plug.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Room 915 BRB-II, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
The platelet integrin alpha(IIb)beta(3) is required for platelet aggregation. Like other integrins, alpha(IIb)beta(3) resides on cell surfaces in an equilibrium between inactive and active conformations. Recent experiments suggest that the shift between these conformations involves a global reorganization of the alpha(IIb)beta(3) molecule and disruption of constraints imposed by the heteromeric association of the alpha(IIb) and beta(3) transmembrane and cytoplasmic domains. The biochemical, biophysical, and ultrastructural results that support this conclusion are discussed in this Review.
Collapse
Affiliation(s)
- Joel S Bennett
- Hematology-Oncology Division, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA.
| |
Collapse
|
47
|
Brass LF, Zhu L, Stalker TJ. Minding the gaps to promote thrombus growth and stability. J Clin Invest 2006; 115:3385-92. [PMID: 16322784 PMCID: PMC1297259 DOI: 10.1172/jci26869] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Efforts to understand the role of platelets in hemostasis and thrombosis have largely focused on the earliest events of platelet activation, those that lead to aggregation. Although much remains to be learned about those early events, this Review examines a later series of events: the interactions between platelets that can only occur once aggregation has begun, bringing platelets into close contact with each other, creating a protected environment in the gaps between aggregated platelets, and fostering the continued growth and stability of the hemostatic plug.
Collapse
Affiliation(s)
- Lawrence F Brass
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
48
|
Taverna D, Crowley D, Connolly M, Bronson RT, Hynes RO. A direct test of potential roles for beta3 and beta5 integrins in growth and metastasis of murine mammary carcinomas. Cancer Res 2006; 65:10324-9. [PMID: 16288021 DOI: 10.1158/0008-5472.can-04-4098] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
alphavbeta3 or alphavbeta5 integrins are widely expressed on blood and endothelial cells. Inhibition of the functions of these integrins has been reported to suppress neovascularization and tumor growth, suggesting that they may be critical modulators of angiogenesis. However, mice lacking these integrins exhibit extensive angiogenesis. Tumors arising from s.c. injections of tumor cells into mice lacking one or both integrins show enhanced tumor growth compared with growth in control mice due to both increased angiogenesis and to altered innate immune response. Other data suggest additional roles for these integrins, on either platelets or the tumor cells themselves, in enhancing tumor progression and metastasis. Here, we investigate the involvement of beta3 and beta5 integrins in the development and progression of mammary carcinomas. We intercrossed mouse mammary tumor virus (MMTV)-c-neu transgenic mice with beta3 or beta5 or beta3beta5 integrin-deficient mice and observed that multiple, large mammary tumors developed in 100% of mice on all genetic backgrounds. A statistically significant earlier onset of tumor growth was observed in the MMTV-c-neu/beta3beta5 integrin-null females compared with control mice. No major differences were observed in tumor size or number, vessel number or vessel structure and lung metastases were observed with similar frequency and size in all strains. MMTV-c-neu/beta3beta5 integrin-null mice had higher numbers of mammary acini, which may account for the earlier onset of tumors in this strain. These data indicate that alphavbeta3 or alphavbeta5 integrins are not essential for tumor growth and progression, although they might play some role in mammary gland development.
Collapse
Affiliation(s)
- Daniela Taverna
- Howard Hughes Medical Institute, Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
49
|
Shattil SJ. Integrins and Src: dynamic duo of adhesion signaling. Trends Cell Biol 2005; 15:399-403. [PMID: 16005629 DOI: 10.1016/j.tcb.2005.06.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 06/06/2005] [Accepted: 06/24/2005] [Indexed: 01/13/2023]
Abstract
Src family protein tyrosine kinases (SFKs) play important roles downstream of integrin adhesion receptors, and they are necessary for the generation of "outside-in signals" that regulate cytoskeletal organization, cell motility and gene expression in response to cell adhesion. One relatively under-explored facet of this relationship is the possible physical interaction of integrins with SFKs. Recently, it has been established that beta3 integrins and c-Src can interact directly, and this pool of c-Src is activated by cell adhesion to initiate outside-in signaling in platelets, osteoclasts and cells of the vasculature. Here, the biochemical basis for and biological significance of this integrin-SFK interaction is summarized, and I propose a general mechanism for initiation of outside-in integrin signaling.
Collapse
Affiliation(s)
- Sanford J Shattil
- Hematology-Oncology Division, Department of Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Over the past few years, a large portion of platelet research has focused on intracellular signaling events that contribute to stable platelet adhesion and aggregation. RECENT FINDINGS Studies of knockout mice have suggested critical roles for several previously unappreciated signaling molecules including phosphatidylinositol 3-kinase, the exchange factor CalDAG-GEFI, and the small GTPase Rap1b. These proteins may function to remodel the platelet cytoskeleton and thereby regulate both adhesion and aggregation. The abundant cytoskeletal protein talin appears to be a key regulator of the platelet integrin alphaIIbbeta3. Recent evidence suggests that talin binding to the cytoplasmic tail of beta3 promotes integrin oligomerization, thereby increasing the binding avidity the alphaIIbbeta3 complex for fibrinogen. SUMMARY The identification of platelet signaling pathways not only has clinical implications for diagnosis, but perhaps more importantly for rationale drug design. Aspirin, dipyridamole (Persantine), and thienopyridines (ticlopidine and clopidogrel) are all examples of agents that specifically target discrete platelet signaling pathways. These drugs have already been proven to be beneficial in the treatment of cardiovascular disease. Novel agents that target newly identified signaling pathways hold promise of greater specificity and efficacy.
Collapse
Affiliation(s)
- Charles S Abrams
- University of Pennsylvania, Room 912, Biomedical Research Building II/III, 421 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|