1
|
Ma M, Chen M, Wu X, Sooranna SR, Liu Q, Shi D, Wang J, Li H. A newly identified lncRNA lnc000100 regulates proliferation and differentiation of cattle skeletal muscle cells. Epigenetics 2023; 18:2270864. [PMID: 37910666 PMCID: PMC10768731 DOI: 10.1080/15592294.2023.2270864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
Cattle skeletal muscle development is a complex and highly coordinated biological process mediated by a series of myogenic regulators, which plays a critical role in beef yield and quality. Long non-coding RNAs (lncRNAs) have been shown to regulate skeletal muscle development. However, the molecular mechanism by which lncRNAs regulate skeletal muscle development is largely unknown. We performed transcriptome analysis of muscle tissues of adult and embryo Angus cattle to investigate the mechanism by which lncRNA regulates skeletal muscle development between adult and embryo cattle. A total of 37,115 candidate lncRNAs were detected, and a total of 1,998 lncRNAs were differentially expressed between the muscle tissue libraries of adult and embryo cattle, including 1,229 up-regulated lncRNAs and 769 down-regulated lncRNAs (adult cattle were the control group). We verified the expression of 7 differentially expressed lncRNAs by quantitative real-time PCR (RT-qPCR), and analysed the tissue expression profile of lnc000100, which is down-regulated in the longest dorsal muscle during foetal life and which is highly specifically expressed in muscle tissue. We found that the interference of lnc000100 significantly inhibited cell proliferation and promoted cell differentiation. Lnc000100 was located in the nucleus by RNA-FISH. Our research provides certain resources for the analysis of lncRNA regulating cattle skeletal muscle development, and may also provide new insights for improving beef production and breed selection.
Collapse
Affiliation(s)
- Mengke Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Suren R. Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Odame E, Li L, Nabilla JA, Cai H, Xiao M, Ye J, Chen Y, Kyei B, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Zhang H. miR-145-3p Inhibits MuSCs Proliferation and Mitochondria Mass via Targeting MYBL1 in Jianzhou Big-Eared Goats. Int J Mol Sci 2023; 24:ijms24098341. [PMID: 37176056 PMCID: PMC10179409 DOI: 10.3390/ijms24098341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Joshua Abdulai Nabilla
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - He Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Sadowsky CL. Targeting Sarcopenia as an Objective Clinical Outcome in the Care of Children with Spinal Cord-Related Paralysis: A Clinician's View. CHILDREN (BASEL, SWITZERLAND) 2023; 10:837. [PMID: 37238385 PMCID: PMC10217275 DOI: 10.3390/children10050837] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023]
Abstract
Muscle loss is consistently associated with immobility and paralysis and triggers significant metabolic and functional changes. The negative effects of sarcopenia are amplified in children who are in the process of building their muscle mass as part of development. Because muscle mass loss is consistently associated with increased morbidity and mortality throughout life, optimizing the size and health of muscles following a neurologic injury is an objective target for therapeutic interventions. This review hypothesizes that muscle mass correlates with functional outcomes in children with paralysis related to spinal cord-related neurologic deficits. We propose that the measurement of muscle mass in this population can be used as an objective outcome for clinical long-term care. Finally, some practical clinical approaches to improving muscle mass are presented.
Collapse
Affiliation(s)
- Cristina L. Sadowsky
- International Center for Spinal Cord Injury, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
He Z, Wang X, Qi Y, Zhu C, Zhao Z, Zhang X, Liu X, Li S, Zhao F, Wang J, Shi B, Hu J. Long-stranded non-coding RNAs temporal-specific expression profiles reveal longissimus dorsi muscle development and intramuscular fat deposition in Tianzhu white yak. J Anim Sci 2023; 101:skad394. [PMID: 38029315 PMCID: PMC10760506 DOI: 10.1093/jas/skad394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023] Open
Abstract
The process of muscle development and intramuscular fat (IMF) deposition is quite complex and controlled by both mRNAs and ncRNAs. Long-stranded non-coding RNAs (LncRNAs) are involved in various biological processes in mammals while also playing a critical role in muscle development and fat deposition. In the present study, RNA-Seq was used to comprehensively study the expression of lncRNAs and mRNAs during muscle development and intramuscular fat deposition in postnatal Tianzhu white yaks at three stages, including 6 mo of age (calve, n = 6), 30 mo of age (young cattle, n = 6) and 54 mo of age (adult cattle, n = 6). The results indicated that a total of 2,101 lncRNAs and 20,855 mRNAs were screened across the three stages, of which the numbers of differential expression (DE) lncRNAs and DE mRNAs were 289 and 1,339, respectively, and DE lncRNAs were divided into eight different expression patterns based on expression trends. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that some DE mRNAs overlapped with target genes of lncRNAs, such as NEDD4L, SCN3B, AGT, HDAC4, DES, MYH14, KLF15 (muscle development), ACACB, PCK2, LIPE, PIK3R1, PNPLA2, and MGLL (intramuscular fat deposition). These DE mRNAs were significantly enriched in critical muscle development and IMF deposition-related pathways and GO terms, such as AMPK signaling pathway, PI3K-Akt signaling pathway, PPAR signaling pathway, etc. In addition, lncRNA-mRNA co-expression network analysis revealed that six lncRNAs (MSTRG.20152.2, MSTRG.20152.3, XR_001351700.1, MSTRG.8190.1, MSTRG.4827.1, and MSTRG.11486.1) may play a major role in Tianzhu white yak muscle development and lipidosis deposition. Therefore, this study enriches the database of yak lncRNAs and could help to further explore the functions and roles of lncRNAs in different stages of muscle development and intramuscular fat deposition in the Tianzhu white yak.
Collapse
Affiliation(s)
- Zhaohua He
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiangyan Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Youpeng Qi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Chune Zhu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhidong Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolan Zhang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fangfang Zhao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bingang Shi
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
5
|
Chen M, Liu Q, Song M, Liu X, Huang K, Zhong D, Chen Y, Jiang M, Sun J, Ouyang Y, Sooranna SR, Shi D, Li H. CircCLTH promotes skeletal muscle development and regeneration. Epigenetics 2022; 17:2296-2317. [PMID: 36043316 PMCID: PMC9665157 DOI: 10.1080/15592294.2022.2117115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2022] Open
Abstract
Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xingyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, China
| | - Suren R Sooranna
- Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
6
|
CircCSDE1 Regulates Proliferation and Differentiation of C2C12 Myoblasts by Sponging miR-21-3p. Int J Mol Sci 2022; 23:ijms231912038. [PMID: 36233353 PMCID: PMC9570022 DOI: 10.3390/ijms231912038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/21/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The growth and development of skeletal muscle is regulated by many factors, and recent studies have shown that circular RNAs (circRNAs) can participate in this process. The model of porcine skeletal muscle injury was constructed to search for circRNAs that can regulate the growth and development of skeletal muscle in pigs. Using whole-transcriptome sequencing and bioinformatics analysis, a novel circRNA (circCSDE1) was screened out, which is highly expressed in skeletal muscle. Functional studies in C2C12 cells demonstrated that circCSDE1 could promote proliferation and inhibit myoblast differentiation, while opposing changes were observed by circCSDE1 knockdown. A dual-luciferase reporter assay revealed that circCSDE1 directly targeted miR-21-3p to regulate the expression of the downstream target gene (Cyclin-dependent kinase 16, CDK16). Moreover, miR-21-3p could inhibit proliferation and promote myoblast differentiation in C2C12 cells, opposite with the effects of circCSDE1. Additionally, the rescue experiments offered further evidence that circCSDE1 and its target, miR-21-3p, work together to regulate myoblast proliferation and differentiation. This study provides a theoretical basis for further understanding the regulatory mechanisms of circRNAs.
Collapse
|
7
|
Chaves AB, Zheng D, Johnson JA, Bergman BC, Patinkin ZW, Zaegel V, Biagioni EM, Krassovskaia P, Broskey NT, May LE, Dabelea D, Houmard JA, Boyle KE. Infant Mesenchymal Stem Cell Insulin Action Is Associated With Maternal Plasma Free Fatty Acids, Independent of Obesity Status: The Healthy Start Study. Diabetes 2022; 71:1649-1659. [PMID: 35621990 PMCID: PMC9490356 DOI: 10.2337/db21-0812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
Preclinical rodent and nonhuman primate models investigating maternal obesity have highlighted the importance of the intrauterine environment in the development of insulin resistance in offspring; however, it remains unclear if these findings can be translated to humans. To investigate possible intrauterine effects in humans, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight or mothers with obesity. Insulin-stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro. There was no difference in insulin action based on maternal obesity. However, maternal free fatty acid (FFA) concentration, cord leptin, and intracellular triglyceride content were positively correlated with insulin action. Furthermore, MSCs from offspring born to mothers with elevated FFAs displayed elevated activation of the mTOR signaling pathway. Taken together, these data suggest that infants born to mothers with elevated lipid availability have greater insulin action in MSCs, which may indicate upregulation of growth and lipid storage pathways during periods of maternal overnutrition.
Collapse
Affiliation(s)
- Alec B. Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Donghai Zheng
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jonathan A. Johnson
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zachary W. Patinkin
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY
| | - Vincent Zaegel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Ericka M. Biagioni
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Polina Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Nicholas T. Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Linda E. May
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes Center, Aurora, CO
| | - Joseph A. Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Kristen E. Boyle
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes Center, Aurora, CO
| |
Collapse
|
8
|
Chaves A, Weyrauch LA, Zheng D, Biagioni EM, Krassovskaia PM, Davidson BL, Broskey NT, Boyle KE, May LE, Houmard JA. Influence of Maternal Exercise on Glucose and Lipid Metabolism in Offspring Stem Cells: ENHANCED by Mom. J Clin Endocrinol Metab 2022; 107:e3353-e3365. [PMID: 35511592 DOI: 10.1210/clinem/dgac270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Recent preclinical data suggest exercise during pregnancy can improve the metabolic phenotype not only of the mother, but of the developing offspring as well. However, investigations in human offspring are lacking. OBJECTIVE To characterize the effect of maternal aerobic exercise on the metabolic phenotype of the offspring's mesenchymal stem cells (MSCs). DESIGN Randomized controlled trial. SETTING Clinical research facility. PATIENTS Healthy female adults between 18 and 35 years of age and ≤ 16 weeks' gestation. INTERVENTION Mothers were randomized into 1 of 2 groups: aerobic exercise (AE, n = 10) or nonexercise control (CTRL, n = 10). The AE group completed 150 minutes of weekly moderate-intensity exercise, according to American College of Sports Medicine guidelines, during pregnancy, whereas controls attended stretching sessions. MAIN OUTCOME MEASURES Following delivery, MSCs were isolated from the umbilical cord of the offspring and metabolic tracer and immunoblotting experiments were completed in the undifferentiated (D0) or myogenically differentiated (D21) state. RESULTS AE-MSCs at D0 had an elevated fold-change over basal in insulin-stimulated glycogen synthesis and reduced nonoxidized glucose metabolite (NOGM) production (P ≤ 0.05). At D21, AE-MSCs had a significant elevation in glucose partitioning toward oxidation (oxidation/NOGM ratio) compared with CTRL (P ≤ 0.05). Immunoblot analysis revealed elevated complex I expression in the AE-MSCs at D21 (P ≤ 0.05). Basal and palmitate-stimulated lipid metabolism was similar between groups at D0 and D21. CONCLUSIONS These data provide evidence of a programmed metabolic phenotype in human offspring with maternal AE during pregnancy.
Collapse
Affiliation(s)
- Alec Chaves
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Luke A Weyrauch
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Donghai Zheng
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Ericka M Biagioni
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Polina M Krassovskaia
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Breanna L Davidson
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Nicholas T Broskey
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Kristen E Boyle
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Linda E May
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | - Joseph A Houmard
- Department of Kinesiology, East Carolina University, Greenville, NC 27834, USA
- Human Performance Laboratory, East Carolina University, Greenville, NC 27834, USA
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
9
|
MicroRNA-100 Reduced Fetal Bovine Muscle Satellite Cell Myogenesis and Augmented Intramuscular Lipid Deposition by Modulating IGF1R. Cells 2022; 11:cells11030451. [PMID: 35159261 PMCID: PMC8833961 DOI: 10.3390/cells11030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3′-untranslated region (3′-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.
Collapse
|
10
|
Perez‐Puyana V, Wieringa P, Yuste Y, de la Portilla F, Guererro A, Romero A, Moroni L. Fabrication of hybrid scaffolds obtained from combinations of PCL with gelatin or collagen via electrospinning for skeletal muscle tissue engineering. J Biomed Mater Res A 2021; 109:1600-1612. [PMID: 33665968 PMCID: PMC8359256 DOI: 10.1002/jbm.a.37156] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/04/2022]
Abstract
The creation of skeletal muscle tissue in vitro is a major topic of interest today in the field of biomedical research, due to the lack of treatments for muscle loss due to traumatic accidents or disease. For this reason, the intrinsic properties of nanofibrillar structures to promote cell adhesion, proliferation, and cell alignment presents an attractive tool for regenerative medicine to recreate organized tissues such as muscle. Electrospinning is one of the processing techniques often used for the fabrication of these nanofibrous structures and the combination of synthetic and natural polymers is often required to achieve optimal mechanical and physiochemical properties. Here, polycaprolactone (PCL) is selected as a synthetic polymer used for the fabrication of scaffolds, and the effect of protein addition on the final scaffolds' properties is studied. Collagen and gelatin were the proteins selected and two different concentrations were analyzed (2 and 4 wt/vol%). Different PCL/protein systems were prepared, and a structural, mechanical and functional characterization was performed. The influence of fiber alignment on the properties of the final scaffolds was assessed through morphological, mechanical and biological evaluations. A bioreactor was used to promote cell proliferation and differentiation within the scaffolds. The results revealed that protein addition produced a decrease in the fiber size of the membranes, an increase in their hydrophilicity, and a softening of their mechanical properties. The biological study showed the ability of the selected systems to harbor cells, allow their growth and, potentially, develop musculoskeletal tissues.
Collapse
Affiliation(s)
- Victor Perez‐Puyana
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| | - Paul Wieringa
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| | - Yaiza Yuste
- Departamento de CirugíaInstitute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBIS CSIC/University of SevilleSevillaSpain
| | - Fernando de la Portilla
- Departamento de CirugíaInstitute of Biomedicine of Seville (IBiS), “Virgen del Rocío” University Hospital, IBIS CSIC/University of SevilleSevillaSpain
| | - Antonio Guererro
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
| | - Alberto Romero
- Departamento de Ingeniería QuímicaUniversidad de Sevilla, Facultad de Química, Escuela Politécnica SuperiorSevillaSpain
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative Medicine, Maastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
11
|
Kim H, Kwon Y, Zhu C, Wu F, Kwon S, Yeo W, Choo HJ. Real-Time Functional Assay of Volumetric Muscle Loss Injured Mouse Masseter Muscles via Nanomembrane Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101037. [PMID: 34218527 PMCID: PMC8425913 DOI: 10.1002/advs.202101037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Indexed: 05/11/2023]
Abstract
Skeletal muscle has a remarkable regeneration capacity to recover its structure and function after injury, except for the traumatic loss of critical muscle volume, called volumetric muscle loss (VML). Although many extremity VML models have been conducted, craniofacial VML has not been well-studied due to unavailable in vivo assay tools. Here, this paper reports a wireless, noninvasive nanomembrane system that integrates skin-wearable printed sensors and electronics for real-time, continuous monitoring of VML on craniofacial muscles. The craniofacial VML model, using biopsy punch-induced masseter muscle injury, shows impaired muscle regeneration. To measure the electrophysiology of small and round masseter muscles of active mice during mastication, a wearable nanomembrane system with stretchable graphene sensors that can be laminated to the skin over target muscles is utilized. The noninvasive system provides highly sensitive electromyogram detection on masseter muscles with or without VML injury. Furthermore, it is demonstrated that the wireless sensor can monitor the recovery after transplantation surgery for craniofacial VML. Overall, the presented study shows the enormous potential of the masseter muscle VML injury model and wearable assay tool for the mechanism study and the therapeutic development of craniofacial VML.
Collapse
Affiliation(s)
- Hojoong Kim
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Young‐Tae Kwon
- Department for Metal PowderKorea Institute of Materials ScienceChangwon51508South Korea
| | - Carol Zhu
- Department of Cell BiologySchool of MedicineEmory UniversityAtlantaGA30322USA
| | - Fang Wu
- Department of Cell BiologySchool of MedicineEmory UniversityAtlantaGA30322USA
| | - Shinjae Kwon
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Woon‐Hong Yeo
- George W. Woodruff School of Mechanical EngineeringCollege of EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
- Center for Human‐Centric Interfaces and EngineeringInstitute for Electronics and NanotechnologyGeorgia Institute of TechnologyAtlantaGA30332USA
- Wallace H. Coulter Department of Biomedical EngineeringParker H. Petit Institute for Bioengineering and BiosciencesInstitute for MaterialsNeural Engineering CenterInstitute for Robotics and Intelligent MachinesGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hyojung J. Choo
- Department of Cell BiologySchool of MedicineEmory UniversityAtlantaGA30322USA
| |
Collapse
|
12
|
Vilchinskaya NA, Shenkman BS. Myosatellite Cells under Gravitational Unloading Conditions. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Gomez NA, Du M. Animal development in the secondary classroom: linking basic science to livestock production. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:259-263. [PMID: 33825521 DOI: 10.1152/advan.00002.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
The field of life sciences encompasses a myriad of disciplines that collectively provide insight toward the intrinsic framework of life. Developmental physiology is one of these disciplines that can describe the origins of life at the molecular, cellular, tissue, and organismal level. However, organismal development is a continual process that transcends conception and progresses throughout the lifetime of an organism. In this Illumination, we discuss opportunities that secondary-level life science educators have when teaching developmental physiology through an agricultural lens. Specifically, we propose teaching about the origins of meat and milk, as a nontraditional approach for introducing developmental physiology to students. To justify this notion, we explore how novel research in livestock production focuses on meeting food demands imposed by our growing global population. In addition, we link these concepts to commonly employed standards in secondary-level science classrooms across the United States. In conclusion, the science of livestock production provides a window of opportunity for secondary-level physiology instructors to teach developmental physiology in a form that can readily adhere to institutionally employed standards.
Collapse
Affiliation(s)
- Noe A Gomez
- Department of Science, Carpinteria High School, Carpinteria Unified School District, Carpinteria, California
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
14
|
Kozieł S, Chakraborty R, Bose K, Ignasiak Z, Gomula A, Nowak-Szczepanska N. The effect of a natural disaster on handgrip strength in prepubertal Indian children exposed to a severe cyclone during the prenatal and early postnatal growth. Sci Rep 2021; 11:7473. [PMID: 33811238 PMCID: PMC8018953 DOI: 10.1038/s41598-021-86845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Natural disasters (NDs) experienced by women and their children during prenatal and infant growth may have long-lasting effects on offspring’s development. Handgrip strength (HGS) is one of the measures of muscular strength and an indicator of health status. This study compared HGS in children exposed to cyclone Aila in India during their prenatal and infant growth compared to a control group from a non-affected, adjacent area. The total sample involved 444 boys and 423 girls aged 7–9 years, categorised into 3 groups: prenatally exposed to Aila, exposed to Aila in infancy, and the control group, non-exposed to Aila. Results revealed that prenatally exposed children of both sexes had significantly lower HGS than the controls (at least, p < 0.001 in boys; p < 0.05 in girls). On the other hand, the postnatally exposed boys, but not the girls, showed lower HGS than the controls. A significant effect of a group factor (ND exposure) on HGS was observed even after controlling for confounding variables (age, height, BMI, birth weight, gestational age; at least, p < 0.05). Our findings indicate that prenatal or early postnatal experience of a ND may have association with impaired HGS in prepubertal children.
Collapse
Affiliation(s)
- Sławomir Kozieł
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Raja Chakraborty
- Department of Anthropology, Dinabandhu Mahavidyalaya, Bongaon, West Bengal, India.
| | - Kaushik Bose
- Department of Anthropology, Vidyasagar University, Midnapore, West Bengal, India
| | - Zofia Ignasiak
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Aleksandra Gomula
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Natalia Nowak-Szczepanska
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
15
|
Chen M, Wei X, Song M, Jiang R, Huang K, Deng Y, Liu Q, Shi D, Li H. Circular RNA circMYBPC1 promotes skeletal muscle differentiation by targeting MyHC. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:352-368. [PMID: 33868781 PMCID: PMC8027698 DOI: 10.1016/j.omtn.2021.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Skeletal muscle development is a complex and highly orchestrated biological process mediated by a series of myogenesis regulatory factors. Numerous studies have demonstrated that circular RNAs (circRNAs) are involved in muscle differentiation, but the exact molecular mechanisms involved remain unclear. Here, we analyzed the expression of circRNAs at the adult and embryo development stages of cattle musculus longissimus. A stringent set of 1,318 circRNAs candidates were identified, and we found that 495 circRNAs were differentially expressed between embryonic and adult tissue libraries. We subsequently focused on one of the most downregulated circRNAs (using the adult stage expression as control), and this was named muscle differentiation-associated circular RNA (circMYBPC1). With RNA binding protein immunoprecipitation (RIP) and RNA pull-down assays, circMYBPC1 was identified to promote myoblast differentiation by directly binding miR-23a to relieve its inhibition on myosin heavy chain (MyHC). In addition, RIP assays demonstrated that circMYBPC1 could directly bind MyHC protein. In vivo observations also suggested that circMYBPC1 may stimulate skeletal muscle regeneration after muscle damage. These results revealed that the novel non-coding circRNA circMYBPC1 promotes differentiation of myoblasts and may promote skeletal muscle regeneration. Our results provided a basis for in-depth analysis of the role of circRNA in myogenesis and muscle diseases.
Collapse
Affiliation(s)
- Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Rui Jiang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Deshun Shi, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Corresponding author: Hui Li, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
16
|
Huang K, Chen M, Zhong D, Luo X, Feng T, Song M, Chen Y, Wei X, Shi D, Liu Q, Li H. Circular RNA Profiling Reveals an Abundant circEch1 That Promotes Myogenesis and Differentiation of Bovine Skeletal Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:592-601. [PMID: 33346638 DOI: 10.1021/acs.jafc.0c06400] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Beef is considered to be a good quality meat product because it contains linoleic acid and specific proteins, which can bring significant benefits to health. Circular RNAs (circRNAs) have been reported to regulate skeletal myogenesis. RNA-seq was used to investigate the circRNA molecular regulatory mechanisms with respect to differences in muscle quality between buffalo and cattle. A total of 10,449 circRNA candidates were detected, and 1128 of these were found to be differentially expressed between cattle and buffalo muscle tissue libraries. Differentially expressed 23 circRNAs were verified by qPCR. CircEch1, one of the most up-regulated circRNAs during muscle development, was subsequently characterized. CCK-8 (65.05 ± 2.33%, P < 0.0001), EdU (72.99 ± 0.04%, P < 0.001), and Western blotting assays showed that overexpression of circEch1 inhibited the proliferation of bovine myoblasts but promoted differentiation. In vivo studies suggested that circEch1 stimulates skeletal muscle regeneration. These results demonstrate that the novel regulator circEch1 induces myoblast differentiation and skeletal muscle regeneration. They also provide new insights into the mechanisms of circRNA regulation of beef quality.
Collapse
Affiliation(s)
- Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xier Luo
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Mingming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang, Henan 464000, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
17
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
18
|
Ren L, Li Q, Hu X, Yang Q, Du M, Xing Y, Wang Y, Li J, Zhang L. A Novel Mechanism of bta-miR-210 in Bovine Early Intramuscular Adipogenesis. Genes (Basel) 2020; 11:genes11060601. [PMID: 32485948 PMCID: PMC7349823 DOI: 10.3390/genes11060601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023] Open
Abstract
Intramuscular fat (IMF) is one of the major factors determining beef quality. IMF formation is influenced by multiple conditions including genetic background, age and nutrition. In our previous investigation, bta-miR-210 was found to be increased during adipogenesis using miRNA-seq. In this study, we validated the upregulation of bta-miR-210 in platelet-derived growth factor receptor α positive (PDGFRα+) progenitor cells during adipogenic differentiation in vitro. To investigate its role in adipogenesis, bta-miR-210 mimics were introduced into progenitor cells, which resulted in enhanced intracellular lipid accumulation. Accordingly, the expression of adipocyte-specific genes significantly increased in the bta-miR-210 mimic group compared to that in the negative control group (p < 0.01). Dual-luciferase reporter assays revealed that WISP2 is a target of bta-miR-210. WISP2 knockdown enhanced adipogenesis. In conclusion, bta-miR-210 positively regulates the adipogenesis of PDGFRα+ cells derived from bovine fetal muscle by targeting WISP2.
Collapse
Affiliation(s)
- Ling Ren
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Qian Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Xin Hu
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Qiyuan Yang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA;
| | - Min Du
- Washington Center for Muscle Biology and Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Yishen Xing
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Yahui Wang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Junya Li
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
| | - Lupei Zhang
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.R.); (Q.L.); (X.H.); (Y.X.); (Y.W.); (J.L.)
- Correspondence: ; Tel.: +86-1062-890-940
| |
Collapse
|
19
|
Kozieł S, Ignasiak Z, Żądzińska E. Exposure to parental smoking during pregnancy and handgrip strength in 7-10-year old children. Early Hum Dev 2019; 134:7-11. [PMID: 31071645 DOI: 10.1016/j.earlhumdev.2019.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maternal smoking during pregnancy is a risk factor associated with intrauterine growth retardation and postnatal complications. AIM To assess the relationship between prenatal exposure to smoking on hand grip strength in children 7-10 years of age. STUDY DESIGN Generalized Linear Model (GLM) was used to assess the relationship between grip strength and smoking status of parents, controlling for social status, birth outcome and body size. OUTCOME MEASURES Height, weight and hand grip strength were measured by trained staff. Smoking status of both parents during pregnancy, mother's level of education and birth outcome were reported by questionnaire. SUBJECTS 734 records (297 boys, 437 girls) of healthy children aged 7-10 years from a survey conducted in 2001-2003 in randomly selected primary schools of Łódź. RESULTS/CONCLUSION Boys exposed to both maternal and paternal smoking during prenatal life showed lower muscular strength at 7-10 years, but a similar relationship was not observed in girls. Intrauterine hypoxia due to maternal smoking during pregnancy and subsequent postnatal exposure to maternal and paternal smoking may have attenuated the formation and subsequent development of muscle fibres in boys.
Collapse
Affiliation(s)
- Sławomir Kozieł
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla Street 12, 53-114 Wroclaw, Poland.
| | - Zofia Ignasiak
- Faculty of Physical Education, University School of Physical Education in Wroclaw, Ignacego Jana Paderewskiego Street 35, 51-612 Wroclaw, Poland.
| | - Elżbieta Żądzińska
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Łódź, Pilarskiego Street 14/16, 90-231 Łódź, Poland; School of Medical Sciences, Faculty of Health Sciences, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
20
|
Zhu X, Li M, Jia X, Hou W, Yang J, Zhao H, Wang G, Wang J. The homeoprotein Msx1 cooperates with Pkn1 to prevent terminal differentiation in myogenic precursor cells. Biochimie 2019; 162:55-65. [DOI: 10.1016/j.biochi.2019.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/03/2019] [Indexed: 12/22/2022]
|
21
|
Tambalis KD, Mourtakos S, Panagiotakos DB, Sidossis LS. Exclusive Breastfeeding Is Favorably Associated with Physical Fitness in Children. Breastfeed Med 2019; 14:390-397. [PMID: 31025871 DOI: 10.1089/bfm.2019.0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: To examine the potential association between exclusive breastfeeding and its duration on physical fitness (PF) components during childhood. Materials and Methods: A random sample of 5,125 dyads children and their mothers was evaluated. With the use of a standardized questionnaire, telephone interviews were carried out for the collection of maternal lifestyle factors (e.g., breastfeeding and its duration, etc.). Data from five PF tests (e.g., vertical jump, standing long jump, small ball throw, 30-m sprint, and 20-m shuttle run) were used to assess lower and upper body strength, speed, and cardiorespiratory fitness (CRF). Linear and logistic regression models were estimated and adjusted for children's body mass index (BMI) and birth weight, and parental factors (prepregnancy BMI, gestational weight gain, gestational age, pregnancy in vitro, parity before, and educational level). Results: Among boys, exclusive breastfeeding was favorably associated with CRF (b = 0.07), lower body strength (b = 0.41), upper body strength (b = 0.10), and speed (b = -0.11). Also, among girls, we found a favorable association between exclusive breastfeeding and CRF (b = 0.07), lower body strength (b = 0.47), upper body strength (b = 0.10), and speed (b = -0.11). All of the associations remained significant after adjusting for several potential confounders. With the exception of speed test in girls, children who were exclusively breastfed ≥6 months had 10-40% increased odds for average/high performances in PF tests in comparison with those who were breastfed <1 month. Conclusions: Exclusive breastfeeding ≥6 months had a favorable influence on PF test performances in childhood. It seems that exclusive breastfeeding could play a significant role in children's future health.
Collapse
Affiliation(s)
| | - Stamatis Mourtakos
- 1 Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | | | - Labros S Sidossis
- 1 Department of Nutrition and Dietetics, Harokopio University, Athens, Greece.,2 Department of Kinesiology and Health, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
22
|
PAX3: A Molecule with Oncogenic or Tumor Suppressor Function Is Involved in Cancer. BIOMED RESEARCH INTERNATIONAL 2018. [DOI: 10.1155/2018/1095459] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Metastasis is the most deadly aspect of cancer and results from acquired gene regulation abnormalities in tumor cells. Transcriptional regulation is an essential component of controlling of gene function and its failure could contribute to tumor progression and metastasis. During cancer progression, deregulation of oncogenic or tumor suppressive transcription factors, as well as master cell fate regulators, collectively influences multiple steps of the metastasis cascade, including local invasion and dissemination of the tumor to distant organs. Transcription factor PAX3/Pax3, which contributes to diverse cell lineages during embryonic development, plays a major role in tumorigenesis. Mutations in this gene can cause neurodevelopmental disease and the existing literature supports that there is a potential link between aberrant expression of PAX3 genes in adult tissues and a wide variety of cancers. PAX3 function is tissue-specific and could contribute to tumorigenesis either directly as oncogene or as a tumor suppressor by losing its function. In this review, we discuss comprehensively the differential role played by PAX3 in various tissues and how its aberrant expression is implicated in disease development. This review particularly highlights the oncogenic and tumor suppressor role played by PAX3 in different cancers and underlines the importance of precisely identifying tissue-specific role of PAX3 in order to determine its exact role in development of cancer.
Collapse
|
23
|
Su X, Zhao Y, Wang Y, Zhang L, Zan L, Wang H. Overexpression of the Rybp Gene Inhibits Differentiation of Bovine Myoblasts into Myotubes. Int J Mol Sci 2018; 19:ijms19072082. [PMID: 30021933 PMCID: PMC6073553 DOI: 10.3390/ijms19072082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/30/2018] [Accepted: 07/10/2018] [Indexed: 01/04/2023] Open
Abstract
RING1 and YY1 binding protein (Rybp) genes inhibit myogenesis in mice, but there are no reports on the effects of these genes in cattle. The aim of this study is to investigate the roles of the Rybp gene on bovine skeletal muscle development and myoblast differentiation. In the present study, the Rybp gene was overexpressed in bovine myoblasts via adenovirus. RNA-seq was performed to screen differentially expressed genes (DEGs). The results showed that overexpressing the Rybp gene inhibits the formation of myotubes. The morphological differences in myoblasts began on the second day and were very significant 6 days after adenovirus induction. A total of 1311 (707 upregulated and 604 downregulated) DEGs were screened using RNA-seq between myoblasts with added negative control adenoviruses (AD-NC) and Rybp adenoviruses (AD-Rybp) after 6 days of induction. Gene ontology (GO) and KEGG analysis revealed that the downregulated DEGs were mainly involved in biological functions related to muscle, and, of the 32 pathways, those associated with muscle development were significantly enriched for the identified DEGs. This study can not only provide a theoretical basis for the regulation of skeletal muscle development in cattle by exploring the roles of the Rybp gene in myoblast differentiation, but it can also lay a theoretical foundation for molecular breeding of beef cattle.
Collapse
Affiliation(s)
- Xiaotong Su
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
| | - Yanfang Zhao
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
| | - Yaning Wang
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
| | - Le Zhang
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
- National Beef Cattle Improvement Centre, Yangling 712100, China.
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, 22th Xinong Road, Yangling 712100, China.
- National Beef Cattle Improvement Centre, Yangling 712100, China.
| |
Collapse
|
24
|
Ramazzotti G, Billi AM, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, Kim S, Suh PG, Cocco L, Faenza I. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget 2018; 7:84118-84127. [PMID: 27563828 PMCID: PMC5356648 DOI: 10.18632/oncotarget.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/15/2016] [Indexed: 11/25/2022] Open
Abstract
In previous studies, we have reported that phospholipase C (PLC)-β1 plays a crucial role in myogenic differentiation and we determined the importance of its catalytic activity for the initiation of this process. Here we define the effectors that take part to its signaling pathway. We show that the Inositol Polyphosphate Multikinase (IPMK) is able to promote myogenic differentiation since its overexpression determines the up-regulation of several myogenic markers. Moreover, we demonstrate that IPMK activates the same cyclin D3 promoter region targeted by PLC-β1 and that IPMK-induced promoter activation relies upon c-jun binding to the promoter, as we have shown previously for PLC-β1. Furthermore, our data shows that IPMK overexpression causes an increase in β-catenin translocation and accumulation to the nuclei of differentiating myoblasts resulting in higher MyoD activation. Finally, we describe that PLC-β1 overexpression determines too an increase in β-catenin translocation and that PLC-β1, IPMK and β-catenin are mediators of the same signaling pathway since their overexpression results in cyclin D3 and myosin heavy chain (MYH) induction.
Collapse
Affiliation(s)
- Giulia Ramazzotti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Maria Billi
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucia Manzoli
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cristina Mazzetti
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Ruggeri
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Seyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Pann-Ghill Suh
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lucio Cocco
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Năstase L, Cretoiu D, Stoicescu SM. Skeletal Muscle Damage in Intrauterine Growth Restriction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:93-106. [PMID: 30390249 DOI: 10.1007/978-981-13-1435-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Intrauterine growth restriction (IUGR) represents a rate of fetal growth that is less than average for the population and the growth potential of a specific infant. IUGR produces infants who are small for gestational age (SGA) but also appropriate for gestational age (AGA). It refers to growth less than expected for gestational age and is most often under 10th percentiles for age. It develops during the late second and third trimesters of gestation. The etiology of IUGR is multifactorial. One of the most important factors which leads to IUGR is a decrease of nutrients and oxygen delivered to the fetus by the placenta. The growth of adipose tissue and skeletal muscle is limited by the declined fetal nutrient supply later in gestation. IUGR affects about 24% of babies born in developing countries. Worldwide, IUGR is the second cause of perinatal morbidity and mortality behind the premature birth and a major predisposing factor to metabolic disorders throughout postnatal life, even at adult age. Skeletal muscle represents about 35-40% of the body mass and plays an essential role in metabolic homeostasis, being responsible for 65% of fetal glucose consumption. A reduction in skeletal muscle growth characterizes IUGR fetuses compared to normal weight neonates. The decrease in muscle mass is not compensated after birth and persists until adulthood. This is a review of the literature, a neonatological, clinical point of view on the effects of IUGR on striated muscles. The available studies on this subject are currently the results of experimental research on animals, and information about the human fetus and newborn are scarce.
Collapse
Affiliation(s)
- Leonard Năstase
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania. .,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania.
| | - Dragos Cretoiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| | - Silvia Maria Stoicescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Alessandrescu-Rusescu National Institute for the Mother and Child Health, Polizu Maternity, Bucharest, Romania
| |
Collapse
|
26
|
Reduced satellite cell density and myogenesis in Wagyu compared with Angus cattle as a possible explanation of its high marbling. Animal 2017; 12:990-997. [PMID: 28988554 DOI: 10.1017/s1751731117002403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mechanisms responsible for excellent marbling in Japanese black cattle, Wagyu, remain to be established. Because both muscle cells and intramuscular adipocytes are developed from mesenchymal progenitor cells during early muscle development, we hypothesized that intramuscular progenitor cells in Wagyu cattle have attenuated myogenic capacity in favor of adipogenesis, leading to high marbling but reduced muscle growth. Biceps femoris muscle biopsy samples were obtained from both Angus (n=3) and Wagyu (n=3) cattle at 12 months of age. Compared with Angus, the density of satellite cells was much lower in Wagyu muscle (by 45.8±10%, P<0.05). Consistently, the formation of myotubes from muscle-derived progenitor cells was also lower (by 64.2±12.9%, P<0.05), but adipogenic capacity was greater in Wagyu. The average muscle fiber diameter was larger in Wagyu (by 23.9±6.8%, P=0.089) despite less muscle mass, suggesting less muscle fiber formation in Wagyu compared with Angus cattle. Because satellite cells are derived from fetal myogenic cells, the reduction in satellite cell density together with lower muscle fiber formation suggests that myogenesis was attenuated during early muscle development in Wagyu cattle. Given the shared pool of mesenchymal progenitor cells, the attenuated myogenesis likely shifts progenitor cells to adipogenesis during early development, which may contribute to high intramuscular adipocyte formation in Wagyu cattle.
Collapse
|
27
|
Du M, Ford SP, Zhu MJ. Optimizing livestock production efficiency through maternal nutritional management and fetal developmental programming. Anim Front 2017. [DOI: 10.2527/af.2017-0122] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Stephen P. Ford
- Department of Animal Science, University of Wyoming, Laramie, 82071
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164
| |
Collapse
|
28
|
Xie X, Wu SP, Tsai MJ, Tsai S. The Role of COUP-TFII in Striated Muscle Development and Disease. Curr Top Dev Biol 2017; 125:375-403. [PMID: 28527579 DOI: 10.1016/bs.ctdb.2016.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Skeletal and cardiac muscles are the only striated muscles in the body. Although sharing many structural and functional similarities, skeletal and cardiac muscles have intrinsic differences in terms of physiology and regenerative potential. While skeletal muscle possesses a robust regenerative response, the mammalian heart has limited repair capacity after birth. In this review, we provide an updated view regarding chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII) function in vertebrate myogenesis, with particular emphasis on the skeletal and cardiac muscles. We also highlight the new insights of COUP-TFII hyperactivity underlying striated muscle dysfunction. Lastly, we discuss the challenges and strategies in translating COUP-TFII action for clinical intervention.
Collapse
Affiliation(s)
- Xin Xie
- Baylor College of Medicine, Houston, TX, United States
| | - San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, United States
| | - Ming-Jer Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| | - Sophia Tsai
- Baylor College of Medicine, Houston, TX, United States; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
29
|
Liu GY, Wu ZY, Zhu YL, Liu L, Li FC. Effects of dietary vitamin B6 on the skeletal muscle protein metabolism of growing rabbits. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an15807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to evaluate the effects of dietary vitamin B6 on the skeletal muscle protein metabolism and expression of transcription and growth factor of growing rabbits. Two hundred, healthy, rabbits with similar bodyweights were randomly assigned to one of five dietary groups with 40 animals per group. The dietary groups consisted of the following different vitamin B6 supplementation levels: 0, 5, 10, 20 and 40 mg/kg. The feeding trial lasted 60 days. The results showed that dietary vitamin B6 elicited significant effects on the fore and hind leg muscle ratio (the fore and hind leg muscle weight/the liveweight; P < 0.05) and on serum total amino acids (T-AA), blood urea and insulin-like growth factor 1 (IGF1) content (P < 0.05). Additionally, expression of IGF1, myogenic determination factor (MYOD) and myogenin (MYOG), myocyte regulation factor 5 (MYF5), myostatin (MSTN) and WW domain-containing E3 proteasome ubiquitin ligase 1 (WWP1) mRNA in the loin (M. longissimus dorsi) were affected by vitamin B6 in diets (P < 0.05). The immunoblot analysis revealed that dietary vitamin B6 elicited significant effects on IGF1, MYOG and WWP1 expression in the loin (P < 0.05). Our results indicate that the addition of dietary vitamin B6 can significantly alter the protein metabolism of growing rabbits and that an appropriate vitamin B6 supplementation level is 20 mg/kg for 3–5-month-old growing rabbits (the basic diet vitamin B6 content was 4.51 mg/kg).
Collapse
|
30
|
He K, Hu J, Yu H, Wang L, Tang F, Gu J, Ge L, Wang H, Li S, Hu P, Jin Y. Serine/Threonine Kinase 40 (Stk40) Functions as a Novel Regulator of Skeletal Muscle Differentiation. J Biol Chem 2016; 292:351-360. [PMID: 27899448 DOI: 10.1074/jbc.m116.719849] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 11/08/2016] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively. In vivo, the number of myofibers and expression levels of myogenic markers are reduced in the fetal muscle of Stk40 knockout mice, indicating impaired fetal skeletal muscle formation. Mechanistically, Stk40 controls the protein level of histone deacetylase 5 (HDAC5) to maintain transcriptional activities of myocyte enhancer factor 2 (MEF2), a family of transcription factor important for skeletal myogenesis. Silencing of HDAC5 expression rescues the reduced myogenic gene expression caused by Stk40 deficiency. Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis.
Collapse
Affiliation(s)
- Ke He
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Jing Hu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongyao Yu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Lina Wang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Fan Tang
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Junjie Gu
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Laixiang Ge
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongye Wang
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Sheng Li
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ping Hu
- the Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200032, China
| | - Ying Jin
- From the Laboratory of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China, .,the Key Laboratory of Stem Cell Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Institute of Health Sciences, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China, and
| |
Collapse
|
31
|
Zaqout M, Michels N, Ahrens W, Börnhorst C, Molnár D, Moreno LA, Eiben G, Siani A, Papoutsou S, Veidebaum T, De Henauw S. Associations between exclusive breastfeeding and physical fitness during childhood. Eur J Nutr 2016; 57:545-555. [PMID: 27771770 DOI: 10.1007/s00394-016-1337-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/16/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE Exposure to breastfeeding improves the survival, health, and development of children; therefore, breast milk is recommended as the exclusive nutrient source for feeding term infants during the first 6 months. This cross-sectional study aimed to determine the possible association between exposure to exclusive breastfeeding and physical fitness performance in children and, if so, whether this association is influenced by the breastfeeding duration. METHODS A total of 2853 (52.3 % girls) European children from the IDEFICS study aged 6-11 years with complete data on physical fitness (cardiorespiratory fitness, muscular strength, flexibility, balance, speed) and exclusive breastfeeding duration (never, 1-3, 4-6, 7-12 months) were included in the present study. Multivariate and mixed linear regression models were estimated and adjusted for sex, age, birth weight, diet, physical activity, body mass index, and parental factors (age, body mass index, educational attainment). RESULTS We found a positive association between exclusive breastfeeding and lower-body explosive strength (β = 0.034) as well as flexibility (β = 0.028). We also found a positive association between breastfeeding and balance in boys (β = 0.039), while this association was negative in girls (β = -0.029). To improve lower-body explosive strength, 1-3 months of exclusive breastfeeding were enough; a longer duration did not lead to increasing benefit. In contrast, 4-6 months of breastfeeding were necessary to have any benefit on flexibility or balance, although this became nonsignificant after adjustment for body mass index and physical activity. CONCLUSIONS Exclusive breastfeeding seems a natural way of slightly improving some physical fitness components (mainly lower-body muscle strength) and thus future health.
Collapse
Affiliation(s)
- Mahmoud Zaqout
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 4K3, Ghent, Belgium.
| | - Nathalie Michels
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 4K3, Ghent, Belgium
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology BIPS, Bremen, Germany
| | - Claudia Börnhorst
- Leibniz Institute for Prevention Research and Epidemiology BIPS, Bremen, Germany
| | - Dénes Molnár
- Department of Pediatrics, Medical Faculty, University of Pécs, Pécs, Hungary
| | - Luis A Moreno
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, University of Zaragoza, Zaragoza, Spain
| | - Gabriele Eiben
- Department of Public Health and Community Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alfonso Siani
- Epidemiology and Population Genetics, Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Stalo Papoutsou
- Research and Education Institute of Child Health, Strovolos, Cyprus
| | - Toomas Veidebaum
- Department of Chronic Diseases, National Institute for Health Development, Tallinn, Estonia
| | - Stefaan De Henauw
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, 4K3, Ghent, Belgium
| | | |
Collapse
|
32
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
33
|
Identification of Small Molecules Which Induce Skeletal Muscle Differentiation in Embryonic Stem Cells via Activation of the Wnt and Inhibition of Smad2/3 and Sonic Hedgehog Pathways. Stem Cells 2015; 34:299-310. [DOI: 10.1002/stem.2228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 12/16/2022]
|
34
|
Endo T. Molecular mechanisms of skeletal muscle development, regeneration, and osteogenic conversion. Bone 2015; 80:2-13. [PMID: 26453493 DOI: 10.1016/j.bone.2015.02.028] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 12/21/2022]
Abstract
Both skeletal muscle and bone are of mesodermal origin and derived from somites during embryonic development. Somites differentiate into the dorsal dermomyotome and the ventral sclerotome, which give rise to skeletal muscle and bone, respectively. Extracellular signaling molecules, such as Wnt and Shh, secreted from the surrounding environment, determine the developmental fate of skeletal muscle. Dermomyotome cells are specified as trunk muscle progenitor cells by transcription factor networks involving Pax3. These progenitor cells delaminate and migrate to form the myotome, where they are determined as myoblasts that differentiate into myotubes or myofibers. The MyoD family of transcription factors plays pivotal roles in myogenic determination and differentiation. Adult skeletal muscle regenerates upon exercise, muscle injury, or degeneration. Satellite cells are muscle-resident stem cells and play essential roles in muscle growth and regeneration. Muscle regeneration recapitulates the process of muscle development in many aspects. In certain muscle diseases, ectopic calcification or heterotopic ossification, as well as fibrosis and adipogenesis, occurs in skeletal muscle. Muscle-resident mesenchymal progenitor cells, which may be derived from vascular endothelial cells, are responsible for the ectopic osteogenesis, fibrogenesis, and adipogenesis. The small GTPase M-Ras is likely to participate in the ectopic calcification and ossification, as well as in osteogenesis during development. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Takeshi Endo
- Department of Biology, Graduate School of Science, Chiba University, Yayoicho, Inageku, Chiba, Chiba 263-8522, Japan.
| |
Collapse
|
35
|
Abstract
The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.
Collapse
Affiliation(s)
- Inbal Michailovici
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Tamar Eigler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
36
|
Bielemann RM, Gigante DP, Horta BL. Birth weight, intrauterine growth restriction and nutritional status in childhood in relation to grip strength in adults: from the 1982 Pelotas (Brazil) birth cohort. Nutrition 2015; 32:228-35. [PMID: 26678603 PMCID: PMC4732988 DOI: 10.1016/j.nut.2015.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/17/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Objective The aim of this study was to evaluate the association among birth weight, intrauterine growth, and nutritional status in childhood with grip strength in young adults from the 1982 Pelotas (Brazil) birth cohort. Methods In 1982, the hospital live births of Pelotas were followed. In 2012, grip strength was evaluated using a hand dynamometer and the best of the six measurements was used. Birth weight was analyzed as z-score for gestational age according to Williams (1982) curve. Weight-for-age, weight-for-length/height, and length/height-for-age at 2 and 4 y were analyzed in z-scores according to 2006 World Health Organization Child Growth Standards. Lean mass at 30 y was included as possible mediator using the g-computation formula. Results In 2012, 3701 (68.1%) individuals were interviewed and 3470 were included in the present analyses. An increase of 1 z-score in birth weight was associated with an increase of 1.5 kg in grip strength in males (95% confidence interval, 1.1–1.9). Positive effect of birth weight on grip strength was found in females. Grip strength was greater in individuals who were born with appropriate size for gestational age and positively associated with weight- and length/height-for-age z-score at 2 and 4 y of age. A positive association between birth weight and grip strength was only partially mediated by adult lean mass (50% and 33% of total effect in males and females), whereas direct effect of weight at 2 y was found only in males. Conclusions It is suggested that good nutrition in prenatal and early postnatal life has a positive influence on adult muscle strength. The results from birth weight were suggestive of fetal programming on grip strength measurement. Newborns from southern Brazil were followed for 30 y. Birth weight and nutritional status in childhood were prospectively measured. Grip strength was positively related to birth weight and early nutritional status. Coefficients of the association between birth weight and grip strength were higher in males. Birth weight was associated with adult grip strength independent of current lean mass.
Collapse
Affiliation(s)
- Renata Moraes Bielemann
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil; Nutrition Department, Federal University of Pelotas, Pelotas, Brazil.
| | - Denise Petrucci Gigante
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil; Nutrition Department, Federal University of Pelotas, Pelotas, Brazil
| | - Bernardo Lessa Horta
- Postgraduate Program in Epidemiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
37
|
Effect of coculturing on the myogenic and adipogenic marker gene expression. Appl Biochem Biotechnol 2014; 173:571-8. [PMID: 24691879 DOI: 10.1007/s12010-014-0866-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/16/2014] [Indexed: 10/25/2022]
Abstract
The present experiment was carried out to evaluate the effect of coculturing on myogenic and adipogenic marker gene expressions with the use of C2C12 and 3 T3-L1 preadipocyte cells under the coculture system. C2C12 and 3 T3-L1 cells were cocultured using transwell inserts with a 0.4-μm porous membrane to separate C2C12 and 3 T3-L1 cells. Each cell type was grown independently on the transwell plates. Following cell differentiation, inserts containing 3 T3-L1 cells were transferred to C2C12 plates, and inserts containing C2C12 cells were transferred to 3 T3-L1 plates. After coculture of the C2C12 and 3 T3-L1 cells for 48 and 72 h, the cells in the lower well were harvested for analysis, and this process was carried out for both cells. Myogenic markers such as myogenin, MyoD, Myf5, PAX3, and PAX7 mRNA expressions were analyzed in the cocultured C2C12 cells. Adipogenic markers such as fatty acid-binding protein 4 (FABP4), peroxisome proliferator-activating receptor (PPARγ), CCAAT/enhancer-binding protein (CEBPA), adiponectin, lipoprotein lipase, and fatty acid synthase mRNA expressions were analyzed in the cocultured 3 T3-L1 cells. Myogenic and adipogenic marker gene mRNA expressions were significantly altered in the cocultured C2C12 and 3 T3-L1 cells when compared with the monocultured C2C12 and 3 T3-L1 cells.
Collapse
|
38
|
Yan X, Zhu MJ, Dodson MV, Du M. Developmental programming of fetal skeletal muscle and adipose tissue development. J Genomics 2013; 1:29-38. [PMID: 25031653 PMCID: PMC4091428 DOI: 10.7150/jgen.3930] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.
Collapse
Affiliation(s)
- Xu Yan
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Mei-Jun Zhu
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071
| | - Michael V Dodson
- 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| | - Min Du
- 1. Department of Animal Sciences, University of Wyoming, Laramie, WY 82071 ; 2. Department of Animal Sciences, Washington State University, Pullman, WA 99164
| |
Collapse
|
39
|
Du M, Huang Y, Das AK, Yang Q, Duarte MS, Dodson MV, Zhu MJ. Meat Science and Muscle Biology Symposium: manipulating mesenchymal progenitor cell differentiation to optimize performance and carcass value of beef cattle. J Anim Sci 2012; 91:1419-27. [PMID: 23100595 DOI: 10.2527/jas.2012-5670] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beef cattle are raised for their lean tissue, and excessive fat accumulation accounts for large amounts of waste. On the other hand, intramuscular fat or marbling is essential for the palatability of beef. In addition, tender beef is demanded by consumers, and connective tissue contributes to the background toughness of beef. Recent studies show that myocytes, adipocytes, and fibroblasts are all derived from a common pool of progenitor cells during embryonic development. It appears that during early embryogenesis, multipotent mesenchymal stem cells first diverge into either myogenic or adipogenic-fibrogenic lineages; myogenic progenitor cells further develop into muscle fibers and satellite cells whereas adipogenic-fibrogenic lineage cells develop into the stromal-vascular fraction of skeletal muscle where reside adipocytes, fibroblasts, and resident fibro-adipogenic progenitor cells (the counterpart of satellite cells). Strengthening myogenesis (i.e., formation of muscle cells) enhances lean growth, promoting intramuscular adipogenesis (i.e., formation of fat cells) increases marbling, and reducing intramuscular fibrogenesis (i.e., formation of fibroblasts and synthesis of connective tissue) improves overall tenderness of beef. Because the abundance of progenitor cells declines as animals age, it is more effective to manipulate progenitor cell differentiation at an early developmental stage. Nutritional, environmental, and genetic factors shape progenitor cell differentiation; however, up to now, our knowledge regarding mechanisms governing progenitor cell differentiation remains rudimentary. In summary, altering mesenchymal progenitor cell differentiation through nutritional management of cows, or fetal programming, is a promising method to improve cattle performance and carcass value.
Collapse
Affiliation(s)
- M Du
- Department of Animal Sciences, Washington State University, Pullman 99164, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Kuvhenguhwa M, Kotter H, Wisco JJ. Congenital bilateral absence of the flexor digitorum longus muscle. Clin Anat 2012; 25:963-5. [PMID: 22275173 DOI: 10.1002/ca.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Maita Kuvhenguhwa
- Medical Student, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|
41
|
Mancinelli R, Pietrangelo T, Burnstock G, Fanò G, Fulle S. Transcriptional profile of GTP-mediated differentiation of C2C12 skeletal muscle cells. Purinergic Signal 2011; 8:207-21. [PMID: 22127439 DOI: 10.1007/s11302-011-9266-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 10/03/2011] [Indexed: 02/01/2023] Open
Abstract
Several purine receptors have been localised on skeletal muscle membranes. Previous data support the hypothesis that extracellular guanosine 5'-triphosphate (GTP) is an important regulatory factor in the development and function of muscle tissue. We have previously described specific extracellular binding sites for GTP on the plasma membrane of mouse skeletal muscle (C2C12) cells. Extracellular GTP induces an increase in intracellular Ca(2+) concentrations that results in membrane hyperpolarisation through Ca(2+)-activated K(+) channels, as has been demonstrated by patch-clamp experiments. This GTP-evoked increase in intracellular Ca(2+) is due to release of Ca(2+) from intracellular inositol-1,4,5-trisphosphate-sensitive stores. This enhances the expression of the myosin heavy chain in these C2C12 myoblasts and commits them to fuse into multinucleated myotubes, probably via a phosphoinositide-3-kinase-dependent signal-transduction mechanism. To define the signalling of extracellular GTP as an enhancer or modulator of myogenesis, we investigated whether the gene-expression profile of differentiated C2C12 cells (4 and 24 h in culture) is affected by extracellular GTP. To investigate the nuclear activity and target genes modulated by GTP, transcriptional profile analysis and real-time PCR were used. We demonstrate that in the early stages of differentiation, GTP up-regulates genes involved in different pathways associated with myogenic processes, including cytoskeleton structure, the respiratory chain, myogenesis, chromatin reorganisation, cell adhesion, and the Jak/Stat pathway, and down-regulates the mitogen-activated protein kinase pathway. GTP also increases the expression of three genes involved in myogenesis, Pp3ca, Gsk3b, and Pax7. Our data suggests that in the myogenic C2C12 cell line, extracellular GTP acts as a differentiative factor in the induction and sustaining of myogenesis.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience and Imaging, University G. d'Annunzio Chieti-Pescara, Chieti, Italy.
| | | | | | | | | |
Collapse
|
42
|
Krasnyi AM, Ozernyuk ND. The expression of genes encoding the voltage-dependent L-type Ca2+ channels in proliferating and differentiating C2C12 myoblasts of mice. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011030071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Balan OV, Vorotelyak EA, Smirnova TD, Ozernyuk ND. Specific features of satellite cells and myoblasts at different stages of rat postnatal development. BIOL BULL+ 2011. [DOI: 10.1134/s1062359008020052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Salonen MK, Kajantie E, Osmond C, Forsen T, Yliharsila H, Paile-Hyvarinen M, Barker DJP, Eriksson JG. Prenatal and childhood growth and leisure time physical activity in adult life. Eur J Public Health 2010; 21:719-24. [DOI: 10.1093/eurpub/ckq176] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
45
|
Qiu Z, Miao C, Li J, Lei X, Liu S, Guo W, Cao Y, Duan EK. Skeletal myogenic potential of mouse skin-derived precursors. Stem Cells Dev 2010; 19:259-68. [PMID: 19594362 DOI: 10.1089/scd.2009.0058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cell transplantation-based therapy could be an effective way for the treatment of many diseases. Among numerous somatic stem cells isolated and purified, skin-derived precursors (SKPs) are abundant autologous cells, providing a large reservoir of cells for therapeutic transplantation. Previous studies showed that SKPs could be differentiated into neural and mesodermal progeny in vitro. In the present study, we attempted to differentiate SKPs to muscle progenitors in vitro. After treatment with a combination of growth factors, SKPs were differentiated into cells expressing markers of muscle progenitors, including Pax7. Furthermore, some of these cells expressed desmin, TnT, Mstn, and Myog, suggesting their differentiation into the muscular lineage. After single point injection, the differentiation of SKPs from green fluorescent protein positive donors into muscle precursors was also demonstrated in vivo. Additionally, donor SKPs migrated to the niche of muscle progenitors, participated in the regeneration of recipient muscles, and expressed markers of muscle progenitors, including Pax7, M-cadherin, and MyoD. After recovery of donor cells from recipient muscles at 3 weeks postinjection, some of the injected SKPs were converted to myogenic precursors, based on the expression of specific markers (Pax7 and MyoD). Some of these donor cells also expressed muscle makers (desmin, TnT, and Myog). At 20 weeks postinjection, the injected SKPs were localized to recipient muscles without decreases in their population size. In summary, these findings indicated that SKPs could develop into muscle progenitors and differentiated muscle cells in vitro and in vivo, thus providing valuable autologous cells for the treatment of muscle diseases.
Collapse
Affiliation(s)
- Zhifang Qiu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China. , Graduate University of the Chinese Academy of Sciences, Shijingshan District, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lu SH, Yang AH, Wei CF, Chiang HS, Chancellor MB. Multi-potent differentiation of human purified muscle-derived cells: potential for tissue regeneration. BJU Int 2009; 105:1174-80. [PMID: 19712114 DOI: 10.1111/j.1464-410x.2009.08823.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate whether CD34+ purified human muscle-derived cells (hMDCs) are capable of multiple lineage differentiation. MATERIALS AND METHODS The hMDCs were isolated from human skeletal muscle and purified using a CD34+ cell selection system (Dynal Biotech, Oslo, Norway). Adherent populations of cells were expanded in culture and cell differentiation was induced using different kinds of growth factors and different differentiation-conditional media. The immunohistochemical properties of CD34+ hMDCs were examined after varying periods in culture. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were used to investigate the gene expression of the undifferentiated and differentiated hMDCs. RESULTS Using special differentiation conditions the CD34+ hMDCs could be differentiated into myogenic cells, adipocytes, osteocytes and chondrocytes. The differentiation was confirmed by immunohistochemistry. RT-PCR and Western blotting showed multiple-lineage gene-level expression in the different cultivation periods of the differentiated cells. CONCLUSIONS We confirmed the multi-lineage capacity of a population of stem cells, termed CD34+ hMDCs. Our findings showed that CD34+ hMDCs are capable of multiple mesodermal-lineage differentiation, as shown by the expression of several lineage-specific genes. They can be differentiated toward the myogenic, osteogenic, adipogenic and chondrogenic lineages. These cells might have potential for use in tissue regeneration.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
47
|
Lu SH, Wei CF, Yang AH, Chancellor MB, Wang LS, Chen KK. Isolation and characterization of human muscle-derived cells. Urology 2009; 74:440-5. [PMID: 19362337 DOI: 10.1016/j.urology.2009.01.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/21/2008] [Accepted: 01/27/2009] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To isolate and characterize human muscle-derived cells (MDCs) for future management applications on lower urinary tract symptoms, including stress urinary incontinence and bladder reconstitution. The development of muscle stem cells for transplantation or gene transfer in patients with muscle disorders has become more attractive and challenging recently. METHODS Human MDCs were isolated from the skeletal muscles of the limbs. The muscle tissues were minced, digested at 37 degrees C by 0.2% collagenase, trypsinized, filtered, and cultured in F12 medium with 15% fetal bovine serum at 37 degrees C. Human MDCs were then isolated using a modified preplate technique. After isolation, the MDCs were characterized by immunohistochemistry, flow cytometry, and indirect immunofluorescence. RESULTS The growth doubling time of the MDCs was approximately 24 hours. Immunohistochemistry study was performed with the stem cell markers CD34, CD117, vascular cell adhesion molecule, and vascular endothelial growth factor receptor 2, and the relative stem cell position was identified. Positive immunofluorescence outcomes were found with the stem cell markers, myoblast markers CXCR4, CD56, desmin, and a fibroblast marker AB-1. Flow cytometry analysis identified markers CD34 and CD56 in the isolated MDCs, with a percentage of 5.12% and 10.34%, respectively. CONCLUSIONS The isolation and characterization of human MDCs was successfully achieved. Human MDCs might have the potential to be a novel tool for the management of stress urinary incontinence and bladder reconstitution.
Collapse
Affiliation(s)
- Shing-Hwa Lu
- Department of Urology, National Yang-Ming University School of Medicine, Taipei, Taiwan.
| | | | | | | | | | | |
Collapse
|
48
|
Monteverde M, Noronha K, Palloni A. Effect of early conditions on disability among the elderly in Latin America and the Caribbean. POPULATION STUDIES 2009; 63:21-35. [PMID: 19184719 PMCID: PMC4568080 DOI: 10.1080/00324720802621583] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Poor early conditions have been associated with increasing risks of some chronic diseases during adulthood. Since chronic illnesses are known to be important risk factors for disability, poor early conditions should predict disability at older ages. In addition, recent literature suggests that poor early conditions may affect the risk of disability even in the absence of chronic illnesses. We aimed to evaluate the magnitude of differentials in the risk of being disabled according to early conditions experienced by elderly populations in Latin America and the Caribbean, and to identify the group of chronic illnesses responsible for it. We find that poor early conditions exert a strong influence on disability later in life in two ways: by increasing the risk of suffering disability-related chronic illnesses and by increasing the risks of suffering disabilities by those with chronic illnesses.
Collapse
Affiliation(s)
- Malena Monteverde
- Center for Demography and Ecology, University of Wisconsin-Madison and Institute for Policy Research, Northwestern University
| | - Kenya Noronha
- Center for Demography and Ecology, University of Wisconsin-Madison and Institute for Policy Research, Northwestern University
| | - Alberto Palloni
- Center for Demography and Ecology, University of Wisconsin-Madison and Institute for Policy Research, Northwestern University
| |
Collapse
|
49
|
Ortega FB, Labayen I, Ruiz JR, Martin-Matillas M, Vicente-Rodríguez G, Redondo C, Wärnberg J, Gutiérrez A, Sjöström M, Castillo MJ, Moreno LA. Are muscular and cardiovascular fitness partially programmed at birth? Role of body composition. J Pediatr 2009; 154:61-66.e1. [PMID: 18783796 DOI: 10.1016/j.jpeds.2008.07.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 06/11/2008] [Accepted: 07/18/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To determine whether birth weight is associated with handgrip strength and cardiovascular fitness in adolescence and, if so, how these associations are influenced by current body composition. STUDY DESIGN A total of 1801 adolescents (983 females), age 13 to 18.5 years, from the AVENA (Alimentación y Valoración del Estado Nutricional de los Adolescentes Españoles [Food and Assessment of the Nutritional Status of Spanish Adolescents]) study were evaluated. Handgrip strength and cardiovascular fitness were assessed using the handgrip test and the 20-m shuttle run test, respectively. RESULTS Birth weight was positively associated with handgrip strength in females after controlling for current age, gestational age, breast-feeding, and adolescent body mass index (P = .002), body fat percentage (P < .001), or waist circumference (P = .005), but not after controlling for fat-free mass. The associations were similar yet weaker in males. Females with high birth weight (>90th percentile) had greater handgrip strength than those with normal (10th to 90th percentile) or low (<10th percentile) birth weight, after adjusting for body fat percentage (P = .004). All of the differences became nonsignificant after adjusting for adolescent fat-free mass. Birth weight was not associated with cardiovascular fitness. CONCLUSIONS High birth weight is associated with greater handgrip strength in adolescents, especially in females, yet these associations seem to be highly explained by fat-free mass.
Collapse
Affiliation(s)
- Francisco B Ortega
- Department of Medical Physiology, School of Medicine, University of Granada, Grenada, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008; 323:152-65. [PMID: 18796301 DOI: 10.1016/j.ydbio.2008.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 11/25/2022]
Abstract
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.
Collapse
Affiliation(s)
- Dana M Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|