1
|
Lin J, Sumara I. Cytoplasmic nucleoporin assemblage: the cellular artwork in physiology and disease. Nucleus 2024; 15:2387534. [PMID: 39135336 PMCID: PMC11323873 DOI: 10.1080/19491034.2024.2387534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Nucleoporins, essential proteins building the nuclear pore, are pivotal for ensuring nucleocytoplasmic transport. While traditionally confined to the nuclear envelope, emerging evidence indicates their presence in various cytoplasmic structures, suggesting potential non-transport-related roles. This review consolidates findings on cytoplasmic nucleoporin assemblies across different states, including normal physiological conditions, stress, and pathology, exploring their structural organization, formation dynamics, and functional implications. We summarize the current knowledge and the latest concepts on the regulation of nucleoporin homeostasis, aiming to enhance our understanding of their unexpected roles in physiological and pathological processes.
Collapse
Affiliation(s)
- Junyan Lin
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Izabela Sumara
- Department of Development and Stem Cells, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique UMR 7104, Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale U964, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| |
Collapse
|
2
|
Mossadeq LE, Bellutti L, Borgne RL, Canman JC, Pintard L, Verbavatz JM, Askjaer P, Dumont J. An interkinetic envelope surrounds chromosomes between meiosis I and II in C. elegans oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619195. [PMID: 39484525 PMCID: PMC11526925 DOI: 10.1101/2024.10.19.619195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
At the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II. By analyzing interkinesis in C. elegans oocytes, we instead show that an atypical structure made of two lipid bilayers, which we termed the interkinetic envelope, surrounds the surface of the segregating chromosomes. The interkinetic envelope shares common features with the nuclear envelope but also exhibits specific characteristics that distinguish it, including its lack of continuity with the endoplasmic reticulum, unique protein composition, assembly mechanism, and function in chromosome segregation. These distinct attributes collectively define the interkinetic envelope as a unique and specialized structure that has been previously overlooked.
Collapse
|
3
|
Liu C, Wang M, Yao H, Cui M, Gong X, Wang L, Sui C, Zhang H. Inhibition of oocyte maturation by follicular extracellular vesicles of non-hyperandrogenic PCOS patients requiring IVF. J Clin Endocrinol Metab 2022; 108:1394-1404. [PMID: 36527699 DOI: 10.1210/clinem/dgac733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
CONTEXT Polycystic ovarian syndrome (PCOS) is one of the most common diseases that contribute to subfertility. Recent evidence showed that oocytes of women with PCOS matured in vitro away from the follicular fluid presented better potentials, whereas the reason remained unclear. OBJECTIVE To investigate whether follicular extracellular vesicles (EVs) of PCOS patients interfere with the quality of oocytes. METHODS Follicular EVs of women with PCOS (PCOS-EVs) and control women (CTRL-EVs) were isolated and determined using western blotting, nanoparticle tracking analysis, and transmission electron microscopy. The two types of EVs were co-cultured with murine germinal vesicle oocytes, respectively. Fluorescence labeled EVs were used to visualize internalization by oocytes. After co-culture, oocyte maturation rates were calculated. Mitochondria distribution and reactive oxygen species (ROS) level were detected in the different groups. Spindle morphology was evaluated using immunofluorescence. Moreover, the expression of catalase (CAT), glutathione synthetase (GSS), and superoxide dismutase (SOD) was determined in the oocytes. RESULTS Both PCOS-EVs and CTRL-EVs are bilayered vesicles, approximately 100-150 nm in size, and enriched in EV-associating protein markers. EVs were internalized by oocytes within one hour. Oocyte maturation rate decreased significantly in the PCOS-EV group compared with the CTRL-EV group; whereas the abnormal mitochondria distribution rate and abnormal spindle rate were significantly increased in the PCOS-EV group. Moreover, PCOS-EVs increased the ROS level and the expression of CAT, GSS, and SOD in the oocytes. CONCLUSIONS PCOS-EVs interfered with oocyte mitochondria and spindles and inhibited oocyte maturation. Moreover, oxidative stress induced by PCOS-EVs might be a potential cause.
Collapse
Affiliation(s)
- Chang Liu
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Haixia Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Shangrao People's Hospital, Shangrao, China
| | - Mengge Cui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xueqi Gong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
4
|
Fazelian‐Dehkordi K, Talaei‐Khozani T, A SFM. Three‐dimensional in vitro maturation of rabbit oocytes enriched with sheep decellularized greater omentum. Vet Med Sci 2022; 8:2092-2103. [PMID: 35896003 PMCID: PMC9514494 DOI: 10.1002/vms3.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Khatereh Fazelian‐Dehkordi
- Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| | - Tahereh Talaei‐Khozani
- Histomorphometry and Stereology Research Center Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
- Tissue Engineering Lab Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| | - S. Fakhroddin Mesbah A
- Department of Anatomical Sciences Shiraz Medical School, Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
5
|
Eymieux S, Blanchard E, Uzbekov R, Hourioux C, Roingeard P. Annulate lamellae and intracellular pathogens. Cell Microbiol 2021; 23:e13328. [PMID: 33740320 DOI: 10.1111/cmi.13328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Annulate lamellae (AL) have been observed many times over the years on electron micrographs of rapidly dividing cells, but little is known about these unusual organelles consisting of stacked sheets of endoplasmic reticulum-derived membranes with nuclear pore complexes (NPCs). Evidence is growing for a role of AL in viral infection. AL have been observed early in the life cycles of the hepatitis C virus (HCV) and, more recently, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), suggesting a specific induction of mechanisms potentially useful to these pathogens. Like other positive-strand RNA viruses, these viruses induce host cells membranes rearrangements. The NPCs of AL could potentially mediate exchanges between these partially sealed compartments and the cytoplasm. AL may also be involved in regulating Ca2+ homeostasis or cell cycle control. They were recently observed in cells infected with Theileria annulata, an intracellular protozoan parasite inducing cell proliferation. Further studies are required to clarify their role in intracellular pathogen/host-cell interactions.
Collapse
Affiliation(s)
- Sébastien Eymieux
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Emmanuelle Blanchard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Rustem Uzbekov
- Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Christophe Hourioux
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, Tours, France.,Plate-Forme IBiSA de Microscopie Electronique, Université de Tours and CHRU de Tours, Tours, France
| |
Collapse
|
6
|
Urbisz AZ, Nakano T, Świątek P. Ovary cord micromorphology in the blood-sucking haemadipsid leech Haemadipsa japonica (Hirudinida: Arhynchobdellida: Hirudiniformes). Micron 2020; 138:102929. [DOI: 10.1016/j.micron.2020.102929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
|
7
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
8
|
Ren H, Xin G, Jia M, Zhu S, Lin Q, Wang X, Jiang Q, Zhang C. Postmitotic annulate lamellae assembly contributes to nuclear envelope reconstitution in daughter cells. J Biol Chem 2019; 294:10383-10391. [PMID: 31152066 DOI: 10.1074/jbc.ac119.008171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/22/2019] [Indexed: 11/06/2022] Open
Abstract
In higher eukaryotic cells, the nuclear envelope (NE) is composed of double nuclear membranes studded with nuclear pore complexes (NPCs) and undergoes dynamic disassembly and reassembly during the cell cycle. However, how the NE and NPC reassemble remains largely unclear. Here, using HeLa, HEK293, and Drosophila cells, along with immunofluorescence microscopy and transmission EM methods, we found that postmitotic annulate lamellae (AL) assembly contributes to NE and NPC assembly. We observed that the AL are parallel membrane-pair stacks and possess regularly spaced AL pore complexes (ALPCs) that are morphologically similar to the NPCs. We found that the AL assemble in the cytoplasm during mitotic exit simultaneously with NE re-formation in daughter cells. Then, the assembled AL either bound the decondensing chromatin to directly transform into the NE or bound and fused with the outer nuclear membrane to join the assembling NE. The AL did not colocalize with sheet and tubular endoplasmic reticulum (ER) marker proteins on the ER or the lamin B receptor-localized membrane in the cytoplasm, suggesting that postmitotic AL assembly occurs independently of the chromatin and ER. Collectively, our results indicate that postmitotic AL assembly is a common cellular event and an intermediate step in NE and NPC assembly and in NE expansion in higher eukaryotic cells.
Collapse
Affiliation(s)
- He Ren
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qiaoyu Lin
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiangyang Wang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- From the Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Nucleoporin35 is a novel microtubule associated protein functioning in oocyte meiotic spindle architecture. Exp Cell Res 2018; 371:435-443. [PMID: 30195030 DOI: 10.1016/j.yexcr.2018.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023]
Abstract
Nucleoporins (Nups) are a large and diverse family of proteins that mediate nucleocytoplasmic transport at interphase of vertebrate cells. Nups also function in mitosis progression. However, whether Nups are involved in oocyte meiosis progression is still rarely known. In this study, we delineated the roles and regulatory mechanisms of Nucleoporin35 (Nup35) during oocyte meiotic maturation. The immunofluorescent signal of Nup35 was localized in the nuclear membrane at germinal vesicle (GV) stage, the microtubules and spindle at pro-metaphase I (pro-MI), metaphase I (MI), and metaphase II (MII), but to the spindle poles at anaphase I (AI) and telophase I (TI). The dynamic localization pattern of Nup35 during oocyte meiotic maturation implied its specific roles. We also found that Nup35 existed as a putatively phosphorylated form after resumption of meiosis (GVBD), but not at GV stage, implying its functional switch from nuclear membrane to meiotic progression. Further study uncovered that knockdown of Nup35 by specific siRNA significantly compromised the extrusion of first polar body (PBE), but not GVBD, with defects of spindle assembly and chromosome alignment and dissociated some localization signal of p-ERK1/2 from spindle poles to cytoplasm. A defective kinetochore - microtubule attachment (K-MT) was also identified in oocytes after knockdown of Nup35, which activates spindle assembly checkpoint. In conclusion, our results suggest that Nup35 is putatively phosphorylated and released to the cytoplasm after resumption of meiosis, and regulates spindle assembly and chromosome alignment.
Collapse
|
10
|
Sun J, Guo Y, Zhang Q, Bu S, Li B, Wang Q, Lai D. Chronic restraint stress disturbs meiotic resumption through APC/C-mediated cyclin B1 excessive degradation in mouse oocytes. Cell Cycle 2018; 17:1591-1601. [PMID: 29911914 DOI: 10.1080/15384101.2018.1471316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Psychological stress, which exerts detrimental effects on human reproduction, may compromise the meiotic competence of oocytes. Meiotic resumption, germinal vesicle breakdown (GVBD), is the first milestone to confer meiotic competence to oocytes. In the practice of assisted reproductive technology (ART), the timing for GVBD is associated with the rates of cleavage and blastocyst formation. However, whether chronic stress compromises oocyte competence by influencing GVBD and the underlying mechanisms are unclear. In the present study, a chronic restraint stress (CRS) mouse model was used to investigate the effects of stress on oocyte meiotic resumption, as well as the mechanisms. Following a 4-week chronic restraint stress in female mice, the percentage of abnormal bipolar spindles increased and indicated compromised oocyte competence in the CRS group. Furthermore, we identified a decreased percentage of GVBD and prolonged time of GVBD in the CRS mouse oocytes compared with the control group. CRS simultaneously reduced the expression of cyclin B1 (CCNB1), which represents a regulatory subunit of M-phase/mature promoting factor (MPF). However, MG132, an inhibitor of anaphase-promoting complex/cyclosome (APC/C), could rescue the prolonged time of GVBD and increase the expression level of CCNB1 of oocytes from the CRS mice. Collectively, our results demonstrated that stress disturbed meiotic resumption through APC/C-mediated CCNB1 degradation, thus providing a novel understanding for stress-related oocyte quality decline; moreover, it may provide a non-invasive approach to select high-quality gametes and novel targets for molecular therapy to treat stress-related female infertility.
Collapse
Affiliation(s)
- Junyan Sun
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Ying Guo
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Qiuwan Zhang
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Shixia Bu
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Boning Li
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Qian Wang
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| | - Dongmei Lai
- a The International Peace Maternity and Child Health Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , China
| |
Collapse
|
11
|
Burdyniuk M, Callegari A, Mori M, Nédélec F, Lénárt P. F-Actin nucleated on chromosomes coordinates their capture by microtubules in oocyte meiosis. J Cell Biol 2018; 217:2661-2674. [PMID: 29903878 PMCID: PMC6080919 DOI: 10.1083/jcb.201802080] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022] Open
Abstract
Capture of each and every chromosome by spindle microtubules is essential to prevent chromosome loss and aneuploidy. In somatic cells, astral microtubules search and capture chromosomes forming lateral attachments to kinetochores. However, this mechanism alone is insufficient in large oocytes. We have previously shown that a contractile F-actin network is additionally required to collect chromosomes scattered in the 70-µm starfish oocyte nucleus. How this F-actin-driven mechanism is coordinated with microtubule capture remained unknown. Here, we show that after nuclear envelope breakdown Arp2/3-nucleated F-actin "patches" form around chromosomes in a Ran-GTP-dependent manner, and we propose that these structures sterically block kinetochore-microtubule attachments. Once F-actin-driven chromosome transport is complete, coordinated disassembly of F-actin patches allows synchronous capture by microtubules. Our observations indicate that this coordination is necessary because early capture of chromosomes by microtubules would interfere with F-actin-driven transport leading to chromosome loss and formation of aneuploid eggs.
Collapse
Affiliation(s)
- Mariia Burdyniuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Andrea Callegari
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
12
|
Onuma A, Fujioka YA, Fujii W, Sugiura K, Naito K. Effects of exportin 1 on nuclear transport and meiotic resumption in porcine full-grown and growing oocytes. Biol Reprod 2018; 98:501-509. [PMID: 29228114 DOI: 10.1093/biolre/iox168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/07/2017] [Indexed: 12/17/2023] Open
Abstract
Exportin 1 (XPO1) is a nuclear transport receptor involved in the nuclear export of majority proteins in somatic cells. In mammalian oocytes, however, only the presence of XPO1 has been reported at mRNA and protein levels, and the definitive functions of XPO1 and its effects on the meiotic maturation of oocytes have never been directly examined. In the present study, the expression state and the nuclear-export function of porcine XPO1 were analyzed in porcine oocytes. In addition, we investigated the effects of the overexpression and inhibition of XPO1 on meiotic regulation in full-grown and growing oocytes by mRNA injection and inhibitor treatment. Endogenous XPO1 was stably expressed in porcine oocytes during the germinal vesicle (GV) stage, and the expression of exogenous XPO1 significantly decreased the nuclear localization of XPO1 cargos, snurportin 1, and WEE1B. Inhibition of XPO1 by a specific inhibitor, leptomycin B, delayed the GV breakdown (GVBD), whereas the overexpression of XPO1 by mRNA injection accelerated the GVBD. XPO1 overexpression overcame the meiotic arrest induced by WEE1B expression in full-grown oocytes. Surprisingly, the GVBD of porcine growing oocytes, which could not resume meiosis by the maturation culture in vitro, was induced by the expression of exogenous XPO1. These results showed the presence of XPO1 and its function as a nuclear export receptor in mammalian oocytes, including growing oocytes, and they suggest that the regulation of nuclear transport has a large influence on the GV maintenance and meiotic resumption of oocytes.
Collapse
Affiliation(s)
- Asuka Onuma
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshie A Fujioka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
|
14
|
Otsuka S, Ellenberg J. Mechanisms of nuclear pore complex assembly - two different ways of building one molecular machine. FEBS Lett 2018; 592:475-488. [PMID: 29119545 PMCID: PMC6220763 DOI: 10.1002/1873-3468.12905] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
The nuclear pore complex (NPC) mediates all macromolecular transport across the nuclear envelope. In higher eukaryotes that have an open mitosis, NPCs assemble at two points in the cell cycle: during nuclear assembly in late mitosis and during nuclear growth in interphase. How the NPC, the largest nonpolymeric protein complex in eukaryotic cells, self-assembles inside cells remained unclear. Recent studies have started to uncover the assembly process, and evidence has been accumulating that postmitotic and interphase NPC assembly use fundamentally different mechanisms; the duration, structural intermediates, and regulation by molecular players are different and different types of membrane deformation are involved. In this Review, we summarize the current understanding of these two modes of NPC assembly and discuss the structural and regulatory steps that might drive the assembly processes. We furthermore integrate understanding of NPC assembly with the mechanisms for rapid nuclear growth in embryos and, finally, speculate on the evolutionary origin of the NPC implied by the presence of two distinct assembly mechanisms.
Collapse
Affiliation(s)
- Shotaro Otsuka
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| |
Collapse
|
15
|
Kumar S, Kumar M, Dholpuria S, Sarwalia P, Batra V, De S, Kumar R, Datta TK. Transient Arrest of Germinal Vesicle Breakdown Improved In Vitro Development Potential of Buffalo (Bubalus Bubalis) Oocytes. J Cell Biochem 2017; 119:278-289. [PMID: 28543358 DOI: 10.1002/jcb.26171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/24/2017] [Indexed: 11/09/2022]
Abstract
Germinal vesicle breakdown (GVBD) is the first milestone that an oocyte needs to achieve toward completing the maturation and gaining potential to fertilize. Significantly lower in vitro embryo production rate in buffaloes can be attributed to heterogeneity of GVBD occurrence among oocytes obtained from abattoir derived ovaries. Evidence from our earlier work had suggested that different qualities of buffalo oocytes differ significantly in their timing of GVBD. Besides, these oocytes also differ in terms of volume of Akt phosphorylation, which initiates the process of GVBD. With objective of synchronizing the oocytes for GVBD, immature buffalo oocytes were subjected to a two-step culture protocol, initially in the presence of GVBD inhibitors and subsequently, in vitro maturation (IVM) with added SC79 (activates Akt). Expression of developmentally important genes was assessed along with embryo development rate and blastocyst health to interpret the consequences. Oocytes subjected to a short GVBD inhibition period of 6 h followed by IVM with SC79 resulted in improved cleavage and blastocyst rates. Resultant blastocysts also possessed higher ICM: TE ratio. Further, GVBD inhibited oocytes displayed a sustained cytoplasmic maturation status in terms of reorganization of cortical granules (CGs), mitochondrial membrane potential, and glutathione levels during the period of inhibition. We conclude that a temporary GVBD arrest of buffalo oocytes and modulation of Akt improves the in vitro embryo development rate as well as quality of resultant embryos. Besides, our meiotic arrest protocol does not affect the cytoplasmic maturation. J. Cell. Biochem. 119: 278-289, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandeep Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Manish Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sunny Dholpuria
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Parul Sarwalia
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Vipul Batra
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Sachinandan De
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, 132001, India
| |
Collapse
|
16
|
Hayashi D, Tanabe K, Katsube H, Inoue YH. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis. Biol Open 2016; 5:1011-21. [PMID: 27402967 PMCID: PMC5004606 DOI: 10.1242/bio.017566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Karin Tanabe
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Hiroka Katsube
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Yoshihiro H Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| |
Collapse
|
17
|
Hampoelz B, Mackmull MT, Machado P, Ronchi P, Bui KH, Schieber N, Santarella-Mellwig R, Necakov A, Andrés-Pons A, Philippe JM, Lecuit T, Schwab Y, Beck M. Pre-assembled Nuclear Pores Insert into the Nuclear Envelope during Early Development. Cell 2016; 166:664-678. [PMID: 27397507 PMCID: PMC4967450 DOI: 10.1016/j.cell.2016.06.015] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 04/15/2016] [Accepted: 06/03/2016] [Indexed: 11/30/2022]
Abstract
Nuclear pore complexes (NPCs) span the nuclear envelope (NE) and mediate nucleocytoplasmic transport. In metazoan oocytes and early embryos, NPCs reside not only within the NE, but also at some endoplasmic reticulum (ER) membrane sheets, termed annulate lamellae (AL). Although a role for AL as NPC storage pools has been discussed, it remains controversial whether and how they contribute to the NPC density at the NE. Here, we show that AL insert into the NE as the ER feeds rapid nuclear expansion in Drosophila blastoderm embryos. We demonstrate that NPCs within AL resemble pore scaffolds that mature only upon insertion into the NE. We delineate a topological model in which NE openings are critical for AL uptake that nevertheless occurs without compromising the permeability barrier of the NE. We finally show that this unanticipated mode of pore insertion is developmentally regulated and operates prior to gastrulation. Annulate lamellae (AL) NPCs insert into the nuclear envelope during interphase AL-NPCs are pore scaffolds devoid of most transport channel nucleoporins NE-openings enable AL insertion, yet the permeability barrier remains unperturbed AL-NPC insertion operates only before gastrulation
Collapse
Affiliation(s)
- Bernhard Hampoelz
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Marie-Therese Mackmull
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Pedro Machado
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, 69117 Heidelberg, Germany
| | - Paolo Ronchi
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, 69117 Heidelberg, Germany
| | - Khanh Huy Bui
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Nicole Schieber
- European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | | | - Aleksandar Necakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Amparo Andrés-Pons
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | | | - Thomas Lecuit
- Aix-Marseille Université, CNRS, IBDM UMR 7288, 13009 Marseille, France
| | - Yannick Schwab
- European Molecular Biology Laboratory, Electron Microscopy Core Facility, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany
| | - Martin Beck
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany; European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
18
|
Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J, Ellenberg J. Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One 2015; 10:e0116783. [PMID: 25658810 PMCID: PMC4319955 DOI: 10.1371/journal.pone.0116783] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/12/2014] [Indexed: 11/19/2022] Open
Abstract
Polo-like kinase 1 (PLK1) orchestrates multiple events of cell division. Although PLK1 function has been intensively studied in centriole-containing and rapidly cycling somatic cells, much less is known about its function in the meiotic divisions of mammalian oocytes, which arrest for a long period of time in prophase before meiotic resumption and lack centrioles for spindle assembly. Here, using specific small molecule inhibition combined with live mouse oocyte imaging, we comprehensively characterize meiotic PLK1's functions. We show that PLK1 becomes activated at meiotic resumption on microtubule organizing centers (MTOCs) and later at kinetochores. PLK1 is required for efficient meiotic resumption by promoting nuclear envelope breakdown. PLK1 is also needed to recruit centrosomal proteins to acentriolar MTOCs to promote normal spindle formation, as well as for stable kinetochore-microtubule attachment. Consequently, PLK1 inhibition leads to metaphase I arrest with misaligned chromosomes activating the spindle assembly checkpoint (SAC). Unlike in mitosis, the metaphase I arrest is not bypassed by the inactivation of the SAC. We show that PLK1 is required for the full activation of the anaphase promoting complex/cyclosome (APC/C) by promoting the degradation of the APC/C inhibitor EMI1 and is therefore essential for entry into anaphase I. Moreover, our data suggest that PLK1 is required for proper chromosome segregation and the maintenance of chromosome condensation during the meiosis I-II transition, independently of the APC/C. Thus, our results define the meiotic roles of PLK1 in oocytes and reveal interesting differential requirements of PLK1 between mitosis and oocyte meiosis in mammals.
Collapse
Affiliation(s)
- Petr Solc
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Tomoya S. Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Shuhei Yoshida
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Adela Brzakova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Masako Kaido
- Laboratory for Chromosome Segregation, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | - Alexandra Mayer
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Pavlina Samalova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
19
|
Abstract
In eukaryotic cells the nuclear genome is enclosed by the nuclear envelope (NE). In metazoans, the NE breaks down in mitosis and it has been assumed that the physical barrier separating nucleoplasm and cytoplasm remains intact during the rest of the cell cycle and cell differentiation. However, recent studies suggest that nonmitotic NE remodeling plays a critical role in development, virus infection, laminopathies, and cancer. Although the mechanisms underlying these NE restructuring events are currently being defined, one common theme is activation of protein kinase C family members in the interphase nucleus to disrupt the nuclear lamina, demonstrating the importance of the lamina in maintaining nuclear integrity.
Collapse
Affiliation(s)
- Emily Hatch
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037
| | | |
Collapse
|
20
|
Lin-Moshier Y, Marchant JS. The Xenopus oocyte: a single-cell model for studying Ca2+ signaling. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.top066308. [PMID: 23457336 DOI: 10.1101/pdb.top066308] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the four decades since the Xenopus oocyte was first demonstrated to have the capacity to translate exogenous mRNAs, this system has been exploited for many different experimental purposes. Typically, the oocyte is used either as a "biological test tube" for heterologous expression of proteins without any particular cell biological insight or, alternatively, it is used for applications where cell biology is paramount, such as investigations of the cellular adaptations that power early development. In this article, we discuss the utility of the Xenopus oocyte for studying Ca(2+) signaling in both these contexts.
Collapse
Affiliation(s)
- Yaping Lin-Moshier
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
21
|
|
22
|
Intracellular Transport by an Anchored Homogeneously Contracting F-Actin Meshwork. Curr Biol 2011; 21:606-11. [DOI: 10.1016/j.cub.2011.03.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/27/2011] [Accepted: 03/01/2011] [Indexed: 11/17/2022]
|
23
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|
24
|
Machaca K. Ca(2+) signaling, genes and the cell cycle. Cell Calcium 2010; 48:243-50. [PMID: 21084120 DOI: 10.1016/j.ceca.2010.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Changes in the concentration and spatial distribution of Ca(2+) ions in the cytoplasm constitute a ubiquitous intracellular signaling module in cellular physiology. With the advent of Ca(2+) dyes that allow direct visualization of Ca(2+) transients, combined with powerful experimental tools such as electrophysiological recordings, intracellular Ca(2+) transients have been implicated in practically every aspect of cellular physiology, including cellular proliferation. Ca(2+) signals are associated with different phases of the cell cycle and interfering with Ca(2+) signaling or downstream pathways often disrupts progression of the cell cycle. Although there exists a dependence between Ca(2+) signals and the cell cycle the mechanisms involved are not well defined and given the cross-talk between Ca(2+) and other signaling modules, it is difficult to assess the exact role of Ca(2+) signals in cell cycle progression. Two exceptions however, include fertilization and T-cell activation, where well-defined roles for Ca(2+) signals in mediating progression through specific stages of the cell cycle have been clearly established. In the case of T-cell activation Ca(2+) regulates entry into the cell cycle through the induction of gene transcription.
Collapse
Affiliation(s)
- Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), PO Box 24144, Education City - Qatar Foundation, Doha, Qatar.
| |
Collapse
|
25
|
Gavet O, Pines J. Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis. ACTA ACUST UNITED AC 2010; 189:247-59. [PMID: 20404109 PMCID: PMC2856909 DOI: 10.1083/jcb.200909144] [Citation(s) in RCA: 219] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cyclin B-Cdk1 kinase triggers mitosis in most eukaryotes. In animal cells, cyclin B shuttles between the nucleus and cytoplasm in interphase before rapidly accumulating in the nucleus at prophase, which promotes disassembly of the nuclear lamina and nuclear envelope breakdown (NEBD). What triggers the nuclear accumulation of cyclin B1 is presently unclear, although the prevailing view is that the Plk1 kinase inhibits its nuclear export. In this study, we use a biosensor specific for cyclin B1-Cdk1 activity to show that activating cyclin B1-Cdk1 immediately triggers its rapid accumulation in the nucleus through a 40-fold increase in nuclear import that remains dependent on Cdk1 activity until NEBD. Nevertheless, a substantial proportion of cyclin B1-Cdk1 remains in the cytoplasm. The increase in nuclear import is driven by changes in the nuclear import machinery that require neither Plk1 nor inhibition of nuclear export. Thus, the intrinsic link between cyclin B1-Cdk1 activation and its rapid nuclear import inherently coordinates the reorganization of the nucleus and the cytoplasm at mitotic entry.
Collapse
Affiliation(s)
- Olivier Gavet
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, England, UK.
| | | |
Collapse
|
26
|
Webster M, Witkin KL, Cohen-Fix O. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 2009; 122:1477-86. [PMID: 19420234 DOI: 10.1242/jcs.037333] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nucleus is one of the most prominent cellular organelles, yet surprisingly little is known about how it is formed, what determines its shape and what defines its size. As the nuclear envelope (NE) disassembles in each and every cell cycle in metazoans, the process of rebuilding the nucleus is crucial for proper development and cell proliferation. In this Commentary, we summarize what is known about the regulation of nuclear shape and size, and highlight recent findings that shed light on the process of building a nucleus, including new discoveries related to NE assembly and the relationship between the NE and the endoplasmic reticulum (ER). Throughout our discussion, we note interesting aspects of nuclear structure that have yet to be resolved. Finally, we present an idea - which we refer to as ;the limited flat membrane hypothesis' - to explain the formation of a single nucleus that encompasses of all of the cell's chromosomes following mitosis.
Collapse
Affiliation(s)
- Micah Webster
- The Laboratory of Cellular and Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
27
|
Anderson DJ, Hetzer MW. Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation. ACTA ACUST UNITED AC 2008; 182:911-24. [PMID: 18779370 PMCID: PMC2528577 DOI: 10.1083/jcb.200805140] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mitosis in metazoans, segregated chromosomes become enclosed by the nuclear envelope (NE), a double membrane that is continuous with the endoplasmic reticulum (ER). Recent in vitro data suggest that NE formation occurs by chromatin-mediated reorganization of the tubular ER; however, the basic principles of such a membrane-reshaping process remain uncharacterized. Here, we present a quantitative analysis of nuclear membrane assembly in mammalian cells using time-lapse microscopy. From the initial recruitment of ER tubules to chromatin, the formation of a membrane-enclosed, transport-competent nucleus occurs within ∼12 min. Overexpression of the ER tubule-forming proteins reticulon 3, reticulon 4, and DP1 inhibits NE formation and nuclear expansion, whereas their knockdown accelerates nuclear assembly. This suggests that the transition from membrane tubules to sheets is rate-limiting for nuclear assembly. Our results provide evidence that ER-shaping proteins are directly involved in the reconstruction of the nuclear compartment and that morphological restructuring of the ER is the principal mechanism of NE formation in vivo.
Collapse
Affiliation(s)
- Daniel J Anderson
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Anderson DJ, Hetzer MW. Shaping the endoplasmic reticulum into the nuclear envelope. J Cell Sci 2008; 121:137-42. [PMID: 18187447 DOI: 10.1242/jcs.005777] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The nuclear envelope (NE), a double membrane enclosing the nucleus of eukaryotic cells, controls the flow of information between the nucleoplasm and the cytoplasm and provides a scaffold for the organization of chromatin and the cytoskeleton. In dividing metazoan cells, the NE breaks down at the onset of mitosis and then reforms around segregated chromosomes to generate the daughter nuclei. Recent data from intact cells and cell-free nuclear assembly systems suggest that the endoplasmic reticulum (ER) is the source of membrane for NE assembly. At the end of mitosis, ER membrane tubules are targeted to chromatin via tubule ends and reorganized into flat nuclear membrane sheets by specific DNA-binding membrane proteins. In contrast to previous models, which proposed vesicle fusion to be the principal mechanism of NE formation, these new studies suggest that the nuclear membrane forms by the chromatin-mediated reshaping of the ER.
Collapse
Affiliation(s)
- Daniel J Anderson
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
29
|
Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. ACTA ACUST UNITED AC 2007; 178:595-610. [PMID: 17698605 PMCID: PMC2064467 DOI: 10.1083/jcb.200703002] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During prophase, vertebrate cells disassemble their nuclear envelope (NE) in the process of NE breakdown (NEBD). We have established an in vitro assay that uses mitotic Xenopus laevis egg extracts and semipermeabilized somatic cells bearing a green fluorescent protein–tagged NE marker to study the molecular requirements underlying the dynamic changes of the NE during NEBD by live microscopy. We applied our in vitro system to analyze the role of the Ran guanosine triphosphatase (GTPase) system in NEBD. Our study shows that high levels of RanGTP affect the dynamics of late steps of NEBD in vitro. Also, inhibition of RanGTP production by RanT24N blocks the dynamic rupture of nuclei, suggesting that the local generation of RanGTP around chromatin may serve as a spatial cue in NEBD. Furthermore, the microtubule-depolymerizing drug nocodazole interferes with late steps of nuclear disassembly in vitro. High resolution live cell imaging reveals that microtubules are involved in the completion of NEBD in vivo by facilitating the efficient removal of membranes from chromatin.
Collapse
|
30
|
Larijani B, Poccia D. Protein and lipid signaling in membrane fusion: nuclear envelope assembly. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/sita.200600128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Isaji M, Iwata H, Harayama H, Miyake M. The localization of LAP2 beta during pronuclear formation in bovine oocytes after fertilization or activation. ZYGOTE 2007; 14:157-67. [PMID: 16719951 DOI: 10.1017/s0967199406003613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/22/2005] [Indexed: 11/07/2022]
Abstract
We have shown that the assembly of lamin-associated polypeptide (LAP) 2beta was detected surrounding the chromatin mass around the time of extrusion of the second polar body (PB) in some fertilized oocytes, but not in most activated oocytes, by using A23187 and cycloheximide (CaA + CH). Here, we immunohistologically analysed the correlation between LAP2beta assembly and chromatin condensation in fertilized and activated oocytes during the second meiosis. In bovine cumulus cells, the onset of LAP2beta assembly was observed around anaphase chromosomes with strongly phosphorylated histone H3. No LAP2beta assembled around the chromosomes in the first and second polar bodies and the alternative oocyte chromatin (oCh) if histone H3 was phosphorylated. Only histone H3 of oCh was completely dephosphorylated during the telophase II/G1 transition (Tel II/G1), and then LAP2beta assembled around only the oCh without phosphorylated histone H3. In the oocytes activated by CaA + CH, LAP2beta did not assemble around the condensed oCh during the Tel II/G1 transition, although their histone H3 dephosphorylation occurred rather rapidly compared with that of the fertilized oocytes. The patterns of histone H3 dephosphorylation and LAP2beta assembly in oocytes activated by CaA alone showed greater similarity to those in fertilized oocytes than to those in oocytes activated by CaA + CH. These results show that LAP2beta assembles around only oCh after complete dephosphorylation of histone H3 after fertilization and activation using CaA alone, and that the timing of histone H3 dephosphorylation and LAP2beta assembly in these oocytes is different from that of somatic cells. The results also indicate that CH treatment inhibits LAP2beta assembly around oCh but not histone H3 dephosphorylation.
Collapse
Affiliation(s)
- Mamiko Isaji
- Department of Bioresource and Agrobiosciences, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | |
Collapse
|
32
|
|
33
|
Higa MM, Ullman KS, Prunuske AJ. Studying nuclear disassembly in vitro using Xenopus egg extract. Methods 2006; 39:284-90. [PMID: 16879978 DOI: 10.1016/j.ymeth.2006.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 06/14/2006] [Indexed: 11/17/2022] Open
Abstract
Xenopus egg extract provides an extremely powerful approach in the study of cell cycle regulated aspects of nuclear form and function. Each egg contains enough membrane and protein components to support multiple rounds of cell division. Remarkably, incubation of egg extract with DNA in the presence of an energy regeneration system is sufficient to induce formation of a nuclear envelope around DNA. In addition, these in vitro nuclei contain functional nuclear pore complexes, which form de novo and are capable of supporting nucleocytoplasmic transport. Mitotic entry can be induced by the addition of recombinant cyclin to an interphase extract. This initiates signaling that leads to disassembly of the nuclei. Thus, this cell-free system can be used to decipher events involved in mitotic remodeling of the nuclear envelope such as changes in nuclear pore permeability, dispersal of membrane, and disassembly of the lamina. Both general mechanisms and individual players required for orchestrating these events can be identified via biochemical manipulation of the egg extract. Here, we describe a procedure for the assembly and disassembly of in vitro nuclei, including the production of Xenopus egg extract and sperm chromatin DNA.
Collapse
Affiliation(s)
- Meda M Higa
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
34
|
Abstract
Collecting chromosomes prior to their accurate distribution by the mitotic spindle is widely believed to be a microtubule-driven process. However, a recent study in Nature by Lénart et al. (2005) has revealed that a contractile actin network makes an essential contribution to chromosome capture in animal oocytes.
Collapse
Affiliation(s)
- Thomas J Maresca
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720, USA
| | | |
Collapse
|
35
|
Abstract
It has long been thought that gathering chromosomes during spindle assembly is exclusively the responsibility of microtubules. However, a recent study by Lénárt et al. shows that, in larger cells, a collapsing network of actin filaments ensnares and transports the chromosomes, bringing them in range for microtubule capture.
Collapse
Affiliation(s)
- Ann L. Miller
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA
| | - William M. Bement
- Department of Zoology, University of Wisconsin-Madison, 1117 West Johnson Street, Madison, WI 53706, USA
| |
Collapse
|
36
|
LeBrasseur N, Powell K. Cells in D.C.: The American Society for Cell Biology. J Biophys Biochem Cytol 2005. [PMCID: PMC2171751 DOI: 10.1083/jcb1684mr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Abstract
Ca2+ is a ubiquitous intracellular messenger that is important for cell cycle progression. Genetic and biochemical evidence support a role for Ca2+ in mitosis. In contrast, there has been a long-standing debate as to whether Ca2+ signals are required for oocyte meiosis. Here, we show that cytoplasmic Ca2+ (Ca2+cyt) plays a dual role during Xenopus oocyte maturation. Ca2+ signals are dispensable for meiosis entry (germinal vesicle breakdown and chromosome condensation), but are required for the completion of meiosis I. Interestingly, in the absence of Ca2+cyt signals oocytes enter meiosis more rapidly due to faster activation of the MAPK-maturation promoting factor (MPF) kinase cascade. This Ca2+-dependent negative regulation of the cell cycle machinery (MAPK-MPF cascade) is due to Ca2+cyt acting downstream of protein kinase A but upstream of Mos (a MAPK kinase kinase). Therefore, high Ca2+cyt delays meiosis entry by negatively regulating the initiation of the MAPK-MPF cascade. These results show that Ca2+ modulates both the cell cycle machinery and nuclear maturation during meiosis.
Collapse
Affiliation(s)
- Lu Sun
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham St., Slot 505, Little Rock, AR 72205, USA
| | | |
Collapse
|
38
|
Payne C, Rawe V, Ramalho-Santos J, Simerly C, Schatten G. Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization. J Cell Sci 2003; 116:4727-38. [PMID: 14600259 DOI: 10.1242/jcs.00784] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Fertilization is complete once the parental genomes unite, and requires the migration of the egg nucleus to the sperm nucleus (female and male pronuclei, respectively) on microtubules within the inseminated egg. Neither the molecular mechanism of pronucleus binding to microtubules nor the role of motor proteins in regulating pronuclear motility has been fully characterized, and the failure of zygotic development in some patients suggests that they contribute to human infertility. Based on the minus-end direction of female pronuclear migration, we propose a role for cytoplasmic dynein and dynactin in associating with the pronuclear envelope and mediating genomic union. Our results show that dynein intermediate and heavy chains preferentially concentrate around the female pronucleus, whereas dynactin subunits p150Glued, p50 and p62 localize to the surfaces of both pronuclei. Transfection of antibodies against dynein and dynactin block female pronuclear migration in zygotes. Both parthenogenetic activation in oocytes and microtubule depolymerization in zygotes significantly reduce the localization of dynein to the female pronucleus but do not inhibit the pronuclear association of dynactin. When immunoprecipitated from zygotes, p150Glued associates with nuclear pore complex proteins, as well as the intermediate filament vimentin and dynein. Antibodies against nucleoporins and vimentin inhibit pronuclear apposition when transfected into zygotes. We conclude that preferentially localized dynein and perinuclear dynactin associate with the nuclear pore complex and vimentin and are required to mediate genomic union. These data suggest a model in which dynein accumulates and binds to the female pronucleus on sperm aster microtubules, where it interacts with dynactin, nucleoporins and vimentin.
Collapse
Affiliation(s)
- Christopher Payne
- Program in Molecular and Cellular Biosciences, Department of Cell and Developmental Biology, Oregon Health and Science University, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
39
|
Liu J, Prunuske AJ, Fager AM, Ullman KS. The COPI complex functions in nuclear envelope breakdown and is recruited by the nucleoporin Nup153. Dev Cell 2003; 5:487-98. [PMID: 12967567 DOI: 10.1016/s1534-5807(03)00262-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear envelope breakdown is a critical step in the cell cycle of higher eukaryotes. Although integral membrane proteins associated with the nuclear membrane have been observed to disperse into the endoplasmic reticulum at mitosis, the mechanisms involved in this reorganization remain to be fully elucidated. Here, using Xenopus extracts, we report a role for the COPI coatomer complex in nuclear envelope breakdown, implicating vesiculation as an important step. We have found that a nuclear pore protein, Nup153, plays a critical role in directing COPI to the nuclear membrane at mitosis and that this event provides feedback to other aspects of nuclear disassembly. These results provide insight into how key steps in nuclear division are orchestrated.
Collapse
Affiliation(s)
- Jin Liu
- Department of Oncological Sciences, Huntsman Cancer Institute, 2000 Circle of Hope, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|