1
|
HMGA2 as a Critical Regulator in Cancer Development. Genes (Basel) 2021; 12:genes12020269. [PMID: 33668453 PMCID: PMC7917704 DOI: 10.3390/genes12020269] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/01/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The high mobility group protein 2 (HMGA2) regulates gene expression by binding to AT-rich regions of DNA. Akin to other DNA architectural proteins, HMGA2 is highly expressed in embryonic stem cells during embryogenesis, while its expression is more limited at later stages of development and in adulthood. Importantly, HMGA2 is re-expressed in nearly all human malignancies, where it promotes tumorigenesis by multiple mechanisms. HMGA2 increases cancer cell proliferation by promoting cell cycle entry and inhibition of apoptosis. In addition, HMGA2 influences different DNA repair mechanisms and promotes epithelial-to-mesenchymal transition by activating signaling via the MAPK/ERK, TGFβ/Smad, PI3K/AKT/mTOR, NFkB, and STAT3 pathways. Moreover, HMGA2 supports a cancer stem cell phenotype and renders cancer cells resistant to chemotherapeutic agents. In this review, we discuss these oncogenic roles of HMGA2 in different types of cancers and propose that HMGA2 may be used for cancer diagnostic, prognostic, and therapeutic purposes.
Collapse
|
2
|
Mehrabi M, Mansouri K, Soleymani B, Hoseinkhani Z, Shahlaie M, Khodarahmi R. Development of a human epidermal growth factor derivative with EGFR-blocking and depleted biological activities: A comparative in vitro study using EGFR-positive breast cancer cells. Int J Biol Macromol 2017; 103:275-285. [DOI: 10.1016/j.ijbiomac.2017.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 01/08/2023]
|
3
|
Escribano E, Madurga S, Vilaseca M, Moreno V. Ion mobility and Top-down MS complementary approaches for the structural analysis of protein models bound to anticancer metallodrugs. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.07.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Feeney A, Nilsson E, Skinner MK. Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction 2014; 148:321-31. [PMID: 24970835 DOI: 10.1530/rep-14-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
Collapse
Affiliation(s)
- Amanda Feeney
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eric Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
5
|
Valeyev NV, Aleksandrov A. An atomistic model for simulations of nilotinib and nilotinib/kinase binding. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-0931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Aleksandrov A, Simonson T. A molecular mechanics model for imatinib and imatinib:kinase binding. J Comput Chem 2010; 31:1550-60. [PMID: 20020482 DOI: 10.1002/jcc.21442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Imatinib is an important anticancer drug, which binds specifically to the Abl kinase and blocks its signalling activity. To model imatinib:protein interactions, we have developed a molecular mechanics force field for imatinib and four close analogues, which is consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges and Lennard-Jones parameters were derived from a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule interacting with imatinib fragments at 32 different positions. We considered both a neutral and a protonated imatinib. The final RMS deviation between the ab initio and force field energies, averaged over both forms, was 0.2 kcal/mol. The model also reproduces the ab initio geometry and flexibility of imatinib. To apply the force field to imatinib:Abl simulations, it is also necessary to determine the most likely imatinib protonation state when it binds to Abl. This was done using molecular dynamics free energy simulations, where imatinib is reversibly protonated during a series of MD simulations, both in solution and in complex with Abl. The simulations indicate that imatinib binds to Abl in its protonated, positively-charged form. To help test the force field and the protonation prediction, we did MD free energy simulations that compare the Abl binding affinities of two imatinib analogs, obtaining good agreement with experiment. Finally, two new imatinib variants were considered, one of which is predicted to have improved Abl binding. This variant could be of interest as a potential drug.
Collapse
Affiliation(s)
- Alexey Aleksandrov
- Department of Biology, Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, Palaiseau, 91128, France
| | | |
Collapse
|
7
|
Liu F, Jiao J, Zha HY, Yao ZJ. A chiron-based approach for the synthesis of tricyclic tyrosine analogue. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.20040220929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Structural differences between the SH3-HOOK-GuK domains of SAP90/PSD-95 and SAP97. Protein Expr Purif 2009; 68:201-7. [DOI: 10.1016/j.pep.2009.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/14/2009] [Accepted: 07/20/2009] [Indexed: 11/24/2022]
|
9
|
Bonnici B, Kapfhammer JP. Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Eur J Pharmacol 2009; 612:35-40. [PMID: 19375417 DOI: 10.1016/j.ejphar.2009.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/24/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Axonal regeneration after lesions is usually not possible in the adult central nervous system but can occur in the embryonic and young postnatal nervous system. In this study we used the model system of mouse entorhino-hippocampal slice cultures to assess the potential of pharmacological treatments with compounds targeting signal transduction pathways to promote growth of entorhinal fibers after mechanical lesions across the lesion site to their target region in the dentate gyrus. Compounds acting on the cyclic AMP-system, protein kinase C and G-proteins have been shown before to be able to promote regeneration. In this study we have confirmed the potential of drugs affecting these systems to promote axonal regeneration in the central nervous system. In addition we have found that inhibition of the phosphoinositide 3-kinase pathway and of the inositol triphosphate receptor also promoted axonal growth across the lesion site and are thus potential novel drug targets for promoting axonal regeneration after central nervous system lesions. Our findings demonstrate that slice culture models can be used to evaluate compounds for their potential to promote axonal regeneration and that the pharmacological modulation of signal transduction pathways is a promising approach for promoting axonal repair.
Collapse
Affiliation(s)
- Brenda Bonnici
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
10
|
Abstract
Pharmaceutical companies are facing an increasing interest in new target identification and validation. In particular, extensive efforts are being made in the field of protein kinase inhibitors research and development, and the past ten years of effort in this field have altered our perception of the potential of kinases as drug targets. Therefore, in the drug discovery process, the selection of relevant, susceptible protein kinase targets combined with searches for leads and candidates have become a crucial approach. The success of recent launches of protein kinase inhibitors (Gleevec, Imatinib, Sutent, Iressa, Nexavar, Sprycel) gave another push to this field. Numerous other kinase inhibitors are currently undergoing clinical trials or clinical development. Some questions are nevertheless unanswered, mostly related to the great number of known kinases in the human genome, to their similarity with each other, to the existence of functionally redundant kinases for specific pathways, and also because the connection between particular pathways and diseases is not always clear. The review is leading the reader through a panoramic view of protein kinase inhibition with a major focus on MAPK, successful examples and clinical candidates.
Collapse
Affiliation(s)
- Simona Margutti
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry; Eberhard Karls University of Tuebingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | | |
Collapse
|
11
|
Epstein H, Rabinovich L, Banai S, Elazar V, Gao J, Chorny M, Danenebrg HD, Golomb G. Predicting in vivo efficacy of potential restenosis therapies by cell culture studies: species-dependent susceptibility of vascular smooth muscle cells. Open Cardiovasc Med J 2008; 2:60-9. [PMID: 18949101 PMCID: PMC2570571 DOI: 10.2174/1874192400802010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/25/2022] Open
Abstract
Although drug-eluting stents (DES) are successfully utilized for restenosis therapy, the development of local and systemic therapeutic means including nanoparticles (NP) continues. Lack of correlation between in vitro and in vivo studies is one of the major drawbacks in developing new drug delivery systems. The present study was designed to examine the applicability of the arterial explant outgrowth model, and of smooth muscle cells (SMC) cultures for prescreening of possible drugs. Elucidation of different species sensitivity (rat, rabbit, porcine and human) to diverse drugs (tyrphostins, heparin and bisphsophonates) and a delivery system (nanoparticles) could provide a valuable screening tool for further in vivo studies. The anticipated sensitivity ranking from the explant outgrowth model and SMC mitotic rates (porcine>rat>>rabbit>human) do not correlate with the observed relative sensitivity of those animals to antiproliferative therapy in restenosis models (rat≥rabbit>porcine>human). Similarly, the inhibitory profile of the various antirestenotic drugs in SMC cultures (rabbit>porcine>rat>>human) do not correlate with animal studies, the rabbit- and porcine-derived SMC being highly sensitive. The validity of in vitro culture studies for the screening of controlled release delivery systems such as nanoparticles is limited. It is suggested that prescreening studies of possible drug candidates for restenosis therapy should include both SMC cell cultures of rat and human, appropriately designed with a suitable serum.
Collapse
Affiliation(s)
- Hila Epstein
- Dept. of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Martínez A, Moreno V, Sanglas L, de Llorens R, Avilés FX, Lorenzo J. Study by HPLC-MS of the interaction of platinum antitumor complexes with potato carboxypeptidase inhibitor (PCI). Bioorg Med Chem 2008; 16:6832-40. [PMID: 18554917 DOI: 10.1016/j.bmc.2008.05.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 05/14/2008] [Accepted: 05/28/2008] [Indexed: 11/17/2022]
Abstract
The interaction of the well-known antitumor drug cisplatin cis-[PtCl(2)(NH(3))(2)] and the compound trans-[PtCl(2)NH(3)(4-hydroxymethylpyridine)] with the small protein potato carboxypeptidase inhibitor (PCI) and a PCI mutant in which glycine-39 was substituted by methionine has been followed by HPLC/mass spectrometry. Our results showed that both Pt drugs were able to bind PCI through Met-39 and histidines in mutated PCI, whereas only the trans complex interacted significantly with wild PCI. In the cytotoxic studies, the monofunctional adduct PCI-Met-cisplatin was neither more active nor more selective than cisplatin itself when tested against three tumor cell lines with different number of EGF receptors. Those results suggested that the poor activity of the adduct could be just due to the small fraction of cisplatin which was decoordinated from the adduct and able to penetrate the tumor cells, as well as to the changes in the structure of the platinum drug after the loss of NH(3) groups upon binding PCI-Met.
Collapse
Affiliation(s)
- Alberto Martínez
- Departament de Química Inorgànica, Universitat de Barcelona, Martíi Franquès 1-11, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Shin JW, Kim JS, Kim MK. Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs. Tuberc Respir Dis (Seoul) 2007. [DOI: 10.4046/trd.2007.63.2.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jong Wook Shin
- Department of Internal Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Jin Soo Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Mi Kyung Kim
- Department of Pathology, College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
14
|
Pedranzini L, Dechow T, Berishaj M, Comenzo R, Zhou P, Azare J, Bornmann W, Bromberg J. Pyridone 6, A Pan-Janus–Activated Kinase Inhibitor, Induces Growth Inhibition of Multiple Myeloma Cells. Cancer Res 2006; 66:9714-21. [PMID: 17018630 DOI: 10.1158/0008-5472.can-05-4280] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin-6 (IL-6) and the subsequent Janus-activated kinase (JAK)-dependent signaling pathways play a critical role in the pathogenesis of multiple myeloma. Here, we compared the sensitivity and specificity of a novel pan-JAK inhibitor, tetracyclic pyridone 6 (P6), with that of AG490 in a panel of myeloma-derived cell lines. P6 induced growth arrest and subsequent apoptosis of the IL-6-dependent hybridoma and myeloma-derived cell lines (B9 and INA-6) grown either in IL-6-containing medium or in the presence of bone marrow-derived stromal cells (BMSC) using much lower concentrations of drug and with significantly faster kinetics than AG490. Myeloma-derived cell lines, which either express constitutively activated JAK/signal transducers and activators of transcription (STAT) 3 (U266) or are IL-6 growth stimulated (KMS11), are partially growth inhibited by P6. However, P6 does not inhibit the growth of myeloma-derived cell lines lacking activated JAKs/STATs nor does it inhibit mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase activity compared with AG490, which led to activation of ERK and induced robust apoptosis of all the examined cell lines. Finally, P6 inhibited the growth of primary myeloma patient samples grown in the presence of BMSCs. Thus, P6 is a more sensitive and specific inhibitor of JAK-STAT3 activity compared with AG490 and potently inhibited the growth of primary myeloma cells and myeloma-derived cell lines grown on BMSCs.
Collapse
Affiliation(s)
- Laura Pedranzini
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Peterson YK, Kelly P, Weinbaum CA, Casey PJ. A Novel Protein Geranylgeranyltransferase-I Inhibitor with High Potency, Selectivity, and Cellular Activity. J Biol Chem 2006; 281:12445-50. [PMID: 16517596 DOI: 10.1074/jbc.m600168200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibiting protein prenylation is an attractive means to modulate cellular processes controlled by a variety of signaling proteins, including oncogenic proteins such as Ras and Rho GTPases. The largest class of prenylated proteins contain a so-called CaaX motif at their carboxyl termini and are subject to a maturation process initiated by the attachment of an isoprenoid lipid by either protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I). Inhibitors of FTase, termed FTIs, have been the subject of intensive development in the past decade and have shown efficacy in clinical trials. Although GGTase-I inhibitors (GGTIs) have received less attention, accumulating evidence suggests GGTIs may augment therapies using FTIs and could be useful to treat a myriad of additional disease states. Here we describe the characterization of a selective, highly potent, and cell-active GGTase-I inhibitor, GGTI-DU40. Kinetic analysis revealed that inhibition by GGTI-DU40 is competitive with the protein substrate and uncompetitive with the isoprenoid substrate; the Ki for the inhibition is 0.8 nM. GGTI-DU40 is highly selective for GGTase-I both in vitro and in living cells. Studies indicate GGTI-DU40 blocks prenylation of a number of geranylgeranylated CaaX proteins. Treatment of MDA-MB-231 breast cancer cells with GGTI-DU40 inhibited thrombin-induced cell rounding via a process that involves inhibition of Rho proteins without significantly effecting parallel mobilization of calcium via Gbetagamma. These studies establish GGTI-DU40 as a prime tool for interrogating biologies associated with protein geranylgeranylation and define a novel structure for this emerging class of experimental therapeutics.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
16
|
Marzocco S, Mazzon E, Pinto A, Autore G, Cuzzocrea S. Tyrphostin AG 126 reduces intestinal ischemia-reperfusion injury in the rat. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:362-73. [PMID: 16485131 DOI: 10.1007/s00210-005-0029-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/08/2005] [Indexed: 12/14/2022]
Abstract
In this study, we evaluated the effect of tyrphostin AG126, a tyrosine kinase inhibitor, in the splanchnic artery occlusion (SAO) shock mediated injury. SAO shock was induced in rats by clamping both the superior mesenteric artery and the celiac trunk for 45 min. After 1 h of reperfusion, SAO shocked rats developed a significant fall in mean arterial blood pressure. Ileum analysis revealed that SAO shock is characterized by a significant (P<0.01) induction in TNF-alpha and IL-1 ileum levels, while immunohistochemistry examination of necrotic ileum demonstrated a marked increase in the immunoreactivity in intracellular adhesion molecule (ICAM-1) and nitrotyrosine formation. A significant increase in myeloperoxidase activity (P<0.01) was also observed in rats subjected to ischemia-reperfusion injury. Tyrphostin AG126, given intraperitoneally 30 min before ischemia at the dose of 5 mg/kg, significantly improved mean arterial blood pressure, markedly reduced TNF-alpha and IL-1beta levels and the positive staining of ICAM-1 into the reperfused ileum. Tyrphostin AG126 significantly improved the histological status of the reperfused tissue. In conclusion, this study demonstrates that tyrphostin AG126 exerts multiple protective effects in splanchnic artery occlusion/reperfusion shock and suggests that this tyrosine kinase inhibitor may be a candidate for consideration as a therapeutic intervention for ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Stefania Marzocco
- Department of Pharmaceutical Sciences, University of Salerno, Via Ponte Don Melillo 11/c, 84084 Fisciano-Salerno, Italy.
| | | | | | | | | |
Collapse
|
17
|
Sitjà-Arnau M, Molina MA, Blanco-Aparicio C, Ferrer-Soler L, Lorenzo J, Avilés FX, Querol E, de Llorens R. Mechanism of action of potato carboxypeptidase inhibitor (PCI) as an EGF blocker. Cancer Lett 2005; 226:169-84. [PMID: 16039955 DOI: 10.1016/j.canlet.2005.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/29/2004] [Accepted: 01/07/2005] [Indexed: 11/21/2022]
Abstract
The epidermal growth factor receptor (EGFR) signal transduction pathway plays a prominent role in the development of carcinomas, and is an interesting target for antitumoral therapy. We have previously described how potato carboxypeptidase inhibitor (PCI), a 39-amino acid protease inhibitor with a T-Knot motif, binds to EGFR receptor and inhibits the activation of receptor protein tyrosine kinase. In this paper it is shown that PCI interferes with EGFR activation through inhibition of receptor dimerization and receptor transphosphorylation induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha). Moreover, PCI blocks the formation and activation of ErbB1/ErbB-2 heterodimers that have a prominent role in carcinoma development. As a result of these effects, PCI interferes in the EGFR signal transduction pathway by reversing the effects of EGF on the growth of two tumoral cell lines, A431 and MDA-MB-453, and promotes EGFR down-regulation. These results show that PCI acts as an EGF/TGF-alpha antagonist, which suggests its therapeutic potential in the treatment of carcinomas.
Collapse
Affiliation(s)
- Marta Sitjà-Arnau
- Unitat de Bioquímica, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Xia G, Kumar SR, Masood R, Zhu S, Reddy R, Krasnoperov V, Quinn DI, Henshall SM, Sutherland RL, Pinski JK, Daneshmand S, Buscarini M, Stein JP, Zhong C, Broek D, Roy-Burman P, Gill PS. EphB4 expression and biological significance in prostate cancer. Cancer Res 2005; 65:4623-32. [PMID: 15930280 DOI: 10.1158/0008-5472.can-04-2667] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Prostate cancer is the most common cancer in men. Advanced prostate cancer spreading beyond the gland is incurable. Identifying factors that regulate the spread of tumor into the regional nodes and distant sites would guide the development of novel diagnostic, prognostic, and therapeutic targets. The aim of our study was to examine the expression and biological role of EphB4 in prostate cancer. EphB4 mRNA is expressed in 64 of 72 (89%) prostate tumor tissues assessed. EphB4 protein expression is found in the majority (41 of 62, 66%) of tumors, and 3 of 20 (15%) normal prostate tissues. Little or no expression was observed in benign prostate epithelial cell line, but EphB4 was expressed in all prostate cancer cell lines to varying degrees. EphB4 protein levels are high in the PC3 prostate cancer cell line and several folds higher in a metastatic clone of PC3 (PC3M) where overexpression was accompanied by EphB4 gene amplification. EphB4 expression is induced by loss of PTEN, p53, and induced by epidermal growth factor/epidermal growth factor receptor and insulin-like growth factor-I/insulin-like growth factor-IR. Knockdown of the EphB4 protein using EphB4 short interfering RNA or antisense oligodeoxynucleotide significantly inhibits cell growth/viability, migration, and invasion, and induces apoptosis in prostate cancer cell lines. Antisense oligodeoxynucleotide targeting EphB4 in vivo showed antitumor activity in murine human tumor xenograft model. These data show a role for EphB4 in prostate cancer and provide a rationale to study EphB4 for diagnostic, prognostic, and therapeutic applications.
Collapse
MESH Headings
- Animals
- Cell Cycle/genetics
- Cell Line, Tumor
- Cell Movement/physiology
- Cell Survival/physiology
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Invasiveness
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacology
- Prostatic Neoplasms/enzymology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Receptor, EphB4/biosynthesis
- Receptor, EphB4/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Guangbin Xia
- Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chakravarti A, Winter K, Wu CL, Kaufman D, Hammond E, Parliament M, Tester W, Hagan M, Grignon D, Heney N, Pollack A, Sandler H, Shipley W. Expression of the epidermal growth factor receptor and Her-2 are predictors of favorable outcome and reduced complete response rates, respectively, in patients with muscle-invading bladder cancers treated by concurrent radiation and cisplatin-based chemotherapy: a report from the Radiation Therapy Oncology Group. Int J Radiat Oncol Biol Phys 2005; 62:309-17. [PMID: 15890569 DOI: 10.1016/j.ijrobp.2004.09.047] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 09/13/2004] [Accepted: 09/16/2004] [Indexed: 12/17/2022]
Abstract
PURPOSE Erb-1 (epidermal growth factor receptor, EGFR) and Erb-2 (Her-2) are two of the best characterized members in the EGFR pathway. In many tumor types, overexpression of these proteins is associated with enhanced malignant potential. Our objective in this study was to investigate the clinical relevance of EGFR and Her-2 expression in bladder cancer cases from four prospective Radiation Therapy Oncology Group (RTOG) bladder preservation trials using cisplatin-containing chemoradiation (RTOG 8802, 8903, 9506, and 9706). METHODS AND MATERIALS Tumors from 73 cases from patients with muscle-invading T2-T4a bladder cancers had slides interpretable for EGFR staining; 55 cases had slides interpretable for Her-2 staining. Additionally, the respective prognostic values of p53, pRB, and p16 immunostaining were concomitantly examined. Staining and interpretation of staining were done in a blinded manner, without knowledge of clinical outcome. Staining was judged as positive or negative. Subsequently, staining was correlated with clinical outcome. RESULTS On univariate analysis, EGFR positivity was significantly associated with improved overall survival (p = 0.044); disease-specific survival (DSS) (p = 0.042); and DSS with intact bladder (p = 0.021). There was also a trend for association between EGFR expression and reduced frequency of distant metastasis (p = 0.06). On multivariate analysis adding tumor stage, tumor grade, whether a visibly complete transurethral resection of bladder tumor (TURBT) was done or not, and patient age to the model, EGFR positivity was significantly associated with improved DSS. On univariate analysis, Her-2 positivity was significantly associated with reduced complete response (CR) rates (50% vs. 81%, p = 0.026) after chemoradiation which remained significant on multivariate analysis. The other markers examined in this study were not found to have any prognostic value in this setting. CONCLUSION Epidermal growth factor receptor expression appears to correlate significantly with improved outcome in bladder cancer, whereas Her-2 expression is significantly associated only with reduced CR rates after chemoradiation. Further investigations are warranted into how EGFR family members regulate response to chemoradiation in bladder cancer and their potential therapeutic implications.
Collapse
Affiliation(s)
- Arnab Chakravarti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Insight into the molecular mechanisms of malignant transformation is changing the way cancer is being treated. Conventional treatment strategies target the DNA of all dividing cells, resulting in a significantly increased risk of collateral toxicity. In addition, the accumulation of multiple mutations leads to drug resistance in many cancer cells. Targeted strategies have now been developed that specifically disrupt oncogenically active cell surface receptors and endogenous signaling molecules. These agents have a much greater selectivity for tumor tissue and decreased risk of side effects. Increased signaling through ErbB receptors via gene amplification, overexpression, and mutation has been implicated in many human cancers and associated with poor prognosis. Interruption of this process has been shown to cause antitumor effects. Downregulation of the ErbB receptors, HER-2/neu, and later EGFR, with monoclonal antibodies was the first demonstration of targeted therapy. Subsequently, the ErbB tyrosine kinase domain has been successfully targeted with small molecule inhibitors. The development of novel ErbB-directed entities is ongoing, with particular promise being shown by strategies targeting receptor interaction in oligomeric complexes.
Collapse
Affiliation(s)
- Mark Richter
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6082, USA
| | | |
Collapse
|
21
|
Saez-Rodriguez J, Kremling A, Gilles E. Dissecting the puzzle of life: modularization of signal transduction networks. Comput Chem Eng 2005. [DOI: 10.1016/j.compchemeng.2004.08.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Nakamura T, Takasugi H, Aizawa T, Yoshida M, Mizuguchi M, Mori Y, Shinoda H, Hayakawa Y, Kawano K. Peptide mimics of epidermal growth factor (EGF) with antagonistic activity. J Biotechnol 2005; 116:211-9. [PMID: 15707681 DOI: 10.1016/j.jbiotec.2004.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 09/03/2004] [Accepted: 10/13/2004] [Indexed: 10/25/2022]
Abstract
Epidermal growth factor is a potent growth-promoting factor for a variety of tissue cells in vivo and in vitro. Epidermal growth factor binds, phosphorylates, and activates epidermal growth factor receptors on the cell surface. In this study, we attempted to design functional peptide mimics by panning a phage display library on the anti-epidermal growth factor monoclonal antibody. By using anti-epidermal growth factor monoclonal antibody as a mold of the structure of the binding site of epidermal growth factor, high-efficiency probing was expected. From a random peptide phage display library, phage clones that bind to the anti-epidermal growth factor monoclonal antibody were isolated. One of the phage clones also exhibited binding activity to the epidermal growth factor receptor. The amino acid sequence of this phage clone showed slight similarity to the primary sequence of epidermal growth factor. We synthesized this motif to a 9-amino-acid intramolecularly disulfide-linked peptide. This synthetic peptide inhibited mitogenesis as well as epidermal growth factor receptor tyrosine phosphorylation, which is induced by epidermal growth factor. The present results suggest that the peptide synthesized in this study may mimic the epidermal growth factor receptor-binding region in epidermal growth factor.
Collapse
Affiliation(s)
- Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Oehlke J, Lorenz D, Wiesner B, Bienert M. Studies on the cellular uptake of substance P and lysine-rich, KLA-derived model peptides. J Mol Recognit 2005; 18:50-9. [PMID: 15386618 DOI: 10.1002/jmr.691] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the last decade many peptides have been shown to be internalized into various cell types by different, poorly characterized mechanisms. This review focuses on uptake studies with substance P (SP) aimed at unravelling the mechanism of peptide-induced mast cell degranulation, and on the characterization of the cellular uptake of designed KLA-derived model peptides. Studies on structure-activity relationships and receptor autoradiography failed to detect specific peptide receptors for the undecapeptide SP on mast cells. In view of these findings, a direct interaction of cationic peptides with heterotrimeric G proteins without the participation of a receptor has been proposed. Such a process would require insertion into and translocation of peptides across the plasma membrane. In order to clarify whether a transport of cationic peptides into rat peritoneal mast cells is possible, transport studies were performed by confocal laser scanning microscopy (CLSM) using fluorescence-labeled Arg(3),Orn(7)-SP and its D-amino acid analog, all-D-Arg(3),Orn(7)-SP, as well as by electron microscopic autoradiography using (3)H-labelled SP and (125)I-labelled all-D-SP. The results obtained by CLSM directly showed translocation of SP peptides into pertussis toxin-treated cells. Kinetic experiments indicated that the translocation process was rapid, occurring within a few seconds. Mast cell degranulation induced by analog of magainin 2 amide, neuropeptide Y and the model peptide acetyl-KLALKLALKALKAALKLA-amide was also found to be very fast, pointing to an extensive translocation of the peptides. In order to learn more about structural requirements for the cellular uptake of peptides, the translocation behavior of a set of systematically modified KLA-based model peptides has been studied in detail. By two different protocols for determining the amount of internalized peptide, evidence was found that the structure of the peptides only marginally affects their uptake, whereas the efflux of cationic, amphipathic peptides is strikingly diminished, thus allowing their enrichment within the cells. Although the mechanism of cellular uptake, consisting of energy-dependent and -independent contributions, is not well understood, KLA-derived peptides have been shown to deliver various cargos (PNAs, peptides) into cells. The results obtained with SP- and KLA-derived peptides are discussed in the context of the current literature.
Collapse
Affiliation(s)
- Johannes Oehlke
- Institute of Molecular Pharmacology, 13125 Berlin-Buch, Germany
| | | | | | | |
Collapse
|
24
|
Chatterjee PK, Patel NSA, Kvale EO, Brown PAJ, Stewart KN, Britti D, Cuzzocrea S, Mota-Filipe H, Thiemermann C. The tyrosine kinase inhibitor tyrphostin AG126 reduces renal ischemia/reperfusion injury in the rat. Kidney Int 2003; 64:1605-19. [PMID: 14531792 DOI: 10.1046/j.1523-1755.2003.00254.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We investigate the effects of tyrphostin AG126, an inhibitor of tyrosine kinase activity, on the renal dysfunction and injury caused by ischemia/reperfusion (I/R) of the kidney. METHODS Tyrphostin AG126 (5 mg/kg intraperitoneally) was administered to male Wistar rats 30 minutes prior to bilateral renal ischemia for 45 minutes followed by reperfusion for up to 48 hours. Biochemical markers of renal dysfunction and injury were measured and renal sections assessed for renal injury. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and formation of nitrotyrosine and poly (ADP) ribose (PAR) were assessed using immunohistochemistry. Rat proximal tubular cells (PTCs) were incubated with interferon-gamma (100 IU/mL), bacterial lipopolysaccharide (10 microg/mL), and with increasing concentrations of tyrphostin AG126 (0.0001-1 mmol/L) for 24 hours. Nitric oxide production was measured in both plasma from rats subjected to I/R and in incubation medium from PTCs. RESULTS After 6 hours of reperfusion, tyrphostin AG126 significantly reduced the increase in serum and urinary indicators of renal dysfunction and injury caused by I/R and reduced histologic evidence of renal injury. Tyrphostin AG126 also improved renal function (after 24 and 48 hours of reperfusion) and reduced the histologic signs of renal injury (after 48 hours of reperfusion). Tyrphostin AG126 reduced the expression of iNOS and nitric oxide levels in both rat plasma and in PTC cultures, as well as expression of COX-2. Tyrphostin AG126 also reduced nitrotyrosine and PAR formation, suggesting reduction of nitrosative stress and poly (ADP-ribose) polymerase (PARP) activation, respectively. CONCLUSION Taken together, these results show that tyrphostin AG126 significantly reduces the renal dysfunction and injury caused by I/R of the kidney. We propose that inhibition of tyrosine kinase activity may be useful against renal I/R injury.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Department of Experimental Medicine, Nephrology & Critical Care, William Harvey Research Institute, Queen Mary - University of London, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mukhopadhyay A, Basu SK. Intracellular delivery of drugs to macrophages. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 84:183-209. [PMID: 12934937 DOI: 10.1007/3-540-36488-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Toxic side effects which often complicate successful therapy in a number of diseases possibly arise due to the fact that at therapeutically effective concentrations the non-target cells in the body are also exposed to the cytotoxic effects of the drugs. Minimization of such adverse reactions might be feasible through drug delivery modalities that would reduce the uptake of the drugs by non-target cells and selectively deliver the drug only to the target cells (and/or intracellular sites) at relatively low extracellular concentrations. The current generic approach to site-specific drug delivery consists of attaching the therapeutic agent to a carrier recognized only by the cells where the pharmacological action is desired. Two types of recognition elements on the surface of target cells are being exploited for this purpose, viz., (i) antigens capable of generating specific, non-cross reactive antibodies, and (ii) receptors on the cell surface capable of efficient transport of the ligands. In general, incomplete specificity for the target cells and poor internalization of antibody-drug conjugates still limit the usefulness of antibodies for site-specific drug delivery applications necessitating exploration of alternatives. The alternate possibility is to exploit the exquisite cell type specificity and high efficiency of endocytosis of macromolecules mediated by specific receptors present on the surface of target cells for delivering drugs. A large number of infectious, metabolic, and neoplastic diseases are associated with macrophages leading to morbidities and mortalities to millions of people worldwide, thus an appropriate design of a drug delivery system to macrophages will be of tremendous help.
Collapse
|
26
|
Tang L, Cao L, Pelech S, Lui H, Shapiro J. Cytokines and signal transduction pathways mediated by anthralin in alopecia areata-affected Dundee experimental balding rats. J Investig Dermatol Symp Proc 2003; 8:87-90. [PMID: 12895001 DOI: 10.1046/j.1523-1747.2003.12178.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although many therapeutic modalities have been tested on alopecia areata, patient outcomes have been disappointing. Use of animal models would help to develop more efficient therapies as well as understanding therapeutic mechanisms. We have demonstrated that 0.1% topical anthralin ointment is 100% effective in restoring follicular activity in Dundee experimental balding rats. This is the most promising topical treatment for Dundee experimental balding rats among the therapeutic agents tested on this model. Various cytokines have been shown to be associated with the pathogenesis of alopecia areata. To test whether any of these cytokines might be modulated by anthralin, an RNase protection assay and the real-time polymerase chain reaction were performed to compare their expression between anthralin-treated and control skins. These experiments showed that expression of tumor necrosis factor-alpha and interferon-gamma was inhibited by anthralin, whereas expression of interleukin-1alpha/beta and their receptor antagonist, interleukin-1Ra, and interleukin-10 was stimulated by anthralin. In addition, using an antibody-based multi-immunoblotting technique, we found that certain signaling regulatory proteins were modulated by anthralin. Their potential roles in reversing the autoimmune-arrested follicular activity in Dundee experimental balding rats are discussed.
Collapse
Affiliation(s)
- Liren Tang
- Division of Dermatology, Department of Medicine, University of British Columbia, Vancouver Hospital, Canada.
| | | | | | | | | |
Collapse
|
27
|
Harper ME, Goddard L, Glynne-Jones E, Assender J, Dutkowski CM, Barrow D, Dewhurst OL, Wakeling AE, Nicholson RI. Multiple responses to EGF receptor activation and their abrogation by a specific EGF receptor tyrosine kinase inhibitor. Prostate 2002; 52:59-68. [PMID: 11992620 DOI: 10.1002/pros.10069] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGF-R) autophosphorylation is essential for its intracellular mitogenic signaling via the MAPK pathway and for interaction in other cellular processes. Inhibition of this activity in tumor cells that predominantly utilise EGF-R therefore offers an alternative approach to therapy. METHODS The ability of a specific inhibitor of EGF-R tyrosine kinase, ZM 252868, (TKI) to alter various parameters related to growth in DU145 and PC3 cell lines was investigated, by immunocytochemistry, Northern blotting, Western blotting and invasion assays. RESULTS In DU145 cultures, the total cell population and number of cells in cell cycle decreased in the presence of TKI whilst the apoptotic rate was significantly increased. Reduction in autophosphorylation of the EGF-R, membrane expression of EGF-R, activation of the MAPK, p38, and JNK enzymes and the invasive capacity of DU145 cells was observed in the TKI treated cells. Under the same conditions, PC3 cell growth and EGF-R expression and MAPK activation were not affected. The use of inhibitors of intracellular signaling indicated that the DU145 cells, in contrast to PC3 cells, predominantly utilize EGF-R activation of the MAPK signaling pathway for growth. CONCLUSIONS In prostatic cancer patients, in whom androgen resistance has developed and whose tumors have upregulated EGF-R for growth, specific TKI's may offer an important therapy option.
Collapse
Affiliation(s)
- Maureen E Harper
- Tenovus Centre for Cancer Research, Welsh School of Pharmacy, Cardiff University, King Edward VII Avenue, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, Mestan J, O'Reilly T, Traxler P, Chaudhuri B, Fretz H, Zimmermann J, Meyer T, Caravatti G, Furet P, Manley PW. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Pharmacol Ther 2002; 93:79-98. [PMID: 12191602 DOI: 10.1016/s0163-7258(02)00179-1] [Citation(s) in RCA: 222] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many components of mitogenic signaling pathways in normal and neoplastic cells have been identified, including the large family of protein kinases, which function as components of signal transduction pathways, playing a central role in diverse biological processes, such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases caused by abnormalities in these signaling pathways is widely considered a promising approach for drug development. Because of their deregulation in human cancers, protein kinases, such as Bcr-Abl, those in the epidermal growth factor-receptor (HER) family, the cell cycle regulating kinases such as the cyclin-dependent kinases, as well as the vascular endothelial growth factor-receptor kinases involved in the neo-vascularization of tumors, are among the protein kinases considered as prime targets for the development of selective inhibitors. These drug-discovery efforts have generated inhibitors and low-molecular weight therapeutics directed against the ATP-binding site of various protein kinases that are in various stages of development (up to Phase II/III clinical trials). Three examples of inhibitors of protein kinases are reviewed, including low-molecular weight compounds targeting the cell cycle kinases; a potent and selective inhibitor of the HER1/HER2 receptor tyrosine kinase, the pyrollopyrimidine PKI166; and the 2-phenyl-aminopyrimidine STI571 (Glivec(R), Gleevec) a targeted drug therapy directed toward Bcr-Abl, the key player in chronic leukemia (CML). Some members of the HER family of receptor tyrosine kinases, in particular HER1 and HER2, have been found to be overexpressed in a variety of human tumors, suggesting that inhibition of HER signaling would be a viable antiproliferative strategy. The pyrrolo-pyrimidine PKI166 was developed as an HER1/HER2 inhibitor with potent in vitro antiproliferative and in vivo antitumor activity. Based upon its clear association with disease, the Bcr-Abl tyrosine kinase in CML represents the ideal target to validate the clinical utility of protein kinase inhibitors as therapeutic agents. In a preclinical model, STI571 (Glivec(R), Gleevec) showed potent in vitro and in vivo antitumor activity that was selective for Abl, c-Kit, and the platelet-derived growth factor-receptor. Phase I/II studies demonstrated that STI571 is well tolerated, and that it showed promising hematological and cytogenetic responses in CML and clinical responses in the c-Kit-driven gastrointestinal tumors.
Collapse
Affiliation(s)
- Doriano Fabbro
- Department of Oncology, Novartis Pharma Inc., WKL-125.4.10, CH-4002, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Strategies for rationally manipulating cell behavior in cell-based technologies and molecular therapeutics and understanding effects of environmental agents on physiological systems may be derived from a mechanistic understanding of underlying signaling mechanisms that regulate cell functions. Three crucial attributes of signal transduction necessitate modeling approaches for analyzing these systems: an ever-expanding plethora of signaling molecules and interactions, a highly interconnected biochemical scheme, and concurrent biophysical regulation. Because signal flow is tightly regulated with positive and negative feedbacks and is bidirectional with commands traveling both from outside-in and inside-out, dynamic models that couple biophysical and biochemical elements are required to consider information processing both during transient and steady-state conditions. Unique mathematical frameworks will be needed to obtain an integrated perspective on these complex systems, which operate over wide length and time scales. These may involve a two-level hierarchical approach wherein the overall signaling network is modeled in terms of effective "circuit" or "algorithm" modules, and then each module is correspondingly modeled with more detailed incorporation of its actual underlying biochemical/biophysical molecular interactions.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
30
|
Abstract
Almost all forms of end stage renal disease (ESRD) are characterised by progressive interstitial fibrosis and tubular atrophy. Since most forms of chronic renal failure are initiated by inflammatory processes, anti-inflammatory strategies can be successful, if initiated early, in preventing progression of the disease process. Unfortunately, in most cases the disease is only detected clinically following robust progression of interstitial fibrosis. In these patients, control of secondary risk factors, such as hypertension and hyperglycaemia, can slow the progression rate but cannot stop the process completely. Certainly, ACE inhibitors remain the mainstay of preserving renal function. However, additional therapies are needed for the effective treatment of progressive renal fibrosis. A number of compounds have shown some very potent antifibrotic properties in vitro and in vivo, and are currently undergoing further evaluation. This review discusses the most promising among them. However, few of the therapeutic agents discussed here have been tested clinically. Studies evaluating the potential of a number of these have just commenced whereas for many others clinical use is still many years away. However, some very promising reagents may enhance our clinical arsenal within a relatively short period of time.
Collapse
Affiliation(s)
- F Strutz
- Department of Nephrology and Rheumatology,Georg-August-University, Robert-Koch-Str. 40,37075 Göttingen, Germany.
| |
Collapse
|
31
|
Levitzki A. The selectivity of small molecules towards protein tyrosine kinases. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:71-80. [PMID: 11394048 DOI: 10.1007/978-3-662-04645-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Levitzki
- Hebrew University of Jerusalem, Alexander Institute of Life Sciences, Department of Biological Chemistry, Jerusalem 91904, Israel
| |
Collapse
|
32
|
Tanaka K, Fujimoto Y, Suzuki M, Suzuki Y, Ohtake T, Saito H, Kohgo Y. PI3-kinase p85alpha is a target molecule of proline-rich antimicrobial peptide to suppress proliferation of ras-transformed cells. Jpn J Cancer Res 2001; 92:959-67. [PMID: 11572764 PMCID: PMC5926840 DOI: 10.1111/j.1349-7006.2001.tb01187.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PR-39, which is an endogenous antimicrobial peptide, can bind to Src homology 3 domains of the NADPH complex protein p47(phox) and the signaling adapter protein p130(Cas). Recently, we have reported that PR-39 gene transduction altered invasive activity and actin structure of human hepatocellular carcinoma cells, suggesting that this peptide affects cellular signaling due to its proline-rich motif. In order to clarify the mechanism of the PR-39 functions, we transfected the PR-39 gene into mouse NIH3T3 cells which had already been transformed with human activated k-ras gene. The PR-39 gene transfectant showed a reorganization of actin structure and suppression of cell proliferation both in vitro and in vivo. Decreases of MAP (mitogen-activated protein) kinase activity, cyclin D1 expression and JNK activity were observed in the PR-39 gene transfectant. Co-immunoprecipitation analysis revealed that PR-39 binds to PI3-kinase p85alpha, which is a regulatory subunit of PI3-kinase and one of the effectors by which ras induces cytoskeletal changes and stimulates mitogenesis. The PI3-kinase activity of the PR-39 gene transfectant was decreased compared with that of the ras transformant. These results suggest that PR-39 alters actin structure and cell proliferation rate by binding to PI3-kinase p85alpha and suppressing the PI3-kinase activity.
Collapse
Affiliation(s)
- K Tanaka
- Third Department of Internal Medicine, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Burke TR, Yao ZJ, Liu DG, Voigt J, Gao Y. Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Biopolymers 2001; 60:32-44. [PMID: 11376431 DOI: 10.1002/1097-0282(2001)60:1<32::aid-bip1002>3.0.co;2-i] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The central roles played by protein-tyrosine kinase (PTK)-dependent signal transduction in normal cellular regulation and homeostasis have made inappropriate or aberrant functions of certain of these pathways contributing factors to a variety of diseases, including several cancers. For this reason, development of PTK signaling inhibitors has evolved into an important approach toward new therapeutics. Since in these pathways phosphotyrosyl (pTyr) residues provide unique and defining functions either by their creation under the catalysis of PTKs, their recognition and binding by protein modules such as SH2 and phosphotyrosyl binding (PTB) domains, or their destruction by protein-tyrosine phosphatases, pTyr mimetics provide useful general starting points for inhibitor design. Important considerations in the development of such pTyr mimetics include enzymatic stability (particularly toward PTPs), high affinity recognition by target pTyr binding proteins, and good cellular bioavailability. Although small molecule, nonpeptide inhibitors may be ultimate objectives of inhibitor development, peptides frequently serve as display platforms for pTyr mimetics, which afford useful and conceptually straightforward starting points in the development process. Reported herein is a limited overview of pTyr mimetic development as it relates to peptide-based agents. Of particular interest are recent findings that highlight potential limitations of peptides as display platforms for the identification of small molecule leads. One conclusion that results from this work is that while peptide-based approaches toward small molecule inhibitor design are often intellectually satisfying from a structure-based perspective, extrapolation of negative findings to small molecule, nonpeptide contexts should be undertaken with extreme caution.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
34
|
Asthagiri AR, Lauffenburger DA. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol Prog 2001; 17:227-39. [PMID: 11312698 DOI: 10.1021/bp010009k] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exploiting signaling pathways for the purpose of controlling cell function entails identifying and manipulating the information content of intracellular signals. As in the case of the ubiquitously expressed, eukaryotic mitogen-activated protein kinase (MAPK) signaling pathway, this information content partly resides in the signals' dynamical properties. Here, we utilize a mathematical model to examine mechanisms that govern MAPK pathway dynamics, particularly the role of putative negative feedback mechanisms in generating complete signal adaptation, a term referring to the reset of a signal to prestimulation levels. In addition to yielding adaptation of its direct target, feedback mechanisms implemented in our model also indirectly assist in the adaptation of signaling components downstream of the target under certain conditions. In fact, model predictions identify conditions yielding ultra-desensitization of signals in which complete adaptation of target and downstream signals culminates even while stimulus recognition (i.e., receptor-ligand binding) continues to increase. Moreover, the rate at which signal decays can follow first-order kinetics with respect to signal intensity, so that signal adaptation is achieved in the same amount of time regardless of signal intensity or ligand dose. All of these features are consistent with experimental findings recently obtained for the Chinese hamster ovary (CHO) cell lines (Asthagiri et al., J. Biol. Chem. 1999, 274, 27119-27127). Our model further predicts that although downstream effects are independent of whether an enzyme or adaptor protein is targeted by negative feedback, adaptor-targeted feedback can "back-propagate" effects upstream of the target, specifically resulting in increased steady-state upstream signal. Consequently, where these upstream components serve as nodes within a signaling network, feedback can transfer signaling through these nodes into alternate pathways, thereby promoting the sort of signaling cross-talk that is becoming more widely appreciated.
Collapse
Affiliation(s)
- A R Asthagiri
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | | |
Collapse
|
35
|
|
36
|
Affiliation(s)
- Ilia Fishbein
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Chorny
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gershon Golomb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Abstract
Protein-tyrosine kinases (PTKs) and their associated signaling pathways are crucial for the regulation of numerous cell functions including growth, mitogenesis, motility, cell-cell interactions, metabolism, gene transcription, and the immune response. Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation states of proteins are governed by the opposing actions of PTKs and protein-tyrosine phosphatases (PTPs). In this light, both PTKs and PTPs play equally important roles in signal transduction in eukaryotic cells, and comprehension of mechanisms behind the reversible pTyr-dependent modulation of protein function and cell physiology must necessarily encompass the characterization of PTPs as well as PTKs. In spite of the large number of PTPs identified to date and the emerging role played by PTPs in disease, a detailed understanding of the role played by PTPs in signaling pathways has been hampered by the absence of PTP-specific agents. Such PTP-specific inhibitors could potentially serve as useful tools in determining the physiological significance of protein tyrosine phosphorylation in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. The goal of this review is therefore to summarize current understandings of PTP structure and mechanism of catalysis and the relationship of these to PTP inhibitor development. The review is organized such that enzyme structure is covered first, followed by mechanisms of catalysis then PTP inhibitor development. In discussing PTP inhibitor development, nonspecific inhibitors and those obtained by screening methods are initially presented with the focus then shifting to inhibitors that utilize a more structure-based rationale.
Collapse
Affiliation(s)
- T R Burke
- Laboratory of Medicinal Chemistry, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
38
|
Bossù P, Vanoni M, Wanke V, Cesaroni MP, Tropea F, Melillo G, Asti C, Porzio S, Ruggiero P, Di Cioccio V, Maurizi G, Ciabini A, Alberghina L. A dominant negative RAS-specific guanine nucleotide exchange factor reverses neoplastic phenotype in K-ras transformed mouse fibroblasts. Oncogene 2000; 19:2147-54. [PMID: 10815806 DOI: 10.1038/sj.onc.1203539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras proteins are small GTPases playing a pivotal role in cell proliferation and differentiation. Their activation state depends on the competing action of GTPase Activating Proteins (GAP) and Guanine nucleotide Exchange Factors (GEF). A tryptophan residue (Trp1056 in CDC25Mm-GEF), conserved in all ras-specific GEFs identified so far has been previously shown to be essential for GEF activity. Its substitution with glutamic acid results in a catalytically inactive mutant, which is able to efficiently displace wild-type GEF from p21ras and to originate a stable ras/GEF binary complex due to the reduced affinity of the nucleotide-free ras/GEF complex for the incoming nucleotide. We show here that this 'ras-sequestering property' can be utilized to attenuate ras signal transduction pathways in mouse fibroblasts transformed by oncogenic ras. In fact overexpression of the dominant negative GEFW1056E in stable transfected cells strongly reduces intracellular ras-GTP levels in k-ras transformed fibroblasts. Accordingly, the transfected fibroblasts revert to wild-type phenotype on the basis of morphology, cell cycle and anchorage independent growth. The reversion of the transformed phenotype is accompanied by DNA endoreduplication. The possible use of dominant negative ras-specific GEFs as a tool to down-regulate tumor growth is discussed.
Collapse
Affiliation(s)
- P Bossù
- Centro Ricerche Dompé, L'Aquila, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Siow YL, Choy PC, Leung WM, O K. Effect of Flos carthami on stress-activated protein kinase activity in the isolated reperfused rat heart. Mol Cell Biochem 2000; 207:41-7. [PMID: 10888225 DOI: 10.1023/a:1017266628572] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The apoptotic death of cardiomyocytes due to ischemia/reperfusion is one of the major complications of heart disease. Ischemia/reperfusion has been shown to lead to the activation of the stress-activated protein (SAP) kinases and the p38/reactivating kinase (p38/RK). In this study, the direct effect of an aqueous Flos carthami (FC) extract on SAP kinases was investigated. When isolated rat hearts were perfused by Langendorff mode with media containing FC extract prior to the induction of global ischemia and the subsequent reperfusion, SAP kinase activity was inhibited 95%. Untreated ischemic/reperfused hearts showed a 57% elevation in the activity of SAP kinase. The in vitro effect of these FC extracts on SAP kinase was also tested. At a concentration of 10 microg/ml, the aqueous FC extract resulted in 50% inhibition of SAP kinase activity in ischemic heart tissue. Our results showed that FC affected both the interaction of SAP kinase with c-jun as well as the phosphotransferase reaction. These results clearly demonstrate that extracts from Flos carthami exerted inhibitory effects on SAP kinase. The administration of the FC extract may lead to a modulation of the apoptotic effect of SAP kinase activation induced during ischemia/reperfusion.
Collapse
Affiliation(s)
- Y L Siow
- Department of Pharmacology, Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
40
|
Fishbein I, Chorny M, Rabinovich L, Banai S, Gati I, Golomb G. Nanoparticulate delivery system of a tyrphostin for the treatment of restenosis. J Control Release 2000; 65:221-9. [PMID: 10699282 DOI: 10.1016/s0168-3659(99)00244-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Restenosis, the principal complication of percutaneous transluminal coronary angioplasty is responsible for the 35-40% long-term failure rate following coronary revascularization. The neointimal formation, a morphological substrate of restenosis, is dependent on smooth muscle cells (SMC) proliferation and migration. Signal transduction through the platelet-derived growth factor (PDGF)/PDGF receptors system is involved in the process of post-angioplasty restenosis. The unsuccessful attempts to control restenosis by systemic pharmacological interventions have prompted many researchers to look for more promising therapeutic approaches such as local drug delivery. Tyrphostins are low molecular weight inhibitors of protein tyrosine kinases. We assessed the release kinetics and in vivo effects of nanoparticles containing PDGF-Receptor beta (PDGFRbeta) tyrphostin inhibitor, AG-1295. AG-1295-loaded poly(DL-lactide) (PLA) nanoparticles were prepared by spontaneous emulsification/solvent displacement technique. In vitro release rate and the impact of drug/polymer ratio on the nanoparticle size were determined. The degree of tyrosine phosphorylation was assessed by Western blot with phosphotyrosine-specific antibody in rat SMC extracts. Several bands characteristic of PDGF BB-stimulated SMC disappeared or weakened following tyrphostin treatment. Local intraluminal delivery of AG-1295-loaded PLA nanoparticles to the injured rat carotid artery had no effect on proliferative activity in medial and neointimal compartments of angioplastisized arteries, indicating a primary antimigration effect of AG-1295 on medial SMC.
Collapse
Affiliation(s)
- I Fishbein
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12065, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Ostrowski J, Woszczynski M, Kowalczyk P, Wocial T, Hennig E, Trzeciak L, Janik P, Bomsztyk K. Increased activity of MAP, p70S6 and p90rs kinases is associated with AP-1 activation in spontaneous liver tumours, but not in adjacent tissue in mice. Br J Cancer 2000; 82:1041-50. [PMID: 10737387 PMCID: PMC2374428 DOI: 10.1054/bjoc.1999.1040] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth factor-responsive protein kinases regulate expression of genes involved in cell cycle control, cell proliferation and differentiation. To better understand the role of these kinases in the abnormal proliferation of malignant cells, we examined basal and epidermal growth factor (EGF)-inducible mitogen-activated protein kinase (MAPK), p70S6k and p90rsk activities in spontaneous hepatocellular neoplasms (adenomas and carcinomas) from CBA-T6 mice and in L1 sarcoma tumours implanted in livers of BALB/c mice. In spontaneous and implanted hepatic tumours, basal cytoplasmic and nuclear MAPK, p70S6k and p90rsk activities were significantly higher compared to the activities found in the part of the liver uninvolved by the tumour. Interestingly, the activities of these enzymes in the uninvolved tissue of the livers harbouring the tumour were higher compared to the livers from control mice. Basal kinase activities correlated with tumour morphology; they were lower in adenomas than in carcinomas and sarcomas. In contrast to basal activities, EGF-triggered kinase responses in normal livers and hepatic tumours were indistinguishable. Activating protein-1 (AP-1) DNA-binding activity was detected in tumours but not in the adjacent tissues. Constitutively activated kinases and AP-1 transcription factor found in hepatic malignancies are reminiscent of cells activated by EGF, suggesting that EGF and its intracellular effectors play a role in these malignancies.
Collapse
Affiliation(s)
- J Ostrowski
- Department of Gastroenterology, Medical Center of Postgraduate Education in the Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warszawa, Poland
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Di Paolo A, Danesi R, Nardini D, Bocci G, Innocenti F, Fogli S, Barachini S, Marchetti A, Bevilacqua G, Del Tacca M. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumour cells. Br J Cancer 2000; 82:905-12. [PMID: 10732765 PMCID: PMC2374379 DOI: 10.1054/bjoc.1999.1018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to assess the cytotoxicity of manumycin, a specific inhibitor of farnesyl:protein transferase, as well as its effects on protein isoprenylation and kinase-dependent signal transduction in COLO320-DM human colon adenocarcinoma which harbours a wild-type K-ras gene. Immunoblot analysis of isolated cell membranes and total cellular lysates of COLO320-DM cells demonstrated that manumycin dose-dependently reduced p21 ras farnesylation with a 50% inhibitory concentration (IC50) of 2.51 +/- 0.11 microM and 2.68 +/- 0.20 microM, respectively, while the geranylgeranylation of p21 rhoA and p21rap1 was not affected. Manumycin dose-dependently inhibited (IC50 = 2.40 +/- 0.67 microM) the phosphorylation of the mitogen-activated protein kinase/extracellular-regulated kinase 2 (p42MAPK/ERK2), the main cytoplasmic effector of p21ras, as well as COLO320-DM cell growth (IC50 = 3.58 +/- 0.27 microM) without affecting the biosynthesis of cholesterol. Mevalonic acid (MVA, 100 microM), a substrate of the isoprenoid synthesis, was unable to protect COLO320-DM cells from manumycin cytotoxicity. Finally, manumycin 1-25 microM for 24-72 h induced oligonucleosomal fragmentation in a dose- and time-dependent manner and MVA did not protect COLO320-DM cells from undergoing DNA cleavage. The present findings indicate that the inhibition of p21ras processing and signal transduction by manumycin is associated with marked inhibition of cell proliferation and apoptosis in colon cancer cells and the effect on cell growth does not require the presence of a mutated ras gene for maximal expression of chemotherapeutic activity.
Collapse
Affiliation(s)
- A Di Paolo
- Department of Oncology, University of Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Zwick E, Hackel PO, Prenzel N, Ullrich A. The EGF receptor as central transducer of heterologous signalling systems. Trends Pharmacol Sci 1999; 20:408-12. [PMID: 10577253 DOI: 10.1016/s0165-6147(99)01373-5] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cross-talk between heterologous signalling systems of the cell represents a new dimension of complexity in the molecular communication network that governs a great variety of physiological processes. In pathophysiologically transformed cells, key elements of this network could offer unique opportunities for pharmacological intervention. In this article, the current state of knowledge regarding the role of epidermal growth factor (EGF) in such a network is described and the recent advances made in the elucidation of the mechanism underlying EGF receptor transactivation are discussed.
Collapse
Affiliation(s)
- E Zwick
- Department of Molecular Biology, Max-Planck Institut für Biochemie, Martinsried, Germany.
| | | | | | | |
Collapse
|
45
|
Ayoubi TA, Jansen E, Meulemans SM, Van de Ven WJ. Regulation of HMGIC expression: an architectural transcription factor involved in growth control and development. Oncogene 1999; 18:5076-87. [PMID: 10490844 DOI: 10.1038/sj.onc.1202881] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The HMGIC gene has been implicated in the control of cell proliferation and development. We show here that HMGIC has multiple mRNA isoforms that arise by transcription initiation from alternative tandem promoters. These transcripts are not only differentially expressed between cell lines, but they can also differ within an individual cell line, in response to particular stimuli. Whereas quiescent 3T3-L1 preadipocytes express low levels of HMGIC mRNA, stimulation by serum results in a dramatic upregulation with the characteristics of a delayed-early response gene. Characterization of involved signal transduction pathways showed that both FGF-1 and PDGF-BB are strong inducers of HMGIC expression mediated via both the PI-3 kinase and MAP kinase pathways. In order to characterize the regulatory elements, sequences upstream of the translation initiation site of HMGIC were assayed for promoter activity. The HMGIC 5' flanking sequences had constitutive promoter activity in all cell lines tested, suggesting that HMGIC is regulated by negative regulatory elements that were not present in the 5'-flanking regions analysed here.
Collapse
Affiliation(s)
- T A Ayoubi
- Laboratory for Molecular Oncology, Center for Human Genetics, University of Leuven, Flanders Interuniversity Institute for Biotechnology, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
46
|
Abstract
Reporter gene technology is widely used to monitor the cellular events associated with signal transduction and gene expression. Based upon the splicing of transcriptional control elements to a variety of reporter genes (with easily measurable phenotypes), it "reports" the effects of a cascade of signalling events on gene expression inside cells. The principal advantage of these assays is their high sensitivity, reliability, convenience, and adaptability to large-scale measurements. This review summarises the current status of reporter gene technology including its role in monitoring gene transfer and expression and its development as a biological screen. With the advances in this technology and in detection methods, it is likely that luciferase and green fluorescent protein will become increasingly popular for the non-invasive monitoring of gene expression in living tissues and cells. Such techniques will be important in defining the molecular events associated with gene transcription, which has implications for our understanding of the molecular basis of disease and will influence our approach to gene therapy and drug development.
Collapse
Affiliation(s)
- L H Naylor
- The Department of Biosciences, The University of Kent, Canterbury, UK.
| |
Collapse
|
47
|
Aghazadeh B, Rosen MK. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. CHEMISTRY & BIOLOGY 1999; 6:R241-6. [PMID: 10467125 DOI: 10.1016/s1074-5521(99)80108-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SH3 and WW domains are involved in a variety of intracellular signaling pathways. Recent work has shed light on the mechanism whereby these signaling modules recognize prolines in polyproline ligands, which has implications in the design of ligands selectively targeting these interactions.
Collapse
Affiliation(s)
- B Aghazadeh
- Cellular Biochemistry & Biophysics Program, Memorial Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
48
|
Karni R, Jove R, Levitzki A. Inhibition of pp60c-Src reduces Bcl-XL expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 1999; 18:4654-62. [PMID: 10467412 DOI: 10.1038/sj.onc.1202835] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumors that overexpress HER-2/neu receptor or exhibit enhanced EGFR signaling have been reported to possess constitutively activated Src family kinases, especially pp60c-Src. High levels of pp60c-Src activity have also been reported for cell lines that overexpress the EGFR or the chimeric EGFR-HER-2 receptor. It has therefore been suggested that Src kinases may contribute significantly to the oncogenic phenotype of these cells and to the degree of malignancy of tumors that overexpress EGFR family receptors. In this study we show that the induced expression of c-SRC antisense RNA or the application of a selective Src kinase inhibitor induces growth arrest, programmed cell death and reverses the transformed properties of cells that overexpress EGFR or HER-2 receptors. We show that inhibition of Src kinase expression or activity results in the reduction of Stat3 tyrosine phosphorylation, decline of Bcl-XL expression, and induction of cell death. Using a construct in which the promoter of Bcl-X, which possesses putative Stat3 sites, is tethered to the luciferase reporter gene, we show that inhibition of Src activity or expression induces a decline in Bcl-X expression. We also show that the expression of activated Src induces activation of the Bcl-X promoter. This activation is inhibited by the expression of kinase dead Src or of Stat3beta, the dominant-negative form of Stat3. Taken together, these results support the hypothesis that Src positively regulates the transformed phenotype of cells overexpressing EGFR family kinases. Furthermore, these results also suggest that Src positively regulates Bcl-XL expression via Stat3 activation and thus acts not only as a potent mitogenic signaling element, but also as an anti-apoptotic signaling protein. The combination of both activities probably confers upon activated Src its oncogenic activity. Since Src kinase is activated in many tumors, pp60c-Src kinase inhibitors may prove useful as anti-cancer agents for many types of cancer.
Collapse
Affiliation(s)
- R Karni
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
49
|
Waltenberger J, Uecker A, Kroll J, Frank H, Mayr U, Bjorge JD, Fujita D, Gazit A, Hombach V, Levitzki A, Böhmer FD. A dual inhibitor of platelet-derived growth factor beta-receptor and Src kinase activity potently interferes with motogenic and mitogenic responses to PDGF in vascular smooth muscle cells. A novel candidate for prevention of vascular remodeling. Circ Res 1999; 85:12-22. [PMID: 10400906 DOI: 10.1161/01.res.85.1.12] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PP1 has previously been described as an inhibitor of the Src-family kinases p56(Lck) and FynT. We have therefore decided to use PP1 to determine the functional role of Src in platelet-derived growth factor (PDGF)-induced proliferation and migration of human coronary artery smooth muscle cells (HCASMCs). A synthetic protocol for PP1/AGL1872 has been developed, and the inhibitory activity of PP1/AGL1872 against Src was examined. PP1/AGL1872 potently inhibited recombinant p60(c-src) in vitro and Src-dependent tyrosine phosphorylation in p60(c-srcF572)-transformed NIH3T3 cells. PP1/AGL1872 also potently inhibited PDGF-stimulated migration of HCASMCs, as determined in the modified Boyden chamber, as well as PDGF-stimulated proliferation of HCASMCs. Surprisingly, in addition to inhibition of Src kinase, PP1/AGL1872 was found to inhibit PDGF receptor kinase in cell-free assays and in various types of intact cells, including HCASMCs. PP1/AGL1872 did not inhibit phosphorylation of the vascular endothelial growth factor receptor KDR (VEGF receptor-2; kinase-insert domain containing receptor) in cell-free assays as well as in intact human coronary artery endothelial cells. In line with the insensitivity of KDR, PP1/AGL1872 had only a weak effect on vascular endothelial growth factor-stimulated migration of human coronary artery endothelial cells. On treatment of cells expressing different receptor tyrosine kinases, the activities of the epidermal growth factor receptor, fibroblast growth factor receptor-1, and insulin-like growth factor-1 receptor were resistant to PP1/AGL1872, whereas PDGF alpha-receptor was susceptible, albeit to a lesser extent than PDGF beta-receptor. These data suggest that the previously described tyrosine kinase inhibitor PP1/AGL1872 is not selective for the Src family of tyrosine kinases. It is also a potent inhibitor of the PDGF beta-receptor kinase but is not a ubiquitous tyrosine kinase inhibitor. PP1/AGL1872 inhibits migration and proliferation of HCASMCs probably by interference with 2 distinct tyrosine phosphorylation events, creating a novel and potent inhibitory principle with possible relevance for the treatment of pathological HCASMC activity, such as vascular remodeling and restenosis.
Collapse
Affiliation(s)
- J Waltenberger
- Department of Internal Medicine, Ulm University Medical Center, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nakayama GR, Parandoosh Z. An immunoassay for assessment of receptor tyrosine kinase autophosphorylation. J Immunol Methods 1999; 225:67-74. [PMID: 10365783 DOI: 10.1016/s0022-1759(99)00029-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have developed an immunoassay that can be used to assess autophosphorylation activity of receptor tyrosine kinases, yet does not require the use of synthetic peptide substrates or anti-receptor antibodies. In the assay described here, receptor autophosphorylation and detection take place entirely within the wells of 96 well microplates coated with Protein G and an anti-phosphotyrosine antibody. As the kinase reaction takes place, the antibodies capture the phosphorylated products in situ. Phosphorylation levels of captured receptors are measured by scintillation counting. Assay parameters were validated using A431 cell extracts containing EGF Receptor. The autophosphorylation capture assay is a simple and rapid method which can be adapted for use with robotics for qualitative HTS of potential inhibitors to any tyrosine kinase of interest.
Collapse
|