1
|
Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal 2024; 22:265. [PMID: 38741195 DOI: 10.1186/s12964-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Cisplatin (CDDP) is a widely used first-line chemotherapeutic drug in various cancers. However, CDDP resistance is frequently observed in cancer patients. Therefore, it is required to evaluate the molecular mechanisms associated with CDDP resistance to improve prognosis among cancer patients. Integrins are critical factors involved in tumor metastasis that regulate cell-matrix and cell-cell interactions. They modulate several cellular mechanisms including proliferation, invasion, angiogenesis, polarity, and chemo resistance. Modification of integrin expression levels can be associated with both tumor progression and inhibition. Integrins are also involved in drug resistance of various solid tumors through modulation of the tumor cell interactions with interstitial matrix and extracellular matrix (ECM). Therefore, in the present review we discussed the role of integrin protein family in regulation of CDDP response in tumor cells. It has been reported that integrins mainly promoted the CDDP resistance through interaction with PI3K/AKT, MAPK, and WNT signaling pathways. They also regulated the CDDP mediated apoptosis in tumor cells. This review paves the way to suggest the integrins as the reliable therapeutic targets to improve CDDP response in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tang G, Sun K, Ding G, Wu J. Low Expression of TSTD2 Serves as a Biomarker for Poor Prognosis in Kidney Renal Clear Cell Carcinoma. Int J Gen Med 2023; 16:1437-1453. [PMID: 37114071 PMCID: PMC10126726 DOI: 10.2147/ijgm.s408854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Kidney renal clear cell carcinoma (KIRC) is a common cancer in people worldwide, and one of the main issues is developing suitable biomarkers. This study aims to investigate the expression of TSTD2 in KIRC and its impact on prognosis. Methods RNA sequencing data from TCGA and GTEx were gathered to examine the functional enrichment of TSTD2-related differentially expressed genes (DEGs) using GO/KEGG, GSEA, immunocyte permeation analysis, and protein-protein interaction (PPI) network analysis. The Kaplan‒Meier-Cox regression model and the prognostic nomograph model were used to assess the clinical importance of TSTD2 in KIRC. R software was used to analyze the included studies. Finally, verification of cells and tissues was performed using immunohistochemical staining and quantitative real‒time PCR. Results In contrast to normal samples, it was discovered that TSTD2 was underexpressed in a number of malignancies, including KIRC. Furthermore, in 163 KIRC samples, low expression of TSTD2 was linked to a poor prognosis, as were subgroups with age greater than 60, the integrin pathway, the development of elastic fibers, and high TNM stage, pathologic stage, and histologic grade (P < 0.05). Age and TNM stage were included in the nomogram prognostic model, and low TSTD2 was a prognostic predictor that could be used independently in Cox regression analysis. In addition, 408 DEGs with 111 upregulated genes and 297 downregulated genes were found between the high- and low-expression groups. Conclusion The diminished expression of TSTD2 may serve as a biomarker for unfavorable outcomes in KIRC, and holds potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Gonglin Tang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
| | - Kai Sun
- Urology Department, Shandong Province Hospital, Shandong University, Jinan, 250021, People’s Republic of China
| | - Guixin Ding
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
| | - Jitao Wu
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China
- Correspondence: Jitao Wu, Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, People’s Republic of China, Email
| |
Collapse
|
3
|
Moura CEB, Queiroz Neto MF, Braz JKFS, de Medeiros Aires M, Silva Farias NB, Barboza CAG, Cavalcanti Júnior GB, Rocha HAO, Alves Junior C. Effect of plasma-nitrided titanium surfaces on the differentiation of pre-osteoblastic cells. Artif Organs 2019; 43:764-772. [PMID: 30779451 DOI: 10.1111/aor.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/07/2019] [Accepted: 02/16/2019] [Indexed: 12/15/2022]
Abstract
A titanium surface nitrided by plasma contains nitrogen ions that guarantee resistance to corrosion and biocompatibility. Despite this, no descriptions concerning the influence of the expression of cell adhesion proteins and their influence on osteogenic cell differentiation are available. Thus, the present study aimed to assess the response of murine pre-osteoblastic cells (MC3T3-E1) cultured on nitrided titanium surfaces. Pre-osteoblastic cells were grown on polished titanium discs, used as controls, and on previously characterized plasma-nitrided titanium discs. Cells from both groups were submitted to the MTT cell viability test. The expressions of α5, α2, and β1 integrin were assessed by flow cytometry and immunofluorescence, while osteocalcin expression was assessed by flow cytometry. The nitrided surface presented higher α2 and β1 integrin expressions, as well as osteocalcin expression, when compared to the polished surface, with no alterations in cell viability. These findings seem to suggest that the plasma nitriding treatment produces a titanium surface with the potential for effective in vitro osseointegration.
Collapse
Affiliation(s)
- Carlos Eduardo B Moura
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | - Moacir F Queiroz Neto
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | - Janine Karla F S Braz
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | | | - Naisandra B Silva Farias
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | - Carlos Augusto G Barboza
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | | | - Hugo Alexandre O Rocha
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| | - Clodomiro Alves Junior
- Department of Animal Sciences, Federal Rural University of Semiarid Region (UFERSA), Mossoró, Brazil
| |
Collapse
|
4
|
Lopes HB, Freitas GP, Elias CN, Tye C, Stein JL, Stein GS, Lian JB, Rosa AL, Beloti MM. Participation of integrin β3 in osteoblast differentiation induced by titanium with nano or microtopography. J Biomed Mater Res A 2019; 107:1303-1313. [PMID: 30707485 DOI: 10.1002/jbm.a.36643] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/03/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
The major role of integrins is to mediate cell adhesion but some of them are involved in the osteoblasts-titanium (Ti) interactions. In this study, we investigated the participation of integrins in osteoblast differentiation induced by Ti with nanotopography (Ti-Nano) and with microtopography (Ti-Micro). By using a PCR array, we observed that, compared with Ti-Micro, Ti-Nano upregulated the expression of five integrins in mesenchymal stem cells, including integrin β3, which increases osteoblast differentiation. Silencing integrin β3, using CRISPR-Cas9, in MC3T3-E1 cells significantly reduced the osteoblast differentiation induced by Ti-Nano in contrast to the effect on T-Micro. Concomitantly, integrin β3 silencing downregulated the expression of integrin αv, the parent chain that combines with other integrins and several components of the Wnt/β-catenin and BMP/Smad signaling pathways, all involved in osteoblast differentiation, only in cells cultured on Ti-Nano. Taken together, our results showed the key role of integrin β3 in the osteogenic potential of Ti-Nano but not of Ti-Micro. Additionally, we propose a novel mechanism to explain the higher osteoblast differentiation induced by Ti-Nano that involves an intricate regulatory network triggered by integrin β3 upregulation, which activates the Wnt and BMP signal transductions. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1303-1313, 2019.
Collapse
Affiliation(s)
- Helena B Lopes
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Gileade P Freitas
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos N Elias
- Biomaterials Laboratory, Instituto Militar de Engenharia, Rio de Janeiro, RJ, Brazil
| | - Coralee Tye
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- Department of Biochemistry, University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Adalberto L Rosa
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Marcio M Beloti
- Cell Culture Laboratory, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
|
6
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
7
|
Abstract
More than 100 years have passed since Elie Metchnikoff discovered phagocytes. As molecular biological techniques have been developed and improved, we have gained deeper knowledge about the molecular mechanisms of immunological responses to invasion. The innate immune system is the inborn defense mechanism and the first line of defense against all kinds of pathogenic organisms, including bacteria, fungi, viruses, etc. Innate immunity was originally considered to comprise non-specific reactions. However, we now know that innate immune systems develop molecular mechanisms specific to pathogenic microorganisms. In the 1970s, a neutral glycosphingolipid lactosylceramide (LacCer) was found to bind specifically to several kinds of microorganisms. LacCer is highly expressed in phagocytes and epithelial cells. LacCer forms lipid rafts on human neutrophils and is involved in neutrophil migration, phagocytosis, and superoxide generation. In contrast, mouse neutrophils express relatively little LacCer on their cell surfaces. Thus, it is difficult to observe LacCer-mediated innate immunological reactions in mice. Mycobacterium tuberculosis is a typical pathogen for humans but not mice in general. Interestingly, M. tuberculosis can escape killing by neutrophils through regulation of the LacCer-enriched lipid raft-mediated immunological reactions of these cells. These observations indicate that LacCer-enriched lipid rafts play an essential role in human innate immunity. This review describes LacCer-mediated innate immunity in humans.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection-control Nursing, Juntendo University, Graduate School of Health-Care and Nursing.,Institute for Environmental and Gender Specific Medicine, Juntendo University, Graduate School of Medicine
| |
Collapse
|
8
|
Iwabuchi K. Gangliosides in the Immune System: Role of Glycosphingolipids and Glycosphingolipid-Enriched Lipid Rafts in Immunological Functions. Methods Mol Biol 2018; 1804:83-95. [PMID: 29926405 DOI: 10.1007/978-1-4939-8552-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although individuals are constantly exposed to infectious agents, these agents are generally resisted by the innate and acquired immune systems. Both the innate and acquired immune systems protect against invading organisms, but they differ functionally in several ways. The innate immune system is the body's inborn defense mechanism and the first line of defense against invading organisms, such as bacteria, fungi, and viruses. Glycosphingolipids (GSLs), which are expressed on the outer leaflet of plasma membranes (Murate et al., J Cell Sci 128(8):1627-1638, 2015), are involved in both innate and acquired immunity (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Nakayama et al., Arch Immunol Ther Exp (Warsz) 61(3):217-228, 2013; Rueda, Br J Nutr 98(Suppl 1):S68-73, 2007; Popa and Portoukalian, Pathol Biol (Paris) 51(5):253-255, 2003).Recent studies have indicated that innate immunity is not a "nonspecific" immune system. Large numbers of viruses, bacteria, and bacterial toxins have been reported to bind to host surface carbohydrates, a number of which are components of GSLs (Schengrund, Biochem Pharmacol 65(5):699-707, 2003). Binding studies have also demonstrated that some glycolipids function as receptors for microorganisms and bacterial toxins (Yates and Rampersaud, Ann N Y Acad Sci 845:57-71, 1998). These findings clearly indicate that GSLs are involved in host-pathogen interactions.GSLs are composed of hydrophobic ceramide and hydrophilic sugar moieties (Hakomori, Annu Rev Biochem 50:733-764, 1980). The ceramide moiety of sphingolipids and the cholesterol sterol-ring system are thought to interact via hydrogen bonds and hydrophobic van der Waal's forces (Mukherjee and Maxfield, Annu Rev Cell Dev Biol 20:839-866, 2004). Additional hydrophilic cis interactions among GSL headgroups have been found to promote their lateral associations with surrounding lipid and protein membrane components. These interactions result in the separation in cell membranes of lipid rafts, which are lipid domains rich in GSLs, cholesterol, glycosylphosphatidylinositol (GPI)-anchored proteins and membrane-anchored signaling molecules (Pike, J Lipid Res 47(7):1597-1598, 2006). These GSL-enriched lipid rafts play important roles in immunological functions (Inokuchi et al., Biochim Biophys Acta 1851(1):98-106, 2015; Iwabuchi et al., Mediators Inflamm 2015:120748, 2015; Anderson and Roche, Biochim Biophys Acta 1853(4):775-780, 2015; Zuidscherwoude et al., J Leukoc Biol 95(2):251-263, 2014; Dykstra et al., Annu Rev Immunol 21:457-481, 2003). This introductory chapter describes the roles of GSLs and their lipid rafts in the immune system.
Collapse
Affiliation(s)
- Kazuhisa Iwabuchi
- Infection Control Nursing, Graduate School of Health Care and Nursing, Juntendo University, Chiba, Japan.
- Institute for Environmental and Gender Specific Medicine, Graduate school of Medicine, Juntendo University, Chiba, Japan.
| |
Collapse
|
9
|
Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C. Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2017; 101:3703-3716. [PMID: 28175946 DOI: 10.1007/s00253-017-8158-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/22/2022]
Abstract
Receptor-mediated endocytosis using a β1 integrin-dependent internalization was considered as the primary mechanism for the initiation of mammalian reovirus infection. Bombyx mori cypovirus (BmCPV) is a member of Reoviridae family which mainly infects the midgut epithelium of silkworm; the cell entry of BmCPV is poorly explored. In this study, co-immunoprecipitation (Co-IP), virus overlay protein binding assay (VOPBA), and BmCPV-protein interaction on the polyvinylidene difluoride membrane (BmCPV-PI-PVDF) methods were employed to screen the interacting proteins of BmCPV, and several proteins including integrin beta and receptor for activated protein kinase C (RACK1) were identified as the candidate interacting proteins for establishing the infection of BmCPV. The infectivity of BmCPV was investigated in vivo and in vitro by RNA interference (RNAi) and antibody blocking methods, and the results showed that the infectivity of BmCPV was significantly reduced by either small interfering RNA-mediated silencing of integrin beta and RACK1 or antibody blocking of integrin beta and RACK1. The expression level of integrin beta or RACK1 is not the highest in the silkworm midgut which is a principal target tissue of BmCPV, suggesting that the molecules other than integrin beta or RACK1 might play a key role in determining the tissue tropism of BmCPV infection. The establishment of BmCPV infection depends on other factors, and these factors interacted with integrin beta and RACK1 to form receptor complex for the cell entry of BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Fei Chen
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Simei Wang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- Department of Hematology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- National Engineering Laboratory for Modern Silk, Soochow University, Postal address: No. 199 Ren'ai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Faissner A. REVIEW ■ : Glial Derived Extracellular Matrix Components: Important Roles in Axon Growth and Guidance. Neuroscientist 2016. [DOI: 10.1177/107385849700300610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Axon growth and guidance, and the correct recognition of distant targets by growth cones rank among the most spectacular achievements of the developing nervous system. The establishment and reformation of adequate networks and the plasticity of synaptic connections are vital for the function and the restoration of the nervous system under conditions of health and disease. Therefore, considerable efforts have been devoted to the elucidation of the molecular and cellular bases of the establishment of interneuronal con nections. It is well established that interactions between neurons and astrocytes are of regulatory importance in this context. Thus, astroglia guides migrating neurons and advancing growth cones to their destination. On the other hand, astrocytes design transient boundaries that deflect axons and segregate groups of neurons, and form scars involved in the inhibition of axonal regeneration after lesion. This duplicity of astroglia is presumably mediated by various gene families. Among these, extracellular matrix (ECM) con stituents seem particularly suited to embody and mediate the ambivalence of astrocytes because these compounds appear to exert either conducive or inhibitory/repulsive effects depending on interacting cell types and conditions. Furthermore, ECM constituents are upregulated by astrocytes upon lesion and con tribute to the construction of glial scars. This review focuses on this class of compounds and their possible functions in the wiring of neural networks. NEUROSCIENTIST 3:371-380, 1997
Collapse
|
11
|
Kim MY, Cho WD, Hong KP, Choi DB, Hong JW, Kim S, Moon YR, Son SM, Lee OJ, Lee HC, Song HG. Novel monoclonal antibody against beta 1 integrin enhances cisplatin efficacy in human lung adenocarcinoma cells. J Biomed Res 2016; 30:217-24. [PMID: 27533932 PMCID: PMC4885170 DOI: 10.7555/jbr.30.2016k0005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/03/2022] Open
Abstract
The use of anti-beta 1 integrin monoclonal antibody in lung cancer treatment has proven beneficial. Here, we developed a novel monoclonal antibody (mAb), called P5, by immunizing mice with human peripheral blood mononuclear cells (PBMC). Its anti-tumor effect is now being tested, in a clinical phase III trial, in combinatorial treatments with various chemical drugs. To confirm that P5 indeed binds to beta 1 integrin, cell lysates were immunoprecipitated with commercial anti-beta 1 integrin mAb (TS2/16) and immunoblotted against P5 to reveal a 140 kDa molecular weight band, as expected. Immunoprecipitation with P5 followed by LC/MS protein sequence analysis further verified P5 antigen to be beta 1 integrin. Cisplatin treatment upregulated cell surface expression of beta 1 integrin in A549 cells, while causing inhibition of cell growth. When cells were co-treated with different concentrations of P5 mAb, the cisplatin-mediated inhibitory effect was enhanced in a dose-dependent manner. Our findings show that a combinatorial treatment of P5 mAb and cisplatin in A549 cells resulted in a 30% increase in apoptosis, compared to baseline, and significantly more when compared to either the cisplatin or P5 alone group. The entire peptide sequences in CDR from variable region of Ig heavy and light chain gene for P5 mAb are also disclosed. Together, these results provide evidence of the beneficial effect of P5 mAb in combinatorial treatment of human lung adenocarcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ok-Jun Lee
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea
| | - Ho-Chang Lee
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea
| | - Hyung Geun Song
- Department of Pathology.,Research Institute, Chungbuk National University College of Medicine, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
12
|
Huang YT, Zhao L, Fu Z, Zhao M, Song XM, Jia J, Wang S, Li JP, Zhu ZF, Lin G, Lu R, Yao Z. Therapeutic effects of tyroservatide on metastasis of lung cancer and its mechanism affecting integrin-focal adhesion kinase signal transduction. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:649-63. [PMID: 27041993 PMCID: PMC4780724 DOI: 10.2147/dddt.s86284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tyroservatide (YSV) can inhibit the growth and metastasis of mouse lung cancer significantly. This study investigated the therapeutic effects of tripeptide YSV on metastasis of human lung cancer cells and explored its possible mechanism that affects integrin–focal adhesion kinase (FAK) signal transduction in tumor cells. YSV significantly inhibited the adhesion and the invasion of highly metastatic human lung cancer cell lines 95D, A549, and NCI-H1299. In addition, YSV significantly inhibited phosphorylation of FAK Tyr397 and FAK Tyr576/577 in the 95D, A549, and NCI-H1299 human lung cancer cells in vitro. And the mRNA level and protein expression of FAK in these human lung cancer cells decreased at the same time. YSV also significantly inhibited mRNA and protein levels of integrin β1 and integrin β3 in the 95D, A549, and NCI-H1299 human lung cancer cells. Our research showed that YSV inhibited adhesion and invasion of human lung cancer cells and exhibited therapeutic effects on metastasis of lung cancer.
Collapse
Affiliation(s)
- Yu-ting Huang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Lan Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Meng Zhao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xiao-meng Song
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jing Jia
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Song Wang
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jin-ping Li
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhi-feng Zhu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Gang Lin
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Lu
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Shenzhen Kangzhe Pharmaceutical Co., Ltd., Shenzhen, People's Republic of China
| | - Zhi Yao
- Department of Immunology, Tianjin Medical University, Tianjin, People's Republic of China; Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
13
|
Mainali D, Syed A, Arora N, Smith EA. Role of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:603-11. [PMID: 25331198 DOI: 10.1007/s00249-014-0990-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 10/24/2022]
Abstract
Integrins are ubiquitous transmembrane receptors with adhesion and signaling properties. The influence of insulin receptor and insulin signaling on αPS2CβPS integrins' lateral diffusion was studied using single particle tracking in S2 cells before and after reducing the insulin receptor expression or insulin stimulation. Insulin signaling was monitored by Western blotting for phospho-Akt expression. The expression of the insulin receptor was reduced using RNA interference (RNAi). After insulin receptor RNAi, four significant changes were measured in integrin diffusion properties: (1) there was a 24% increase in the mobile integrin population, (2) 14% of the increase was represented by integrins with Brownian diffusion, (3) for integrins that reside in confined zones of diffusion, there was a 45% increase in the diameter of the confined zone, and (4) there was a 29% increase in the duration integrins spend in confined zones of diffusion. In contrast to reduced expression of the insulin receptor, which alters integrin diffusion properties, insulin stimulation alone or insulin stimulation under conditions of reduced insulin receptor expression have minimal effects on altering the measured integrin diffusion properties. The differences in integrin diffusion measured after insulin receptor RNAi in the presence or absence of insulin stimulation may be the result of other insulin signaling pathways that are activated at reduced insulin receptor conditions. No change in the average integrin diffusion coefficient was measured for any conditions included in this study.
Collapse
Affiliation(s)
- Dipak Mainali
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, Ames, IA, 50011, USA
| | | | | | | |
Collapse
|
14
|
Ekyalongo RC, Nakayama H, Kina K, Kaga N, Iwabuchi K. Organization and functions of glycolipid-enriched microdomains in phagocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:90-7. [PMID: 24968752 DOI: 10.1016/j.bbalip.2014.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/03/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022]
Abstract
Populations of glycolipids change markedly during leukocyte differentiation, suggesting that these molecules are involved in biological functions. About 70% of the glycosphingolipids in human neutrophils are lactosylceramide, a molecule also expressed on monocytes and dendritic cells, but not on lymphocytes. In contrast, phosphatidylglucoside is mainly expressed on neutrophils. STED microscopic analysis showed that phosphatidylglucoside and lactosylceramide form different domains on plasma membranes of neutrophils, with phosphatidylglucoside preferentially expressed along the neutrophil differentiation pathway. Phosphatidylglucoside was found to mediate the differentiation of HL-60 cells into the neutrophilic lineage, and to be involved in FAS-dependent neutrophil apoptosis. In contrast, lactosylceramide was only expressed on mature neutrophils. Complexes of lactosylceramide and the Src family kinase Lyn form membrane microdomains. LacCer-enriched membrane microdomains mediate neutrophil innate immune responses; e.g. chemotaxis, phagocytosis, and superoxide generation. C24 fatty acid chains of LacCer are indispensable for the formation of LacCer-Lyn complexes and for LacCer-dependent functions. Moreover, Lyn-coupled LacCer-enriched microdomains serve as signal transduction platforms for αMβ2 integrin-mediated phagocytosis. This review describes the organization and potential functions of glycolipids in phagocytes, as well as the roles of both phosphatidylglucoside and lactosylceramide in neutrophils. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.
Collapse
Affiliation(s)
- Roudy C Ekyalongo
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Japan; Laboratory of Biochemistry, Juntendo University School of Health Care and Nursing, Japan
| | - Katsunari Kina
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Naoko Kaga
- Division of Proteomics and Biomolecular Science, BioMedical Research Center, Juntendo University Graduate School of Medicine, Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Japan; Laboratory of Biochemistry, Juntendo University School of Health Care and Nursing, Japan; Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Japan.
| |
Collapse
|
15
|
Kouro H, Kon S, Matsumoto N, Miyashita T, Kakuchi A, Ashitomi D, Saitoh K, Nakatsuru T, Togi S, Muromoto R, Matsuda T. The novel α4B murine α4 integrin protein splicing variant inhibits α4 protein-dependent cell adhesion. J Biol Chem 2014; 289:16389-98. [PMID: 24755217 DOI: 10.1074/jbc.m114.553610] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrins affect the motility of multiple cell types to control cell survival, growth, or differentiation, which are mediated by cell-cell and cell-extracellular matrix interactions. We reported previously that the α9 integrin splicing variant, SFα9, promotes WT α9 integrin-dependent adhesion. In this study, we introduced a new murine α4 integrin splicing variant, α4B, which has a novel short cytoplasmic tail. In inflamed tissues, the expression of α4B, as well as WT α4 integrin, was up-regulated. Cells expressing α4B specifically bound to VCAM-1 but not other α4 integrin ligands, such as fibronectin CS1 or osteopontin. The binding of cells expressing WT α4 integrin to α4 integrin ligands is inhibited by coexpression of α4B. Knockdown of α4B in metastatic melanoma cell lines results in a significant increase in lung metastasis. Expression levels of WT α4 integrin are unaltered by α4B, with α4B acting as a regulatory subunit for WT α4 integrin by a dominant-negative effect or inhibiting α4 integrin activation.
Collapse
Affiliation(s)
- Hitomi Kouro
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Shigeyuki Kon
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Naoki Matsumoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Tomoe Miyashita
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Ayaka Kakuchi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Dai Ashitomi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Kodai Saitoh
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Takuya Nakatsuru
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Sumihito Togi
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Ryuta Muromoto
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| | - Tadashi Matsuda
- From the Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-Ku, Sapporo, 060-0812, Japan
| |
Collapse
|
16
|
Quantitative proteomic dissection of a native 14-3-3ε interacting protein complex associated with hepatocellular carcinoma. Amino Acids 2013; 46:841-52. [DOI: 10.1007/s00726-013-1644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 12/11/2013] [Indexed: 12/18/2022]
|
17
|
Kundu B, Saha P, Datta K, Kundu SC. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells. Biomaterials 2013; 34:9462-74. [PMID: 24016853 DOI: 10.1016/j.biomaterials.2013.08.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/19/2013] [Indexed: 01/14/2023]
Abstract
Microenvironment around tumor cells plays an important role in its malignancy or invasiveness. Hyaluronan (HA), a major component of extracellular matrix is found to be elevated in most of cancerous niche/microenvironment and performs regulatory role in the progression of tumors and metastasis. Overexpression of the hyaladherin, hyaluronan-binding protein 1 (HABP1) in the hepatocarcinoma cells (HepG2) termed as HepR21 leads to enhanced cell proliferation with increased HA 'pool' associated with HA 'cables' indicating elevated tumorous potential under 2D culture conditions. For in vitro experimentation, scaffold based three dimensional niche modeling may have greater acceptance than conventional 2D culture condition. Thus, we have examined the influence of intrinsic properties of non-mulberry tropical tasar silk fibroin on the HepR21 cells in order to develop a 3D hepatocarcinoma construction to act as model. The scaffold of tasar silk fibroin of Antheraea mylitta when efficiently loaded with transformed hepatocarcinoma cells, HepR21; exhibits enhanced adhesiveness, viability, metabolic activity, proliferation and enlarged cellular morphology in 3D compared to its parent cell line HepG2, supporting the earlier observation made in 2D system. In addition, formation of multicellular aggregates, the indicator of tumor progression is also revealed in silk based 3D culture conditions. Further, the use of 4-MU (a hyaluronan synthase inhibitor) on HepR21 cells reduces the HA level and downregulates the expression of growth promoting factors like pAKT and PKC; while upregulating the expression of the tumor suppressor p53. Thus, 4-MU efficiently reduces the tumor potency associated with increased HA pool as well as HA cables and the effect of 4-MU doubling up as an anticancer agent in 2D and 3D are also comparable. The in vitro 3D multicellular model demonstrates the insight of hepatocarcinoma progression and offers the predictability of cellular response to transfection efficacy, drug treatment and therapeutic intervention.
Collapse
Affiliation(s)
- Banani Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | | | | | | |
Collapse
|
18
|
Du P, Shang Y, Yin S, Zhang K, Wang G, Lv Z, Yang S, Wu J, Jin Y, Chen Y, Liu Y, Tian H, Liu X. Comparative analysis of cloned cDNAs encoding Chinese yellow cattle and Gansu black swine integrin receptors for foot-and-mouth disease virus. Arch Virol 2013; 158:2069-78. [PMID: 23620003 DOI: 10.1007/s00705-013-1704-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/15/2013] [Indexed: 10/26/2022]
Abstract
To analyze foot-and-mouth disease virus tropism and host range with respect to the integrin receptor, we cloned cDNAs encoding the integrin αν, β1, β3, β6 and β8 subunits from Chinese yellow cattle and Gansu black swine and carried out comparative analysis of their molecular characteristics. The lengths of the mature proteins and the functional domains of the four integrin β subunits were the same between bovine and swine; however, the number of putative N-linked glycosylation sites and cysteine residues and their arrangement varied. Homology analysis of the nucleotide and amino acid sequences showed that FMDV integrin receptors of Chinese yellow cattle and Gansu black swine are highly conserved. Phylogenetic analysis showed that all FMDV integrin receptor subunits of cattle and swine are clustered into the Artiodactyla group; however, Chinese yellow cattle are phylogenetically closer to sheep than to Gansu black swine. We postulate that the host tropism of FMDV may, in part, be related to the divergence of integrin subunits among different species.
Collapse
Affiliation(s)
- Ping Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Chengguan District, Lanzhou, 730046, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Malan D, Elischer A, Hesse M, Wickström SA, Fleischmann BK, Bloch W. Deletion of integrin linked kinase in endothelial cells results in defective RTK signaling caused by caveolin 1 mislocalization. Development 2013; 140:987-95. [PMID: 23404105 DOI: 10.1242/dev.091298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Integrin linked kinase (ILK) connects the ILK-Pinch-Parvin complex with integrin adhesion sites. Because of the functional relevance of integrin-linked signaling for endothelial cell (EC) biology, we have explored this pathway in Ilk(-/-) embryonic stem (ES) cells differentiated into ECs and vessel-like structures. We have focused in particular on the mechanistic relevance of ILK-Pinch-Parvin complex-related signaling for EC development and tube formation. Our analysis revealed that the formation of vessel-like structures was strongly reduced in Ilk(-/-) ES cells and that this phenotype could be rescued by re-expression of ILK in ES cells. ECs were MACS sorted from wild-type (WT) and Ilk(-/-) ES cells and functional analysis using intracellular calcium imaging as the read-out yielded a complete lack of vascular endothelial growth factor- and epidermal growth factor-dependent responses. The possibility of a caveolin 1-related defect was investigated by transfecting WT and Ilk(-/-) ECs with a caveolin 1-EGFP fusion protein. Time-lapse microscopy showed that the prominent phenotype is due to altered dynamics of caveolin 1 and to a lack of positioning of caveolin 1 in the vicinity of the plasma membrane and that it is rescued by re-expressing ILK in the Ilk(-/-) ES cells. We also found that the defect is caused by the perturbed organization of microtubules and cortical actin filaments. Thus, ILK is required as a scaffold to allow actin-microtubule interactions and correct positioning of caveolin 1 close to the plasma membrane. This is crucial for signaling compartmentalization in ECs and explains the key role of ILK for EC development and function.
Collapse
Affiliation(s)
- Daniela Malan
- Institute of Physiology I, Life and Brain Center, University of Bonn, Bonn, NRW, 53105, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Nakayama H, Ogawa H, Takamori K, Iwabuchi K. GSL-Enriched Membrane Microdomains in Innate Immune Responses. Arch Immunol Ther Exp (Warsz) 2013; 61:217-28. [DOI: 10.1007/s00005-013-0221-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
|
21
|
Tran T, Barlow B, O'Rear L, Jarvis B, Li Z, Dickeson K, Dupont W, Zutter M. Loss of the α2β1 integrin alters human papilloma virus-induced squamous carcinoma progression in vivo and in vitro. PLoS One 2011; 6:e26858. [PMID: 22046385 PMCID: PMC3203166 DOI: 10.1371/journal.pone.0026858] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/05/2011] [Indexed: 11/18/2022] Open
Abstract
Expression of the α2β1 integrin, a receptor for collagens and laminin, is altered during tumor progression. Recent studies have linked polymorphisms in the α2 integrin gene with oral, squamous cell carcinoma (SCC). To determine the α2β1 integrin's role in SCC progression, we crossed α2-null mice with K14-HPV16 transgenic animals. Pathological progression to invasive carcinoma was evaluated in HPV-positive, α2-null (HPV/KO) and HPV-positive, wild-type (HPV/WT) animals. α2β1 integrin expression stimulated progression from hyperplasia and papillomatosis to dysplasia with concomitant dermal mast cell infiltration. Moreover, lymph node metastasis was decreased by 31.3% in HPV/KO, compared to HPV/WT, animals. To evaluate the integrin-specific impact on the malignant epithelium versus the microenvironment, we developed primary tumor cell lines. Although transition from dysplasia to carcinoma was unaltered during spontaneous tumor development, isolated primary HPV/KO SCC cell lines demonstrated decreased migration and invasion, compared to HPV/WT cells. When HPV/WT and HPV/KO SCC cells were orthotopically injected into WT or KO hosts, tumor α2β1 integrin expression resulted in decreased tumor latency, regardless of host integrin status. HPV/WT SCC lines failed to demonstrate a proliferative advantage in vitro, however, the HPV/WT tumors demonstrated increased growth compared to HPV/KO SCC lines in vivo. Although contributions of the integrin to the microenvironment cannot be excluded, our studies indicate that α2β1 integrin expression by HPV-transformed keratinocytes modulates SCC growth and progression.
Collapse
Affiliation(s)
- Thuy Tran
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brittney Barlow
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lynda O'Rear
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brenda Jarvis
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Zhengzhi Li
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kent Dickeson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - William Dupont
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary Zutter
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
22
|
Maeda M, Hasegawa H, Hyodo T, Ito S, Asano E, Yuang H, Funasaka K, Shimokata K, Hasegawa Y, Hamaguchi M, Senga T. ARHGAP18, a GTPase-activating protein for RhoA, controls cell shape, spreading, and motility. Mol Biol Cell 2011; 22:3840-52. [PMID: 21865595 PMCID: PMC3192863 DOI: 10.1091/mbc.e11-04-0364] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Using a library of siRNAs, we found that ARHGAP18 was essential for the organization of actin stress fibers and focal adhesion. ARHGAP18 is one of the crucial factors for the regulation of RhoA in order to control cell motility and spreading. Rho GTPases are molecular switches that transmit biochemical signals in response to extracellular stimuli to elicit changes in the actin cytoskeleton. Rho GTPases cycle between an active, GTP-bound state and an inactive, GDP-bound state. These states are regulated by two distinct families of proteins—guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We studied the role of a previously uncharacterized GAP, ARHGAP18 (MacGAP). Overexpression of ARHGAP18 suppressed the activity of RhoA and disrupted stress fiber formation. Conversely, silencing of ARHGAP18 by small interfering RNA transfection–enhanced stress fiber formation and induced rounding of cells. We examined the role of ARHGAP18 in cell spreading and migration. Immunofluorescence analysis revealed that ARHGAP18 was localized to the leading edge during cell spreading and migration. ARHGAP18-knockdown cells showed impaired spreading, premature formation of stress fibers, and sustained activation of RhoA upon cell attachment. In addition, knockdown and overexpression of ARHGAP18 resulted in the inhibition and promotion of cell migration, respectively. Furthermore, ARHGAP18 was required for the polarization of cells for migration. Our results define ARHGAP18 as one of the crucial factors for the regulation of RhoA for the control of cell shape, spreading, and migration.
Collapse
Affiliation(s)
- Masao Maeda
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Concerted action of two avirulent spore effectors activates Reaction to Puccinia graminis 1 (Rpg1)-mediated cereal stem rust resistance. Proc Natl Acad Sci U S A 2011; 108:14676-81. [PMID: 21873196 DOI: 10.1073/pnas.1111771108] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The barley stem rust resistance gene Reaction to Puccinia graminis 1 (Rpg1), encoding a receptor-like kinase, confers durable resistance to the stem rust pathogen Puccinia graminis f. sp. tritici. The fungal urediniospores form adhesion structures with the leaf epidermal cells within 1 h of inoculation, followed by hyphae and haustorium formation. The RPG1 protein is constitutively expressed and not phosphorylated. On inoculation with avirulent urediniospores, it is phosphorylated in vivo within 5 min and subsequently degraded. Application of arginine-glycine-aspartic acid peptide loops prevented the formation of adhesion structures for spore attachment, the phosphorylation of RPG1, and germination of the viable spores. Arginine-glycine-aspartic acid affinity chromatography of proteins from the ungerminated avirulent rust spores led to the purification and identification of a protein with fibronectin type III and breast cancer type 1 susceptibility protein domains and a vacuolar protein sorting-associated protein 9 with a coupling of ubiquitin to endoplasmic reticulum degradation domain. Both proteins are required to induce in vivo phosphorylation and degradation of RPG1. Combined application of both proteins caused hypersensitive reaction on the stem rust-resistant cultivar Morex but not on the susceptible cultivar Steptoe. Expression studies indicated that mRNA of both genes are present in ungerminated urediniospores and are constitutively transcribed in sporelings, infected leaves, and haustoria in the investigated avirulent races. Evidence is presented that RPG1, in yeast, interacts with the two protein effectors from the urediniospores that activate cooperatively the stem rust resistance protein RPG1 long before haustoria formation.
Collapse
|
24
|
Nyga A, Cheema U, Loizidou M. 3D tumour models: novel in vitro approaches to cancer studies. J Cell Commun Signal 2011; 5:239-48. [PMID: 21499821 PMCID: PMC3145874 DOI: 10.1007/s12079-011-0132-4] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022] Open
Abstract
3D in vitro models have been used in cancer research as a compromise between 2-dimensional cultures of isolated cancer cells and the manufactured complexity of xenografts of human cancers in immunocompromised animal hosts. 3D models can be tailored to be biomimetic and accurately recapitulate the native in vivo scenario in which they are found. These 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Approaches to create more biomimetic 3D models of cancer include, but are not limited to, (i) providing the appropriate matrix components in a 3D configuration found in vivo, (ii) co-culturing cancer cells, endothelial cells and other associated cells in a spatially relevant manner, (iii) monitoring and controlling hypoxia- to mimic levels found in native tumours and (iv) monitoring the release of angiogenic factors by cancer cells in response to hypoxia. This article aims to overview current 3D in vitro models of cancer and review strategies employed by researchers to tackle these aspects with special reference to recent promising developments, as well as the current limitations of 2D cultures and in vivo models. 3D in vitro models provide an important alternative to both complex in vivo whole organism approaches, and 2D culture with its spatial limitations. Here we review current strategies in the field of modelling cancer, with special reference to advances in complex 3D in vitro models.
Collapse
Affiliation(s)
- Agata Nyga
- Centre for Nanotechnology, Biomaterials and Tissue Engineering, University College London, London, UK
- UCL Division of Surgery & Interventional Science, University College London, London, UK
| | - Umber Cheema
- UCL Division of Surgery & Interventional Science, University College London, London, UK
- Tissue Repair and Engineering Centre, Institute of Orthopaedics and Musculoskeletal Science, University College London, Stanmore Campus, London, HA7 4LP UK
| | - Marilena Loizidou
- Centre for Nanotechnology, Biomaterials and Tissue Engineering, University College London, London, UK
- UCL Division of Surgery & Interventional Science, University College London, London, UK
- UCL Division of Surgery and Interventional Science, Royal Free Hospital, 9th floor, Pond Street, NW3 2QG London, UK
| |
Collapse
|
25
|
Rizzolo LJ, Peng S, Luo Y, Xiao W. Integration of tight junctions and claudins with the barrier functions of the retinal pigment epithelium. Prog Retin Eye Res 2011; 30:296-323. [PMID: 21704180 DOI: 10.1016/j.preteyeres.2011.06.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/01/2011] [Accepted: 06/06/2011] [Indexed: 02/02/2023]
Abstract
The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier by regulating the movement of solutes between the fenestrated capillaries of the choroid and the photoreceptor layer of the retina. Blood-tissue barriers use various mechanisms to accomplish their tasks including membrane pumps, transporters, and channels, transcytosis, metabolic alteration of solutes in transit, and passive but selective diffusion. The last category includes tight junctions, which regulate transepithelial diffusion through the spaces between neighboring cells of the monolayer. Tight junctions are extraordinarily complex structures that are dynamically regulated. Claudins are a family of tight junctional proteins that lend tissue specificity and selectivity to tight junctions. This review discusses how the claudins and tight junctions of the RPE differ from other epithelia and how its functions are modulated by the neural retina. Studies of RPE-retinal interactions during development lend insight into this modulation. Notably, the characteristics of RPE junctions, such as claudin composition, vary among species, which suggests the physiology of the outer retina may also vary. Comparative studies of barrier functions among species should deepen our understanding of how homeostasis is maintained in the outer retina. Stem cells provide a way to extend these studies of RPE-retinal interactions to human RPE.
Collapse
Affiliation(s)
- Lawrence J Rizzolo
- Department of Surgery and Department of Ophthalmology and Visual Science, Yale University School of Medicine, PO Box 208062, New Haven, CT 06520-8062, USA.
| | | | | | | |
Collapse
|
26
|
Tamma G, Lasorsa D, Ranieri M, Mastrofrancesco L, Valenti G, Svelto M. Integrin signaling modulates AQP2 trafficking via Arg-Gly-Asp (RGD) motif. Cell Physiol Biochem 2011; 27:739-48. [PMID: 21691091 DOI: 10.1159/000330082] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 12/20/2022] Open
Abstract
Aquaporin-2 (AQP2) increases the water permeability of renal collecting ducts in response to vasopressin. Vasopressin stimulation is accompanied by a profound remodeling of actin cytoskeleton whose dynamics are regulated by crosstalk between intracellular and extracellular signals. Here, we report that AQP2 contains a conserved RGD domain in its external C-loop. Co-immunoprecipitation experiments demonstrated that AQP2 binds integrin β1 in renal tissue and in MCD4 cells. To investigate the role of this interaction on AQP2 trafficking, cells were exposed to synthetic RGD-containing peptides, GRGDNP or GRGDSP, able to bind certain integrins. Incubation with these peptides increased the membrane expression of AQP2 in the absence of hormonal stimulation as assessed by confocal analysis and cell surface biotinylation. To identify the signals underlying the effects of peptides on AQP2 trafficking, some possible intracellular messengers were evaluated. Exposure of MCD4 cells to GRGDNP increased intracellular cAMP as assessed by FRET studies while GRGDSP increased intracellular calcium concentration. Taken together, these data propose integrins as new players controlling the cellular localization of AQP2, via two distinct signal transduction pathways dependent on cAMP and calcium respectively.
Collapse
Affiliation(s)
- Grazia Tamma
- Department of General and Environmental Physiology, University of Bari, Via Amendola 165/A, 70125 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Aziz-Seible RS, Casey CA. Fibronectin: Functional character and role in alcoholic liver disease. World J Gastroenterol 2011; 17:2482-99. [PMID: 21633653 PMCID: PMC3103806 DOI: 10.3748/wjg.v17.i20.2482] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/07/2011] [Accepted: 04/14/2011] [Indexed: 02/06/2023] Open
Abstract
Fibronectins are adhesive glycoproteins that can be found in tissue matrices and circulating in various fluids of the body. The variable composition of fibronectin molecules facilitates a diversity of interactions with cell surface receptors that suggest a role for these proteins beyond the structural considerations of the extracellular matrix. These interactions implicate fibronectin in the regulation of mechanisms that also determine cell behavior and activity. The two major forms, plasma fibronectin (pFn) and cellular fibronectin (cFn), exist as balanced amounts under normal physiological conditions. However, during injury and/or disease, tissue and circulating levels of cFn become disproportionately elevated. The accumulating cFn, in addition to being a consequence of prolonged tissue damage, may in fact stimulate cellular events that promote further damage. In this review, we summarize what is known regarding such interactions between fibronectin and cells that may influence the biological response to injury. We elaborate on the effects of cFn in the liver, specifically under a condition of chronic alcohol-induced injury. Studies have revealed that chronic alcohol consumption stimulates excess production of cFn by sinusoidal endothelial cells and hepatic stellate cells while impairing its clearance by other cell types resulting in the build up of this glycoprotein throughout the liver and its consequent increased availability to influence cellular activity that could promote the development of alcoholic liver disease. We describe recent findings by our laboratory that support a plausible role for cFn in the promotion of liver injury under a condition of chronic alcohol abuse and the implications of cFn stimulation on the pathogenesis of alcoholic liver disease. These findings suggest an effect of cFn in regulating cell behavior in the alcohol-injured liver that is worth further characterizing not only to gain a more comprehensive understanding of the role this reactive glycoprotein plays in the progression of injury but also for the insight further studies could provide towards the development of novel therapies for alcoholic liver disease.
Collapse
|
28
|
Ramirez NE, Zhang Z, Madamanchi A, Boyd KL, O'Rear LD, Nashabi A, Li Z, Dupont WD, Zijlstra A, Zutter MM. The α₂β₁ integrin is a metastasis suppressor in mouse models and human cancer. J Clin Invest 2010; 121:226-37. [PMID: 21135504 DOI: 10.1172/jci42328] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 10/13/2010] [Indexed: 12/30/2022] Open
Abstract
Integrins regulate cell-cell and cell-matrix adhesion and thereby play critical roles in tumor progression and metastasis. Although work in preclinical models suggests that β1 integrins may stimulate metastasis of a number of cancers, expression of the β1 subunit alone has not been shown to be a useful prognostic indicator in human cancer patients. Here we have demonstrated that the α2β1 integrin suppresses metastasis in a clinically relevant spontaneous mouse model of breast cancer. These data are consistent with previous studies indicating high expression of α2β1 integrin in normal breast epithelium and loss of α2β1 in poorly differentiated breast cancer. They are also consistent with our systematic analysis of microarray databases of human breast and prostate cancer, which revealed that decreased expression of the gene encoding α2 integrin, but not genes encoding α1, α3, or β1 integrin, was predictive of metastatic dissemination and decreased survival. The predictive value of α2 expression persisted within both good-risk and poor-risk cohorts defined by estrogen receptor and lymph node status. Thus, the α2β1 integrin functionally inhibits breast tumor metastasis, and α2 expression may serve as an important biomarker of metastatic potential and patient survival.
Collapse
Affiliation(s)
- Norma E Ramirez
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2561, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang CY, Hu P, Fu D, Wu W, Jia CY, Zhu XC, Wu XZ. 3'-Sulfo-Le(x) is important for regulation of integrin subunit alphaV. Biochemistry 2010; 49:7811-20. [PMID: 20695481 DOI: 10.1021/bi101040k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Carbohydrate structures with a 3'-sulfo betaGal linkage, such as 3'-sulfo-Le(x), can be synthesized by Gal:3-O-sulfotransferase-2 (Gal3ST-2) catalysis, but little is known about their roles in many biological processes. To investigate the role of Gal3ST-2 and its product 3'-sulfo-Le(x), we depleted Gal3ST-2 via siRNA and added exogenous Lewis-x trisaccharide 3'-sulfate sodium salt in human SMMC7721 hepatoma cells. After siRNA transfection, a striking morphological change in SMMC7721 hepatoma cells from polygon to shuttle shape and a significant decrease in the level of adhesion to sL-selectin, HUVEC, fibronectin, vitronectin, and fibrinogen were observed. The expression of integrin subunit alphaV was markedly downregulated, and 3'-sulfated subunit alphaV almost disappeared in the transfectants. The level of cell surface integrin alphaVbeta3 was reduced simultaneously, although total subunit beta3 underwent almost no change. After treatment with exogenous Lewis-x 3'-sulfate, cellular integrin subunit alphaV was upregulated and the level of cell surface integrin alphaVbeta3 was elevated. Interestingly, knockdown of Gal3ST-2 expression effectively inhibited cell proliferation, and the result was significantly correlated with the decrease in the levels of ILK, phosphorylated AKT, and ERK. On the other hand, treatment with Lewis-x trisaccharide 3'-sulfate sodium salt greatly upregulated the phosphorylation of AKT and ERK. Our results also indicated that downregulation of Gal3ST-2 via siRNA transfection was associated with the decrease in the level of expression of anti-apoptotic protein, Bcl-2, with a consequent decrease in the ratios for Bcl-2 to Bax. By exposure to Lewis-x trisaccharide 3'-sulfate sodium salt, the apoptotic response of cells was inhibited. Therefore, Gal3ST-2 and its product, 3'-sulfo-Le(x), were involved in regulation of integrin subunit alphaV and might be associated with cancer cell regulation.
Collapse
Affiliation(s)
- Chun-Yi Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Ito S, Takahara Y, Hyodo T, Hasegawa H, Asano E, Hamaguchi M, Senga T. The roles of two distinct regions of PINCH-1 in the regulation of cell attachment and spreading. Mol Biol Cell 2010; 21:4120-9. [PMID: 20926685 PMCID: PMC2993741 DOI: 10.1091/mbc.e10-05-0459] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PINCH-1, which comprises five LIM domains and the C-terminal region, is crucial for the regulation of cell–ECM adhesion. The LIM1 domain is essential for cell attachment, whereas C-terminal region is required for cell spreading by mediating the association with Rsu-1. PINCH-1–Rsu-1 pathway activates Rac to promote cell spreading. Cells attach to the extracellular matrix (ECM) through integrins to form focal adhesion complexes, and this process is followed by the extension of lamellipodia to enable cell spreading. PINCH-1, an adaptor protein essential for the regulation of cell–ECM adhesion, consists of five tandem LIM domains and a small C-terminal region. PINCH-1 is known to interact with integrin-linked kinase (ILK) and Ras suppressor protein 1 (Rsu-1); however, the precise mechanism by which this complex regulates cell–ECM adhesion is not fully understood. We report here that the LIM1 domain of PINCH-1, which associates with ILK to stabilize the expression of this protein, is sufficient for cell attachment but not for cell spreading. In contrast, the C-terminal region of PINCH-1, which binds to Rsu-1, plays a pivotal role in cell spreading but not in cell attachment. We also show that PINCH-1 associates with Rsu-1 to activate Rac1 and that Rac1 activation is necessary for cell spreading. Thus, these data reveal how specific domains of PINCH-1 direct two independent pathways: one utilizing ILK to allow cell attachment, and the other recruiting Rsu-1 to activate Rac1 in order to promote cell spreading.
Collapse
Affiliation(s)
- Satoko Ito
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 2010; 107:10142-7. [PMID: 20479219 DOI: 10.1073/pnas.1002257107] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolution of animals (metazoans) from their unicellular ancestors required the emergence of novel mechanisms for cell adhesion and cell-cell communication. One of the most important cell adhesion mechanisms for metazoan development is integrin-mediated adhesion and signaling. The integrin adhesion complex mediates critical interactions between cells and the extracellular matrix, modulating several aspects of cell physiology. To date this machinery has been considered strictly metazoan specific. Here we report the results of a comparative genomic analysis of the integrin adhesion machinery, using genomic data from several unicellular relatives of Metazoa and Fungi. Unexpectedly, we found that core components of the integrin adhesion complex are encoded in the genome of the apusozoan protist Amastigomonas sp., and therefore their origins predate the divergence of Opisthokonta, the clade that includes metazoans and fungi. Furthermore, our analyses suggest that key components of this apparatus have been lost independently in fungi and choanoflagellates. Our data highlight the fact that many of the key genes that had formerly been cited as crucial for metazoan origins have a much earlier origin. This underscores the importance of gene cooption in the unicellular-to-multicellular transition that led to the emergence of the Metazoa.
Collapse
|
32
|
Du J, Chang H, Gao S, Xue S, Cong G, Shao J, Lin T, Liu Z, Liu X, Cai X. Molecular characterization and expression analysis of porcine integrins alphavbeta3, alphavbeta6 and alphavbeta8 that are potentially involved in FMDV infection. Mol Cell Probes 2010; 24:256-65. [PMID: 20438833 DOI: 10.1016/j.mcp.2010.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 01/22/2023]
Abstract
In the present study, we report the sequences and characterization of the porcine integrin cDNAs encoding alphav, beta3, beta6 and beta8 subunits and compare them to those of other species. The coding sequences for the porcine alphav, beta3, beta6 and beta8 subunits were found to be 3141, 2289, 2367 and 2304 nucleotides in length, encoding 1046, 762, 788 and 767-amino-acid-residue protein, respectively. The porcine integrin alphav, beta3, beta6 and beta8 subunit shares common structural and functional elements with their counterparts from the other species. Phylogenetic trees showed that the porcine alphav, beta3, beta6 and beta8 were clustered into the Artiodactyla group, together with those of camels, sheep, and cattle, that are susceptible to FMDV infection. Real-time RT-PCR was used to investigate expression of the integrins alphavbeta3, alphavbeta6 and alphavbeta8 in different tissues of pigs in order to determine the role of these receptors in tissue tropism. Expression analysis showed that alphavbeta6 and alphavbeta8 mRNA expression were detected at high levels in tissues known to support replication of FMDV. Tissue distribution pattern of alphavbeta3 mRNA seems to be unrelated to the known tissue tropism of FMDV. This study provided the first data of porcine integrins for the further studies of the FMDV pathogenesis in pigs.
Collapse
Affiliation(s)
- Junzheng Du
- Key Laboratory of Animal Virology of the Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, National Foot-and-mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Dimitriou AA, Stathopoulos P, Mitsios JV, Sakarellos-Daitsiotis M, Goudevenos J, Tsikaris V, Tselepis AD. Inhibition of platelet activation by peptide analogs of the beta(3)-intracellular domain of platelet integrin alpha(IIb)beta(3) conjugated to the cell-penetrating peptide Tat(48-60). Platelets 2010; 20:539-47. [PMID: 19863457 DOI: 10.3109/09537100903324219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation of the platelet integrin-receptor alpha(IIb)beta(3) is the final pathway of platelet aggregation, regardless of the initiating stimulus. Many studies suggest that there are several cytoplasmic proteins such as talin and beta(3)-endonexin that bind to N(744)PLY(747) and N(756)ITY(759) motif of the beta(3) cytoplasmic tail and play the major role in the receptor activation. In this study, we investigated the role of the membrane distal region of human beta(3) cytoplasmic tail and specifically the N(743)NPLYKEA(750) and T(755)NITYRGT(762) sequence that contains an NXXY motif, in platelet aggregation, secretion, alpha(IIb)beta(3) activation (PAC-1 binding) and fibrinogen binding. We synthesized two peptides corresponding to the above sequences as well as their conjugates with the Tat(48-60) cell-penetrating peptide. The capability of conjugates to penetrate the platelet membrane was investigated with confocal laser scanning microscopy using carboxyfluorescein (CF)-labeled peptides. Our results showed that the conjugated with the Tat(48-60) sequence peptides penetrate the platelet membrane and inhibit platelet aggregation in both PRP and washed platelets in a dose-dependent manner. The Tat-beta(3)743-750 conjugate exhibited similar inhibitory activity in PRP and in washed platelets whereas the Tat-beta(3)755-762 conjugate was more potent inhibitor of aggregation in washed platelets than in PRP. Both conjugated peptides were also able to inhibit P-selectin membrane expression as well as PAC-1 and fibrinogen binding to the platelets, the Tat-beta(3)755-762 conjugate being more potent than Tat-beta(3)743-750. The Tat(48-60) peptide and the peptides beta(3)743-750 and beta(3)755-762, which were not conjugated to the Tat(48-60) sequence, did not exhibit any inhibitory effect on the above parameters. In conclusion, the present study shows for the first time that the peptide analogs of the intracellular domain of the beta(3) subunit beta(3)743-750 and beta(3)755-762 conjugated to the cell-penetrating peptide Tat(48-60) are capable of penetrating the platelet membrane and expressing biological activity by inhibiting the activation of alpha(IIb)beta(3), the fibrinogen binding to the activated receptor as well as platelet aggregation. Further studies are necessary to support whether such conjugated peptides may be useful tools for the development of potent antiplatelet agents acting intracellularly through the platelet integrin alpha(IIb)beta(3).
Collapse
Affiliation(s)
- Andromaxi A Dimitriou
- Laboratory of Biochemistry, Medical School, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
34
|
Morini R, Becchetti A. Integrin receptors and ligand-gated channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 674:95-105. [PMID: 20549943 DOI: 10.1007/978-1-4419-6066-5_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plastic expression of different integrin subunits controls the different stages of neural development, whereas in the adult integrins regulate synaptic stability. Evidence of integrin-channel crosstalk exists for ionotropic glutamate receptors. As is often the case in other tissues, integrin engagement regulates channel activity through complex signaling pathways that often include tyrosine phosphorylation cascades. The specific pathways recruited by integrin activation depend on cerebral region and cell type. In turn, ion channels control integrin expression onto the plasma membrane and their ligand binding affinity. The most extensive studies concern the hippocampus and suggest implications for neuronal circuit plasticity. The physiological relevance of these findings depends on whether adhesion molecules, aside from determining tissue stability, contribute to synaptogenesis and the responsiveness of mature synapses, thus contributing to long-term circuit consolidation. Little evidence is available for other ligand-gated channels, with the exception of nicotinic receptors. These exert a variety of functions in neurons and non neural tissue, both in development and in the adult, by regulating cell cycle, synaptogenesis and synaptic circuit refinement. Detailed studies in epidermal keratinocytes have shed some light on the possible mechanisms through which ACh can regulate cell motility, which may be of general relevance for morphogenetic processes. As to the control of mature synapses, most results concern the integrinic control of nicotinic receptors in the neuromuscular junction. Following this lead, a few studies have addressed similar topics in adult cerebral synapses. However, pursuing and interpreting these results in the brain is especially difficult because of the complexity of the nicotinic roles and the widespread contribution of nonsynaptic, paracrine transmission. From a pathological point of view, considering the well-known contribution of both integrins and ligand-gated channels to synaptogenesis and neural regeneration, the above studies point to interesting implications for epileptogenesis.
Collapse
Affiliation(s)
- Raffaella Morini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | |
Collapse
|
35
|
Espira L, Czubryt MP. Emerging concepts in cardiac matrix biologyThis article is one of a selection of papers published in a special issue on Advances in Cardiovascular Research. Can J Physiol Pharmacol 2009; 87:996-1008. [DOI: 10.1139/y09-105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cardiac extracellular matrix, far from being merely a static support structure for the heart, is now recognized to play central roles in cardiac development, morphology, and cell signaling. Recent studies have better shaped our understanding of the tremendous complexity of this active and dynamic network. By activating intracellular signal cascades, the matrix transduces myocardial physical forces into responses by myocytes and fibroblasts, affecting their function and behavior. In turn, cardiac fibroblasts and myocytes play active roles in remodeling the matrix. Coupled with the ability of the matrix to act as a dynamic reservoir for growth factors and cytokines, this interplay between the support structure and embedded cells has the potential to exert dramatic effects on cardiac structure and function. One of the clearest examples of this occurs when cell–matrix interactions are altered inappropriately, contributing to pathological fibrosis and heart failure. This review will examine some of the recent concepts that have emerged regarding exactly how the cardiac matrix mediates these effects, how our collective vision of the matrix has changed as a result, and the current state of attempts to pharmacologically treat fibrosis.
Collapse
Affiliation(s)
- Leon Espira
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
36
|
Du J, Larska M, Chang H, Alexandersen S, Cai X. Molecular cloning and phylogenetic analysis of integrins alphavbeta1 and alphavbeta6 of one-humped camel (Camelus dromedarius). Vet Immunol Immunopathol 2009; 135:164-171. [PMID: 20015555 DOI: 10.1016/j.vetimm.2009.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Bactrian camels can relatively easily be infected with FMDV, but dromedary camels remain resistant even to high doses of the virus. To understand the different susceptibility between the two camel species from the standpoint of viral receptors, this work reports the sequences of the dromedary camel integrin cDNAs encoding alphavbeta1 and alphavbeta6 and compare them to those of other species, especially to Bactrian camels. The complete coding sequences for the dromedary camel alphav, beta1 and beta6 subunits were found to be 3147, 2397, and 2364 nucleotides in length, encoding 1048, 798, and 787 amino acids, respectively. The dromedary camel integrin alphav, beta1, and beta6 subunit shares common structural and functional elements with their counterparts from the other species. Phylogenetic trees showed that the dromedary camel alphav, beta1, and beta6 were clustered into the Artiodactyla group, together with those of Bactrian camel, pig, sheep, and cattle that are susceptible to FMDV infection. Compared with the Bactrian camel integrins, 4, 10, and 8 amino acid changes were found in the dromedary camel alphav, beta1, and beta6 subunits, respectively. This study will be of importance in understanding the differences of integrins as FMDV receptors among dromedary camel and other species.
Collapse
Affiliation(s)
- Junzheng Du
- Key Laboratory of Animal Virology of the Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, China
| | - Magdalena Larska
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark
| | - Huiyun Chang
- Key Laboratory of Animal Virology of the Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, China.
| | - Soren Alexandersen
- National Veterinary Institute, Technical University of Denmark, Lindholm, DK-4771 Kalvehave, Denmark.
| | - Xuepeng Cai
- Key Laboratory of Animal Virology of the Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Yanchangpu, Chengguan District, Lanzhou 730046, China.
| |
Collapse
|
37
|
Significance of glycosphingolipid fatty acid chain length on membrane microdomain-mediated signal transduction. FEBS Lett 2009; 584:1642-52. [DOI: 10.1016/j.febslet.2009.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022]
|
38
|
Sheep (Ovis aries) integrins αvβ1 and αvβ6 related to foot-and-mouth disease virus infection: Molecular cloning, sequence analysis and comparison with homologues. Mol Cell Probes 2009; 23:247-57. [DOI: 10.1016/j.mcp.2009.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 06/04/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
|
39
|
Du J, Gao S, Chang H, Cong G, Lin T, Shao J, Liu Z, Liu X, Cai X. Bactrian camel (Camelus bactrianus) integrins alphavbeta3 and alphavbeta6 as FMDV receptors: molecular cloning, sequence analysis and comparison with other species. Vet Immunol Immunopathol 2009; 131:190-9. [PMID: 19443046 DOI: 10.1016/j.vetimm.2009.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 04/03/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
Integrins are heterodimeric adhesion receptors that participate in a variety of cell-cell and cell-extracellular matrix protein interactions. Many integrins recognize RGD sequences displayed on extracellular matrix proteins and the exposed loops of viral capsid proteins. Four members of the alphav integrin family of cellular receptors, alphavbeta3, alphavbeta6, alphavbeta1 and alphavbeta8, have been identified as receptors for foot-and-mouth disease virus (FMDV) in vitro, and integrins are believed to be the receptors used to target epithelial cells in the infected animals. To analyse the roles of the alphav integrins from a susceptible species as viral receptors, we have cloned Bactrian camel alphav, beta3 and beta6 integrin cDNAs and compared them to those of other species. The coding sequences for Bactrian camel integrin alphav, beta3 and beta6 were found to be 3165, 2289 and 2367 nucleotides in length, encoding 1054, 762 and 788 amino acids, respectively. The Bactrian camel alphav, beta3 and beta6 subunits share many structural features with homologues of other species, including the ligand binding domain and cysteine-rich region. Phylogenetic trees and similarity analyses showed the close relationships of integrin genes from Bactrian camels, pigs and cattle, which are each susceptible to FMDV infection, that were distinct from the orders Rodentia, Primates, Perissodactyla, Carnivora, Galliformes and Xenopus. We postulate that host tropism of FMDV may in part be related to the divergence in integrin subunits among different species.
Collapse
Affiliation(s)
- Junzheng Du
- Key Laboratory of Animal Virology of the Ministry of Agriculture, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Integrating receptor signal inputs that influence small Rho GTPase activation dynamics at the immunological synapse. Mol Cell Biol 2009; 29:2997-3006. [PMID: 19307303 DOI: 10.1128/mcb.01008-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rho GTPase Cdc42 regulates cytoskeletal changes at the immunological synapse (IS) that are critical to T-cell activation. By imaging fluorescent activity biosensors (Raichu) using fluorescence lifetime imaging microscopy, Cdc42 activation was shown to display kinetics that are conditional on the specific receptor input (through two IS-associated receptors, CD3 and beta1 integrin). CD3-triggered Cdc42 activity is dependent on the cyto-2 (NPIY) motif of the beta1 integrin cytoplasmic domain. Perturbations of the ezrin-radixin-moesin (ERM) function blocked CD3- and beta1-dependent increases in Cdc42 activity. Both IS-associated receptors probably lie on a serial molecular pathway and transduce signals through the ERM-dependent machinery that is responsible for the remodeling and stabilization of the synapse. Cdc42 activity is impaired in beta1 integrin-deficient T cells that form conjugates with antigen-presenting cells but is partially restored in the context of an antigen-specific synapse. This restoration of Cdc42 activity is due, at least in part, to the recruitment and activation of beta2 integrin.
Collapse
|
41
|
Huang CY, Liang CM, Chu CL, Liang SM. Albumin fibrillization induces apoptosis via integrin/FAK/Akt pathway. BMC Biotechnol 2009; 9:2. [PMID: 19133118 PMCID: PMC2630307 DOI: 10.1186/1472-6750-9-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 01/08/2009] [Indexed: 01/24/2023] Open
Abstract
Background Numerous proteins can be converted to amyloid-like fibrils to increase cytotoxicity and induce apoptosis, but the methods generally require a high concentration of protein, vigorous shaking, or fibril seed. As well, the detailed mechanism of the cytotoxic effects is not well characterized. In this study, we have developed a novel process to convert native proteins into the fibrillar form. We used globular bovine serum albumin (BSA) as a model protein to verify the properties of the fibrillar protein, investigated its cellular effects and studied the signaling cascade induced by the fibrillar protein. Results We induced BSA, a non-cytotoxic globular protein, to become fibril by a novel process involving Superdex-200 column chromatography in the presence of anionic or zwittergenic detergent(s). The column pore size was more important than column matrix composite in fibril formation. The fibrillar BSA induced apoptosis in BHK-21 cell as well as breast cancer cell line T47D. Pre-treating cells with anti-integrin antibodies blocked the apoptotic effect. Fibrillar BSA, but not globular BSA, bound to integrin, dephosphorylated focal adhesion kinase (FAK), Akt and glycogen synthase kinase-3β (GSK-3β). Conclusion We report on a novel process for converting globular proteins into fibrillar form to cause apoptosis by modulating the integrin/FAK/Akt/GSK-3β/caspase-3 signaling pathway. Our findings may be useful for understanding the pathogenesis of amyloid-like fibrils and applicable for the development of better therapeutic agents that target the underlying mechanism(s) of the etiologic agents.
Collapse
Affiliation(s)
- Chun-Yung Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | | | | | | |
Collapse
|
42
|
YAMASHITA D, MACHIGASHIRA M, MIYAMOTO M, TAKEUCHI H, NOGUCHI K, IZUMI Y, BAN S. Effect of surface roughness on initial responses of osteoblast-like cells on two types of zirconia. Dent Mater J 2009; 28:461-70. [DOI: 10.4012/dmj.28.461] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Role of very long fatty acid-containing glycosphingolipids in membrane organization and cell signaling: the model of lactosylceramide in neutrophils. Glycoconj J 2008; 26:615-21. [PMID: 19015977 DOI: 10.1007/s10719-008-9215-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/12/2008] [Accepted: 10/28/2008] [Indexed: 12/16/2022]
Abstract
Glycosphingolipids are highly enriched in specialized membrane microdomains ("lipid rafts", caveolar domains and glycosynapses), and they participate to the process of transduction of information across the membrane. Lactosylceramide (LacCer) is specifically coupled with the Src family kinase Lyn in plasma membrane microdomains of human neutrophils. Ligand binding to LacCer activates Lyn, resulting in neutrophil functions, such as superoxide generation and migration. The beta-Gal-(1-4)-beta-Glc disaccharide structure of LacCer is necessary, but it is not sufficient for LacCer-mediated Lyn activation. For this function, the presence of a LacCer molecular species with ceramide containing a very long fatty acid chain is also required. In this manuscript, we discuss the importance of interdigitation within the membrane, promoted by the presence of glycosphingolipid species with very long fatty acyl chains as determinants for membrane organization, instrumental to the signaling process.
Collapse
|
44
|
Reyes CD, Petrie TA, García AJ. Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling. J Cell Physiol 2008; 217:450-8. [PMID: 18613064 DOI: 10.1002/jcp.21512] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cell adhesion to extracellular matrix (ECM) components through cell-surface integrin receptors is essential to the formation, maintenance and repair of numerous tissues, and therefore represents a central theme in the design of bioactive materials that successfully interface with the body. While the adhesive responses associated with a single ligand have been extensively analyzed, the effects of multiple integrin subtypes binding to multivalent ECM signals remain poorly understood. In the present study, we generated a high throughput platform of non-adhesive surfaces presenting well-defined, independent densities of two integrin-specific engineered ligands for the type I collagen (COL-I) receptor alpha(2)beta(1) and the fibronectin (FN) receptor alpha(5)beta(1) to evaluate the effects of integrin cross-talk on adhesive responses. Engineered surfaces displayed ligand density-dependent adhesive effects, and mixed ligand surfaces significantly enhanced cell adhesion strength and focal adhesion assembly compared to single FN and COL-I ligand surfaces. Moreover, surfaces presenting mixed COL-I/FN ligands synergistically enhanced FAK activation compared to the single ligand substrates. The enhanced adhesive activities of the mixed ligand surfaces also promoted elevated proliferation rates. Our results demonstrate interplay between multivalent ECM ligands in adhesive responses and downstream cellular signaling.
Collapse
Affiliation(s)
- Catherine D Reyes
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
45
|
Bakema JE, Bakker A, de Haij S, Honing H, Bracke M, Koenderman L, Vidarsson G, van de Winkel JGJ, Leusen JHW. Inside-Out Regulation of FcαRI (CD89) Depends on PP2A. THE JOURNAL OF IMMUNOLOGY 2008; 181:4080-8. [DOI: 10.4049/jimmunol.181.6.4080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Interactions of airway smooth muscle cells with their tissue matrix: implications for contraction. Ann Am Thorac Soc 2008; 5:32-9. [PMID: 18094082 DOI: 10.1513/pats.200704-048vs] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The ability of airway smooth muscle to alter its stiffness and contractility in response to mechanical oscillation and stretch is critically important for the regulation of normal airway responsiveness during breathing. The properties of mechanical adaptation in airway smooth muscle are proposed to result from dynamic cytoskeletal processes outside of the actomyosin interaction. The actomyosin interaction and crossbridge cycling are viewed as components of a complex and integrated array of cytoskeletal events that occur during cell contraction. These events are orchestrated by macromolecular protein complexes that associate with the cytoplasmic domains of integrin proteins at the adhesion junctions between muscle cells and the extracellular matrix. According to this paradigm, these concerted cytoskeletal events are essential components of the process of active tension generation in airway smooth muscle, and also serve to adapt the shape and stiffness of the smooth muscle cell to its environment. Contractile stimuli initiate actin polymerization within the submembranous cortex of the airway smooth muscle cell that may serve to determine the cells shape and strengthen the membrane. The recruitment of structural proteins such as alpha-actinin to adhesion junctions fortifies the strength of the connections between membrane adhesion junctions and actin filaments. These processes create a strong and rigid cytoskeletal framework for the transmission of force generated by the interaction of myosin and actin filaments. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.
Collapse
|
47
|
Chen K, Tu Y, Zhang Y, Blair HC, Zhang L, Wu C. PINCH-1 regulates the ERK-Bim pathway and contributes to apoptosis resistance in cancer cells. J Biol Chem 2007; 283:2508-17. [PMID: 18063582 DOI: 10.1074/jbc.m707307200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis is a hallmark of cancer cells. We report here that PINCH-1, a cytoplasmic component of cell-extracellular matrix adhesions, is required for protection of multiple types of cancer cells from apoptosis. Furthermore, using HT-1080 fibrosarcoma cells as a model system, we have investigated the signaling pathway through which PINCH-1 contributes to apoptosis resistance. Loss of PINCH-1 markedly increases the level of Bim and promotes Bim translocation to mitochondria, resulting in activation of the intrinsic apoptosis pathway. Depletion of Bim completely blocked apoptosis induced by the loss of PINCH-1. Thus, PINCH-1 contributes to apoptosis resistance through suppression of Bim. Mechanistically, PINCH-1 suppresses Bim not only transcriptionally but also post-transcriptionally. PINCH-1 promotes activating phosphorylation of Src family kinase and ERK1/2. Consistent with this, ERK1/2-mediated Ser(69) phosphorylation of Bim, a key signal for turnover of Bim, is suppressed by the removal of PINCH-1. Our results demonstrate a strong dependence of multiple types of apoptosis-resistant cancer cells on PINCH-1 and provide new insights into the molecular mechanism by which cancer cells are protected from apoptosis.
Collapse
Affiliation(s)
- Ka Chen
- Departments of Pathology and Pharmacology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nakayama H, Yoshizaki F, Prinetti A, Sonnino S, Mauri L, Takamori K, Ogawa H, Iwabuchi K. Lyn-coupled LacCer-enriched lipid rafts are required for CD11b/CD18-mediated neutrophil phagocytosis of nonopsonized microorganisms. J Leukoc Biol 2007; 83:728-41. [DOI: 10.1189/jlb.0707478] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
49
|
Kanasaki K, Kanda Y, Palmsten K, Tanjore H, Lee SB, Lebleu VS, Gattone VH, Kalluri R. Integrin beta1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev Biol 2007; 313:584-93. [PMID: 18082680 DOI: 10.1016/j.ydbio.2007.10.047] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/08/2007] [Accepted: 10/29/2007] [Indexed: 12/01/2022]
Abstract
The human kidneys filter 180 l of blood every day via about 2.5 million glomeruli. The three layers of the glomerular filtration apparatus consist of fenestrated endothelium, specialized extracellular matrix known as the glomerular basement membrane (GBM) and the podocyte foot processes with their modified adherens junctions known as the slit diaphragm (SD). In this study we explored the contribution of podocyte beta1 integrin signaling for normal glomerular function. Mice with podocyte specific deletion of integrin beta1 (podocin-Cre beta1-fl/fl mice) are born normal but cannot complete postnatal renal development. They exhibit detectable proteinuria on day 1 and die within a week. The kidneys of podocin-Cre beta1-fl/fl mice exhibit normal glomerular endothelium but show severe GBM defects with multilaminations and splitting including podocyte foot process effacement. The integrin linked kinase (ILK) is a downstream mediator of integrin beta1 activity in epithelial cells. To further explore whether integrin beta1-mediated signaling facilitates proper glomerular filtration, we generated mice deficient of ILK in the podocytes (podocin-Cre ILK-fl/fl mice). These mice develop normally but exhibit postnatal proteinuria at birth and die within 15 weeks of age due to renal failure. Collectively, our studies demonstrate that podocyte beta1 integrin and ILK signaling is critical for postnatal development and function of the glomerular filtration apparatus.
Collapse
Affiliation(s)
- Keizo Kanasaki
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang W, Wu Y, Wu C, Gunst SJ. Integrin-linked Kinase Regulates N-WASp-mediated Actin Polymerization and Tension Development in Tracheal Smooth Muscle. J Biol Chem 2007; 282:34568-80. [PMID: 17897939 DOI: 10.1074/jbc.m704966200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|