1
|
Mukherjee S, Chakraborty P, Saha P. Phosphorylation of Ku70 subunit by cell cycle kinases modulates the replication related function of Ku heterodimer. Nucleic Acids Res 2016; 44:7755-65. [PMID: 27402161 PMCID: PMC5027504 DOI: 10.1093/nar/gkw622] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/29/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
The Ku protein, a heterodimer of Ku70 and Ku80, binds to chromosomal replication origins maximally at G1-phase and plays an essential role in assembly of origin recognition complex. However, the mechanism regulating such a critical periodic activity of Ku remained unknown. Here, we establish human Ku70 as a novel target of cyclin B1-Cdk1, which phosphorylates it in a Cy-motif dependent manner. Interestingly, cyclin E1- and A2-Cdk2 also phosphorylate Ku70, and as a result, the protein remains in a phosphorylated state during S-M phases of cell cycle. Intriguingly, the phosphorylation of Ku70 by cyclin-Cdks abolishes the interaction of Ku protein with replication origin due to disruption of the dimer. Furthermore, Ku70 is dephosphorylated in G1-phase, when Ku interacts with replication origin maximally. Strikingly, the over-expression of Ku70 with non-phosphorylable Cdk targets enhances the episomal replication of Ors8 origin and induces rereplication in HeLa cells, substantiating a preventive role of Ku phosphorylation in premature and untimely licensing of replication origin. Therefore, periodic phosphorylation of Ku70 by cyclin-Cdks prevents the interaction of Ku with replication origin after initiation events in S-phase and the dephosphorylation at the end of mitosis facilitates its participation in pre-replication complex formation.
Collapse
Affiliation(s)
- Soumita Mukherjee
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Prabal Chakraborty
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India Homi Bhaba National Institute, Mumbai 400094, India
| |
Collapse
|
2
|
Duch A, de Nadal E, Posas F. The p38 and Hog1 SAPKs control cell cycle progression in response to environmental stresses. FEBS Lett 2012; 586:2925-31. [DOI: 10.1016/j.febslet.2012.07.034] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/17/2022]
|
3
|
The malarial CDK Pfmrk and its effector PfMAT1 phosphorylate DNA replication proteins and co-localize in the nucleus. Mol Biochem Parasitol 2010; 172:9-18. [DOI: 10.1016/j.molbiopara.2010.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 03/11/2010] [Accepted: 03/12/2010] [Indexed: 11/20/2022]
|
4
|
Holmquist GP, Ashley T. Chromosome organization and chromatin modification: influence on genome function and evolution. Cytogenet Genome Res 2006; 114:96-125. [PMID: 16825762 DOI: 10.1159/000093326] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 12/15/2005] [Indexed: 11/19/2022] Open
Abstract
Histone modifications of nucleosomes distinguish euchromatic from heterochromatic chromatin states, distinguish gene regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to focus recombination events on regions of highest gene concentrations. Four additional epigenetic mechanisms that regulate commitment of cell lineages to their differentiated states are involved in the inheritance of differentiated states, e.g., DNA methylation, RNA interference, gene repositioning between interphase compartments, and gene replication time. The number of additional mechanisms used increases with the taxon's somatic complexity. The ability of siRNA transcribed from one locus to target, in trans, RNAi-associated nucleation of heterochromatin in distal, but complementary, loci seems central to orchestration of chromatin states along chromosomes. Most genes are inactive when heterochromatic. However, genes within beta-heterochromatin actually require the heterochromatic state for their activity, a property that uniquely positions such genes as sources of siRNA to target heterochromatinization of both the source locus and distal loci. Vertebrate chromosomes are organized into permanent structures that, during S-phase, regulate simultaneous firing of replicon clusters. The late replicating clusters, seen as G-bands during metaphase and as meiotic chromomeres during meiosis, epitomize an ontological utilization of all five self-reinforcing epigenetic mechanisms to regulate the reversible chromatin state called facultative (conditional) heterochromatin. Alternating euchromatin/heterochromatin domains separated by band boundaries, and interphase repositioning of G-band genes during ontological commitment can impose constraints on both meiotic interactions and mammalian karyotype evolution.
Collapse
Affiliation(s)
- G P Holmquist
- Biology Department, City of Hope Medical Center, Duarte, CA, USA.
| | | |
Collapse
|
5
|
Uchiyama M, Wang TSF. The B-subunit of DNA polymerase alpha-primase associates with the origin recognition complex for initiation of DNA replication. Mol Cell Biol 2004; 24:7419-34. [PMID: 15314153 PMCID: PMC506996 DOI: 10.1128/mcb.24.17.7419-7434.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 04/28/2004] [Accepted: 06/07/2004] [Indexed: 11/20/2022] Open
Abstract
The B-subunit (p70/Pol12p) of the DNA polymerase alpha-primase (Polalpha-primase) complex is thought to have a regulatory role in an early stage of S phase. We generated a panel of fission yeast thermosensitive mutants of the B-subunit (termed Spb70) to investigate its role in initiation of DNA replication by genetic and biochemical approaches. Here, we show that the fission yeast Spb70 genetically interacts and coprecipitates with origin recognition complex proteins Orp1/Orc1 and Orp2/Orc2 and primase coupling subunit Spp2/p58. A fraction of Spb70 associates with Orp2 on chromatin throughout the cell cycle independent of the other subunits of Polalpha-primase. Furthermore, primase Spp2/p58 subunit preferentially associates with the unphosphorylated Orp2, and the association requires Spb70. Mutations in orp2+ that abolish or mimic the Cdc2 phosphorylation of Orp2 suppress or exacerbate the thermosensitivity of the spb70 mutants, respectively, indicating that an unphosphorylated Orp2 promotes an Spb70-dependent replication event. Together, these results indicate that the chromatin-bound B-subunit in association with origin recognition complex mediates recruiting Polalpha-primase complex onto replication origins in G1 pre-Start through an interaction with primase Spp2/p58 subunit. Our results thus suggest a role for the recruited Polalpha-primase in the initiation of both leading and lagging strands at the replication origins.
Collapse
Affiliation(s)
- Masashi Uchiyama
- Department of Pathology, Stanford University School of Medicine, MED CTR R-272, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
6
|
Ballabeni A, Melixetian M, Zamponi R, Masiero L, Marinoni F, Helin K. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis. EMBO J 2004; 23:3122-32. [PMID: 15257290 PMCID: PMC514931 DOI: 10.1038/sj.emboj.7600314] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Accepted: 06/16/2004] [Indexed: 12/19/2022] Open
Abstract
Geminin is an unstable inhibitor of DNA replication that negatively regulates the licensing factor CDT1 and inhibits pre-replicative complex (pre-RC) formation in Xenopus egg extracts. Here we describe a novel function of Geminin. We demonstrate that human Geminin protects CDT1 from proteasome-mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle. Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate that Geminin is both a negative and positive regulator of pre-RC formation in human cells, playing a positive role in allowing CDT1 accumulation in G2-M, and preventing relicensing of origins in S-G2.
Collapse
Affiliation(s)
- Andrea Ballabeni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marina Melixetian
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Raffaella Zamponi
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Laura Masiero
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Federica Marinoni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Kristian Helin
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Biotech Research & Innovation Centre, Copenhagen, Denmark
- Biotech Research and Innovation Centre, Fruebjergvej 3, 2100 Copenhagen, Denmark. Tel.: +45 39 17 96 66; Fax: +45 39 17 96 69; E-mail:
| |
Collapse
|
7
|
Coulonval K, Bockstaele L, Paternot S, Roger PP. Phosphorylations of cyclin-dependent kinase 2 revisited using two-dimensional gel electrophoresis. J Biol Chem 2003; 278:52052-60. [PMID: 14551212 DOI: 10.1074/jbc.m307012200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To control the G1/S transition and the progression through the S phase, the activation of the cyclin-dependent kinase (CDK) 2 involves the binding of cyclin E then cyclin A, the activating Thr-160 phosphorylation within the T-loop by CDK-activating kinase (CAK), inhibitory phosphorylations within the ATP binding region at Tyr-15 and Thr-14, dephosphorylation of these sites by cdc25A, and release from Cip/Kip family (p27kip1 and p21cip1) CDK inhibitors. To re-assess the precise relationship between the different phosphorylations of CDK2, and the influence of cyclins and CDK inhibitors upon them, we introduce here the use of the high resolution power of two-dimensional gel electrophoresis, combined to Tyr-15- or Thr-160-phosphospecific antibodies. The relative proportions of the potentially active forms of CDK2 (phosphorylated at Thr-160 but not Tyr-15) and inactive forms (non-phosphorylated, phosphorylated only at Tyr-15, or at both Tyr-15 and Thr-160), and their respective association with cyclin E, cyclin A, p21, and p27, were demonstrated during the mitogenic stimulation of normal human fibroblasts. Novel observations modify the current model of the sequential CDK2 activation process: (i) Tyr-15 phosphorylation induced by serum was not restricted to cyclin-bound CDK2; (ii) Thr-160 phosphorylation engaged the entirety of Tyr-15-phosphorylated CDK2 associated not only with a cyclin but also with p27 and p21, suggesting that Cip/Kip proteins do not prevent CDK2 activity by impairing its phosphorylation by CAK; (iii) the potentially active CDK2 phosphorylated at Thr-160 but not Tyr-15 represented a tiny fraction of total CDK2 and a minor fraction of cyclin A-bound CDK2, underscoring the rate-limiting role of Tyr-15 dephosphorylation by cdc25A.
Collapse
Affiliation(s)
- Katia Coulonval
- Institute of Interdisciplinary Research and Protein Chemistry Department, Faculté de Médecine, Université Libre de Bruxelles, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
8
|
Henneke G, Koundrioukoff S, Hübscher U. Multiple roles for kinases in DNA replication. EMBO Rep 2003; 4:252-6. [PMID: 12634841 PMCID: PMC1315902 DOI: 10.1038/sj.embor.embor774] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Accepted: 01/17/2003] [Indexed: 11/09/2022] Open
Abstract
DNA replication is carried out by the replisome, which includes several proteins that are targets of cell-cycle-regulated kinases. The phosphorylation of proteins such as replication protein A, DNA polymerase-alpha and -delta, replication factor C, flap endonuclease 1 and DNA ligase I leads to their inactivation, suggesting that phosphorylation is important in the prevention of re-replication. Moreover, the phosphorylation of several of these replication proteins has been shown to block their association with the 'moving platform'-proliferating cell nuclear antigen. Therefore, phosphorylation seems to be a crucial regulator of replisome assembly and DNA replication, although its precise role in these processes remains to be clarified.
Collapse
Affiliation(s)
- Ghislaine Henneke
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- These authors contributed equally to this work
| | - Stéphane Koundrioukoff
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- These authors contributed equally to this work
| | - Ulrich Hübscher
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Tel: +41 1 635 54 72; Fax: +41 1 635 68 40;
| |
Collapse
|
9
|
Frouin I, Montecucco A, Biamonti G, Hübscher U, Spadari S, Maga G. Cell cycle-dependent dynamic association of cyclin/Cdk complexes with human DNA replication proteins. EMBO J 2002; 21:2485-95. [PMID: 12006500 PMCID: PMC125998 DOI: 10.1093/emboj/21.10.2485] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have previously described the isolation of a replication competent (RC) complex from calf thymus, containing DNA polymerase alpha, DNA polymerase delta and replication factor C. Here, we describe the isolation of the RC complex from nuclear extracts of synchronized HeLa cells, which contains DNA replication proteins associated with cell-cycle regulation factors like cyclin A, cyclin B1, Cdk2 and Cdk1. In addition, it contains a kinase activity and DNA polymerase activities able to switch from a distributive to a processive mode of DNA synthesis, which is dependent on proliferating cell nuclear antigen. In vivo cross-linking of proteins to DNA in synchronized HeLa cells demonstrates the association of this complex to chromatin. We show a dynamic association of cyclins/Cdks with the RC complex during the cell cycle. Indeed, cyclin A and Cdk2 associated with the complex in S phase, and cyclin B1 and Cdk1 were present exclusively in G(2)/M phase, suggesting that the activity, as well the localization, of the RC complex might be regulated by specific cyclin/Cdk complexes.
Collapse
Affiliation(s)
| | | | | | - Ulrich Hübscher
- Istituto di Genetica Molecolare–CNR, Pavia, Italy and
Institute for Veterinary Biochemistry and Molecular Biology, Universität Zürich–Irchel, CH-8057 Zürich, Switzerland Corresponding author e-mail:
| | | | - Giovanni Maga
- Istituto di Genetica Molecolare–CNR, Pavia, Italy and
Institute for Veterinary Biochemistry and Molecular Biology, Universität Zürich–Irchel, CH-8057 Zürich, Switzerland Corresponding author e-mail:
| |
Collapse
|
10
|
Gopalakrishnan V, Simancek P, Houchens C, Snaith HA, Frattini MG, Sazer S, Kelly TJ. Redundant control of rereplication in fission yeast. Proc Natl Acad Sci U S A 2001; 98:13114-9. [PMID: 11606752 PMCID: PMC60833 DOI: 10.1073/pnas.221467598] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The initiation of DNA replication at replication origins in eukaryotic cells is tightly controlled to ensure that the genome is duplicated only once each cell cycle. We present evidence that in fission yeast, independent regulation of two essential components of the initiation complex, Cdc18 and Cdt1, contributes to the prevention of reinitiation of DNA replication. Cdc18 is negatively controlled by cyclin-dependent kinase (CDK) phosphorylation, but low level expression of a mutant form of Cdc18 lacking CDK phosphorylation sites (Cdc18(CDK)) is not sufficient to induce rereplication. Similar to Cdc18, Cdt1 is expressed periodically in the cell cycle, accumulating in the nucleus in G(1) and declining in G(2). When Cdt1 is expressed constitutively from an ectopic promoter, it accumulates in the nucleus throughout the cell cycle but does not promote reinitiation. However, constitutive expression of Cdt1, together with Cdc18(CDK), is sufficient to induce extra rounds of DNA replication in the absence of mitosis. Significantly greater levels of rereplication can be induced by coexpression of Cdc18(CDK) and a Cdt1 mutant lacking a conserved C-terminal motif. In contrast, uncontrolled DNA replication does not occur when either mutant protein is expressed in the absence of the other. Constitutive expression of wild-type or mutant Cdt1 also leads to an increase in the levels of Cdc18(CDK), possibly as a result of increased protein stability. Our data are consistent with the hypothesis that control of rereplication depends on a redundant mechanism in which negative regulation of Cdt1 functions in parallel with the negative regulation of Cdc18.
Collapse
Affiliation(s)
- V Gopalakrishnan
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21210, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Ishimi Y, Komamura-Kohno Y. Phosphorylation of Mcm4 at specific sites by cyclin-dependent kinase leads to loss of Mcm4,6,7 helicase activity. J Biol Chem 2001; 276:34428-33. [PMID: 11454864 DOI: 10.1074/jbc.m104480200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mcm proteins that play an essential role in eukaryotic DNA replication are phosphorylated in vivo, and cyclin-dependent protein kinase is at least in part responsible for the phosphorylation of Mcm4. Our group reported that the DNA helicase activity of Mcm4,6,7 complex, which may be involved in initiation of DNA replication, is inhibited following phosphorylation by Cdk2/cyclin A in vitro. Here, we further examined the interplay between mouse Mcm4,6,7 complex and cyclin-dependent kinases and determined the sites required for the phosphorylation of Mcm4. Six Ser and Thr residues, in all, were required for the phosphorylation. Inhibition of Mcm4,6,7 helicase activity by Cdk2/cyclin A was largely relieved by introducing mutations in these residues of Mcm4. Anti-phosphothreonine antibodies raised against one of these sites reacted with Mcm4 prepared from HeLa cells at mitotic phase but did not bind to those at G(1) and G(1)/S, suggesting that this site is mainly phosphorylated in the mitotic phase. Mcm4,6,7 complex purified from HeLa cells at the mitotic phase exhibited a low level of DNA helicase activity, compared with the complexes prepared from cells at other phases. These results suggest that phosphorylation of Mcm4 at specific sites leads to loss of Mcm4,6,7 DNA helicase activity.
Collapse
Affiliation(s)
- Y Ishimi
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | |
Collapse
|
12
|
Vas A, Mok W, Leatherwood J. Control of DNA rereplication via Cdc2 phosphorylation sites in the origin recognition complex. Mol Cell Biol 2001; 21:5767-77. [PMID: 11486016 PMCID: PMC87296 DOI: 10.1128/mcb.21.17.5767-5777.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc2 kinase is a master regulator of cell cycle progression in the fission yeast Schizosaccharomyces pombe. Our data indicate that Cdc2 phosphorylates replication factor Orp2, a subunit of the origin recognition complex (ORC). Cdc2 phosphorylation of Orp2 appears to be one of multiple mechanisms by which Cdc2 prevents DNA rereplication in a single cell cycle. Cdc2 phosphorylation of Orp2 is not required for Cdc2 to activate DNA replication initiation. Phosphorylation of Orp2 appears first in S phase and becomes maximal in G(2) and M when Cdc2 kinase activity is required to prevent reinitiation of DNA replication. A mutant lacking Cdc2 phosphorylation sites in Orp2 (orp2-T4A) allowed greater rereplication of DNA than congenic orp2 wild-type strains when the limiting replication initiation factor Cdc18 was deregulated. Thus, Cdc2 phosphorylation of Orp2 may be redundant with regulation of Cdc18 for preventing reinitiation of DNA synthesis. Since Cdc2 phosphorylation sites are present in Orp2 (also known as Orc2) from yeasts to metazoans, we propose that cell cycle-regulated phosphorylation of the ORC provides a safety net to prevent DNA rereplication and resulting genetic instability.
Collapse
Affiliation(s)
- A Vas
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, NY 11794-5222, USA
| | | | | |
Collapse
|
13
|
Noya F, Chien WM, Broker TR, Chow LT. p21cip1 Degradation in differentiated keratinocytes is abrogated by costabilization with cyclin E induced by human papillomavirus E7. J Virol 2001; 75:6121-34. [PMID: 11390614 PMCID: PMC114328 DOI: 10.1128/jvi.75.13.6121-6134.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2001] [Accepted: 04/09/2001] [Indexed: 01/29/2023] Open
Abstract
The human papillomavirus (HPV) E7 protein promotes S-phase reentry in a fraction of postmitotic, differentiated keratinocytes. Here we report that these cells contain an inherent mechanism that opposes E7-induced DNA replication. In organotypic raft cultures of primary human keratinocytes, neither cyclin E nor p21cip1 is detectable in situ. However, E7-transduced differentiated cells not in S phase accumulate abundant cyclin E and p21cip1. We show that normally p21cip1 protein is rapidly degraded by proteasomes. In the presence of E7 or E6/E7, p21cip1, cyclin E, and cyclin E2 proteins were all up-regulated. The accumulation of p21cip1 protein is a posttranscriptional event, and ectopic cyclin E expression was sufficient to trigger it. In constract, cdk2 and p27kip1 were abundant in normal differentiated cells and were not significantly affected by E7. Cyclin E, cdk2, and p21cip1 or p27kip1 formed complexes, and relatively little kinase activity was found associated with cyclin E or cdk2. In patient papillomas and E7 raft cultures, all p27kip1-positive cells were negative for bromodeoxyuridine (BrdU) incorporation, but only some also contained cyclin E and p21cip1. In contrast, all cyclin E-positive cells also contained p27kip1. When the expression of p21cip1 was reduced by rottlerin, a PKC delta inhibitor, p27kip1- and BrdU-positive cells remained unchanged. These observations show that high levels of endogenous p27kip1 can prevent E7-induced S-phase reentry. This inhibition then leads to the stabilization of cyclin E and p21cip1. Since efficient initiation of viral DNA replication requires cyclin E and cdk2, its inhibition accounts for heterogeneous viral activities in productively infected lesions.
Collapse
Affiliation(s)
- F Noya
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | | | | | |
Collapse
|
14
|
Abstract
The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
Collapse
Affiliation(s)
- T J Kelly
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
15
|
Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20:8602-12. [PMID: 11046155 PMCID: PMC102165 DOI: 10.1128/mcb.20.22.8602-8612.2000] [Citation(s) in RCA: 758] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evidence obtained from studies with yeast and Xenopus indicate that the initiation of DNA replication is a multistep process. The origin recognition complex (ORC), Cdc6p, and minichromosome maintenance (MCM) proteins are required for establishing prereplication complexes, upon which initiation is triggered by the activation of cyclin-dependent kinases and the Dbf4p-dependent kinase Cdc7p. The identification of human homologues of these replication proteins allows investigation of S-phase regulation in mammalian cells. Using centrifugal elutriation of several human cell lines, we demonstrate that whereas human Orc2 (hOrc2p) and hMcm proteins are present throughout the cell cycle, hCdc6p levels vary, being very low in early G(1) and accumulating until cells enter mitosis. hCdc6p can be polyubiquitinated in vivo, and it is stabilized by proteasome inhibitors. Similar to the case for hOrc2p, a significant fraction of hCdc6p is present on chromatin throughout the cell cycle, whereas hMcm proteins alternate between soluble and chromatin-bound forms. Loading of hMcm proteins onto chromatin occurs in late mitosis concomitant with the destruction of cyclin B, indicating that the mitotic kinase activity inhibits prereplication complex formation in human cells.
Collapse
Affiliation(s)
- J Méndez
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
16
|
Barbaro BA, Sreekumar KR, Winters DR, Prack AE, Bullock PA. Phosphorylation of simian virus 40 T antigen on Thr 124 selectively promotes double-hexamer formation on subfragments of the viral core origin. J Virol 2000; 74:8601-13. [PMID: 10954562 PMCID: PMC116373 DOI: 10.1128/jvi.74.18.8601-8613.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell cycle-dependent phosphorylation of simian virus 40 (SV40) large tumor antigen (T-ag) on threonine 124 is essential for the initiation of viral DNA replication. A T-ag molecule containing a Thr-->Ala substitution at this position (T124A) was previously shown to bind to the SV40 core origin but to be defective in DNA unwinding and initiation of DNA replication. However, exactly what step in the initiation process is defective as a result of the T124A mutation has not been established. Therefore, to better understand the control of SV40 replication, we have reinvestigated the assembly of T124A molecules on the SV40 origin. Herein it is demonstrated that hexamer formation is unaffected by the phosphorylation state of Thr 124. In contrast, T124A molecules are defective in double-hexamer assembly on subfragments of the core origin containing single assembly units. We also report that T124A molecules are inhibitors of T-ag double hexamer formation. These and related studies indicate that phosphorylation of T-ag on Thr 124 is a necessary step for completing the assembly of functional double hexamers on the SV40 origin. The implications of these studies for the cell cycle control of SV40 DNA replication are discussed.
Collapse
Affiliation(s)
- B A Barbaro
- Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
17
|
Ishimi Y, Komamura-Kohno Y, You Z, Omori A, Kitagawa M. Inhibition of Mcm4,6,7 helicase activity by phosphorylation with cyclin A/Cdk2. J Biol Chem 2000; 275:16235-41. [PMID: 10748114 DOI: 10.1074/jbc.m909040199] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A strong body of evidence indicates that cyclin-dependent protein kinases are required not only for the initiation of DNA replication but also for preventing over-replication in eukaryotic cells. Mcm proteins are one of the components of the replication licensing system that permits only a single round of DNA replication per cell cycle. It has been reported that Mcm proteins are phosphorylated by the cyclin-dependent kinases in vivo, suggesting that these two factors are cooperatively involved in the regulation of DNA replication. Our group has reported that a 600-kDa Mcm4,6,7 complex has a DNA helicase activity that is probably necessary for the initiation of DNA replication. Here, we examined the in vitro phosphorylation of the Mcm complexes with cyclin A/Cdk2 to understand the interplay between Mcm proteins and cyclin-dependent kinases. The cyclin A/Cdk2 mainly phosphorylated the amino-terminal region of Mcm4 in the Mcm4,6,7 complex. The phosphorylation was associated with the inactivation of its DNA helicase activity. These results raise the possibility that the inactivation of Mcm4,6,7 helicase activity by Cdk2 is a part of the system for regulating DNA replication.
Collapse
Affiliation(s)
- Y Ishimi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | |
Collapse
|
18
|
Krude T. Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state. J Biol Chem 2000; 275:13699-707. [PMID: 10788489 DOI: 10.1074/jbc.275.18.13699] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation of human DNA replication is investigated in vitro, using initiation-competent nuclei isolated from cells arrested in late G(1) phase by a 24-h treatment with 0.5 mm mimosine (Krude, T. (1999) Exp. Cell Res. 247, 148-159). Nuclei isolated from mimosine-arrested HeLa cells initiate semiconservative DNA replication upon incubation in cytosolic extracts from proliferating human cells. Initiation occurs in the absence and presence of a nuclear membrane. The cyclin-dependent kinase (Cdk) inhibitors roscovitine and olomoucine inhibit initiation of DNA replication, indicating a dependence of initiation on Cdk activity. Cell fractionation shows that cyclins A, E, and Cdk2 are bound to nuclei from mimosine-arrested cells. Exogenously added human cyclin A.Cdk2 and cyclin E.Cdk2 complexes, but not cyclin B1/Cdk1 or cyclin D2/Cdk6, can overcome inhibition of initiation by roscovitine in vitro. Depleting Cdk2 from cytosolic extract does not prevent initiation, demonstrating that cyclin.Cdk2 complexes are not required in the soluble extract, but are provided by the nuclei. Initiation depends further on an essential and soluble activity present in cytosolic extracts from proliferating cells, but not from mimosine-arrested cells, acting together with nuclear cyclin/Cdk2 activity.
Collapse
Affiliation(s)
- T Krude
- Wellcome/CRC Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom.
| |
Collapse
|
19
|
García P, Frampton J, Ballester A, Calés C. Ectopic expression of cyclin E allows non-endomitotic megakaryoblastic K562 cells to establish re-replication cycles. Oncogene 2000; 19:1820-33. [PMID: 10777216 DOI: 10.1038/sj.onc.1203494] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Megakaryocytes become polyploid by entering a truncated cell cycle, consisting of alternate S phases and abortive mitoses. We have investigated the regulation of the G1/S transition by comparing two megakaryoblastic cell lines, HEL and K562, which respectively do or do not become polyploid in response to phorbol esters. A pronounced downregulation of cyclin A, and to a lesser extent of cyclin E, occurred in K562 cells during the first 24 h after TPA treatment, in contrast with re-replicating HEL cells, in which both cyclins were present in individual G2/M cells. Transactivation experiments suggested that the absence of cyclin A in differentiated K562 cells could be due to a TPA-mediated inhibition of its transcription. To investigate the potential role of cyclin E in the establishment of re-replication cycles, we isolated K562 clones constitutively expressing cyclin E. The resulting clones, and also K562 cells transiently expressing cyclin E, entered re-replication cycles when treated with TPA. The transcriptional activity of the cyclin A promoter was not inhibited after TPA treatment, and although the levels of cyclin A fluctuated during further re-replication cycles, they never decreased below S phase levels. We conclude that the presence of cyclin E in megakaryoblastic G2/M cells determines cyclin A expression and allows the entrance into an extra S phase.
Collapse
Affiliation(s)
- P García
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas A. Sols, Universidad Autónoma-CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Havre PA, Rice M, Ramos R, Kmiec EB. HsRec2/Rad51L1, a protein influencing cell cycle progression, has protein kinase activity. Exp Cell Res 2000; 254:33-44. [PMID: 10623463 DOI: 10.1006/excr.1999.4725] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Rec2/Rad51L1 is a member of the Rad51 family of proteins. Although recombinase activity, typical of this family, could not be established, its overexpression in mammalian cells has been shown to cause a delay in G1. Moreover, since hsRec2/Rad51L1 has been found to be induced by both ionizing and UV irradiation, it is likely that hsRec2/Rad51L1 is elevated following any DNA damage and causes a G1 delay to allow time for DNA repair to occur. Limited homology with catalytic domains X and XI of protein kinase A suggested that kemptide, an artificial substrate containing one phosphorylatable residue, a serine, might serve as a substrate for hsRec2/Rad51L1. Here, we report that hsRec2/Rad51L1 can phosphorylate kemptide, as well as myelin basic protein, p53, cyclin E, and cdk2, but not a peptide substrate containing tyrosine only. The finding that hsRec2/Rad51L1 exhibits protein kinase activity is a first step toward identifying a mechanism whereby this protein affects the cell cycle.
Collapse
Affiliation(s)
- P A Havre
- Department of Biological Sciences, University of Delaware, Newark, Delaware, 19716, USA
| | | | | | | |
Collapse
|
21
|
You Z, Komamura Y, Ishimi Y. Biochemical analysis of the intrinsic Mcm4-Mcm6-mcm7 DNA helicase activity. Mol Cell Biol 1999; 19:8003-15. [PMID: 10567526 PMCID: PMC84885 DOI: 10.1128/mcb.19.12.8003] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mcm proteins play an essential role in eukaryotic DNA replication, but their biochemical functions are poorly understood. Recently, we reported that a DNA helicase activity is associated with an Mcm4-Mcm6-Mcm7 (Mcm4,6,7) complex, suggesting that this complex is involved in the initiation of DNA replication as a DNA-unwinding enzyme. In this study, we have expressed and isolated the mouse Mcm2, 4,6,7 proteins from insect cells and characterized various mutant Mcm4,6,7 complexes in which the conserved ATPase motifs of the Mcm4 and Mcm6 proteins were mutated. The activities associated with such preparations demonstrated that the DNA helicase activity is intrinsically associated with the Mcm4,6,7 complex. Biochemical analyses of these mutant Mcm4,6,7 complexes indicated that the ATP binding activity of the Mcm6 protein in the complex is critical for DNA helicase activity and that the Mcm4 protein may play a role in the single-stranded DNA binding activity of the complex. The results also indicated that the two activities of DNA helicase and single-stranded DNA binding can be separated.
Collapse
Affiliation(s)
- Z You
- Mitsubishi Kasei Institute of Life Sciences, Machida, Tokyo 194-8511, Japan
| | | | | |
Collapse
|
22
|
Lygerou Z, Nurse P. The fission yeast origin recognition complex is constitutively associated with chromatin and is differentially modified through the cell cycle. J Cell Sci 1999; 112 ( Pt 21):3703-12. [PMID: 10523506 DOI: 10.1242/jcs.112.21.3703] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The origin recognition complex (ORC) binds to the well defined origins of DNA replication in budding yeast. Homologous proteins in other eukaryotes have been identified but are less well characterised. We report here the characterisation of a fission yeast ORC complex (SpORC). Database searches identified a fission yeast Orc5 homologue. SpOrc5 is essential for cell viability and its deletion phenotype is identical to that of two previously identified ORC subunit homologues, SpOrc1 (Orp1/Cdc30) and SpOrc2 (Orp2). Co-immunoprecipitation experiments demonstrate that SpOrc1 forms a complex with SpOrc2 and SpOrc5 and gel filtration chromatography shows that SpOrc1 and SpOrc5 fractionate as high molecular mass complexes. SpORC subunits localise to the nucleus in a punctate distribution which persists throughout interphase and mitosis. We developed a chromatin isolation protocol and show that SpOrc1, 2 and 5 are associated with chromatin at all phases of the cell cycle. While the levels, nuclear localisation and chromatin association of SpORC remain constant through the cell cycle, one of its subunits, SpOrc2, is differentially modified. We show that SpOrc2 is a phosphoprotein which is hypermodified in mitosis and is rapidly converted to a faster migrating isoform as cells proceed into G(1) in preparation for S-phase.
Collapse
Affiliation(s)
- Z Lygerou
- Imperial Cancer Research Fund, London, WC2A 3PX, UK. z.lygerou@icrf. icnet.uk
| | | |
Collapse
|
23
|
Findeisen M, El-Denary M, Kapitza T, Graf R, Strausfeld U. Cyclin A-dependent kinase activity affects chromatin binding of ORC, Cdc6, and MCM in egg extracts of Xenopus laevis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:415-26. [PMID: 10491086 DOI: 10.1046/j.1432-1327.1999.00613.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.
Collapse
Affiliation(s)
- M Findeisen
- Division of Biology, University of Konstanz, Germany
| | | | | | | | | |
Collapse
|
24
|
Pasero P, Duncker BP, Schwob E, Gasser SM. A role for the Cdc7 kinase regulatory subunit Dbf4p in the formation of initiation-competent origins of replication. Genes Dev 1999; 13:2159-76. [PMID: 10465792 PMCID: PMC316966 DOI: 10.1101/gad.13.16.2159] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Using a reconstituted DNA replication assay from yeast, we demonstrate that two kinase complexes are essential for the promotion of replication in vitro. An active Clb/Cdc28 kinase complex, or its vertebrate equivalent, is required in trans to stimulate initiation in G(1)-phase nuclei, whereas the Dbf4/Cdc7 kinase complex must be provided by the template nuclei themselves. The regulatory subunit of Cdc7p, Dbf4p, accumulates during late G(1) phase, becomes chromatin associated prior to Clb/Cdc28 activation, and assumes a punctate pattern of localization that is similar to, and dependent on, the origin recognition complex (ORC). The association of Dbf4p with a detergent-insoluble chromatin fraction in G(1)-phase nuclei requires ORC but not Cdc6p or Clb/Cdc28 kinase activity, and correlates with competence for initiation. We propose a model in which Dbf4p targets Cdc7p to the prereplication complex prior to the G(1)/S transition, by a pathway parallel to, but independent of, the Cdc6p-dependent recruitment of MCMs.
Collapse
Affiliation(s)
- P Pasero
- Swiss Institute for Experimental Cancer Research (ISREC), CH-1066 Epalinges/Lausanne, Switzerland
| | | | | | | |
Collapse
|
25
|
Reynisdóttir I, Bhattacharyya S, Zhang D, Prives C. The retinoblastoma protein alters the phosphorylation state of polyomavirus large T antigen in murine cell extracts and inhibits polyomavirus origin DNA replication. J Virol 1999; 73:3004-13. [PMID: 10074150 PMCID: PMC104060 DOI: 10.1128/jvi.73.4.3004-3013.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/1998] [Accepted: 12/23/1998] [Indexed: 11/20/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRb) can associate with the transforming proteins of several DNA tumor viruses, including the large T antigen encoded by polyomavirus (Py T Ag). Although pRb function is critical for regulating progression from G1 to S phase, a role for pRb in S phase has not been demonstrated or excluded. To identify a potential effect of pRb on DNA replication, pRb protein was added to reaction mixtures containing Py T Ag, Py origin-containing DNA (Py ori-DNA), and murine FM3A cell extracts. We found that pRb strongly represses Py ori-DNA replication in vitro. Unexpectedly, however, this inhibition only partially depends on the interaction of pRb with Py T Ag, since a mutant Py T Ag (dl141) lacking the pRb interaction region was also significantly inhibited by pRb. This result suggests that pRb interferes with or alters one or more components of the murine cell replication extract. Furthermore, the ability of Py T Ag to be phosphorylated in such extracts is markedly reduced in the presence of pRb. Since cyclin-dependent kinase (CDK) phosphorylation of Py T Ag is required for its replication function, we hypothesize that pRb interferes with this phosphorylation event. Indeed, the S-phase CDK complex (cyclin A-CDK2), which phosphorylates both pRb and Py T Ag, alleviates inhibition caused by pRb. Moreover, hyperphosphorylated pRb is incapable of inhibiting replication of Py ori-DNA in vitro. We propose a new requirement for maintaining pRb phosphorylation in S phase, namely, to prevent deleterious effects on the cellular replication machinery.
Collapse
Affiliation(s)
- I Reynisdóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
26
|
Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: truncated LAP2beta proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopus laevis extracts. J Biophys Biochem Cytol 1999; 144:1083-96. [PMID: 10087255 PMCID: PMC2150574 DOI: 10.1083/jcb.144.6.1083] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Humans express three major splicing isoforms of LAP2, a lamin- and chromatin-binding nuclear protein. LAP2beta and gamma are integral membrane proteins, whereas alpha is intranuclear. When truncated recombinant human LAP2beta proteins were added to cell-free Xenopus laevis nuclear assembly reactions at high concentrations, a domain common to all LAP2 isoforms (residues 1-187) inhibited membrane binding to chromatin, whereas the chromatin- and lamin-binding region (residues 1-408) inhibited chromatin expansion. At lower concentrations of the common domain, membranes attached to chromatin with a unique scalloped morphology, but these nuclei neither accumulated lamins nor replicated. At lower concentrations of the chromatin- and lamin-binding region, nuclear envelopes and lamins assembled, but nuclei failed to enlarge and replicated on average 2. 5-fold better than controls. This enhancement was not due to rereplication, as shown by density substitution experiments, suggesting the hypothesis that LAP2beta is a downstream effector of lamina assembly in promoting replication competence. Overall, our findings suggest that LAP2 proteins mediate membrane-chromatin attachment and lamina assembly, and may promote replication by influencing chromatin structure.
Collapse
Affiliation(s)
- T M Gant
- Department of Cell Biology and Anatomy, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
27
|
Carlson CR, Grallert B, Stokke T, Boye E. Regulation of the start of DNA replication in Schizosaccharomyces pombe. J Cell Sci 1999; 112 ( Pt 6):939-46. [PMID: 10036243 DOI: 10.1242/jcs.112.6.939] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.
Collapse
Affiliation(s)
- C R Carlson
- Department of Cell Biology, Institute for Cancer Research, Montebello, Norway
| | | | | | | |
Collapse
|
28
|
Vernis L, Chasles M, Pasero P, Lepingle A, Gaillardin C, Fournier P. Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. Mol Biol Cell 1999; 10:757-69. [PMID: 10069816 PMCID: PMC25200 DOI: 10.1091/mbc.10.3.757] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have previously shown that both a centromere (CEN) and a replication origin are necessary for plasmid maintenance in the yeast Yarrowia lipolytica (). Because of this requirement, only a small number of centromere-proximal replication origins have been isolated from Yarrowia. We used a CEN-based plasmid to obtain noncentromeric origins, and several new fragments, some unique and some repetitive sequences, were isolated. Some of them were analyzed by two-dimensional gel electrophoresis and correspond to actual sites of initiation (ORI) on the chromosome. We observed that a 125-bp fragment is sufficient for a functional ORI on plasmid, and that chromosomal origins moved to ectopic sites on the chromosome continue to act as initiation sites. These Yarrowia origins share an 8-bp motif, which is not essential for origin function on plasmids. The Yarrowia origins do not display any obvious common structural features, like bent DNA or DNA unwinding elements, generally present at or near eukaryotic replication origins. Y. lipolytica origins thus share features of those in the unicellular Saccharomyces cerevisiae and in multicellular eukaryotes: they are discrete and short genetic elements without sequence similarity.
Collapse
Affiliation(s)
- L Vernis
- Laboratoire de Génétique Moléculaire et Cellulaire, Institut National de la Recherche Agronomique-Centre National de la Recherche Scientifique, 78850 Thiverval-Grignon, France.
| | | | | | | | | | | |
Collapse
|
29
|
Hayashi S, Yamaguchi M. Kinase-independent activity of Cdc2/cyclin A prevents the S phase in the Drosophila cell cycle. Genes Cells 1999; 4:111-22. [PMID: 10320477 DOI: 10.1046/j.1365-2443.1999.00243.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The Cdc2-dependent inhibition of S phase is required in G2 for the correct ordering of the S and M phases in yeasts and Drosophila. This function of Cdc2 has been ascribed to its ability to phosphorylate replication factors to prevent the assembly of a preinitiation complex at the origin of replication. Whether this is the sole mechanism of S phase inhibition by Cdc2 in higher metazoans is not known because the pleiotropic functions of this essential cell cycle regulator make genetic analysis difficult. RESULTS We show that Cdc2 co-expressed with Cyclin A inhibits the S phase in Drosophila salivary glands and diploid abdominal histoblasts. A kinase defective mutant of Cdc2 failed to promote mitosis, but was still able to inhibit the S phase with the same efficiency as the wild-type protein. In addition, Cdc2 and Cyclin A cooperatively inhibit transcriptional activation by the essential S phase regulator E2F. Cdc2 binds to E2F in vitro, and post-transcriptionally promotes its accumulation in vivo. Furthermore, the inhibitory effect of Cdc2 on S phase is overridden by E2F. CONCLUSION The inhibition of S phase by Cdc2 is achieved in part by a kinase-independent mechanism, which is likely to be mediated by the inhibition of E2F.
Collapse
Affiliation(s)
- S Hayashi
- National Institute of Genetics and The Graduate School for Advanced Studies, 1111 Yata, Mishima, Shizuoka-ken 411-8540, Japan.
| | | |
Collapse
|
30
|
Weinreich M, Liang C, Stillman B. The Cdc6p nucleotide-binding motif is required for loading mcm proteins onto chromatin. Proc Natl Acad Sci U S A 1999; 96:441-6. [PMID: 9892652 PMCID: PMC15155 DOI: 10.1073/pnas.96.2.441] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/1998] [Accepted: 11/12/1998] [Indexed: 11/18/2022] Open
Abstract
Cdc6p has an essential function in the mechanism and regulation of the initiation of DNA replication. Budding yeast Cdc6p binds to chromatin near autonomously replicating sequence elements in late M to early G1 phase through an interaction with Origin Recognition Complex or another origin-associated factor. It then facilitates the subsequent loading of the Mcm family of proteins near autonomously replicating sequence elements by an unknown mechanism. All Cdc6p homologues contain a bipartite Walker ATP-binding motif that suggests that ATP binding or hydrolysis may regulate Cdc6p activity. To determine whether these motifs are important for Cdc6p activity, mutations were made in conserved residues of the Walker A and B motifs. Substitution of lysine 114 to alanine (K114A) in the Walker A motif results in a temperature-sensitive phenotype in yeast and slower progression into S phase at the permissive temperature. A K114E mutation is lethal. The Cdc6(K114E) protein binds to chromatin but fails to promote loading of the Mcm proteins, suggesting that ATP binding is essential for this activity. The mutant arrests with a G1 DNA content but retains the ability to restrain mitosis in the absence of DNA replication, unlike depletion of Cdc6p. In contrast, Cdc6p containing a double alanine mutation in the Walker B motif, DE(223, 224)AA, is functional, and the mutant exhibits an apparently normal S phase. These results suggest that Cdc6p nucleotide binding is important for establishing the prereplicative complex at origins of DNA replication and that the amino terminus of Cdc6p is required for blocking entry into mitosis.
Collapse
Affiliation(s)
- M Weinreich
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
31
|
Voitenleitner C, Rehfuess C, Hilmes M, O'Rear L, Liao PC, Gage DA, Ott R, Nasheuer HP, Fanning E. Cell cycle-dependent regulation of human DNA polymerase alpha-primase activity by phosphorylation. Mol Cell Biol 1999; 19:646-56. [PMID: 9858588 PMCID: PMC83922 DOI: 10.1128/mcb.19.1.646] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/1998] [Accepted: 09/29/1998] [Indexed: 11/20/2022] Open
Abstract
DNA polymerase alpha-primase is known to be phosphorylated in human and yeast cells in a cell cycle-dependent manner on the p180 and p68 subunits. Here we show that phosphorylation of purified human DNA polymerase alpha-primase by purified cyclin A/cdk2 in vitro reduced its ability to initiate simian virus 40 (SV40) DNA replication in vitro, while phosphorylation by cyclin E/cdk2 stimulated its initiation activity. Tryptic phosphopeptide mapping revealed a family of p68 peptides that was modified well by cyclin A/cdk2 and poorly by cyclin E/cdk2. The p180 phosphopeptides were identical with both kinases. By mass spectrometry, the p68 peptide family was identified as residues 141 to 160. Cyclin A/cdk2- and cyclin A/cdc2-modified p68 also displayed a phosphorylation-dependent shift to slower electrophoretic mobility. Mutation of the four putative phosphorylation sites within p68 peptide residues 141 to 160 prevented its phosphorylation by cyclin A/cdk2 and the inhibition of replication activity. Phosphopeptide maps of the p68 subunit of DNA polymerase alpha-primase from human cells, synchronized and labeled in G1/S and in G2, revealed a cyclin E/cdk2-like pattern in G1/S and a cyclin A/cdk2-like pattern in G2. The slower-electrophoretic-mobility form of p68 was absent in human cells in G1/S and appeared as the cells entered G2/M. Consistent with this, the ability of DNA polymerase alpha-primase isolated from synchronized human cells to initiate SV40 replication was maximal in G1/S, decreased as the cells completed S phase, and reached a minimum in G2/M. These results suggest that the replication activity of DNA polymerase alpha-primase in human cells is regulated by phosphorylation in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- C Voitenleitner
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, and Vanderbilt Cancer Center, Nashville, Tennessee 37232-6838, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hengstschläger M, Braun K, Soucek T, Miloloza A, Hengstschläger-Ottnad E. Cyclin-dependent kinases at the G1-S transition of the mammalian cell cycle. Mutat Res 1999; 436:1-9. [PMID: 9878675 DOI: 10.1016/s1383-5742(98)00022-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the mammalian cell cycle, the transition from the G1 phase to S phase, in which DNA replication occurs, is dependent on tight cell size control and has been shown to be regulated by the cyclin-dependent kinases (Cdks) 2, 3, 4 and 6. Activities of Cdks are controlled by association with cyclins and reversible phosphorylation reactions. An additional level of regulation is provided by inhibitors of Cdks. G1-S and S phase substrates of these enzymes include proteins implicated in replication and transcription. Whereas the regulation and role of Cdk2, 4 and 6 has intensively been studied, less is known about Cdk3. Recent data provide first insights into the regulation of Cdk3-associate kinase activity and suggest a model how Cdk3 participates in the regulation of the G1-S transition. Although it has been shown that these G1-Cdks are absolutely essential for a proper transition into S phase, their physiological activation is not sufficient to directly initiate replication independently of cell size. Evidence obtained from yeast and Xenopus indicate the initiation of DNA replication to be a two-step process: the origin recognition complex, Cdc6 and Mcm proteins are required for establishing the prereplicative complex and the activities of Cdks and of Cdc7 kinase then trigger the G1-S transition. Recent findings provide evidence that the overall mechanism of initiation of replication is conserved in mammalian cells.
Collapse
Affiliation(s)
- M Hengstschläger
- Obstetrics and Gynecology, Department of Prenatal Diagnosis and Therapy, University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria.
| | | | | | | | | |
Collapse
|
33
|
Abstract
Recent research has focused on proteins important for early steps in replication in eukaryotes, and particularly on Cdc6/Cdc18, the MCMs, and Cdc45. Although it is still unclear exactly what role these proteins play, it is possible that they are analogous to initiation proteins in prokaryotes. One specific model is that MCMs form a hexameric helicase at replication forks, and Cdc6/Cdc18 acts as a 'clamp-loader' required to lock the MCMs around DNA. The MCMs appear to be the target of Cdc7-Dbf4 kinase acting at individual replication origins. Finally, Cdc45 interacts with MCMs and may shed light on how cyclin-dependent kinases activate DNA replication.
Collapse
Affiliation(s)
- J Leatherwood
- Department of Molecular Genetics and Microbiology Life Science Room 130 State University of New York Stony Brook NY 11794-5222 USA.
| |
Collapse
|
34
|
Abstract
In recent years considerable effort has been invested toward understanding the molecular mechanisms that regulate and restrict DNA replication to once per each cell cycle. An important contribution came from studying the phenomenon of endoreduplication-an endonuclear duplication of chromosomes which occurs in the absence of mitosis leading to the production of chromosomes with doubling series of chromatids. Because endoreduplicating nuclei retain the capability of replication without passing through mitosis, they provide a unique system for studying the molecular mechanisms that restrict DNA replication to once per cycle. Three types of endoreduplication can be identified: I, multiple initiations within a given S phase; II, reoccurring S phase; and III, repeated S and Gap phases. Each of these illuminates a different control level acting over the onset of S phase, which coordinately restrict DNA synthesis to once per each cell cycle.
Collapse
Affiliation(s)
- G Grafi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
35
|
Donaldson AD, Raghuraman MK, Friedman KL, Cross FR, Brewer BJ, Fangman WL. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol Cell 1998; 2:173-82. [PMID: 9734354 DOI: 10.1016/s1097-2765(00)80127-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Replication origins in chromosomes are activated at specific times during the S phase. We show that the B-type cyclins are required for proper execution of this temporal program. clb5 cells activate early origins but not late origins, explaining the previously described long clb5 S phase. Origin firing appears normal in cIb6 mutants. In clb5 clb6 double mutant cells, the late origin firing defect is suppressed, accounting for the normal duration of the phase despite its delayed onset. Therefore, Clb5p promotes the timely activation of early and late origins, but Clb6p can activate only early origins. In clb5 clb6 mutants, the other B-type cyclins (Clb1-4p) promote an S phase during which both early and late replication origins fire.
Collapse
Affiliation(s)
- A D Donaldson
- Department of Genetics, University of Washington, Seattle 98195-7360, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Jallepalli PV, Tien D, Kelly TJ. sud1(+) targets cyclin-dependent kinase-phosphorylated Cdc18 and Rum1 proteins for degradation and stops unwanted diploidization in fission yeast. Proc Natl Acad Sci U S A 1998; 95:8159-64. [PMID: 9653157 PMCID: PMC20946 DOI: 10.1073/pnas.95.14.8159] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, S phase is limited to a single round per cell cycle through cyclin-dependent kinase phosphorylation of critical replication factors, including the Cdc18 replication initiator protein. Because defects in Cdc18 phosphorylation lead to a hyperstable and hyperactive form of Cdc18 that promotes high levels of overreplication in vivo, we wished to identify the components of the Cdc18 proteolysis pathway in fission yeast. In this paper we describe one such component, encoded by the sud1(+) gene. sud1(+) shares homology with the budding yeast CDC4 gene and is required to prevent spontaneous re-replication in fission yeast. Cells lacking sud1(+) accumulate high levels of Cdc18 and the CDK inhibitor Rum1, because they cannot degrade these two key cell cycle regulators. Through genetic analysis we show that hyperaccumulation of Rum1 contributes to re-replication in Deltasud1 cells, but is not the cause of the defect in Cdc18 proteolysis. Rather, Sud1 itself is associated with the ubiquitin pathway in fission yeast and binds to Cdc18 in vivo. Most importantly, Sud1-Cdc18 binding requires prior phosphorylation of the Cdc18 polypeptide at CDK consensus sites. These results provide a biochemical mechanism for the phosphorylation-dependent degradation of Cdc18 and other cell cycle regulators, including Rum1. Evolutionary conservation of the Sud1/CDC4 pathway suggests that phosphorylation-coupled proteolysis may be a general feature of nearly all eukaryotic cell cycles.
Collapse
Affiliation(s)
- P V Jallepalli
- Department of Molecular Biology and Genetics, 725 North Wolfe Street, 601 Pre-Clinical Teaching Building, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
37
|
Abstract
Current paradigms for the regulation of genomic DNA replication in eukaryotes are derived primarily from cell fusion experiments, yeast genetics, and from in vitro assays in Xenopus egg extracts. Initially, many aspects seemed irreconcilably different among the various organisms and model systems. In the past year, however, divergent approaches have arrived at a consensus on how the cell cycle regulates the initiation of DNA replication. All major players appear to be conserved from yeast to vertebrates, yet the important challenge of reconstituting eukaryotic replication from purified components remains. Three novel in vitro assays that replicate nuclear templates bring us closer to this goal.
Collapse
Affiliation(s)
- P Pasero
- Swiss Institute for Experimental Cancer Research (ISREC), Epalinges, Switzerland
| | | |
Collapse
|
38
|
Ishimi Y, Komamura Y, You Z, Kimura H. Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem 1998; 273:8369-75. [PMID: 9525946 DOI: 10.1074/jbc.273.14.8369] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins play an essential role in eukaryotic DNA replication and bind to chromatin before the initiation of DNA replication. We reported that MCM protein complexes consisting of MCM2, -4, -6, and -7 bind strongly to a histone-Sepharose column (Ishimi, Y., Ichinose, S., Omori, A., Sato, K., and Kimura, H. (1996) J. Biol. Chem. 271, 24115-24122). Here, we have analyzed this interaction at the molecular level. We found that among six mouse MCM proteins, only MCM2 binds to histone; amino acid residues 63-153 are responsible for this binding. The region required for nuclear localization of MCM2 was mapped near this histone-binding domain. Far-Western blotting analysis of truncated forms of H3 histone indicated that amino acid residues 26-67 of H3 histone are required for binding to MCM2. We have also shown that mouse MCM2 can inhibit the DNA helicase activity of the human MCM4, -6, and -7 protein complex. These results suggest that MCM2 plays a different role in the initiation of DNA replication than the other MCM proteins.
Collapse
Affiliation(s)
- Y Ishimi
- Mitsubishi Kasei Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194, Japan.
| | | | | | | |
Collapse
|
39
|
Gilbert DM. Replication origins in yeast versus metazoa: separation of the haves and the have nots. Curr Opin Genet Dev 1998; 8:194-9. [PMID: 9610410 DOI: 10.1016/s0959-437x(98)80141-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent flood of information concerning Saccharomyces cerevisiae replication origins and the proteins that interact with them contrasts alarmingly to the trickle of progress in our understanding of metazoan origins. In mammalian cells, origins are complex and heterogeneous, and appear to be selected by features of nuclear architecture that are re-established after each mitosis. Studies in Xenopus egg extracts have shown that once per cell cycle replication does not require specific origin sequences, despite the identification of functional homologues to yeast origin-binding proteins. These observations suggest that initiation of DNA replication in higher eukaryotes is focused to specific genomic regions by features of chromosome structure.
Collapse
Affiliation(s)
- D M Gilbert
- Department of Biochemistry and Molecular Biology, SUNY Health Science Center, Syracuse 13210, USA.
| |
Collapse
|
40
|
Abstract
Using Xenopus egg extracts, we have developed a completely soluble system for eukaryotic chromosomal DNA replication. In the absence of a nuclear envelope, a single, complete round of ORC-dependent DNA replication is catalyzed by cytosolic and nuclear extracts added sequentially to demembranated sperm chromatin or prokaryotic plasmid DNA. The absence of rereplication is explained by an activity present in the nucleus that prevents the binding of MCM to chromatin. Our results indicate that the role of the nuclear envelope in DNA replication is to concentrate activators and inhibitors of replication inside the nucleus. In addition, they provide direct evidence that metazoans use the same strategy as yeast to activate DNA replication and to restrict it to a single round per cell cycle.
Collapse
Affiliation(s)
- J Walter
- Department of Biology, University of California, San Diego La Jolla 92093-0347, USA
| | | | | |
Collapse
|
41
|
Abstract
Cyclins are highly conserved proteins that activate cyclin-dependent kinases (CDKs) to regulate the cell cycle, transcription and other cellular processes. The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae allows an appraisal of the functions of the entire complement of cyclins in a eukaryotic organism. The cyclin family of budding yeast is reviewed from a functional perspective with an emphasis on what genetic and biochemical experiments have revealed about cyclin-CDK substrates.
Collapse
Affiliation(s)
- B Andrews
- Department of Molecular and Medical Genetics, University of Toronto, Canada.
| | | |
Collapse
|
42
|
Liang C, Stillman B. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev 1997; 11:3375-86. [PMID: 9407030 PMCID: PMC316796 DOI: 10.1101/gad.11.24.3375] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/1997] [Accepted: 10/08/1997] [Indexed: 02/05/2023]
Abstract
Faithful inheritance of genetic information requires that DNA be copied only once each cell cycle. Initiation of DNA replication involves the establishment of a prereplication complex (pre-RC) and subsequent activation by CDK/cyclins, converting the pre-RC to a post-RC. The origin recognition complex (ORC), Cdc6p, and the MCM proteins are required for establishing the pre-RC. We show that all six ORC subunits remain bound to chromatin throughout the cell cycle, whereas the MCM proteins cycle on and off, corresponding precisely to transitions of the RC. A newly isolated cdc6 mutant displays promiscuous initiation of DNA replication, increased nuclear DNA content, and constant MCM protein association with chromatin throughout the cell cycle. This gain-of-function cdc6 mutant ignores the negative controls imposed normally on initiation by the CDK/cyclins, suggesting that Cdc6p is a key mediator of once-per-cell-cycle control of DNA replication.
Collapse
Affiliation(s)
- C Liang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 USA
| | | |
Collapse
|
43
|
Jallepalli PV, Brown GW, Muzi-Falconi M, Tien D, Kelly TJ. Regulation of the replication initiator protein p65cdc18 by CDK phosphorylation. Genes Dev 1997; 11:2767-79. [PMID: 9353247 PMCID: PMC316667 DOI: 10.1101/gad.11.21.2767] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclin-dependent kinases (CDKs) promote the initiation of DNA replication and prevent reinitiation before mitosis, presumably through phosphorylation of key substrates at origins of replication. In fission yeast, the p65cdc18 protein is required to initiate DNA replication and interacts with the origin recognition complex (ORC) and the p34cdc2 CDK. Here we report that p65cdc18 becomes highly phosphorylated as cells undergo the G1 --> S phase transition. This modification is dependent on p34cdc2 protein kinase activity, as well as six consensus CDK phosphorylation sites within the p65cdc18 polypeptide. Genetic interactions between cdc18+ and the S-phase cyclin cig2+ suggest that CDK-dependent phosphorylation antagonizes cdc18+ function in vivo. Using site-directed mutagenesis, we show that phosphorylation at CDK consensus sites directly targets p65cdc18 for rapid degradation and inhibits its replication activity, as strong expression of a constitutively hypophosphorylated mutant form of p65cdc18 results in large amounts of DNA over-replication in vivo. Furthermore, the over-replication phenotype produced by this mutant p65cdc18 is resistant to increased mitotic cyclin/CDK activity, a known inhibitor of over-replication. Therefore, p65cdc18 is the first example of a cellular initiation factor directly regulated in vivo by CDK-dependent phosphorylation and proteolysis. Regulation of p65cdc18 by CDK phosphorylation is likely to contribute to the CDK-driven "replication switch" that restricts initiation at eukaryotic origins to once per cell cycle.
Collapse
Affiliation(s)
- P V Jallepalli
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 USA
| | | | | | | | | |
Collapse
|