1
|
Ding S, Chen Y, Huang C, Song L, Liang Z, Wei B. Perception and response of skeleton to mechanical stress. Phys Life Rev 2024; 49:77-94. [PMID: 38564907 DOI: 10.1016/j.plrev.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Mechanical stress stands as a fundamental factor in the intricate processes governing the growth, development, morphological shaping, and maintenance of skeletal mass. The profound influence of stress in shaping the skeletal framework prompts the assertion that stress essentially births the skeleton. Despite this acknowledgment, the mechanisms by which the skeleton perceives and responds to mechanical stress remain enigmatic. In this comprehensive review, our scrutiny focuses on the structural composition and characteristics of sclerotin, leading us to posit that it serves as the primary structure within the skeleton responsible for bearing and perceiving mechanical stress. Furthermore, we propose that osteocytes within the sclerotin emerge as the principal mechanical-sensitive cells, finely attuned to perceive mechanical stress. And a detailed analysis was conducted on the possible transmission pathways of mechanical stress from the extracellular matrix to the nucleus.
Collapse
Affiliation(s)
- Sicheng Ding
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yiren Chen
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Chengshuo Huang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Zhen Liang
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Bo Wei
- Department of Minimally invasive spine surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| |
Collapse
|
2
|
Lin P, Zhang G, Li H. The Role of Extracellular Matrix in Wound Healing. Dermatol Surg 2023; 49:S41-S48. [PMID: 37115999 DOI: 10.1097/dss.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
BACKGROUND Extracellular matrix communicates with surrounding cells to maintain skin homeostasis and modulate multiple cellular processes including wound healing. OBJECTIVE To elucidate the dynamic composition and potential roles of extracellular matrix in normal skin, wound healing process, and abnormal skin scarring. MATERIALS AND METHODS Literature review was performed to identify relevant publications pertaining to the extracellular matrix deposition in normal skin and wound healing process, as well as in abnormal scars. RESULTS A summary of the matrix components in normal skin is presented. Their primary roles in hemostasis, inflammation, proliferation, and remodeling phases of wound healing are briefly discussed. Identification of novel extracellular matrix in keloids is also provided. CONCLUSION Abnormal scarring remains a challenging condition with unmet satisfactory treatments. Illumination of extracellular matrix composition and functions in wound healing process will allow for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Pingping Lin
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| | - Guohong Zhang
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Hang Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China
- National Clinical Research Center for Skin and Immune Diseases, Beijing, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing, China
| |
Collapse
|
3
|
Distribution of tetraspanins in bovine ovarian tissue and fresh/vitrified oocytes. Histochem Cell Biol 2023; 159:163-183. [PMID: 36242635 PMCID: PMC9922244 DOI: 10.1007/s00418-022-02155-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/04/2022]
Abstract
Tetraspanin proteins are mostly known as organizers of molecular complexes on cell membranes, widely expressed on the surface of most nucleated cells. Although tetraspanins participate in many physiological processes of mammals, including reproduction, their relevance to the processes of folliculogenesis and oogenesis has not yet been fully elucidated. We bring new information regarding the distribution of tetraspanins CD9, CD81, CD151, CD82, and CD63 at different stages of follicular development in cattle. The found distribution of tetraspanin CD9, CD63, and integrin alpha V in similar areas of ovarian tissue outlined their possible cooperation. We also describe yet-unknown distribution patterns of CD151, CD82, and CD63 on immature and mature bovine oocytes. The unique localization of tetraspanins CD63 and CD82 in the zona pellucida of bovine oocytes suggested their involvement in transzonal projections. Furthermore, we present an unchanged distribution pattern of the studied tetraspanins in vitrified mature bovine oocytes. The immunofluorescent analysis was supplemented by in silico data addressing tetraspanins expression in the ovarian cells and oocytes across several species. The obtained results suggest that in the study of the oocyte development and potentially the fertilization process of cattle, the role of tetraspanins and integrins should also be taken into account.
Collapse
|
4
|
Shao S, Piao L, Guo L, Wang J, Wang L, Wang J, Tong L, Yuan X, Zhu J, Fang S, Wang Y. Tetraspanin 7 promotes osteosarcoma cell invasion and metastasis by inducing EMT and activating the FAK-Src-Ras-ERK1/2 signaling pathway. Cancer Cell Int 2022; 22:183. [PMID: 35524311 PMCID: PMC9074275 DOI: 10.1186/s12935-022-02591-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background Tetraspanins are members of the 4-transmembrane protein superfamily (TM4SF) that function by recruiting many cell surface receptors and signaling proteins into tetraspanin-enriched microdomains (TEMs) that play vital roles in the regulation of key cellular processes including adhesion, motility, and proliferation. Tetraspanin7 (Tspan7) is a member of this superfamily that plays documented roles in hippocampal neurogenesis, synaptic transmission, and malignant transformation in certain tumor types. How Tspan7 influences the onset or progression of osteosarcoma (OS), however, remains to be defined. Herein, this study aimed to explore the relationship between Tspan7 and the malignant progression of OS, and its underlying mechanism of action. Methods In this study, the levels of Tspan7 expression in human OS cell lines were evaluated via qRT-PCR and western blotting. The effect of Tspan7 on proliferation was examined using CCK-8 and colony formation assays, while metastatic role of Tspan7 was assessed by functional assays both in vitro and in vivo. In addition, mass spectrometry and co-immunoprecipitation were performed to verify the interaction between Tspan7 and β1 integrin, and western blotting was used to explore the mechanisms of Tspan7 in OS progresses. Results We found that Tspan7 is highly expressed in primary OS tumors and OS cell lines. Downregulation of Tspan7 significantly suppressed OS growth, metastasis, and attenuated epithelial-mesenchymal transition (EMT), while its overexpression had the opposite effects in vitro. Furthermore, it exhibited reduced OS pulmonary metastases in Tspan7-deleted mice comparing control mice in vivo. Additionally, we proved that Tspan7 interacted with β1 integrin to facilitate OS metastasis through the activation of integrin-mediated downstream FAK-Src-Ras-ERK1/2 signaling pathway. Conclusion In summary, this study demonstrates for the first time that Tspan7 promotes OS metastasis via interacting with β1 integrin and activating the FAK-Src-Ras-ERK1/2 pathway, which could provide rationale for a new therapeutic strategy for OS. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02591-1.
Collapse
Affiliation(s)
- Shijie Shao
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, 213000, People's Republic of China.
| | - Liwei Guo
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiangsong Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Luhui Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Jiawen Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Lei Tong
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Xiaofeng Yuan
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Junke Zhu
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Sheng Fang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China
| | - Yimin Wang
- Department of Orthopedics, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, People's Republic of China.
| |
Collapse
|
5
|
Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers (Basel) 2022; 14:cancers14020443. [PMID: 35053605 PMCID: PMC8773542 DOI: 10.3390/cancers14020443] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common and malignant primary brain tumor, defined by its highly aggressive nature. Despite the advances in diagnostic and surgical techniques, and the development of novel therapies in the last decade, the prognosis for glioblastoma is still extremely poor. One major factor for the failure of existing therapeutic approaches is the highly invasive nature of glioblastomas. The extreme infiltrating capacity of tumor cells into the brain parenchyma makes complete surgical removal difficult; glioblastomas almost inevitably recur in a more therapy-resistant state, sometimes at distant sites in the brain. Therefore, there are major efforts to understand the molecular mechanisms underpinning glioblastoma invasion; however, there is no approved therapy directed against the invasive phenotype as of now. Here, we review the major molecular mechanisms of glioblastoma cell invasion, including the routes followed by glioblastoma cells, the interaction of tumor cells within the brain environment and the extracellular matrix components, and the roles of tumor cell adhesion and extracellular matrix remodeling. We also include a perspective of high-throughput approaches utilized to discover novel players for invasion and clinical targeting of invasive glioblastoma cells.
Collapse
|
6
|
Justo BL, Jasiulionis MG. Characteristics of TIMP1, CD63, and β1-Integrin and the Functional Impact of Their Interaction in Cancer. Int J Mol Sci 2021; 22:9319. [PMID: 34502227 PMCID: PMC8431149 DOI: 10.3390/ijms22179319] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tissue Inhibitor of Metalloproteases 1, also known as TIMP-1, is named for its well-established function of inhibiting the proteolytic activity of matrix metalloproteases. Given this function, many studies were carried out to verify if TIMP-1 was able to interrupt processes such as tumor cell invasion and metastasis. In contrast, many studies have shown that TIMP-1 expression is increased in several types of tumors, and this increase was correlated with a poor prognosis and lower survival in cancer patients. Later, it was shown that TIMP-1 is also able to modulate cell behavior through the induction of signaling pathways involved in cell growth, proliferation, and survival. The mechanisms involved in the regulation of the pleiotropic functions of TIMP-1 are still poorly understood. Thus, this review aimed to present literature data that show its ability to form a membrane complex with CD63 and β1-integrin, and point to N-glycosylation as a potential regulatory mechanism of the functions exerted by TIMP-1. This article reviewed the characteristics and functions performed individually by TIMP1, CD63, and β1-integrin, the roles of the TIMP-1/CD63/β1-integrin complex, both in a physiological context and in cancer, and the regulatory mechanisms involved in its assembly.
Collapse
Affiliation(s)
| | - Miriam Galvonas Jasiulionis
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Rua Pedro de Toledo 669, 5 Floor, São Paulo 04039-032, Brazil;
| |
Collapse
|
7
|
Abstract
Glycosphingolipids are amphiphilic plasma membrane components formed by a glycan linked to a specific lipid moiety. In this chapter we report on these compounds, on their role played in our cells to maintain the correct cell biology.In detail, we report on their structure, on their metabolic processes, on their interaction with proteins and from this, their property to modulate positively in health and negatively in disease, the cell signaling and cell biology.
Collapse
|
8
|
Tetraspanins, More than Markers of Extracellular Vesicles in Reproduction. Int J Mol Sci 2020; 21:ijms21207568. [PMID: 33066349 PMCID: PMC7589920 DOI: 10.3390/ijms21207568] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The participation of extracellular vesicles in many cellular processes, including reproduction, is unquestionable. Although currently, the tetraspanin proteins found in extracellular vesicles are mostly applied as markers, increasing evidence points to their role in extracellular vesicle biogenesis, cargo selection, cell targeting, and cell uptake under both physiological and pathological conditions. In this review, we bring other insight into the involvement of tetraspanin proteins in extracellular vesicle physiology in mammalian reproduction. We provide knowledge regarding the involvement of extracellular vesicle tetraspanins in these processes in somatic cells. Furthermore, we discuss the future direction towards an understanding of their functions in the tissues and fluids of the mammalian reproductive system in gamete maturation, fertilization, and embryo development; their involvement in mutual cell contact and communication in their complexity.
Collapse
|
9
|
Jankovicova J, Frolikova M, Palenikova V, Valaskova E, Cerny J, Secova P, Bartokova M, Horovska L, Manaskova-Postlerova P, Antalikova J, Komrskova K. Expression and distribution of CD151 as a partner of alpha6 integrin in male germ cells. Sci Rep 2020; 10:4374. [PMID: 32152440 PMCID: PMC7062741 DOI: 10.1038/s41598-020-61334-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
The physiological importance of CD151 tetraspanin is known from somatic cells and its outside-in signalling through integrins was described. In male germ cells, two tetraspanins, CD9 and CD81, are involved in sperm-egg membrane fusion, and similarly to integrins, they occupy characteristic regions. We report here on a newly discovered presence of CD151 in sperm, and present its expression and distribution during spermatogenesis and sperm transition during the acrosome reaction. We traced CD151 gene and protein expression in testicular cell subpopulations, with strong enrichment in spermatogonia and spermatids. The testicular and epididymal localization pattern is designated to the sperm head primary fusion site called the equatorial segment and when compared to the acrosome vesicle status, CD151 was located into the inner acrosomal membrane overlying the nucleus. Moreover, we show CD151 interaction with α6 integrin subunit, which forms a dimer with β4 as a part of cis-protein interactions within sperm prior to gamete fusion. We used mammalian species with distinct sperm morphology and sperm maturation such as mouse and bull and compared the results with human. In conclusion, the delivered findings characterise CD151 as a novel sperm tetraspanin network member and provide knowledge on its physiology in male germ cells.
Collapse
Affiliation(s)
- J Jankovicova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - V Palenikova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40, Prague 2, Czech Republic
| | - E Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - J Cerny
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - P Secova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - M Bartokova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - L Horovska
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic
| | - P Manaskova-Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00, Prague 6, Czech Republic
| | - J Antalikova
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 845 05, Bratislava, Slovak Republic.
| | - K Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50, Vestec, Czech Republic. .,Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic.
| |
Collapse
|
10
|
Zigo M, Maňásková-Postlerová P, Zuidema D, Kerns K, Jonáková V, Tůmová L, Bubeníčková F, Sutovsky P. Porcine model for the study of sperm capacitation, fertilization and male fertility. Cell Tissue Res 2020; 380:237-262. [PMID: 32140927 DOI: 10.1007/s00441-020-03181-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Mammalian fertilization remains a poorly understood event with the vast majority of studies done in the mouse model. The purpose of this review is to revise the current knowledge about semen deposition, sperm transport, sperm capacitation, gamete interactions and early embryonic development with a focus on the porcine model as a relevant, alternative model organism to humans. The review provides a thorough overview of post-ejaculation events inside the sow's reproductive tract including comparisons with humans and implications for human fertilization and assisted reproductive therapy (ART). Porcine methodology for sperm handling, preservation, in vitro capacitation, oocyte in vitro maturation, in vitro fertilization and intra-cytoplasmic sperm injection that are routinely used in pig research laboratories can be successfully translated into ART to treat human infertility. Last, but not least, new knowledge about mitochondrial inheritance in the pig can provide an insight into human mitochondrial diseases and new knowledge on polyspermy defense mechanisms could contribute to the development of new male contraceptives.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Pavla Maňásková-Postlerová
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic.,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Dalen Zuidema
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Karl Kerns
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Věra Jonáková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Lucie Tůmová
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Filipa Bubeníčková
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16521, Prague, Czech Republic
| | - Peter Sutovsky
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Department of Obstetrics, Gynecology & Women's Health, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
11
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
12
|
Murru L, Vezzoli E, Longatti A, Ponzoni L, Falqui A, Folci A, Moretto E, Bianchi V, Braida D, Sala M, D'Adamo P, Bassani S, Francolini M, Passafaro M. Pharmacological Modulation of AMPAR Rescues Intellectual Disability-Like Phenotype in Tm4sf2-/y Mice. Cereb Cortex 2018; 27:5369-5384. [PMID: 28968657 PMCID: PMC5939231 DOI: 10.1093/cercor/bhx221] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/02/2017] [Indexed: 01/02/2023] Open
Abstract
Intellectual disability affects 2–3% of the world's population and typically begins during childhood, causing impairments in social skills and cognitive abilities. Mutations in the TM4SF2 gene, which encodes the TSPAN7 protein, cause a severe form of intellectual disability, and currently, no therapy is able to ameliorate this cognitive impairment. We previously reported that, in cultured neurons, shRNA-mediated down-regulation of TSPAN7 affects AMPAR trafficking by enhancing PICK1–GluA2 interaction, thereby increasing the intracellular retention of AMPAR. Here, we found that loss of TSPAN7 function in mice causes alterations in hippocampal excitatory synapse structure and functionality as well as cognitive impairment. These changes occurred along with alterations in AMPAR expression levels. We also found that interfering with PICK1–GluA2 binding restored synaptic function in Tm4sf2−/y mice. Moreover, potentiation of AMPAR activity via the administration of the ampakine CX516 reverted the neurological phenotype observed in Tm4sf2−/y mice, suggesting that pharmacological modulation of AMPAR may represent a new approach for treating patients affected by TM4SF2 mutations and intellectual disability.
Collapse
Affiliation(s)
- Luca Murru
- CNR Institute of Neuroscience, 20129 Milano, Italy
| | - Elena Vezzoli
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy.,Department of Biosciences and Centre for Stem Cell Research, University of Milan and Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi" Milan, Italy
| | - Anna Longatti
- CNR Institute of Neuroscience, 20129 Milano, Italy.,Department of Pharmacological and Biomolecular Sciences (DiSFeB), Università di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Luisa Ponzoni
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano, Italy.,Fondazione Umberto Veronesi, Piazza Velasca 5, 20122 Milan, Italy
| | - Andrea Falqui
- Biological and Environmental Sciences and Engineering Division, King Abdullah University for Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | | | | - Veronica Bianchi
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | | - Patrizia D'Adamo
- Division of Neuroscience, IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | - Maura Francolini
- Department of Medical Biotechnology and Translational Medicine, Università degli studi di Milano, Via Vanvitelli 32, 20129 Milano,Italy
| | | |
Collapse
|
13
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
14
|
Song B, Shu ZB, Du J, Ren JC, Feng Y. Anti-cancer effect of low dose of celecoxib may be associated with lnc-SCD-1:13 and lnc-PTMS-1:3 but not COX-2 in NCI-N87 cells. Oncol Lett 2017; 14:1775-1779. [PMID: 28789408 PMCID: PMC5529947 DOI: 10.3892/ol.2017.6316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/23/2017] [Indexed: 12/21/2022] Open
Abstract
In order to investigate the mechanism of celecoxib and whether long non-coding RNAs (lncRNAs) were involved in the effects of celecoxib treatment in NCI-N87 cells, NCI-N87 cells were treated with 15, 30 and 60 µM celecoxib and an MTT assay was performed to assess cell viability. Following treatment with 15 µM celecoxib, the cell cycle and apoptosis were analyzed by flow cytometry, and the mRNA levels of lnc-SCD-1:13, lnc-PTMS-1:3, cyclooxygenase-2 (COX-2), integrin α3 (ITGA3) and DSH homolog 1 (DVL1) were detected by reverse transcription quantitative PCR (RT-qPCR) in NCI-N87 cells. MTT analysis demonstrated that celecoxib significantly inhibited cell viability in treated cells compared with untreated cells. Flow cytometry analysis revealed that, compared with untreated cells, the percentage of cells in the G0/G1 phase was significantly increased, and the percentage of cells in the S and G2 phase was decreased. In addition, the percentage of early and late apoptotic cells was increased in cells treated with 15 µM celecoxib compared with the control. RT-qPCR analysis also demonstrated that the mRNA levels of lnc-SCD-1:13, lnc-PTMS-1:3, ITGA3 and DVL1 were increased following treatment with celecoxib (15 µM; P<0.05). However, there were no significant differences in the expression of COX-2 mRNA between cells treated with celecoxib (15 µM) and untreated cells. The present study demonstrated that a low dose of celecoxib may be involved in regulating cell growth independent of COX-2 in NCI-N87 cells. Furthermore, ITGA3 and/or DVL1 co-expressed with lnc-SCD-1:13 and lnc-PTMS-1:3 may be associated with the effects of treatment with a low dose of celecoxib in NCI-N87 cells.
Collapse
Affiliation(s)
- Bin Song
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhen-Bo Shu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Juan Du
- Internal Medicine 2, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Ji-Chen Ren
- Internal Medicine 2, The Tumor Hospital of Jilin, Changchun, Jilin 130012, P.R. China
| | - Ye Feng
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
15
|
Goldman AL, Bhasin S, Wu FCW, Krishna M, Matsumoto AM, Jasuja R. A Reappraisal of Testosterone's Binding in Circulation: Physiological and Clinical Implications. Endocr Rev 2017; 38:302-324. [PMID: 28673039 PMCID: PMC6287254 DOI: 10.1210/er.2017-00025] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/23/2017] [Indexed: 02/07/2023]
Abstract
In the circulation, testosterone and other sex hormones are bound to binding proteins, which play an important role in regulating their transport, distribution, metabolism, and biological activity. According to the free hormone hypothesis, which has been debated extensively, only the unbound or free fraction is biologically active in target tissues. Consequently, accurate determination of the partitioning of testosterone between bound and free fractions is central to our understanding of how its delivery to the target tissues and biological activity are regulated and consequently to the diagnosis and treatment of androgen disorders in men and women. Here, we present a historical perspective on the evolution of our understanding of the binding of testosterone to circulating binding proteins. On the basis of an appraisal of the literature as well as experimental data, we show that the assumptions of stoichiometry, binding dynamics, and the affinity of the prevailing models of testosterone binding to sex hormone-binding globulin and human serum albumin are not supported by published experimental data and are most likely inaccurate. This review offers some guiding principles for the application of free testosterone measurements in the diagnosis and treatment of patients with androgen disorders. The growing number of testosterone prescriptions and widely recognized problems with the direct measurement as well as the computation of free testosterone concentrations render this critical review timely and clinically relevant.
Collapse
Affiliation(s)
- Anna L Goldman
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Frederick C W Wu
- Andrology Research Unit, Centre for Endocrinology and Diabetes, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Meenakshi Krishna
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington 98108
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104
| | - Ravi Jasuja
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
16
|
Wadkin JCR, Patten DA, Kamarajah SK, Shepherd EL, Novitskaya V, Berditchevski F, Adams DH, Weston CJ, Shetty S. CD151 supports VCAM-1-mediated lymphocyte adhesion to liver endothelium and is upregulated in chronic liver disease and hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2017; 313:G138-G149. [PMID: 28473332 PMCID: PMC5582880 DOI: 10.1152/ajpgi.00411.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/31/2023]
Abstract
CD151, a member of the tetraspanin family of receptors, is a lateral organizer and modulator of activity of several families of transmembrane proteins. It has been implicated in the development and progression of several cancers, but its role in chronic inflammatory disease is less well understood. Here we show that CD151 is upregulated by distinct microenvironmental signals in a range of chronic inflammatory liver diseases and in primary liver cancer, in which it supports lymphocyte recruitment. CD151 was highly expressed in endothelial cells of the hepatic sinusoids and neovessels developing in fibrotic septa and tumor margins. Primary cultures of human hepatic sinusoidal endothelial cells (HSECs) expressed CD151 at the cell membrane and in intracellular vesicles. CD151 was upregulated by VEGF and HepG2 conditioned media but not by proinflammatory cytokines. Confocal microscopy confirmed that CD151 colocalized with the endothelial adhesion molecule/immunoglobulin superfamily member, VCAM-1. Functional flow-based adhesion assays with primary human lymphocytes and HSECs demonstrated a 40% reduction of lymphocyte adhesion with CD151 blockade. Inhibition of lymphocyte adhesion was similar between VCAM-1 blockade and a combination of CD151/VCAM-1 blockade, suggesting a collaborative role between the two receptors. These studies demonstrate that CD151 is upregulated within the liver during chronic inflammation, where it supports lymphocyte recruitment via liver endothelium. We propose that CD151 regulates the activity of VCAM-1 during lymphocyte recruitment to the human liver and could be a novel anti-inflammatory target in chronic liver disease and hepatocellular cancer prevention.NEW & NOTEWORTHY Chronic hepatitis is characterized by lymphocyte accumulation in liver tissue, which drives fibrosis and carcinogenesis. Here, we demonstrate for the first time that the tetraspanin CD151 supports lymphocyte adhesion to liver endothelium. We show that CD151 is upregulated in chronic liver disease and hepatocellular carcinoma (HCC) and is regulated on endothelium by tissue remodeling and procarcinogenic factors. These regulatory and functional studies identify CD151 as a potential therapeutic target to treat liver fibrosis and HCC.
Collapse
Affiliation(s)
- James C. R. Wadkin
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom;
| | - Daniel A. Patten
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom;
| | - Sivesh K. Kamarajah
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom;
| | - Emma L. Shepherd
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom;
| | - Vera Novitskaya
- 2CRUK Institute for Cancer Studies, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - Fedor Berditchevski
- 2CRUK Institute for Cancer Studies, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom; and
| | - David H. Adams
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom; ,3Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Chris J. Weston
- 1Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom;
| | - Shishir Shetty
- Birmingham Liver Biomedical Research Unit Institute of Immunology and Immunotherapy, National Institute for Health Research, University of Birmingham, Birmingham, United Kingdom; .,Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
17
|
Vats K, Marsh G, Harding K, Zampetakis I, Waugh RE, Benoit DSW. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions. J Biomed Mater Res A 2017; 105:1112-1122. [PMID: 28093865 DOI: 10.1002/jbm.a.36007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels provide a versatile platform to develop cell instructive materials through incorporation of a variety of cell adhesive ligands and degradable chemistries. Synthesis of PEG gels can be accomplished via two mechanisms: chain and step growth polymerizations. The mechanism dramatically impacts hydrogel nanostructure, whereby chain polymerized hydrogels are highly heterogeneous and step growth networks exhibit more uniform structures. Underpinning these alterations in nanostructure of chain polymerized hydrogels are densely-packed hydrophobic poly(methyl methacrylate) or poly(acrylate) kinetic chains between hydrophilic PEG crosslinkers. As cell-material interactions, such as those mediated by integrins, occur at the nanoscale and affect cell behavior, it is important to understand how different modes of polymerization translate into nanoscale mechanical and hydrophobic heterogeneities of hydrogels. Therefore, chain- and step-growth polymerized PEG hydrogels with macroscopically similar macromers and compliance (for example, methacrylate-functionalized PEG (PEGDM), MW = 10 kDa and norbornene-functionalized 4-arm PEG (PEGnorb), MW = 10 kDa) were used to examine potential nanoscale differences in hydrogel mechanics and hydrophobicity using atomic force microscopy (AFM). It was found that chain-growth polymerized network yielded greater heterogeneities in both stiffness and hydrophobicity as compared to step-growth polymerized networks. These nanoscale heterogeneities impact cell-material interactions, particularly human mesenchymal stem cell (hMSC) adhesion and spreading, which has implications in use of these hydrogels for tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1112-1122, 2017.
Collapse
Affiliation(s)
- Kanika Vats
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Graham Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Kristen Harding
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Ioannis Zampetakis
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York.,Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.,Department of Chemical Engineering, University of Rochester, Rochester, New York
| |
Collapse
|
18
|
Yang CF, Tu CH, Lo YP, Cheng CC, Chen WJ. Involvement of Tetraspanin C189 in Cell-to-Cell Spreading of the Dengue Virus in C6/36 Cells. PLoS Negl Trop Dis 2015; 9:e0003885. [PMID: 26132143 PMCID: PMC4488468 DOI: 10.1371/journal.pntd.0003885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/09/2015] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DENV) is naturally transmitted by mosquitoes to humans, infecting cells of both hosts. Unlike in mammalian cells, DENV usually does not cause extremely deleterious effects on cells of mosquitoes. Despite this, clustered progeny virions were found to form infection foci in a high density cell culture. It is thus interesting to know how the virus spreads among cells in tissues such as the midgut within live mosquitoes. This report demonstrates that cell-to-cell spread is one way for DENV to infect neighboring cells without depending on the "release and entry" mode. In the meantime, a membrane-bound vacuole incorporating tetraspanin C189 was formed in response to DENV infection in the C6/36 cell and was subsequently transported along with the contained virus from one cell to another. Knockdown of C189 in DENV-infected C6/36 cells is shown herein to reduce cell-to-cell transmission of the virus, which may be recovered by co-transfection with a C189-expressing vector in DENV-infected C6/36 cells. Moreover, cell-to-cell transmission usually occurred at the site where the donor cell directly contacts the recipient cell. It suggested that C189 is crucially involved in the intercellular spread of progeny viral particles between mosquito cells. This novel finding presumably accounts for the rapid and efficient infection of DENV after its initial replication within tissues of the mosquito.
Collapse
Affiliation(s)
- Chao-Fu Yang
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Cheng-Hsun Tu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Yin-Ping Lo
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Chih-Chieh Cheng
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | - Wei-June Chen
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- Department of Public Health and Parasitology, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Al-Dossary AA, Bathala P, Caplan JL, Martin-DeLeon PA. Oviductosome-Sperm Membrane Interaction in Cargo Delivery: DETECTION OF FUSION AND UNDERLYING MOLECULAR PLAYERS USING THREE-DIMENSIONAL SUPER-RESOLUTION STRUCTURED ILLUMINATION MICROSCOPY (SR-SIM). J Biol Chem 2015; 290:17710-17723. [PMID: 26023236 DOI: 10.1074/jbc.m114.633156] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Oviductosomes ((OVS), exosomes/microvesicles), which deliver the Ca(2+) efflux pump, plasma membrane Ca(2+)ATPase 4 (PMCA4), to sperm are likely to play an important role in sperm fertilizing ability (Al-Dossary, A. A., Strehler, E. E., and Martin-DeLeon, P. A. (2013) PloS one 8, e80181). It is unknown how exosomes/microvesicles deliver transmembrane proteins such as PMCA4 to sperm. Here we define a novel experimental approach for the assessment of the interaction of OVS with sperm at a nanoscale level, using a lipophilic dye (FM4-64FX) and three-dimensional SR/SIM, which has an 8-fold increase in volumetric resolution, compared with conventional confocal microscopy. Coincubation assays detected fusion of prelabeled OVS with sperm, primarily over the head and midpiece. Immunofluorescence revealed oviductosomal delivery of PMCA4a to WT and Pmca4 KO sperm, and also endogenous PMCA4a on the inner acrosomal membrane. Fusion was confirmed by transmission immunoelectron microscopy, showing immunogold particles in OVS, and fusion stalks on sperm membrane. Immunofluorescence colocalized OVS with the αv integrin subunit which, along with CD9, resides primarily on the sperm head and midpiece. In capacitated and acrosome reacted sperm, fusion was significantly (p < 0.001) inhibited by blocking integrin/ligand interactions via antibodies, exogenous ligands (vitronectin and fibronectin), and their RGD recognition motif. Our results provide evidence that receptor/ligand interactions, involving αvβ3 and α5β1integrins on sperm and OVS, facilitate fusion of OVS in the delivery of transmembrane proteins to sperm. The mechanism uncovered is likely to be also involved in cargo delivery of prostasomes, epididymosomes, and uterosomes.
Collapse
Affiliation(s)
- Amal A Al-Dossary
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Pradeepthi Bathala
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716
| | - Jeffrey L Caplan
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716; Delaware Biotechnology Institute, Newark, Delaware 19711
| | | |
Collapse
|
20
|
Kumari S, Devi G, Badana A, Dasari VR, Malla RR. CD151-A Striking Marker for Cancer Therapy. BIOMARKERS IN CANCER 2015; 7:7-11. [PMID: 25861224 PMCID: PMC4372031 DOI: 10.4137/bic.s21847] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 12/28/2022]
Abstract
Cluster of differentiation 151 (CD151) is a member of the mammalian tetraspanin family, which is involved in diverse functions such as maintaining normal cellular integrity, cell-to-cell communication, wound healing, platelet aggregation, trafficking, cell motility and angiogenesis. CD151 also supports de novo carcinogenesis in human skin squamous cell carcinoma (SCC) and tumor metastasis. CD151 interacts with α3β1 and α6β4 integrins through palmitoylation where cysteine plays an important role in the association of CD151 with integrins and non-integrin proteins. Invasion and metastasis of cancer cells were diminished by decreasing CD151 association with integrins. CD151 functions at various stages of cancer, including metastatic cascade and primary tumor growth, thus reinforcing the importance of CD151 as a target in oncology. The present review highlights the role of CD151 in tumor metastasis and its importance in cancer therapy.
Collapse
Affiliation(s)
- Seema Kumari
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Gayatri Devi
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Anil Badana
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| | - Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, College of Medicine, University of Illinois, Peoria, IL, USA
| | - Rama Rao Malla
- Cancer Biology Lab, Department of Biochemistry, Institute of Science, GITAM University, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
21
|
Coceres VM, Alonso AM, Nievas YR, Midlej V, Frontera L, Benchimol M, Johnson PJ, de Miguel N. The C-terminal tail of tetraspanin proteins regulates their intracellular distribution in the parasite Trichomonas vaginalis. Cell Microbiol 2015; 17:1217-29. [PMID: 25703821 DOI: 10.1111/cmi.12431] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 01/05/2023]
Abstract
The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analysis of T.vaginalis tetraspanin family (TvTSPs). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We found that the expression of several members of the family is up-regulated upon contact with vaginal ectocervical cells. We demonstrate that most TvTSPs are localized on the surface and intracellular vesicles and that the C-terminal intracellular tails of surface TvTSPs are necessary for proper localization. Analyses of full-length TvTSP8 and a mutant that lacks the C-terminal tail indicates that surface-localized TvTSP8 is involved in parasite aggregation, suggesting a role for this protein in parasite : parasite interaction.
Collapse
Affiliation(s)
- V M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - A M Alonso
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - Y R Nievas
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - V Midlej
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil
| | - L Frontera
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| | - M Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil.,Unigranrio, Universidade do Grande Rio, Rio de Janeiro, Brazil
| | - P J Johnson
- Department of Microbiology, Immunology, Molecular Genetics, University of California, Los Angeles, CA, 90095-1489, USA
| | - N de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto de Investigaciones Biotecnológicas-Instituto Tecnologico Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomus, B7130IWA, Argentina
| |
Collapse
|
22
|
Murungi EK, Kariithi HM, Adunga V, Obonyo M, Christoffels A. Evolution and Structural Analyses of Glossina morsitans (Diptera; Glossinidae) Tetraspanins. INSECTS 2014; 5:885-908. [PMID: 26462947 PMCID: PMC4592607 DOI: 10.3390/insects5040885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 10/23/2014] [Accepted: 11/02/2014] [Indexed: 12/25/2022]
Abstract
Tetraspanins are important conserved integral membrane proteins expressed in many organisms. Although there is limited knowledge about the full repertoire, evolution and structural characteristics of individual members in various organisms, data obtained so far show that tetraspanins play major roles in membrane biology, visual processing, memory, olfactory signal processing, and mechanosensory antennal inputs. Thus, these proteins are potential targets for control of insect pests. Here, we report that the genome of the tsetse fly, Glossina morsitans (Diptera: Glossinidae) encodes at least seventeen tetraspanins (GmTsps), all containing the signature features found in the tetraspanin superfamily members. Whereas six of the GmTsps have been previously reported, eleven could be classified as novel because their amino acid sequences do not map to characterized tetraspanins in the available protein data bases. We present a model of the GmTsps by using GmTsp42Ed, whose presence and expression has been recently detected by transcriptomics and proteomics analyses of G. morsitans. Phylogenetically, the identified GmTsps segregate into three major clusters. Structurally, the GmTsps are largely similar to vertebrate tetraspanins. In view of the exploitation of tetraspanins by organisms for survival, these proteins could be targeted using specific antibodies, recombinant large extracellular loop (LEL) domains, small-molecule mimetics and siRNAs as potential novel and efficacious putative targets to combat African trypanosomiasis by killing the tsetse fly vector.
Collapse
Affiliation(s)
- Edwin K Murungi
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 57811, Kaptagat Rd, Nairobi 00200, Kenya.
- Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands.
| | - Vincent Adunga
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Meshack Obonyo
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Egerton 20115, Kenya.
| | - Alan Christoffels
- South African National Bioinformatics Institute (SANBI), University of the Western Cape, Private Bag X79, Bellville, Cape Town 7535, South Africa.
| |
Collapse
|
23
|
Dal Bo M, Tissino E, Benedetti D, Caldana C, Bomben R, Del Poeta G, Gaidano G, Rossi FM, Zucchetto A, Gattei V. Microenvironmental Interactions in Chronic Lymphocytic Leukemia: The Master Role of CD49d. Semin Hematol 2014; 51:168-76. [DOI: 10.1053/j.seminhematol.2014.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Kegelman TP, Das SK, Hu B, Bacolod MD, Fuller CE, Menezes ME, Emdad L, Dasgupta S, Baldwin AS, Bruce JN, Dent P, Pellecchia M, Sarkar D, Fisher PB. MDA-9/syntenin is a key regulator of glioma pathogenesis. Neuro Oncol 2013; 16:50-61. [PMID: 24305713 DOI: 10.1093/neuonc/not157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene-9 (MDA-9/syntenin) is a highly conserved PDZ domain-containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis. MATERIALS We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo. RESULTS MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo. CONCLUSIONS Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.
Collapse
Affiliation(s)
- Timothy P Kegelman
- Corresponding author: Paul B. Fisher, MPh, PhD, Professor and Chairman, Department of Human and Molecular Genetics, Director, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, 1101 East Marshall Street, Sanger Hall Building, Room 11-015, Richmond, VA 23298-0033.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Patnaik BB, Kang SM, Seo GW, Lee HJ, Patnaik HH, Jo YH, Tindwa H, Lee YS, Lee BL, Kim NJ, Bang IS, Han YS. Molecular cloning, sequence characterization and expression analysis of a CD63 homologue from the coleopteran beetle, Tenebrio molitor. Int J Mol Sci 2013; 14:20744-67. [PMID: 24132157 PMCID: PMC3821641 DOI: 10.3390/ijms141020744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 01/13/2023] Open
Abstract
CD63, a member of the tetraspanin membrane protein family, plays a pivotal role in cell growth, motility, signal transduction, host-pathogen interactions and cancer. In this work, the cDNA encoding CD63 homologue (TmCD63) was cloned from larvae of a coleopteran beetle, Tenebrio molitor. The cDNA is comprised of an open reading frame of 705 bp, encoding putative protein of 235 amino acid residues. In silico analysis shows that the protein has four putative transmembrane domains and one large extracellular loop. The characteristic “Cys-Cys-Gly” motif and “Cys188” residues are highly conserved in the large extracellular loop. Phylogenetic analysis of TmCD63 revealed that they belong to the insect cluster with 50%–56% identity. Analysis of spatial expression patterns demonstrated that TmCD63 mRNA is mainly expressed in gut and Malphigian tubules of larvae and the testis of the adult. Developmental expression patterns of CD63 mRNA showed that TmCD63 transcripts are detected in late larval, pupal and adult stages. Interestingly, TmCD63 transcripts are upregulated to the maximum level of 4.5 fold, in response to DAP-type peptidoglycan during the first 6 h, although other immune elicitors also caused significant increase to the transcript level at later time-points. These results suggest that CD63 might contribute to T. molitor immune response against various microbial pathogens.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Seong Min Kang
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Korea; E-Mails: (S.M.K.); (B.L.L.)
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Hyo Jeong Lee
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan city 336-745, Korea; E-Mail:
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan 609-735, Korea; E-Mails: (S.M.K.); (B.L.L.)
| | - Nam Jung Kim
- Division of Applied Entomology, National Academy of Agricultural Science, Rural Development, 61th, Seodun-dong, Gwonseon-gu, Suwon, Gyeonggi-do 441-853, Korea; E-Mail:
| | - In Seok Bang
- Department of Biological Science and the Research Institute for Basic Sciences, Hoseo University, Asan 336-795, Korea; E-Mail:
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Korea; E-Mails: (B.B.P.); (G.W.S.); (H.J.L.); (H.H.P.); (Y.H.J.); (H.T.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-62-530-2072; Fax: +82-62-530-2069
| |
Collapse
|
26
|
Verpelli C, Montani C, Vicidomini C, Heise C, Sala C. Mutations of the synapse genes and intellectual disability syndromes. Eur J Pharmacol 2013; 719:112-116. [PMID: 23872408 DOI: 10.1016/j.ejphar.2013.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/04/2013] [Accepted: 07/01/2013] [Indexed: 01/10/2023]
Abstract
Intellectual disability syndromes have been found associated to numerous mutated genes that code for proteins functionally involved in synapse formation, the regulation of dendritic spine morphology, the regulation of the synaptic cytoskeleton or the synthesis and degradation of specific synapse proteins. These studies have strongly demonstrated that even mild alterations in synapse morphology and function give rise to mild or severe alteration in intellectual abilities. Interestingly, pharmacological agents that are able to counteract these morphological and functional synaptic anomalies can also improve the symptoms of some of these conditions. This review is summarizing recent discoveries on the functions of some of the genes responsible for intellectual disability syndromes connected with synapse dysfunctions.
Collapse
Affiliation(s)
- Chiara Verpelli
- CNR Institute of Neuroscience and Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Caterina Montani
- CNR Institute of Neuroscience and Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Cinzia Vicidomini
- CNR Institute of Neuroscience and Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Christopher Heise
- CNR Institute of Neuroscience and Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy
| | - Carlo Sala
- CNR Institute of Neuroscience and Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milano, Italy; Neuromuscular Diseases and Neuroimmunology, Neurological Institute Foundation Carlo Besta, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
27
|
Vats K, Benoit DSW. Dynamic manipulation of hydrogels to control cell behavior: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:455-69. [PMID: 23541134 DOI: 10.1089/ten.teb.2012.0716] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For many tissue engineering applications and studies to understand how materials fundamentally affect cellular functions, it is important to have the ability to synthesize biomaterials that can mimic elements of native cell-extracellular matrix interactions. Hydrogels possess many properties that are desirable for studying cell behavior. For example, hydrogels are biocompatible and can be biochemically and mechanically altered by exploiting the presentation of cell adhesive epitopes or by changing hydrogel crosslinking density. To establish physical and biochemical tunability, hydrogels can be engineered to alter their properties upon interaction with external driving forces such as pH, temperature, electric current, as well as exposure to cytocompatible irradiation. Additionally, hydrogels can be engineered to respond to enzymes secreted by cells, such as matrix metalloproteinases and hyaluronidases. This review details different strategies and mechanisms by which biomaterials, specifically hydrogels, can be manipulated dynamically to affect cell behavior. By employing the appropriate combination of stimuli and hydrogel composition and architecture, cell behavior such as adhesion, migration, proliferation, and differentiation can be controlled in real time. This three-dimensional control in cell behavior can help create programmable cell niches that can be useful for fundamental cell studies and in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Kanika Vats
- 1 Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | | |
Collapse
|
28
|
Tugues S, Honjo S, König C, Padhan N, Kroon J, Gualandi L, Li X, Barkefors I, Thijssen VL, Griffioen AW, Claesson-Welsh L. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J Biol Chem 2013; 288:19060-71. [PMID: 23632027 DOI: 10.1074/jbc.m113.468199] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Sònia Tugues
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
PENG DAN, ZUO HOUJUAN, LIU ZHENGXIANG, QIN JIN, ZHOU YUANLIN, LI PENGCHENG, WANG DAOWEN, ZENG HESONG, ZHANG XINA. The tetraspanin CD151-ARSA mutant inhibits angiogenesis via the YRSL sequence. Mol Med Rep 2013; 7:836-42. [PMID: 23292489 PMCID: PMC3981038 DOI: 10.3892/mmr.2012.1250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Previous studies have shown that the tetraspanin CD151 is essential for pathological or physiological angiogenesis. However, the cellular signaling mechanism and the role of the CD151 YRSL sorting motif in in vitro vasculogenesis remains unknown. In this study, the results showed that both CD151 and CD151-ARSA gene delivery were capable of increasing the expression of CD151 at the protein level in human umbilical vein endothelial cells (HUVECs). Moreover, there was no significant difference in CD151 protein expression between the CD151 group and the CD151-ARSA group. Overexpression of CD151 promoted HUVEC cell proliferation, migration and capillary network formation in vitro. However, in the CD151-ARSA group, the abilities of cell proliferation, migration and capillary network formation were all decreased, compared with the CD151 group. Furthermore, the activation of PI3K, Akt and ERK signaling pathways was attenuated in the CD151-ARSA mutant group compared with the CD151 group. This study suggests that the YRSL motif of CD151 plays a key role in CD151-induced angiogenesis. Our observations provide insights into a new mechanism of CD151 regulating angiogenesis via vesicle trafficking.
Collapse
Affiliation(s)
- DAN PENG
- Department of Nuclear Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - HOUJUAN ZUO
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - ZHENGXIANG LIU
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - JIN QIN
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - YUANLIN ZHOU
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - PENGCHENG LI
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - DAOWEN WANG
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - HESONG ZENG
- Department of Cardiology of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R.China
| | - XIN A. ZHANG
- Department of Physiology and Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| |
Collapse
|
30
|
Nakayama H, Ogawa H, Takamori K, Iwabuchi K. GSL-Enriched Membrane Microdomains in Innate Immune Responses. Arch Immunol Ther Exp (Warsz) 2013; 61:217-28. [DOI: 10.1007/s00005-013-0221-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
|
31
|
|
32
|
de Miguel N, Riestra A, Johnson PJ. Reversible association of tetraspanin with Trichomonas vaginalis flagella upon adherence to host cells. Cell Microbiol 2012; 14:1797-807. [PMID: 22882837 DOI: 10.1111/cmi.12003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/24/2022]
Abstract
The parasite Trichomonas vaginalis is the causative agent of trichomoniasis, a prevalent sexually transmitted infection. Here, we report the cellular analyses of T. vaginalis tetraspanin 6 (TvTSP6). This family of membrane proteins has been implicated in cell adhesion, migration and proliferation in vertebrates. We observed that TvTSP6 expression is upregulated upon contact with vaginal ectocervical cells (VECs) and that parasite strains that are highly adherent to VECs express higher levels of TvTSP6 mRNA relative to poorly adherent strains. TvTSP6 is localized predominantly on the flagella of parasites cultured in the absence of host cells; however, adherence of the parasite to VECs initially results in a redistribution of the protein to intracellular vesicles and the plasma membrane of the main body of the cell. We found that a 16-amino-acid C-terminal intracellular tail of TvTSP6 is necessary and sufficient for flagellar localization and protein redistribution when the parasite is in contact with VECs. Additionally, deletion of the C-terminal tail reduced parasite migration through Matrigel, a mimic of the extracellular matrix. Together, our data support roles for TvTSP6 in parasite migration in the host and sensory reception during infection.
Collapse
Affiliation(s)
- Natalia de Miguel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095-1489, USA
| | | | | |
Collapse
|
33
|
Uematsu T, Konishi C, Hoshino D, Han X, Tomari T, Egawa N, Takada Y, Isobe T, Seiki M, Koshikawa N. Identification of proteins that associate with integrin α2 by proteomic analysis in human fibrosarcoma HT-1080 cells. J Cell Physiol 2012; 227:3072-9. [DOI: 10.1002/jcp.23054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Bassani S, Cingolani LA, Valnegri P, Folci A, Zapata J, Gianfelice A, Sala C, Goda Y, Passafaro M. The X-linked intellectual disability protein TSPAN7 regulates excitatory synapse development and AMPAR trafficking. Neuron 2012; 73:1143-58. [PMID: 22445342 PMCID: PMC3314997 DOI: 10.1016/j.neuron.2012.01.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2012] [Indexed: 11/28/2022]
Abstract
Mutations in TSPAN7—a member of the tetraspanin protein superfamily—are implicated in some forms of X-linked intellectual disability. Here we show that TSPAN7 overexpression promotes the formation of filopodia and dendritic spines in cultured hippocampal neurons from embryonic rats, whereas TSPAN7 silencing reduces head size and stability of spines and AMPA receptor currents. Via its C terminus, TSPAN7 interacts with the PDZ domain of protein interacting with C kinase 1 (PICK1), to regulate PICK1 and GluR2/3 association and AMPA receptor trafficking. These findings indicate that, in hippocampal neurons, TSPAN7 regulates AMPA receptor trafficking by limiting PICK1 accessibility to AMPA receptors and suggest an additional mechanism for the functional maturation of glutamatergic synapses, whose impairment is implicated in intellectual disability.
Collapse
Affiliation(s)
- Silvia Bassani
- CNR Institute of Neuroscience, Department of Medical Pharmacology, University of Milan, Milan 20129, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012; 26:1301-12. [PMID: 22289918 DOI: 10.1038/leu.2011.369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CD49d and CD38 are independent negative prognostic markers in chronic lymphocytic leukemia (CLL). Their associated expression marks a disease subset with a highly aggressive clinical course. Here, we demonstrate a constitutive physical association between the CD49d/CD29 integrin complex and CD38 in primary CLL cells and B-cell lines by (i) cocapping, (ii) coimmunoprecipitation and (iii) cell adhesion experiments using CD49d-specific substrates (vascular-cell adhesion molecule-1 or CS-1/H89 fibronectin fragments). The role of CD38 in CD49d-mediated cell adhesion was studied in CD49d(+)CD38(+) and CD49d(+)CD38(-) primary CLL cells, and confirmed using CD38 transfectants of the originally CD49d(+)CD38(-) CLL-derived cell line Mec-1. Results indicate that CD49d(+)CD38(+) cells adhered more efficiently onto CD49d-specific substrates than CD49d(+)CD38(-) cells (P < 0.001). Upon adhesion, CD49d(+)CD38(+) cells underwent distinctive changes in cell shape and morphology, with higher levels of phosphorylated Vav-1 than CD49d(+)CD38(-) cells (P = 0.0006) and a more complex distribution of F-actin to the adhesion sites. Lastly, adherent CD49d(+)CD38(+) cells were more resistant to serum-deprivation-induced (P < 0.001) and spontaneous (P = 0.03) apoptosis than the CD49d(+)CD38(-) counterpart. Altogether, our results point to a direct role for CD38 in enhancing CD49d-mediated adhesion processes in CLL, thus providing an explanation for the negative clinical impact exerted by these molecules when coexpressed in neoplastic cells.
Collapse
|
36
|
Sonnino S, Prioni S, Chigorno V, Prinetti A. Interactions Between Caveolin-1 and Sphingolipids, and Their Functional Relevance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 749:97-115. [DOI: 10.1007/978-1-4614-3381-1_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
|
38
|
Prinetti A, Prioni S, Loberto N, Aureli M, Nocco V, Illuzzi G, Mauri L, Valsecchi M, Chigorno V, Sonnino S. Aberrant glycosphingolipid expression and membrane organization in tumor cells: consequences on tumor-host interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:643-67. [PMID: 21618134 DOI: 10.1007/978-1-4419-7877-6_34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Prinetti
- Department of Medical Chemistry, Biochemistry and Biotechnology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Fratelli Cervi 93, 20090 Segrate, Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zuo HJ, Lin JY, Liu ZY, Liu WF, Liu T, Yang J, Liu Y, Wang DW, Liu ZX. Activation of the ERK signaling pathway is involved in CD151-induced angiogenic effects on the formation of CD151-integrin complexes. Acta Pharmacol Sin 2010; 31:805-12. [PMID: 20581856 DOI: 10.1038/aps.2010.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AIM To assess the roles of extracellular signal-regulated kinase (ERK), p38, and CD151-integrin complexes on proliferation, migration, and tube formation activities of CD151-induced human umbilical vein endothelial cells (HUVECs). METHODS CD151, anti-CD151 and CD151-AAA mutant were inserted into recombinant adeno-associated virus (rAAV) vectors and used to transfect HUVECs. After transfection, the expression of CD151 was measured. Proliferation was assessed using the 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell migration was evaluated in Boyden transwell chambers using FBS as the chemotactic stimulus. The tube formation assay was performed on matrigel. The potential involvement of various signaling pathways was explored using selective inhibitors. RESULTS CD151 gene delivery increased the expression of CD151 at both the mRNA and protein levels. Overexpression of CD151 promoted cell proliferation, migration and tube formation in vitro, and phosphorylation of ERK was also increased. Further, CD151-induced cell proliferation, migration, and tube formation were attenuated by the ERK inhibitor PD98059 (20 micromol/L) but not by a p38 inhibitor (SB203580, 20 micromol/L). Moreover, there was no significant difference in CD151 protein expression between the CD151 group and the CD151-AAA group, but the CD151-AAA mutant abrogated cellular proliferation, migration, and tube formation and decreased the phosphorylation of ERK. CONCLUSION This study suggests that activation of the ERK signaling pathway may be involved in the angiogenic effects of CD151. Activation of ERK was dependent on the formation of CD151-integrin complexes. Therefore modulation of CD151 may be as a novel therapeutic strategy for regulating angiogenesis.
Collapse
|
40
|
Chacha JJ, Sotto MN, Peters L, Lourenço S, Rivitti EA, Melnikov P. [Peripheral nervous system and grounds for the neural insult in leprosy]. An Bras Dermatol 2010; 84:495-500. [PMID: 20098852 DOI: 10.1590/s0365-05962009000500008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
The mechanism of interaction between Mycobacterium leprae and neural cells has not been elucidated so far. No satisfactory interpretation exists as to the bacterium tropism to the peripheral nervous system in particular. The present study is a review of the micro-physiology of the extracellular apparatus attached to Schwann cells, as well as on the description of morphological units probably involved in the process of the binding to the bacterial wall.
Collapse
Affiliation(s)
- Jorge João Chacha
- Disciplina de Dermatologia, Faculdade de Medicina, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil.
| | | | | | | | | | | |
Collapse
|
41
|
Lefèvre B, Wolf JP, Ziyyat A. Sperm-egg interaction: is there a link between tetraspanin(s) and GPI-anchored protein(s)? Bioessays 2010; 32:143-52. [DOI: 10.1002/bies.200900159] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Tumor suppressor KAI1 affects integrin αvβ3-mediated ovarian cancer cell adhesion, motility, and proliferation. Exp Cell Res 2009; 315:1759-71. [DOI: 10.1016/j.yexcr.2009.01.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/09/2009] [Accepted: 01/09/2009] [Indexed: 02/07/2023]
|
43
|
Marwood M, Visser K, Salamonsen LA, Dimitriadis E. Interleukin-11 and leukemia inhibitory factor regulate the adhesion of endometrial epithelial cells: implications in fertility regulation. Endocrinology 2009; 150:2915-23. [PMID: 19213836 DOI: 10.1210/en.2008-1538] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Embryo implantation requires the closely harmonized processes of apposition, attachment, and adhesion of the conceptus to the maternal endometrial epithelium. IL-11 and leukemia inhibitory factor (LIF), two IL-6 family cytokines, are produced by the endometrium and are absolutely required for implantation in mice. We examined the effect of IL-11 and LIF on human endometrial epithelial cell adhesion. Both cytokines increased adhesion of primary human endometrial epithelial cells to fibronectin and collagen IV. IL-11 stimulated, whereas LIF had no effect on the adhesion of trophoblast to endometrial epithelial cells. Focused oligogene arrays were used to identify extracellular matrix and adhesion molecules mRNAs regulated by endometrial epithelial cells. We demonstrated by real-time RT-PCR and antibody arrays that both cytokines increased integrin-alpha2 mRNA and protein by endometrial epithelial cells. Signal transducers and activators of transcription (STAT)-3 inhibition reduced IL-11- and LIF-mediated epithelial cell adhesion to fibronectin, suggesting both cytokines regulated adhesion via phosphorylation of STAT3. Addition of either IL-11 neutralizing antibody and IL-11 or LIF and LIF antagonist to endometrial epithelial cells abolished cytokine induced phosphorylated STAT3. LIF but not IL-11 induced adhesion to collagen IV was reduced by an integrin-alpha2beta1 neutralizing antibody. This study demonstrated that IL-11 and LIF regulated endometrial epithelial cell adhesion, suggesting that targeting IL-11 and LIF may be useful in regulating fertility by either enhancing or blocking implantation.
Collapse
Affiliation(s)
- M Marwood
- Prince Henry's Institute of Medical Research, 246 Clayton Road, Clayton, Victoria, Australia
| | | | | | | |
Collapse
|
44
|
NIP1/DUOXA1 expression in epithelial breast cancer cells: regulation of cell adhesion and actin dynamics. Breast Cancer Res Treat 2009; 119:773-86. [DOI: 10.1007/s10549-009-0372-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 03/06/2009] [Indexed: 12/11/2022]
|
45
|
Xing WJ, Wang LQ, Wu Q, Ren SC, Bao XH, Bou S. Molecular Cloning and Characterization of CD9 cDNA from Sheep and Cashmere Goat. Reprod Domest Anim 2009; 45:383-92. [DOI: 10.1111/j.1439-0531.2008.01195.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
46
|
Mondal S, Dirks P, Rutka JT. Immunolocalization of fascin, an actin-bundling protein and glial fibrillary acidic protein in human astrocytoma cells. Brain Pathol 2009; 20:190-9. [PMID: 19170683 DOI: 10.1111/j.1750-3639.2008.00261.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fascin is a 55-kDa globular protein that functions to organize filamentous-actin into parallel bundles. A role for fascin in cell migration has led to its study in many tumor types. In this report, we investigate fascin in astrocytomas. We show that fascin is expressed in astrocytes and in a panel of human astrocytoma cell lines. Immunofluorescence analysis demonstrates that fascin and the intermediate filament protein, glial fibrillary acidic protein (GFAP), are both expressed in the perinuclear region and within cytoplasmic processes of astrocytes and astrocytoma cells. Amino acid residues within the NH2 terminus of GFAP can undergo phosphorylation; these modifications regulate intermediate filament disassembly and occur during cytokinesis. We show that fascin and specific phosphorylated species of GFAP colocalize within dividing cells. Finally, we demonstrate that fascin co-immunoprecipitates with GFAP and that immunocomplex formation is preferential for GFAP phosphorylated at serine residues 8 and 13. These data show that fascin and GFAP are immunolocalized regionally within cells and tumors of astrocytic origin and suggest that their binding may occur during dynamic reorganization of intermediate filaments.
Collapse
Affiliation(s)
- Soma Mondal
- The Arthur and Sonia Labatt Brain Tumour Research Centre, Division of Neurosurgery, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Assessment of myocardial blood perfusion improved by CD151 in a pig myocardial infarction model. Acta Pharmacol Sin 2009; 30:70-7. [PMID: 19079294 DOI: 10.1038/aps.2008.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To appraise the efficacy of CD151-induced myocardial therapeutic angiogenesis in a pig myocardial infarction model. METHODS CD151 and anti-CD151 were constructed into the recombinant adeno-associated virus (rAAV) vector. All 26 pigs were subjected to coronary artery ligation or no surgery. Eight weeks after coronary artery ligation, the expression of CD151 was measured by Western blot and immunostaining. Capillary density was evaluated using immunostaining for von Willebrand factor (vWF). 13N-labeled NH3 positron emission computed tomography ([13N]NH3PET) was measured to assess regional myocardial perfusion and the defect area. RESULTS CD151 gene delivery could increase the expression of CD151 at protein level. Over-expression of CD151 increased the density of total capillaries in the ischemic myocardium, significantly improved the blood perfusion and reduced the defect area percentage. CONCLUSION This study demonstrated that the rAAV-mediated CD151 gene delivery promoted efficient neovascularization and increased the blood perfusion after myocardial infarction in pigs.
Collapse
|
48
|
Prinetti A, Loberto N, Chigorno V, Sonnino S. Glycosphingolipid behaviour in complex membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:184-93. [DOI: 10.1016/j.bbamem.2008.09.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 12/12/2022]
|
49
|
Tang Y, Tan XM, Yue CW, Li CX, Fan ZX, Zhang YZ. Cloning, sequence, and function analyses of giant panda (Ailuropoda melanoleuca) CD9 gene. Mol Reprod Dev 2008; 75:1418-25. [DOI: 10.1002/mrd.20887] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Abstract
This chapter focuses on the contribution of proteomic analysis to the understanding of the process of exosome secretion and the mechanism and function of exosomes. It also describes the potential of exosome proteomic analysis to aid in the development of exosomes for therapeutic use.
Collapse
Affiliation(s)
- Christine Olver
- Clinical Pathology Section, Colorado State University, Ft. Collins, USA
| | | |
Collapse
|