1
|
Azim KF, Lasker T, Akter R, Hia MM, Bhuiyan OF, Hasan M, Hossain MN. Combination of highly antigenic nucleoproteins to inaugurate a cross-reactive next generation vaccine candidate against Arenaviridae family. Heliyon 2021; 7:e07022. [PMID: 34041391 PMCID: PMC8144012 DOI: 10.1016/j.heliyon.2021.e07022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/09/2021] [Accepted: 05/05/2021] [Indexed: 12/28/2022] Open
Abstract
Arenaviral infections often result lethal hemorrhagic fevers, affecting primarily in African and South American regions. To date, there is no FDA-approved licensed vaccine against arenaviruses and treatments have been limited to supportive therapy. Hence, the study was employed to design a highly immunogenic cross-reactive vaccine against Arenaviridae family using reverse vaccinology approach. The whole proteome of Lassa virus (LASV), Lymphocytic Choriomeningitis virus (LCMV), Lujo virus and Guanarito virus were retrieved and assessed to determine the most antigenic viral proteins. Both T-cell and B-cell epitopes were predicted and screened based on transmembrane topology, antigenicity, allergenicity, toxicity and molecular docking analysis. The final constructs were designed using different adjuvants, top epitopes, PADRE sequence and respective linkers and were assessed for the efficacy, safety, stability and molecular cloning purposes. The proposed epitopes were highly conserved (84%–100%) and showed greater cumulative population coverage. Moreover, T cell epitope GWPYIGSRS was conserved in Junin virus (Argentine mammarenavirus) and Sabia virus (Brazilian mammarenavirus), while B cell epitope NLLYKICLSG was conserved in Machupo virus (Bolivian mammarenavirus) and Sabia virus, indicating the possibility of final vaccine construct to confer a broad range immunity in the host. Docking analysis of the refined vaccine with different MHC molecules and human immune receptors were biologically significant. The vaccine-receptor (V1-TLR3) complex showed minimal deformability at molecular level and was compatible for cloning into pET28a(+) vector of E. coli strain K12. The study could be helpful in developing vaccine to combat arenaviral infections in the future. However, further in vitro and in vivo trials using model animals are highly recommended for the experimental validation of our findings.
Collapse
Affiliation(s)
- Kazi Faizul Azim
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tahera Lasker
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Rahima Akter
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mantasha Mahmud Hia
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Omar Faruk Bhuiyan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahmudul Hasan
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.,Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Md Nazmul Hossain
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh.,Department of Microbial Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
2
|
Díaz-Santiago E, Claros MG, Yahyaoui R, de Diego-Otero Y, Calvo R, Hoenicka J, Palau F, Ranea JAG, Perkins JR. Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained From Co-Occurrence Networks. Front Mol Biosci 2021; 8:635074. [PMID: 34046427 PMCID: PMC8147726 DOI: 10.3389/fmolb.2021.635074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Neuromuscular disorders (NMDs) represent an important subset of rare diseases associated with elevated morbidity and mortality whose diagnosis can take years. Here we present a novel approach using systems biology to produce functionally-coherent phenotype clusters that provide insight into the cellular functions and phenotypic patterns underlying NMDs, using the Human Phenotype Ontology as a common framework. Gene and phenotype information was obtained for 424 NMDs in OMIM and 126 NMDs in Orphanet, and 335 and 216 phenotypes were identified as typical for NMDs, respectively. ‘Elevated serum creatine kinase’ was the most specific to NMDs, in agreement with the clinical test of elevated serum creatinine kinase that is conducted on NMD patients. The approach to obtain co-occurring NMD phenotypes was validated based on co-mention in PubMed abstracts. A total of 231 (OMIM) and 150 (Orphanet) clusters of highly connected co-occurrent NMD phenotypes were obtained. In parallel, a tripartite network based on phenotypes, diseases and genes was used to associate NMD phenotypes with functions, an approach also validated by literature co-mention, with KEGG pathways showing proportionally higher overlap than Gene Ontology and Reactome. Phenotype-function pairs were crossed with the co-occurrent NMD phenotype clusters to obtain 40 (OMIM) and 72 (Orphanet) functionally coherent phenotype clusters. As expected, many of these overlapped with known diseases and confirmed existing knowledge. Other clusters revealed interesting new findings, indicating informative phenotypes for differential diagnosis, providing deeper knowledge of NMDs, and pointing towards specific cell dysfunction caused by pleiotropic genes. This work is an example of reproducible research that i) can help better understand NMDs and support their diagnosis by providing a new tool that exploits existing information to obtain novel clusters of functionally-related phenotypes, and ii) takes us another step towards personalised medicine for NMDs.
Collapse
Affiliation(s)
- Elena Díaz-Santiago
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain
| | - M Gonzalo Claros
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Málaga, Spain
| | - Raquel Yahyaoui
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Laboratory of Metabolopathies and Neonatal Screening, Málaga Regional University Hospital, Málaga, Spain
| | | | - Rocío Calvo
- Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain.,Laboratory of Metabolopathies and Neonatal Screening, Málaga Regional University Hospital, Málaga, Spain
| | - Janet Hoenicka
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Sant Joan de Déu Hospital and Research Institute, Barcelona, Spain
| | - Francesc Palau
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Sant Joan de Déu Hospital and Research Institute, Barcelona, Spain.,Hospital Clínic and University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| | - James R Perkins
- Department of Molecular Biology and Biochemistry, Universidad de Málaga, Málaga, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Institute of Biomedical Research in Malaga (IBIMA), IBIMA-RARE, Málaga, Spain
| |
Collapse
|
3
|
Bawa S, Gameros S, Baumann K, Brooks DS, Kollhoff JA, Zolkiewski M, Re Cecconi AD, Panini N, Russo M, Piccirillo R, Johnson DK, Kashipathy MM, Battaile KP, Lovell S, Bouyain SEA, Kawakami J, Geisbrecht ER. Costameric integrin and sarcoglycan protein levels are altered in a Drosophila model for Limb-girdle muscular dystrophy type 2H. Mol Biol Cell 2020; 32:260-273. [PMID: 33296226 PMCID: PMC8098830 DOI: 10.1091/mbc.e20-07-0453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in two different domains of the ubiquitously expressed TRIM32 protein give rise to two clinically separate diseases, one of which is Limb-girdle muscular dystrophy type 2H (LGMD2H). Uncovering the muscle-specific role of TRIM32 in LGMD2H pathogenesis has proven difficult, as neurogenic phenotypes, independent of LGMD2H pathology, are present in TRIM32 KO mice. We previously established a platform to study LGMD2H pathogenesis using Drosophila melanogaster as a model. Here we show that LGMD2H disease-causing mutations in the NHL domain are molecularly and structurally conserved between fly and human TRIM32. Furthermore, transgenic expression of a subset of myopathic alleles (R394H, D487N, and 520fs) induce myofibril abnormalities, altered nuclear morphology, and reduced TRIM32 protein levels, mimicking phenotypes in patients afflicted with LGMD2H. Intriguingly, we also report for the first time that the protein levels of βPS integrin and sarcoglycan δ, both core components of costameres, are elevated in TRIM32 disease-causing alleles. Similarly, murine myoblasts overexpressing a catalytically inactive TRIM32 mutant aberrantly accumulate α- and β-dystroglycan and α-sarcoglycan. We speculate that the stoichiometric loss of costamere components disrupts costamere complexes to promote muscle degeneration.
Collapse
Affiliation(s)
- Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Samantha Gameros
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Kenny Baumann
- School of Biological Sciences, University of Missouri-Kansas City, MO 64110
| | - David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Joseph A Kollhoff
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | - Michal Zolkiewski
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506
| | | | - Nicolò Panini
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Massimo Russo
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | | | - David K Johnson
- Molecular Graphics and Modeling Laboratory, Computational Chemical Biology Core, University of Kansas, Lawrence, KS 66047
| | | | | | - Scott Lovell
- Protein Structure Laboratory, University of Kansas, Lawrence, KS 66047
| | - Samuel E A Bouyain
- School of Biological Sciences, University of Missouri-Kansas City, MO 64110
| | - Jessica Kawakami
- School of Biological Sciences, University of Missouri-Kansas City, MO 64110
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506.,School of Biological Sciences, University of Missouri-Kansas City, MO 64110
| |
Collapse
|
4
|
Characterization of dystroglycan binding in adhesion of human induced pluripotent stem cells to laminin-511 E8 fragment. Sci Rep 2019; 9:13037. [PMID: 31506597 PMCID: PMC6737067 DOI: 10.1038/s41598-019-49669-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6β1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688–2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.
Collapse
|
5
|
Cho EB, Yoo W, Yoon SK, Yoon JB. β-dystroglycan is regulated by a balance between WWP1-mediated degradation and protection from WWP1 by dystrophin and utrophin. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2199-2213. [PMID: 29635000 DOI: 10.1016/j.bbadis.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 01/07/2023]
Abstract
Dystroglycan is a ubiquitous membrane protein that functions as a mechanical connection between the extracellular matrix and cytoskeleton. In skeletal muscle, dystroglycan plays an indispensable role in regulating muscle regeneration; a malfunction in dystroglycan is associated with muscular dystrophy. The regulation of dystroglycan stability is poorly understood. Here, we report that WWP1, a member of NEDD4 E3 ubiquitin ligase family, promotes ubiquitination and subsequent degradation of β-dystroglycan. Our results indicate that dystrophin and utrophin protect β-dystroglycan from WWP1-mediated degradation by competing with WWP1 for the shared binding site at the cytosolic tail of β-dystroglycan. In addition, we show that a missense mutation (arginine 440 to glutamine) in WWP1-which is known to cause muscular dystrophy in chickens-increases the ubiquitin ligase-mediated ubiquitination of both β-dystroglycan and WWP1. The R440Q missense mutation in WWP1 decreases HECT domain-mediated intramolecular interactions to relieve autoinhibition of the enzyme. Our results provide new insight into the regulation of β-dystroglycan degradation by WWP1 and other Nedd4 family members and improves our understanding of dystroglycan-related disorders.
Collapse
Affiliation(s)
- Eun-Bee Cho
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Wonjin Yoo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Sungjoo Kim Yoon
- Department of Medical Lifesciences, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | - Jong-Bok Yoon
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
6
|
Eve AMJ, Smith JC. Knockdown of Laminin gamma-3 (Lamc3) impairs motoneuron guidance in the zebrafish embryo. Wellcome Open Res 2017; 2:111. [PMID: 29417095 PMCID: PMC5785718 DOI: 10.12688/wellcomeopenres.12394.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2017] [Indexed: 01/09/2023] Open
Abstract
Background: Previous work in the zebrafish embryo has shown that laminin γ-3 ( lamc3) is enriched in endothelial cells marked by expression of fli1a, but the role of Lamc3 has been unknown. Methods: We use antisense morpholino oligonucleotides, and CRISPR/Cas9 mutagenesis of F0 embryos, to create zebrafish embryos in which lamc3 expression is compromised. Transgenic imaging, immunofluorescence, and in situ hybridisation reveal that Lamc3 loss-of-function affects the development of muscle pioneers, endothelial cells, and motoneurons. Results: Lamc3 is enriched in endothelial cells during zebrafish development, but it is also expressed by other tissues. Depletion of Lamc3 by use of antisense morpholino oligonucleotides perturbs formation of the parachordal chain and subsequently the thoracic duct, but Lamc3 is not required for sprouting of the cardinal vein. F0 embryos in which lamc3 expression is perturbed by a CRISPR/Cas9 approach also fail to form a parachordal chain, but we were unable to establish a stable lamc3 null line. Lamc3 is dispensable for muscle pioneer specification and for the expression of netrin-1a in these cells. Lamc3 knockdown causes netrin-1a up-regulation in the neural tube and there is increased Netrin-1 protein throughout the trunk of the embryo. Axonal guidance of rostral primary motoneurons is defective in Lamc3 knockdown embryos. Conclusions: We suggest that knockdown of Lamc3 perturbs migration of rostral primary motoneurons at the level of the horizontal myoseptum, indicating that laminin γ3 plays a role in motoneuron guidance.
Collapse
Affiliation(s)
- Alexander M. J. Eve
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - James C. Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| |
Collapse
|
7
|
Zhou M, Wang H, Ren H, Jiang R, Zhang C, Wu X, Xu G. Large is required for normal astrocyte migration and retinal vasculature development. Cell Biosci 2017; 7:18. [PMID: 28428837 PMCID: PMC5392960 DOI: 10.1186/s13578-017-0143-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/29/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Persistent fetal vasculature (PFV) is a congenital developmental anomaly of the eye that accounts for about 5% of childhood blindness. The molecular mechanism of PFV remains unclear. As a glycosyltransferase of α-dystroglycan, LARGE mutations have been found in congenital muscular dystrophy patients with brain abnormalities. Spontaneous Large mutant mice displayed similar symptoms of human muscle-eye-brain disorders. However, the detailed roles of Large in ocular vasculature development still need to be uncovered. RESULTS In this paper, we report that a novel Large mutation generated by the piggyBac transposon insertion leads to PFV and abnormal retinal vasculature in mice. Glycosylation of α-DG, an essential component of the extracellular matrix, was significantly impaired in these Large mutants, leading to broken inner limiting membrane (ILM). As a guide of the retinal vasculature development, the distribution of retinal astrocytes became irregular within the retina, and many astrocytes abnormally migrated into the vitreous along with the hyaloid vessels in Large mutants. CONCLUSIONS Large is essential for ILM formation and retinal astrocyte migration. The novel Large mutant mouse can serve as a new PFV model to further dissect LARGE functions in ocular vasculature development.
Collapse
Affiliation(s)
- Min Zhou
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031 China.,Shanghai the Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Herui Wang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China.,Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Hui Ren
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031 China.,Shanghai the Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Rui Jiang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031 China.,Shanghai the Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Xiaohui Wu
- State Key Laboratory of Genetic Engineering and National Center for International Research of Development and Disease, Institute of Developmental Biology and Molecular Medicine, Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Gezhi Xu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031 China.,Shanghai the Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Ducro BJ, Schurink A, Bastiaansen JWM, Boegheim IJM, van Steenbeek FG, Vos-Loohuis M, Nijman IJ, Monroe GR, Hellinga I, Dibbits BW, Back W, Leegwater PAJ. A nonsense mutation in B3GALNT2 is concordant with hydrocephalus in Friesian horses. BMC Genomics 2015; 16:761. [PMID: 26452345 PMCID: PMC4600337 DOI: 10.1186/s12864-015-1936-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022] Open
Abstract
Background Hydrocephalus in Friesian horses is a developmental disorder that often results in stillbirth of affected foals and dystocia in dams. The occurrence is probably related to a founder effect and inbreeding in the population. The aim of our study was to find genomic associations, to investigate the mode of inheritance, to allow a DNA test for hydrocephalus in Friesian horses to be developed. In case of a monogenic inheritance we aimed to identify the causal mutation. Results A genome-wide association study of hydrocephalus in 13 cases and 69 controls using 29,720 SNPs indicated the involvement of a region on ECA1 (P <1.68 × 10−6). Next generation DNA sequence analysis of 4 cases and 6 controls of gene exons within the region revealed a mutation in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2) as the likely cause of hydrocephalus in Friesian horses. The nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* was identical to a B3GALNT2 mutation identified in a human case of muscular dystrophy-dystroglycanopathy with hydrocephalus. All 16 available cases and none of the controls were homozygous for the mutation, and all 17 obligate carriers (= dams of cases) were heterozygous. A random sample of the Friesian horse population (n = 865) was tested for the mutation in a commercial laboratory. One-hundred and forty-seven horses were carrier and 718 horses were homozygous for the normal allele; the estimated allele frequency in the Friesian horse population is 0.085. Conclusions Hydrocephalus in Friesian horses has an autosomal recessive mode of inheritance. A nonsense mutation XM_001491545 c.1423C>T corresponding to XP_001491595 p.Gln475* in B3GALNT2 (1:75,859,296–75,909,376) is concordant with hydrocephalus in Friesian horses. Application of a DNA test in the breeding programme will reduce the losses caused by hydrocephalus in the Friesian horse population. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1936-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bart J Ducro
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Anouk Schurink
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | - John W M Bastiaansen
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Iris J M Boegheim
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Frank G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Manon Vos-Loohuis
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| | - Isaac J Nijman
- Department of Medical Genetics, University Medical Center Utrecht, PO Box 85090, 3508 AB, Utrecht, The Netherlands.
| | - Glen R Monroe
- Department of Medical Genetics, University Medical Center Utrecht, PO Box 85090, 3508 AB, Utrecht, The Netherlands.
| | - Ids Hellinga
- Koninklijke Vereniging "Het Friesch Paarden-Stamboek", PO Box 624, 9200 AP, Drachten, The Netherlands.
| | - Bert W Dibbits
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | - Willem Back
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 112-114, 3584 CM, Utrecht, The Netherlands. .,Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820, Merelbeke, Belgium.
| | - Peter A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Zhang C, Hu B, Xiao L, Liu Y, Wang P. Pseudotyping lentiviral vectors with lymphocytic choriomeningitis virus glycoproteins for transduction of dendritic cells and in vivo immunization. Hum Gene Ther Methods 2015; 25:328-38. [PMID: 25416034 DOI: 10.1089/hgtb.2014.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lentiviral vectors (LVs) are promising delivery systems for gene therapy, and they can be further engineered to increase their potential for effectively delivering transgenes to desired cell populations. Here, we have engineered LVs pseudotyped with envelope glycoproteins derived from lymphocytic choriomeningitis virus (LCMV) for antigen delivery to elicit vaccine-directed immune responses. Two variants, LCMV-WE and LCMV-Arm53b, were evaluated for their ability to mediate LV-based cellular transduction in vitro. LCMV-WE with a leucine residue at position 260 (260L) is known for its high-affinity binding with a cellular receptor, α-dystroglycan (α-DG), whereas LCMV-Arm53b has low-affinity binding resulting from a phenylalanine residue at the same position. In contrast to LCMV-Arm53b, we found that LVs pseudotyped with LCMV-WE could transduce 293T cells and murine dendritic cells much more efficiently based, at least in part, on their favorable interaction with α-DG. In mice, LCMV-WE-bearing LVs encoding a model antigen, invariant chain ovalbumin, could elicit substantial antigen-specific CD8(+) T cell immune response. The response could be further enhanced by a homologous boosting immunization with the same vector. These findings offer evidence to support the potential utilization of LCMV-WE-bearing LVs for vectored vaccines against cancer and infectious diseases.
Collapse
Affiliation(s)
- Chupei Zhang
- 1 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, CA 90089
| | | | | | | | | |
Collapse
|
10
|
Active Peptide-Conjugated Chitosan Matrices as an Artificial Basement Membrane. Polymers (Basel) 2015. [DOI: 10.3390/polym7020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
11
|
Abstract
The neuromuscular junction (NMJ) is a synapse between motor neurons and skeletal muscle fibers, and is critical for control of muscle contraction. Its formation requires neuronal agrin that acts by binding to LRP4 to stimulate MuSK. Mutations have been identified in agrin, MuSK, and LRP4 in patients with congenital myasthenic syndrome, and patients with myasthenia gravis develop antibodies against agrin, LRP4, and MuSK. However, it remains unclear whether the agrin signaling pathway is critical for NMJ maintenance because null mutation of any of the three genes is perinatal lethal. In this study, we generated imKO mice, a mutant strain whose LRP4 gene can be deleted in muscles by doxycycline (Dox) treatment. Ablation of the LRP4 gene in adult muscle enabled studies of its role in NMJ maintenance. We demonstrate that Dox treatment of P30 mice reduced muscle strength and compound muscle action potentials. AChR clusters became fragmented with diminished junctional folds and synaptic vesicles. The amplitude and frequency of miniature endplate potentials were reduced, indicating impaired neuromuscular transmission and providing cellular mechanisms of adult LRP4 deficiency. We showed that LRP4 ablation led to the loss of synaptic agrin and the 90 kDa fragments, which occurred ahead of other prejunctional and postjunctional components, suggesting that LRP4 may regulate the stability of synaptic agrin. These observations demonstrate that LRP4 is essential for maintaining the structural and functional integrity of the NMJ and that loss of muscle LRP4 in adulthood alone is sufficient to cause myasthenic symptoms.
Collapse
|
12
|
Pirolli D, Sciandra F, Bozzi M, Giardina B, Brancaccio A, De Rosa MC. Insights from molecular dynamics simulations: structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS One 2014; 9:e103866. [PMID: 25078606 PMCID: PMC4117597 DOI: 10.1371/journal.pone.0103866] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022] Open
Abstract
A missense amino acid mutation of valine to aspartic acid in 567 position of alpha-dystroglycan (DG), identified in dag1-mutated zebrafish, results in a reduced transcription and a complete absence of the protein. Lacking experimental structural data for zebrafish DG domains, the detailed mechanism for the observed mutation-induced destabilization of the DG complex and membrane damage, remained unclear. With the aim to contribute to a better clarification of the structure-function relationships featuring the DG complex, three-dimensional structural models of wild-type and mutant (V567D) C-terminal domain of alpha-DG from zebrafish were constructed by a template-based modelling approach. We then ran extensive molecular dynamics (MD) simulations to reveal the structural and dynamic properties of the C-terminal domain and to evaluate the effect of the single mutation on alpha-DG stability. A comparative study has been also carried out on our previously generated model of murine alpha-DG C-terminal domain including the I591D mutation, which is topologically equivalent to the V567D mutation found in zebrafish. Trajectories from MD simulations were analyzed in detail, revealing extensive structural disorder involving multiple beta-strands in the mutated variant of the zebrafish protein whereas local effects have been detected in the murine protein. A biochemical analysis of the murine alpha-DG mutant I591D confirmed a pronounced instability of the protein. Taken together, the computational and biochemical analysis suggest that the V567D/I591D mutation, belonging to the G beta-strand, plays a key role in inducing a destabilization of the alpha-DG C-terminal Ig-like domain that could possibly affect and propagate to the entire DG complex. The structural features herein identified may be of crucial help to understand the molecular basis of primary dystroglycanopathies.
Collapse
Affiliation(s)
- Davide Pirolli
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Sciandra
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bruno Giardina
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Cristina De Rosa
- Istituto di Chimica del Riconoscimento Molecolare (ICRM) - CNR c/o Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
13
|
Pereira NA, Pu HX, Goh H, Song Z. Golgi phosphoprotein 3 mediates the Golgi localization and function of protein O-linked mannose β-1,2-N-acetlyglucosaminyltransferase 1. J Biol Chem 2014; 289:14762-70. [PMID: 24733390 DOI: 10.1074/jbc.m114.548305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
GOLPH3 is a highly conserved protein found across the eukaryotic lineage. The yeast homolog, Vps74p, interacts with and maintains the Golgi localization of several mannosyltransferases, which is subsequently critical for N- and O-glycosylation in yeast. Through the use of a T7 phage display, we discovered a novel interaction between GOLPH3 and a mammalian glycosyltransferase, POMGnT1, which is involved in the O-mannosylation of α-dystroglycan. The cytoplasmic tail of POMGnT1 was found to be critical for mediating its interaction with GOLPH3. Loss of this interaction resulted in the inability of POMGnT1 to localize to the Golgi and reduced the functional glycosylation of α-dystroglycan. In addition, we showed that three clinically relevant mutations present in the stem domain of POMGnT1 mislocalized to the endoplasmic reticulum, highlighting the importance of identifying the molecular mechanisms responsible for Golgi localization of glycosyltransferases. Our findings reveal a novel role for GOLPH3 in mediating the Golgi localization of POMGnT1.
Collapse
Affiliation(s)
- Natasha A Pereira
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Helen X Pu
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Hazel Goh
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| | - Zhiwei Song
- From the Bioprocessing Technology Institute, Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, 06-01 Centros, 138668, Singapore
| |
Collapse
|
14
|
Stevens E, Carss K, Cirak S, Foley A, Torelli S, Willer T, Tambunan D, Yau S, Brodd L, Sewry C, Feng L, Haliloglu G, Orhan D, Dobyns W, Enns G, Manning M, Krause A, Salih M, Walsh C, Hurles M, Campbell K, Manzini M, Stemple D, Lin YY, Muntoni F. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am J Hum Genet 2013; 92:354-65. [PMID: 23453667 PMCID: PMC3591840 DOI: 10.1016/j.ajhg.2013.01.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/29/2012] [Accepted: 01/22/2013] [Indexed: 02/07/2023] Open
Abstract
Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.
Collapse
Affiliation(s)
- Elizabeth Stevens
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Keren J. Carss
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Sebahattin Cirak
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - A. Reghan Foley
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Silvia Torelli
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Tobias Willer
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Dimira E. Tambunan
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Shu Yau
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Lina Brodd
- DNA Laboratory, GSTS Pathology, London SE1 9RT, UK
| | - Caroline A. Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
- Wolfson Centre for Inherited Neuromuscular Diseases, Oswestry SY10 7AG, UK
| | - Lucy Feng
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| | - Goknur Haliloglu
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - Diclehan Orhan
- Faculty of Medicine, Department of Paediatric Neurology, Hacettepe University, Ankara 06100, Turkey
| | - William B. Dobyns
- Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Gregory M. Enns
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Melanie Manning
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, the University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Mustafa A. Salih
- Division of Pediatric Neurology, Department of Pediatrics, King Saud University College of Medicine, Riyadh 11461, Saudi Arabia
| | - Christopher A. Walsh
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Matthew Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Kevin P. Campbell
- Howard Hughes Medical Institute and Department of Molecular Physiology and Biophysics, Department of Neurology, Department of Internal Medicine, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - M. Chiara Manzini
- Division of Genetics, Manton Center for Orphan Disease Research and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Derek Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
| | - Yung-Yao Lin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London WC1N 1EH, UK
| |
Collapse
|
15
|
Fanzani A, Zanola A, Faggi F, Papini N, Venerando B, Tettamanti G, Sampaolesi M, Monti E. Implications for the mammalian sialidases in the physiopathology of skeletal muscle. Skelet Muscle 2012; 2:23. [PMID: 23114189 PMCID: PMC3534598 DOI: 10.1186/2044-5040-2-23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/02/2012] [Indexed: 12/11/2022] Open
Abstract
The family of mammalian sialidases is composed of four distinct versatile enzymes that remove negatively charged terminal sialic acid residues from gangliosides and glycoproteins in different subcellular areas and organelles, including lysosomes, cytosol, plasma membrane and mitochondria. In this review we summarize the growing body of data describing the important role of sialidases in skeletal muscle, a complex apparatus involved in numerous key functions and whose functional integrity can be affected by various conditions, such as aging, chronic diseases, cancer and neuromuscular disorders. In addition to supporting the proper catabolism of glycoconjugates, sialidases can affect different signaling pathways by desialylation of many receptors and modulation of ganglioside content in cell membranes, thus actively participating in myoblast proliferation, differentiation and hypertrophy, insulin responsiveness and skeletal muscle architecture.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Astrocytes, the most prominent glial cell type in the brain, send specialized processes named endfeet, which enwrap blood vessels and express a large molecular repertoire dedicated to the physiology of the vascular system. One of the most striking properties of astrocyte endfeet is their enrichment in gap junction protein connexins 43 and 30 (Cx43 and Cx30) allowing for direct intercellular trafficking of ions and small signaling molecules through perivascular astroglial networks. The contribution of astroglial connexins to the physiology of the brain vascular system has never been addressed. Here, we show that Cx43 and Cx30 expression at the level of perivascular endfeet starts from postnatal days 2 and 12 and is fully mature at postnatal days 15 and 20, respectively, indicating that astroglial perivascular connectivity occurs and develops during postnatal blood-brain barrier (BBB) maturation. We demonstrate that mice lacking Cx30 and Cx43 in GFAP (glial fibrillary acidic protein)-positive cells display astrocyte endfeet edema and a partial loss of the astroglial water channel aquaporin-4 and β-dystroglycan, a transmembrane receptor anchoring astrocyte endfeet to the perivascular basal lamina. Furthermore, the absence of astroglial connexins weakens the BBB, which opens upon increased hydrostatic vascular pressure and shear stress. These results demonstrate that astroglial connexins are necessary to maintain BBB integrity.
Collapse
|
17
|
Harrison R, Hitchen PG, Panico M, Morris HR, Mekhaiel D, Pleass RJ, Dell A, Hewitt JE, Haslam SM. Glycoproteomic characterization of recombinant mouse α-dystroglycan. Glycobiology 2012; 22:662-75. [PMID: 22241827 PMCID: PMC3311285 DOI: 10.1093/glycob/cws002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 12/15/2022] Open
Abstract
α-Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex. Aberrant glycosylation of the protein has been linked to various forms of congenital muscular dystrophy. Unusually α-DG has previously been demonstrated to be modified with both O-N-acetylgalactosamine and O-mannose initiated glycans. In the present study, Fc-tagged recombinant mouse α-DG was expressed and purified from human embryonic kidney 293T cells. α-DG glycopeptides were characterized by glycoproteomic strategies using both nano-liquid chromatography matrix-assisted laser desorption ionization and electrospray tandem mass spectrometry. A total of 14 different peptide sequences and 38 glycopeptides were identified which displayed heterogeneous O-glycosylation. These data provide new insights into the complex domain-specific O-glycosylation of α-DG.
Collapse
Affiliation(s)
- Rebecca Harrison
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Paul G Hitchen
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Maria Panico
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Howard R Morris
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - David Mekhaiel
- Centre for Genetics and Genomics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard J Pleass
- Centre for Genetics and Genomics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jane E Hewitt
- Centre for Genetics and Genomics, School of Biology, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stuart M Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Kojima K, Nosaka H, Kishimoto Y, Nishiyama Y, Fukuda S, Shimada M, Kodaka K, Saito F, Matsumura K, Shimizu T, Toda T, Takeda S, Kawachi H, Uchida S. Defective glycosylation of α-dystroglycan contributes to podocyte flattening. Kidney Int 2010; 79:311-6. [PMID: 20944549 DOI: 10.1038/ki.2010.403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to skeletal muscle and the nervous system, α-dystroglycan is found in the podocyte basal membrane, stabilizing these cells on the glomerular basement membrane. Fukutin, named after the gene responsible for Fukuyama-type congenital muscular dystrophy, is a putative glycosyltransferase required for the post-translational modification of α-dystroglycan. Chimeric mice targeted for both alleles of fukutin develop severe muscular dystrophy; however, these mice do not have proteinuria. Despite the lack of a functional renal defect, we evaluated glomerular structure and found minor abnormalities in the chimeric mice by light microscopy. Electron microscopy revealed flattening of podocyte foot processes, the number of which was significantly lower in the chimeric compared to wild-type mice. A monoclonal antibody against the laminin-binding carbohydrate residues of α-dystroglycan did not detect α-dystroglycan glycosylation in the glomeruli by immunoblotting or immunohistochemistry. In contrast, expression of the core α-dystroglycan protein was preserved. There was no statistical difference in dystroglycan mRNA expression or in the amount of nephrin and α3-integrin protein in the chimeric compared to the wild-type mice as judged by immunohistochemistry and real-time RT-PCR. Thus, our results indicate that appropriate glycosylation of α-dystroglycan has an important role in the maintenance of podocyte architecture.
Collapse
Affiliation(s)
- Kenichiro Kojima
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
D'Alessandro A, Scaloni A, Zolla L. Human milk proteins: an interactomics and updated functional overview. J Proteome Res 2010; 9:3339-73. [PMID: 20443637 DOI: 10.1021/pr100123f] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Milk and milk fractions are characterized by a wide array of proteins, whose concentration spans across several orders of magnitude. By exploiting a combined approach based on functional gene ontology enrichment (FatiGO/Babelomics), hierarchical clustering, and pathway and network analyses, we merged data from literature dealing with protein-oriented studies on human milk. A total of 285 entries defined a nonredundant list upon comparison with the Ingenuity Knowledge Base from the Ingenuity Pathway Analysis software. Results were compared with an inventory of bovine milk proteins gathered from dedicated proteomic studies. A protein core of 106 proteins was found, with most of the entries associated to three main biological functions, namely nutrient transport/lipid metabolism, concretization of the immune system response and cellular proliferation processes. Our analyses confirm and emphasize that the biological role of the human milk proteins is not only limited to the provision of external nutrients and defense molecules against pathogens to the suckling but also to the direct stimulation of the growth of neonate tissues/organs and to the development of a proper independent immune system, both through the induction of a number of molecular cascades associated with cell proliferation/differentiation. The latter aspects were previously investigated by single-molecule dedicated studies, missing the holistic view that results from our analysis.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Environmental Sciences, University of Tuscia, Largo dell'Università, snc, 01100 Viterbo, Italy
| | | | | |
Collapse
|
20
|
Pinto LC, Fávaro WJ, Cagnon VHA. Proliferative, structural and molecular features of the Mdx mouse prostate. Int J Exp Pathol 2010; 91:408-19. [PMID: 20618884 DOI: 10.1111/j.1365-2613.2010.00722.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The prostate is fundamental to the male reproductive process, and the stroma-epithelium interaction has an important role in prostate maintenance. Studies suggest that dystroglycan (DG) plays a role in cancer development in various organs. Thus, the aims of this work were to characterize morphological and proliferative features of the prostatic stroma and epithelium of mdx mice; to verify the immunolocalization of the α and β DG, IGF-1 and laminin α3 receptors; and to relate those structural and molecular events to prostate pathogenesis and to verify the viability of this experimental model in prostate studies. Thirty male mice (mdx and C57BL10/Uni) were divided into control and mdx groups. Samples from the ventral prostate were collected for immunological, Western Blotting, transmission electron microscopy and morphometric analyses. Oestradiol and testosterone measurements were verified. The results showed diminished testosterone and increased oestradiol levels in the mdx group. Atrophied cells and hypertrophied stroma were seen in the mdx mice. Weak α and β DG and laminin α3 immunolocalization was demonstrated in the mdx group. Intense insulin-like growth factor receptor α-1 (IGFRα-1) localization was identified in the mdx animals. Thus, mdx animals showed changes in molecular and structural integrity and proliferation signals, leading to glandular homoeostasis imbalance, and compromise of prostate function. Also, the steroid hormone imbalance and the increased IGF-1 receptor level detected in mdx mice could be considered as a crucial factor in the pathogenesis of prostatic disorders.
Collapse
Affiliation(s)
- Leslie C Pinto
- Department of Anatomy, Cell Biology, Physiology and Biophysic, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | |
Collapse
|
21
|
Liu J, Yang Y, Li X, Zhang P, Qi Y, Hu H. Cellular and molecular characterization of abnormal brain development in protein o-mannose N-acetylglucosaminyltransferase 1 knockout mice. Methods Enzymol 2010; 479:353-66. [PMID: 20816176 DOI: 10.1016/s0076-6879(10)79020-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein O-mannose N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that catalyzes the transfer of N-acetylglucosamine to O-mannose of glycoproteins. It is involved in posttranslational modification of alpha-dystroglycan (alpha-DG). POMGnT1-null mice were generated by gene trapping with a retroviral vector inserted into exon 2 of the POMGnT1 gene. Expression of POMGnT1 was completely disrupted as evidenced by absence of its mRNA expression. POMGnT1 knockout mice were viable but with reduced fertility and variable lifespan. The functional glycosylated form of alpha-DG was markedly reduced in POMGnT1 knockout mice along with impaired alpha-DG-laminin binding activity. Multiple developmental defects in muscle, brain, and eye were observed. In addition, the knockout mice exhibited extensive abnormalities in the neocortex, including changed neuron distribution, presence of ectopic fibroblasts, and GFAP-positive reactive astrocytes. Analysis of POMGnT1 knockout neocortex at several developmental stages revealed that these defects were secondary to disruptions of the pial basement membrane.
Collapse
|
22
|
Fernandez K, Serinagaoglu Y, Hammond S, Martin LT, Martin PT. Mice lacking dystrophin or alpha sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:416-34. [PMID: 20019182 DOI: 10.2353/ajpath.2010.090405] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Altered expression of proteins in the dystrophin-associated glycoprotein complex results in muscular dystrophy and has more recently been implicated in a number of forms of cancer. Here we show that loss of either of two members of this complex, dystrophin in mdx mice or alpha sarcoglycan in Sgca(-/-) mice, results in the spontaneous development of muscle-derived embryonal rhabdomyosarcoma (RMS) after 1 year of age. Many mdx and Sgca(-/-) tumors showed increased expression of insulin-like growth factor 2, retinoblastoma protein, and phosphorylated Akt and decreased expression of phosphatase and tensin homolog gene, much as is found in a human RMS. Further, all mdx and Sgca(-/-) RMS analyzed had increased expression of p53 and murine double minute (mdm)2 protein and contained missense p53 mutations previously identified in human cancers. The mdx RMS also contained missense mutations in Mdm2 or alternatively spliced Mdm2 transcripts that lacked an exon encoding a portion of the p53-binding domain. No Pax3:Fkhr or Pax7:Fkhr translocation mRNA products were evident in any tumor. Expression of natively glycosylated alpha dystroglycan and alpha sarcoglycan was reduced in mdx RMS, whereas dystrophin expression was absent in almost all human RMS, both for embryonal and alveolar RMS subtypes. These studies show that absence of members of the dystrophin-associated glycoprotein complex constitutes a permissive environment for spontaneous development of embryonal RMS associated with mutation of p53 and mutation or altered splicing of Mdm2.
Collapse
Affiliation(s)
- Karen Fernandez
- Division of Hematology/Oncology, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Sarcoglycanopathies are a group of autosomal recessive muscle-wasting disorders caused by genetic defects in one of four cell membrane glycoproteins, alpha-, beta-, gamma- or delta-sarcoglycan. These four sarcoglycans form a subcomplex that is closely linked to the major dystrophin-associated protein complex, which is essential for membrane integrity during muscle contraction and provides a scaffold for important signalling molecules. Proper assembly, trafficking and targeting of the sarcoglycan complex is of vital importance, and mutations that severely perturb tetramer formation and localisation result in sarcoglycanopathy. Gene defects in one sarcoglycan cause the absence or reduced concentration of the other subunits. Most genetic defects generate mutated proteins that are degraded through the cell's quality control system; however, in many cases, conformational modifications do not affect the function of the protein, yet it is recognised as misfolded and prematurely degraded. Recent evidence shows that misfolded sarcoglycans could be rescued to the cell membrane by assisting their maturation along the ER secretory pathway. This review summarises the etiopathogenesis of sarcoglycanopathies and highlights the quality control machinery as a potential pharmacological target for therapy of these genetic disorders.
Collapse
Affiliation(s)
- Dorianna Sandonà
- Department of Biomedical Sciences, University of Padova, 35121
Padova, Italy
| | - Romeo Betto
- C.N.R. Institute of Neuroscience, Neuromuscular Biology and
Physiopathology, 35121 Padova, Italy
| |
Collapse
|
24
|
Hewitt JE. Abnormal glycosylation of dystroglycan in human genetic disease. Biochim Biophys Acta Mol Basis Dis 2009; 1792:853-61. [DOI: 10.1016/j.bbadis.2009.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/05/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
25
|
Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist 2009; 15:180-93. [PMID: 19307424 DOI: 10.1177/1073858408329509] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier (BBB) does not exclusively refer to brain endothelial cells, which are the site of the barrier proper. In the past few years, it has become increasingly clear that BBB endothelial cells depend considerably on the brain microenvironment to a degree exceeding the environmental influence in other organs. The concept of the BBB has been continuously developed over the decades, culminating now in the recognition that endothelial cell function in the brain is not limited to simply mediating energy and oxygen transfer between blood and neural tissue. Endothelial cells are rather "Janus-headed beings" that are active partners of both luminal molecules and cells, as well as subendothelial cells such as pericytes, astrocytes, and neurons. In this overview, the authors present and discuss both the role of astroglial cells in managing the BBB and aspects of pathological alterations in the brain as far as the BBB is involved. After a brief introduction of the BBB that describes the structure and function of the brain capillary endothelial cells, the authors report on both the water channel protein aquaporin-4 (AQP4) in astrocytes and the extracellular matrix between astrocytes/pericytes and endothelial cells. The AQP4 has an important impact on the homeostasis in the brain parenchyma; however, the mechanistic cascade from the composition of the astrocyte membrane to the maintenance of BBB properties in the endothelial cells, including their tight junction formation, is still completely unknown.
Collapse
Affiliation(s)
- Hartwig Wolburg
- Institute of Pathology, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
26
|
McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:87-109. [PMID: 18039094 DOI: 10.1146/annurev.pathol.2.010506.091936] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dystrophic muscle disease can occur at any age. Early- or childhood-onset muscular dystrophies may be associated with profound loss of muscle function, affecting ambulation, posture, and cardiac and respiratory function. Late-onset muscular dystrophies or myopathies may be mild and associated with slight weakness and an inability to increase muscle mass. The phenotype of muscular dystrophy is an endpoint that arises from a diverse set of genetic pathways. Genes associated with muscular dystrophies encode proteins of the plasma membrane and extracellular matrix, and the sarcomere and Z band, as well as nuclear membrane components. Because muscle has such distinctive structural and regenerative properties, many of the genes implicated in these disorders target pathways unique to muscle or more highly expressed in muscle. This chapter reviews the basic structural properties of muscle and genetic mechanisms that lead to myopathy and muscular dystrophies that affect all age groups.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
27
|
Kim ML, Chandrasekharan K, Glass M, Shi S, Stahl MC, Kaspar B, Stanley P, Martin PT. O-fucosylation of muscle agrin determines its ability to cluster acetylcholine receptors. Mol Cell Neurosci 2008; 39:452-64. [PMID: 18775496 DOI: 10.1016/j.mcn.2008.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022] Open
Abstract
Protein O-fucosyltransferase 1 (Pofut1) transfers fucose to serine or threonine on proteins, including Notch receptors, that contain EGF repeats with a particular consensus sequence. Here we demonstrate that agrin is O-fucosylated in a Pofut1-dependent manner, and that this glycosylation can regulate agrin function. Fucosylation of recombinant C45 agrin, both active (neural, z8) and inactive (muscle, z0) splice forms, was eliminated when agrin was overexpressed in Pofut1-deficient cells or by mutation of a consensus site for Pofut1 fucosylation (serine 1726 in the EGF4 domain). Loss of O-fucosylation caused a gain of function for muscle agrin such that it stimulated AChR clustering and MuSK phosphorylation in cultured myotubes at levels normally only found with the neural splice form. Deletion of Pofut1 in cultured primary myotubes and in adult skeletal muscle increased AChR aggregation. In addition, Pofut1 gene and protein expression and Pofut1 activity of the EGF4 domain of agrin were modulated during neuromuscular development. These data are consistent with a role for Pofut1 in AChR aggregation during synaptogenesis via the regulation of the synaptogenic activity of muscle agrin.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Saito F, Matsumura K, Hagiwara H, Shimizu T. [Congenital muscular dystrophy and alpha-dystroglycanopathy]. Rinsho Shinkeigaku 2008; 48:543-549. [PMID: 18939472 DOI: 10.5692/clinicalneurol.48.543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Congenital muscular dystrophy (CMD) refers to a heterogeneous group of muscular dystrophies with onset during the neonatal period. Among them, some types of CMD are characterized by the association of brain malformations and ocular abnormalities. Biochemical analyses revealed altered glycosylation and decreased laminin-binding activity of alpha-dystroglycan in these disorders, therefore they are correctively called alpha-dystroglycanopathy. Recently, mutations in the genes encoding demonstrated or putative glycosyltransferases have been identified in alpha-dystroglycanopathy. Fukuyama-type CMD and MDC1C are caused by mutations in the fukutin and fukutin-related protein (FKRP) genes, respectively. Mutations in the protein O-mannose beta-1, 2-N-acetylglucosaminyltransferase (POMGnT-1) and protein O-mannosyltransferase 1 and 2 (POMT1 and POMT2) genes cause muscle-eye-brain disease and Walker-Warburg syndrome, respectively. In addition, mutations in Large gene results in MDC1D. Furthermore, recent genotype-phenotype correlation analyses have revealed that the spectrum of phenotypes caused by mutations in these genes is much wider than originally assumed. In this review, we focus on the molecular pathomechanism and diverging clinical phenotypes of alpha-dystroglycanopathy.
Collapse
Affiliation(s)
- Fumiaki Saito
- Department of Neurology, Teikyo University School of Medicine
| | | | | | | |
Collapse
|
29
|
Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res 2008; 335:75-96. [DOI: 10.1007/s00441-008-0658-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 06/03/2008] [Indexed: 02/01/2023]
|
30
|
Conti FJ, Felder A, Monkley S, Schwander M, Wood MR, Lieber R, Critchley D, Müller U. Progressive myopathy and defects in the maintenance of myotendinous junctions in mice that lack talin 1 in skeletal muscle. Development 2008; 135:2043-53. [PMID: 18434420 PMCID: PMC2562324 DOI: 10.1242/dev.015818] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development and function of skeletal muscle depend on molecules that connect the muscle fiber cytoskeleton to the extracellular matrix (ECM). beta1 integrins are ECM receptors in skeletal muscle, and mutations that affect the alpha7beta1 integrin cause myopathy in humans. In mice, beta1 integrins control myoblast fusion, the assembly of the muscle fiber cytoskeleton, and the maintenance of myotendinous junctions (MTJs). The effector molecules that mediate beta1 integrin functions in muscle are not known. Previous studies have shown that talin 1 controls the force-dependent assembly of integrin adhesion complexes and regulates the affinity of integrins for ligands. Here we show that talin 1 is essential in skeletal muscle for the maintenance of integrin attachment sites at MTJs. Mice with a skeletal muscle-specific ablation of the talin 1 gene suffer from a progressive myopathy. Surprisingly, myoblast fusion and the assembly of integrin-containing adhesion complexes at costameres and MTJs advance normally in the mutants. However, with progressive ageing, the muscle fiber cytoskeleton detaches from MTJs. Mechanical measurements on isolated muscles show defects in the ability of talin 1-deficient muscle to generate force. Collectively, our findings show that talin 1 is essential for providing mechanical stability to integrin-dependent adhesion complexes at MTJs, which is crucial for optimal force generation by skeletal muscle.
Collapse
Affiliation(s)
- Francesco J. Conti
- The Scripps Research Institute, Department of Cell Biology and Institute of Childhood and Neglected Disease, La Jolla, CA
| | - Amanda Felder
- University of California and Veterans Administrative Centres, Department of Orthopaedics and Bioengineering, San Diego, CA
| | - Sue Monkley
- University of Leicester, Department of Biochemistry, Leicester, United Kingdom
| | - Martin Schwander
- The Scripps Research Institute, Department of Cell Biology and Institute of Childhood and Neglected Disease, La Jolla, CA
| | - Malcolm R. Wood
- The Scripps Research Institute, Microscopy Core Facility, La Jolla, CA
| | - Richard Lieber
- University of California and Veterans Administrative Centres, Department of Orthopaedics and Bioengineering, San Diego, CA
| | - David Critchley
- University of Leicester, Department of Biochemistry, Leicester, United Kingdom
| | - Ulrich Müller
- The Scripps Research Institute, Department of Cell Biology and Institute of Childhood and Neglected Disease, La Jolla, CA
| |
Collapse
|
31
|
Aberrant expression of beta-dystroglycan may be due to processing by matrix metalloproteinases-2 and -9 in oral squamous cell carcinoma. Oral Oncol 2008; 44:1139-46. [PMID: 18487074 DOI: 10.1016/j.oraloncology.2008.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 11/22/2022]
Abstract
Dystroglycan (DG), a non-integrin adhesion molecule, is formed by two subunits, alpha- and beta-DG, which bind to extracellular matrix molecules and cytoskeleton. DG expression is frequently reduced in human cancers and has been related to tumor grade and aggressiveness. The exact proteolytic processing of beta-DG remains largely unknown. In this study, we investigated the correlation of beta-DG degradation with invasiveness in oral squamous cell carcinoma (OSCC) and its possible processing by matrix metalloproteinases (MMP). Immunohistochemical staining was used to assess beta-DG expression in 60 cases of OSCC. The effects of the MMP inhibitor 1,10-phenanthroline on tumour cell invasion and beta-DG degradation were investigated using in vitro invasion assays and immunoblot analysis. Co-immunoprecipitation and N-terminal sequencing were performed to determine the possible cleavage site of beta-DG by MMP. The alpha- and beta-DG expression was reduced or lost in OSCC. In four cell lines studied (SCC-4, SCC-9, SCC-15 and SCC-25), Western blot revealed a 30kDa fragment of beta-dystroglycan (beta-DG30) in addition to beta-DG itself. beta-DG degradation was almost abolished using 1,10-phenanthroline and there was a significant decrease in tumor cell invasion. The N-terminal sequence of beta-DG30 was detected as Ile-Asn-Thr-Asn, or Ile-Val-Thr-Gln. We conclude that beta-DG degradation may play a role both in OSCC invasion and metastasis. MMP activity seems to be one mechanism for beta-DG processing into beta-DG30.
Collapse
|
32
|
Bello V, Sirour C, Moreau N, Denker E, Darribère T. A function for dystroglycan in pronephros development in Xenopus laevis. Dev Biol 2008; 317:106-20. [DOI: 10.1016/j.ydbio.2008.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 11/27/2022]
|
33
|
Gong Y, Zhang R, Zhang J, Xu L, Zhang F, Xu W, Wang Y, Chu Y, Xiong S. Alpha-dystroglycan is involved in positive selection of thymocytes by participating in immunological synapse formation. FASEB J 2008; 22:1426-39. [PMID: 18171694 DOI: 10.1096/fj.07-9264com] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Alpha-dystroglycan has been proved to be involved in lymphocyte activation by participating in immunological synapse (IS) formation. Considering the existence of IS formation in thymic development, we questioned whether alpha-dystroglycan was expressed in thymus and influenced thymic development. In this study, we demonstrated that alpha-dystroglycan was expressed on fetal thymocytes, especially on double-positive (DP, CD4(+)CD8(+)) cells. Blocking alpha-dystroglycan by treatment of fetal thymus organ culture (FTOC) with anti-alpha-dystroglycan antibody IIH6C4 decreased the number of DP cells compared with nontreated or isotype antibody controls. Down-regulation of alpha-dystroglycan by retroviruses carrying antisense cDNA of dystroglycan in reaggregate thymus organ culture (RTOC) further confirmed these results. Enhanced apoptosis of DP cells was observed after blocking alpha-dystroglycan. Interestingly, we found that blocking alpha-dystroglycan reduced IS formation between DP cells and thymic epithelial cells. Furthermore, blocking alpha-dystroglycan up-regulated CD95/CD95L expression and reduced Bcl-2 expression on DP cells in the developing thymus. Finally, the increase in the apoptosis of DP cells was associated with a consequent decrease in the positive selection, as indicated by the reduction of both ERK phosphorylation in DP cells and single-positive (SP, CD4(+) or CD8(+)) cell outcome. Altogether, these results indicated that alpha-dystroglycan was involved in positive selection of thymocytes by participating in the IS formation.
Collapse
Affiliation(s)
- Yanping Gong
- Department of Immunology, Shanghai Medical College of Fudan University, 138 Yixueyuan Rd., Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Martin LT, Glass M, Dosunmu E, Martin PT. Altered expression of natively glycosylated alpha dystroglycan in pediatric solid tumors. Hum Pathol 2007; 38:1657-68. [PMID: 17640712 PMCID: PMC2850815 DOI: 10.1016/j.humpath.2007.03.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 11/28/2006] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Altered glycosylation and/or expression of dystroglycan have been reported in forms of congenital muscular dystrophy as well as in cancers of the breast, colon, and oral epithelium. To date, however, there has been no study of the expression of dystroglycan in pediatric solid tumors. Using a combination of immunostaining on tissue microarrays and immunoblotting of snap-frozen unfixed tissues, we demonstrate a significant reduction in native alpha dystroglycan expression in pediatric alveolar rhabdomyosarcoma (RMS), embryonal RMS, neuroblastoma (NBL), and medulloblastoma, whereas expression of beta dystroglycan, which is cotranslated with alpha dystroglycan, is largely unchanged. Loss of native alpha dystroglycan expression was significantly more pronounced in stage 4 NBL than in pooled samples of stage 1 and stage 2 NBL, suggesting that loss of native alpha dystroglycan expression increases with advancing tumor stage. Neuroblastoma and RMS samples with reduced expression of native alpha dystroglycan also showed reduced laminin binding in laminin overlay experiments. Expression of natively glycosylated alpha dystroglycan was not altered in several other pediatric tumor types when compared with appropriate normal tissue controls. These data provide the first evidence that alpha dystroglycan glycosylation and laminin binding to alpha dystroglycan are altered in certain pediatric solid tumors and suggest that aberrant dystroglycan glycosylation may contribute to tumor cell biology in patients with RMS, medulloblastoma, and NBL.
Collapse
Affiliation(s)
- Laura T Martin
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA.
| | | | | | | |
Collapse
|
35
|
Del Zoppo GJ, Milner R, Mabuchi T, Hung S, Wang X, Koziol JA. Vascular matrix adhesion and the blood-brain barrier. Biochem Soc Trans 2007; 34:1261-6. [PMID: 17073798 DOI: 10.1042/bst0341261] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The integrity of the cerebral microvasculature depends on the interaction between its component cells and the extracellular matrix, as well as reorganized cell-cell interactions. In the central nervous system, matrix adhesion receptors are expressed in the microvasculature and by neurons and their supporting glial cells. Cells within cerebral microvessels express both the integrin and dystroglycan families of matrix adhesion receptors. However, the functional significance of these receptors is only now being explored. Endothelial cells and astrocytes within cerebral capillaries co-operate to generate and maintain the basal lamina and the unique barrier functions of the endothelium. Integrins and the dystroglycan complex are found on the matrix-proximate faces of both endothelial cells and astrocyte end-feet. Pericytes rest against the basal lamina. In the extravascular compartment, select integrins are expressed on neurons, microglial cells and oligodendroglia. Significant alterations in both cellular adhesion receptors and their matrix ligands occur during focal cerebral ischaemia, which support their functional significance in the normal state. We propose that matrix adhesion receptors are essential for the maintenance of the integrity of the blood-brain permeability barrier and that modulation of these receptors contributes to alterations in the barrier during brain injury.
Collapse
Affiliation(s)
- G J Del Zoppo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 132, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Bozzi M, Sciandra F, Ferri L, Torreri P, Pavoni E, Petrucci TC, Giardina B, Brancaccio A. Concerted mutation of Phe residues belonging to the ?-dystroglycan ectodomain strongly inhibits the interaction with ?-dystroglycan in�vitro. FEBS J 2006; 273:4929-43. [PMID: 17018058 DOI: 10.1111/j.1742-4658.2006.05492.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The dystroglycan adhesion complex consists of two noncovalently interacting proteins: alpha-dystroglycan, a peripheral extracellular subunit that is extensively glycosylated, and the transmembrane beta-dystroglycan, whose cytosolic tail interacts with dystrophin, thus linking the F-actin cytoskeleton to the extracellular matrix. Dystroglycan is thought to play a crucial role in the stability of the plasmalemma, and forms strong contacts between the extracellular matrix and the cytoskeleton in a wide variety of tissues. Abnormal membrane targeting of dystroglycan subunits and/or their aberrant post-translational modification are often associated with several pathologic conditions, ranging from neuromuscular disorders to carcinomas. A putative functional hotspot of dystroglycan is represented by its intersubunit surface, which is contributed by two amino acid stretches: approximately 30 amino acids of beta-dystroglycan (691-719), and approximately 15 amino acids of alpha-dystroglycan (550-565). Exploiting alanine scanning, we have produced a panel of site-directed mutants of our two consolidated recombinant peptides beta-dystroglycan (654-750), corresponding to the ectodomain of beta-dystroglycan, and alpha-dystroglycan (485-630), spanning the C-terminal domain of alpha-dystroglycan. By solid-phase binding assays and surface plasmon resonance, we have determined the binding affinities of mutated peptides in comparison to those of wild-type alpha-dystroglycan and beta-dystroglycan, and shown the crucial role of two beta-dystroglycan phenylalanines, namely Phe692 and Phe718, for the alpha-beta interaction. Substitution of the alpha-dystroglycan residues Trp551, Phe554 and Asn555 by Ala does not affect the interaction between dystroglycan subunits in vitro. As a preliminary analysis of the possible effects of the aforementioned mutations in vivo, detection through immunofluorescence and western blot of the two dystroglycan subunits was pursued in dystroglycan-transfected 293-Ebna cells.
Collapse
Affiliation(s)
- Manuela Bozzi
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Salivary gland branching morphogenesis involves coordinated cell growth, proliferation, differentiation, migration, apoptosis, and interaction of epithelial, mesenchymal, endothelial, and neuronal cells. The ex vivo analysis of embryonic mouse submandibular glands, which branch so reproducibly and beautifully in culture, is a powerful tool to investigate the molecular mechanisms regulating epithelium-mesenchyme interactions during development. The more recent analysis of genetically modified mice provides insight into the genetic regulation of branching morphogenesis. The review begins, as did the field historically, focusing on the role of the extracellular matrix (ECM), and its components such as glycosaminoglycans, collagens, and laminins. Following sections describe the modification of the ECM by proteases and the role of cell-matrix and cell-cell receptors. The review then focuses on two major families of growth factors implicated in salivary gland development, the fibroblast growth factors (FGFs) and the epidermal growth factors (EGFs). The salivary gland phenotypes in mice with genetic modification of FGFs and their receptors highlight the central role of FGFs during salivary gland branching morphogenesis. A broader section mentions other molecules implicated from analysis of the phenotypes of genetically modified mice or organ culture experiments. The review concludes with speculation on some future areas of research.
Collapse
Affiliation(s)
- Vaishali N Patel
- Matrix and Morphogenesis Unit, Craniofacial Developmental Biology and Regeneration Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr Bethesda, MD 20892, USA
| | | | | |
Collapse
|
38
|
Reignier T, Oldenburg J, Noble B, Lamb E, Romanowski V, Buchmeier MJ, Cannon PM. Receptor use by pathogenic arenaviruses. Virology 2006; 353:111-20. [PMID: 16797051 DOI: 10.1016/j.virol.2006.05.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/11/2006] [Accepted: 05/12/2006] [Indexed: 10/24/2022]
Abstract
The arenavirus family contains several important human pathogens including Lassa fever virus (LASV), lymphocytic choriomeningitis virus (LCMV) and the New World clade B viruses Junin (JUNV) and Machupo (MACV). Previously, alpha-dystroglycan (alpha-DG) was identified as a receptor recognized by LASV and certain strains of LCMV. However, other studies have suggested that alpha-DG is probably not used by the clade B viruses, and the receptor(s) for these pathogens is currently unknown. Using pseudotyped retroviral vectors displaying arenavirus glycoproteins (GPs), we are able to explore the role played by the GP in viral entry in the absence of other viral proteins. By examining the ability of the vectors to transduce DG knockout murine embryonic stem (ES) cells, we have confirmed that LASV has an absolute requirement for alpha-DG in these cells. However, the LCMV GP can still direct substantial entry into murine ES cells in the absence of alpha-DG, even when the GP from the clone 13 variant is used that has previously been reported to be highly dependent on alpha-DG for entry. We also found that neither LASV or LCMV pseudotyped vectors were able to transduce human or murine lymphocytes, presumably due to the glycosylation state of alpha-DG in these cells. In contrast, the JUNV and MACV GPs displayed broad tropism on human, murine and avian cell types, including lymphocytes, and showed no requirement for alpha-DG in murine ES cells. These findings highlight the importance of molecules other than alpha-DG for arenavirus entry. An alternate receptor is present on murine ES cells that can be used by LCMV but not by LASV, and which is not available on human or murine lymphocytes, while a distinct and widely expressed receptor(s) is used by the clade B viruses.
Collapse
Affiliation(s)
- Therese Reignier
- Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The integrity of all organ systems requires faithful interaction between its component cells and the extracellular matrix (ECM). In the central nervous system (CNS), matrix adhesion receptors are uniquely expressed by the cells comprising the microvascular compartment, and by neurons and their supporting glial cells. Cells within the cerebral microvasculature express both the integrin and dystroglycan families of matrix adhesion receptors. However, the functional significance of these receptors is only now being explored. Capillaries of the cerebral microvasculature consist of the luminal endothelium, which is separated from circumferential astrocyte end-feet by the intervening ECM of the basal lamina. Endothelial cells and astrocytes cooperate to generate and maintain the basal lamina and the unique barrier functions of the endothelium. Integrins and the dystroglycan complex are found on the matrix-proximate faces of both endothelial cells and astrocyte end-feet. Pericytes rest against the basal lamina. In the extravascular compartment, select integrins are expressed on neurons, microglial cells, and oligodendroglia. Significant alterations in both cellular adhesion receptors and their ligands occur under the conditions of focal cerebral ischemia, multiple sclerosis (MS) and the modeled condition experimental autoimmune encephalomyelitis (EAE), certain tumors of the CNS, and arteriovenous malformations (AVMs). The changes in matrix adhesion receptor expression in these conditions support their functional significance in the normal state. We propose that matrix adhesion receptors are essential for the maintenance of the integrity of the blood-brain permeability barrier, and that modulation of these receptors contribute to alterations in the barrier during brain injury. This review examines current information about cell adhesion receptor expression within the cerebral microvasculature and surrounding tissue, and their potential roles during the vascular responses to local injury.
Collapse
Affiliation(s)
- Gregory J del Zoppo
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM 132, La Jolla, CA 92037, USA.
| | | |
Collapse
|
40
|
Agrawal S, Anderson P, Durbeej M, van Rooijen N, Ivars F, Opdenakker G, Sorokin LM. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. ACTA ACUST UNITED AC 2006; 203:1007-19. [PMID: 16585265 PMCID: PMC2118280 DOI: 10.1084/jem.20051342] [Citation(s) in RCA: 408] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The endothelial cell monolayer of cerebral vessels and its basement membrane (BM) are ensheathed by the astrocyte endfeet, the leptomeningeal cells, and their associated parenchymal BM, all of which contribute to establishment of the blood-brain barrier (BBB). As a consequence of this unique structure, leukocyte penetration of cerebral vessels is a multistep event. In mouse experimental autoimmune encephalomyelitis (EAE), a widely used central nervous system inflammatory model, leukocytes first penetrate the endothelial cell monolayer and underlying BM using integrin beta1-mediated processes, but mechanisms used to penetrate the second barrier defined by the parenchymal BM and glia limitans remain uninvestigated. We show here that macrophage-derived gelatinase (matrix metalloproteinase [MMP]-2 and MMP-9) activity is crucial for leukocyte penetration of the parenchymal BM. Dystroglycan, a transmembrane receptor that anchors astrocyte endfeet to the parenchymal BM via high affinity interactions with laminins 1 and 2, perlecan and agrin, is identified as a specific substrate of MMP-2 and MMP-9. Ablation of both MMP-2 and MMP-9 in double knockout mice confers resistance to EAE by inhibiting dystroglycan cleavage and preventing leukocyte infiltration. This is the first description of selective in situ proteolytic damage of a BBB-specific molecule at sites of leukocyte infiltration.
Collapse
Affiliation(s)
- Smriti Agrawal
- Experimental Pathology, 2Immunology, and 3Experimental Medical Science, Lund University, Lund 22185, Sweden
| | | | | | | | | | | | | |
Collapse
|
41
|
Liu J, Ball SL, Yang Y, Mei P, Zhang L, Shi H, Kaminski HJ, Lemmon VP, Hu H. A genetic model for muscle–eye–brain disease in mice lacking protein O-mannose 1,2-N-acetylglucosaminyltransferase (POMGnT1). Mech Dev 2006; 123:228-40. [PMID: 16458488 DOI: 10.1016/j.mod.2005.12.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 12/13/2005] [Accepted: 12/14/2005] [Indexed: 11/26/2022]
Abstract
Protein O-mannose beta1,2-N-acetyglucosaminyltransferase 1 (POMGnT1) is an enzyme involved in the synthesis of O-mannosyl glycans. Mutations of POMGnT1 in humans result in the muscle-eye-brain (MEB) disease. In this study, we have characterized a null mutation generated by gene trapping with a retroviral vector inserted into the second exon of the mouse POMGnT1 locus. Expression of POMGnT1 mRNA was abolished in mutant mice. Glycosylation of alpha-dystroglycan was also reduced. POMGnT1 mutant mice were viable with multiple developmental defects in muscle, eye, and brain, similar to the phenotypes observed in human MEB disease. The present study provides the first genetic animal model to further dissect the roles of POMGnT1 in MEB disease.
Collapse
Affiliation(s)
- Jianmin Liu
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 650 E. Adams Street, Syracuse, NY 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Frosk P, Greenberg CR, Tennese AAP, Lamont R, Nylen E, Hirst C, Frappier D, Roslin NM, Zaik M, Bushby K, Straub V, Zatz M, de Paula F, Morgan K, Fujiwara TM, Wrogemann K. The most common mutation in FKRP causing limb girdle muscular dystrophy type 2I (LGMD2I) may have occurred only once and is present in Hutterites and other populations. Hum Mutat 2006; 25:38-44. [PMID: 15580560 DOI: 10.1002/humu.20110] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Limb girdle muscular dystrophy (LGMD) is common in the Hutterite population of North America. We previously identified a mutation in the TRIM32 gene in chromosome region 9q32, causing LGMD2H in approximately two-thirds of the 60 Hutterite LGMD patients studied to date. A genomewide scan was undertaken in five families who did not show linkage to the LGMD2H locus on chromosome 9. A second LGMD locus, LGMD2I, was identified in chromosome region 19q13.3, and the causative mutation was identified as c.826C>A (L276I), a missense mutation in the FKRP gene. A comparison of the clinical characteristics of the two LGMD patient groups in this population reveals some differences. LGMD2I patients generally have an earlier age at diagnosis, a more severe course, and higher serum creatine kinase (CK) levels. In addition, some of these patients show calf hypertrophy, cardiac symptoms, and severe reactions to general anesthesia. None of these features are present among LGMD2H patients. A single common haplotype surrounding the FKRP gene was identified in the Hutterite LGMD2I patients. An identical core haplotype was also identified in 19 other non-Hutterite LGMD2I patients from Europe, Canada, and Brazil. The occurrence of this mutation on a common core haplotype suggests that L276I is a founder mutation that is dispersed among populations of European origin.
Collapse
Affiliation(s)
- Patrick Frosk
- Department of Biochemistry, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 2005; 85:979-1000. [PMID: 15987800 DOI: 10.1152/physrev.00014.2004] [Citation(s) in RCA: 371] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Endothelial cells of the blood and lymphatic vasculature are polarized cells with luminal surfaces specialized to interact with inflammatory cells upon the appropriate stimulation; they contain specialized transcellular transport systems, and their basal surfaces are attached to an extracellular basement membrane. In adult tissues the basement membrane forms a continuous sleeve around the endothelial tubes, and the interaction of endothelial cells with basement membrane components plays an important role in the maintenance of vessel wall integrity. During development, the basement membrane of endothelium provides distinct spatial and molecular information that influences endothelial cell proliferation, migration, and differentiation/maturation. Microvascular endothelium matures into phenotypically distinct types: continuous, fenestrated, and discontinuous, which also differ in their permeability properties. Development of these morphological and physiological differences is thought to be controlled by both soluble factors in the organ or tissue environment and by cell-cell and cell-matrix interactions. Basement membranes of endothelium, like those of other tissues, are composed of laminins, type IV collagens, heparan sulfate proteoglycans, and nidogens. However, isoforms of all four classes of molecules exist, which combine to form structurally and functionally distinct basement membranes. The endothelial cell basement membranes have been shown to be unique with respect to their laminin isoform composition. Laminins are a family of glycoprotein heterotrimers composed of an alpha, beta, and gamma chain. To date, 5alpha, 4beta, and 3gamma laminin chains have been identified that can combine to form 15 different isoforms. The laminin alpha-chains are considered to be the functionally important portion of the heterotrimers, as they exhibit tissue-specific distribution patterns and contain the major cell interaction sites. Vascular endothelium expresses only two laminin isoforms, and their expression varies depending on the developmental stage, vessel type, and the activation state of the endothelium. Laminin 8 (composed of laminin alpha4, beta1, and gamma1 chains) is expressed by all endothelial cells regardless of their stage of development, and its expression is strongly upregulated by cytokines and growth factors that play a role in inflammatory events. Laminin 10 (composed of laminin alpha5, beta1, and gamma1 chains) is detectable primarily in endothelial cell basement membranes of capillaries and venules commencing 3-4 wk after birth. In contrast to laminin 8, endothelial cell expression of laminin 10 is upregulated only by strong proinflammatory signals and, in addition, angiostatic agents such as progesterone. Other extracellular matrix molecules, such as BM40 (also known as SPARC/osteonectin), thrombospondins 1 and 2, fibronectin, nidogens 1 and 2, and collagen types VIII, XV, and XVIII, are also differentially expressed by endothelium, varying with the endothelium type and/or pathophysiological state. The data argue for a dynamic endothelial cell extracellular matrix that presents different molecular information depending on the type of endothelium and/or physiological situation. This review outlines the unique structural and functional features of vascular basement membranes, with focus on the endothelium and the laminin family of glycoproteins.
Collapse
Affiliation(s)
- Rupert Hallmann
- Experimental Pathology, Lund University, Se-22185 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
44
|
Paret C, Bourouba M, Beer A, Miyazaki K, Schnölzer M, Fiedler S, Zöller M. Ly6 family member C4.4A binds laminins 1 and 5, associates with galectin-3 and supports cell migration. Int J Cancer 2005; 115:724-33. [PMID: 15729693 DOI: 10.1002/ijc.20977] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
C4.4A is a member of the Ly6 family, with low homology to uPAR. It has been detected mainly on metastasizing carcinoma cells and proposed to be involved in wound healing. So far, C4.4A has been observed as an orphan receptor, and its functional activity has not been explored. Using recombinant rat C4.4A (rrC4.4A) made in a eukaryotic expression system, we demonstrate by immunohistology that C4.4A ligands are strongly expressed in tissues adjacent to squamous epithelia of, e.g., tongue and esophagus, the expression pattern partly overlapping with laminin (LN) and complementing the C4.4A expression that is found predominantly on the basal layers of squamous epithelium. ELISA screening of several components of the extracellular matrix revealed selective binding of rrC4.4A to LN1 and LN5 and that transfection of the BSp73AS tumor line with C4.4A cDNA (BSp73AS-1B1) promoted LN1 and LN5 binding. Binding of BSp73AS-1B1 to LN5 and, less markedly, LN1 induced spreading, lamellipodia formation and migration. C4.4A also associates with galectin-3 in nontransformed tissues and tumor lines. There is evidence that the association of C4.4A with galectin-3 influences LN adhesion. C4.4A was described originally as a metastasis-associated molecule. Our findings that LN1 and LN5 are C4.4A ligands, that galectin-3 associates with C4.4A and that C4.4A ligand binding confers a migratory phenotype are well in line with the supposed metastasis association.
Collapse
Affiliation(s)
- Claudia Paret
- Department of Tumor Progression and Tumor Defense, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Fujimura K, Sawaki H, Sakai T, Hiruma T, Nakanishi N, Sato T, Ohkura T, Narimatsu H. LARGE2 facilitates the maturation of alpha-dystroglycan more effectively than LARGE. Biochem Biophys Res Commun 2005; 329:1162-71. [PMID: 15752776 DOI: 10.1016/j.bbrc.2005.02.082] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Indexed: 10/25/2022]
Abstract
The LARGE gene is thought to encode a putative glycosyltransferase because of its typical topology. However, no enzyme activity has been demonstrated yet, although the gene apparently supports the functional maturation of alpha-dystroglycan by glycosylation when it is transfected into cells. A novel homologous gene to LARGE was identified and named LARGE2. LARGE2 recombinant was co-expressed with alpha-dystroglycan in human embryonic kidney 293T cells to determine its activity to support the maturation of alpha-dystroglycan. The alpha-dystroglycan co-transfected with LARGE2 was more highly glycosylated than that co-transfected with LARGE. Pull-down experiments demonstrated binding activity of LARGE2 as well as LARGE toward alpha-dystroglycan. LARGE2 was found to support the maturation of alpha-dystroglycan more effectively than LARGE. Both of them are ubiquitously expressed in many tissues, except the brain where LARGE2 was not expressed at all. This compensatory function can explain the residual functionally glycosylated alpha-dystroglycan in a patient with MDC1D whose LARGE genes are congenitally null.
Collapse
Affiliation(s)
- Katsuya Fujimura
- JGS Japan Genome Solutions, Inc., 51 Komiya-cho, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Scott A, Stemple DL. Zebrafish notochordal basement membrane: signaling and structure. Curr Top Dev Biol 2005; 65:229-53. [PMID: 15642386 DOI: 10.1016/s0070-2153(04)65009-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Annabelle Scott
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
47
|
Zhan Y, Tremblay MR, Melian N, Carbonetto S. Evidence that dystroglycan is associated with dynamin and regulates endocytosis. J Biol Chem 2005; 280:18015-24. [PMID: 15728588 DOI: 10.1074/jbc.m409682200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Disruption of the dystroglycan gene in humans and mice leads to muscular dystrophies and nervous system defects including malformation of the brain and defective synaptic transmission. To identify proteins that interact with dystroglycan in the brain we have used immunoaffinity purification followed by mass spectrometry (LC/MS-MS) and found that the GTPase dynamin 1 is a novel dystroglycan-associated protein. The beta-dystroglycan-dynamin 1 complex also included alpha-dystroglycan and Grb2. Overlay assays indicated that dynamin interacts directly with dystroglycan, and immunodepletion showed that only a pool of dynamin is associated with dystroglycan. Dystroglycan was associated and colocalized immunohistochemically with dynamin 1 in the central nervous system in the outer plexiform layer of retina where photoreceptor terminals are found. Endocytosis in neurons is both constitutive, as in non-neural cells, and regulated by neural activity. To assess the function of dystroglycan in the former, we have assayed transferrin uptake in fibroblastic cells differentiated from embryonic stem cells null for both dystroglycan alleles. In wild-type cells, dystroglycan formed a complex with dynamin and codistributed with cortactin at membrane ruffles, which are organelles implicated in endocytosis. Dystroglycan-null cells had a significantly greater transferrin uptake, a process well known to require dynamin. Expression of dystroglycan in null cells by infection with an adenovirus containing dystroglycan reduced transferrin uptake to levels seen in wild-type embryonic stem cells. These data suggest that dystroglycan regulates endocytosis possibly as a result of its interaction with dynamin.
Collapse
Affiliation(s)
- Yougen Zhan
- Centre for Research in Neuroscience and the Department of Neurology and Neurosurgery, Montréal General Hospital Research Institute, McGill University, Montréal, Québec H3G 1A4, Canada
| | | | | | | |
Collapse
|
48
|
Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF, Longman C, Brown SC, Muntoni F. Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum Mol Genet 2005; 14:657-65. [PMID: 15661757 DOI: 10.1093/hmg/ddi062] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dystroglycanopathies are a novel group of human muscular dystrophies due to mutations in known or putative glycosyltransferase enzymes. They share the common pathological feature of a hypoglycosylated form of alpha-dystroglycan, diminishing its ability to bind extracellular matrix ligands. The LARGE glycosyltransferase is mutated in both the myodystrophy mouse and congenital muscular dystrophy type 1D (MDC1D). We have transfected various cell lines with a variety of LARGE expression constructs in order to characterize their subcellular localization and effect on alpha-dystroglycan glycosylation. Wild-type LARGE co-localized with the Golgi marker GM130 and stimulated the production of highly glycosylated alpha-dystroglycan (hyperglycosylation). MDC1D mutants had no effect on alpha-dystroglycan glycosylation and failed to localize correctly, confirming their pathogenicity. The two predicted catalytic domains of LARGE contain three conserved DxD motifs. Systematically mutating each of these motifs to NNN resulted in the mislocalization of one construct, while all failed to have any effect on alpha-dystroglycan glycosylation. A construct lacking the transmembrane domain also failed to localize at the Golgi apparatus. These results indicate that LARGE needs to both physically interact with alpha-dystroglycan and function as a glycosyltransferase in order to stimulate alpha-dystroglycan hyperglycosylation. We have also cloned and overexpressed a homologue of LARGE, glycosyltransferase-like 1B (GYLTL1B). Like LARGE it localized to the Golgi apparatus and stimulated alpha-dystroglycan hyperglycosylation. These results suggest that GYLTL1B may be a candidate gene for muscular dystrophy and that its overexpression could compensate for the deficiency of both LARGE and other glycosyltransferases.
Collapse
Affiliation(s)
- Martin Brockington
- Dubowitz Neuromuscular Centre, Department of Paediatrics, Hammersmith Campus, Inperial College, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Caenorhabditis elegans is a powerful model system for investigating the establishment, regulation and function of adhesive structures in vivo. C. elegans has several adhesion complexes related to those in vertebrates. These include: (1) epithelial apical junctions, which have features of both adherens and tight junctions; (2) dense bodies, which are muscle-attachment structures similar to focal adhesions; (3) fibrous organelles, which resemble hemidesmosomes and mediate mechanical coupling between tissues; and (4) a putative dystrophin-glycoprotein complex that has potential roles in muscle function and embryogenesis. Recent work has increased our understanding of these structures and has given new insights into the functions of their vertebrate counterparts.
Collapse
Affiliation(s)
- Elisabeth A Cox
- Department of Zoology, University of Wisconsin, 1117 W. Johnson Street, Madison, WI 53706, USA.
| | | |
Collapse
|
50
|
Contacts of Basement Membrane Molecules with Cell Membranes. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(05)56010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|