1
|
Dragar B, Kranjc Brezar S, Čemažar M, Jesenko T, Romih R, Kreft ME, Kuret T, Zupančič D. Vitamin A-Enriched Diet Increases Urothelial Cell Proliferation by Upregulating Itga3 and Areg After Cyclophosphamide-Induced Injury in Mice. Mol Nutr Food Res 2025; 69:e70045. [PMID: 40119798 PMCID: PMC12050521 DOI: 10.1002/mnfr.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025]
Abstract
Vitamin A (VitA) is an essential nutrient, affecting many cell functions, such as proliferation, apoptosis, and differentiation, all of which are important for the regeneration of various tissues. In this study, we investigated the effects of a VitA-enriched diet on the regeneration of the urothelium of the urinary bladder in mice after cyclophosphamide (CP)-induced injury. Female mice were fed VitA-enriched and normal diet for 1 week before receiving an intraperitoneal injection of CP (150 mg/kg). Urinary bladders were removed 1 and 3 days after CP. On Day 1, RNA sequencing showed that VitA upregulated two Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathways: the cell cycle and the PI3K-Akt pathway. This was confirmed by qPCR, which showed significantly increased expression of the Itga3 and Areg genes. In addition, the effect of VitA on the proliferation of urothelial cells was analyzed by immunohistochemistry of Ki-67, which confirmed an increased proliferation rate. No significant effects of the VitA-enriched diet were observed on the expression of apoptosis-related genes and on differentiation-related markers of superficial urothelial cells. Our results suggest that a VitA-enriched diet improves early urothelial regeneration after CP-induced injury by promoting cell proliferation.
Collapse
Affiliation(s)
- Brina Dragar
- Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | | | - Maja Čemažar
- Department of Experimental OncologyInstitute of OncologyLjubljanaSlovenia
| | - Tanja Jesenko
- Department of Experimental OncologyInstitute of OncologyLjubljanaSlovenia
| | - Rok Romih
- Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Tadeja Kuret
- Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| |
Collapse
|
2
|
Gao Y, Li C, Jafari H, Yang G, Wang Z, Lei C, Dang R. CircRNA profiling reveals circSMC1B that promotes bovine male germline stem cells proliferation and apoptosis via sponging let-7i. BMC Genomics 2025; 26:398. [PMID: 40275155 PMCID: PMC12023415 DOI: 10.1186/s12864-025-11556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Despite significant advancements in artificial insemination techniques, male reproduction continues to pose a considerable challenge in cattle breeding. Circular RNAs (circRNAs), a class of non-coding RNAs (ncRNAs), play a crucial role in regulating testis growth and spermatogenesis. Therefore, it is essential to comprehend the involvement of circRNAs in bull reproduction for livestock production. However, the identification of differentially expressed circRNAs during testis development and their underlying mechanisms remains largely unknown. RESULTS In this study, RNA-seq was employed to investigate the expression of circRNAs in neonatal and sexually mature bovine testes. We identified 28,065 candidate circRNAs, of which 987 circRNAs showed differential expression between the two stages (P-adjust < 0.05). Notably, circSMC1B was significantly up-regulated in sexually mature testis. Overexpression of circSMC1B promoted the proliferation and apoptosis of bovine male germline stem cells (mGSCs). Further analysis revealed that circSMC1B acts as a molecular sponge for let-7i, while High mobility group AT-hook 1/Nuclear receptor subfamily 6 group A member 1 (HMGA1/NR6 A1) were identified as direct targets of let-7i. Furthermore, circSMC1B levels exhibited a significant positive correlation with HMGA1/NR6A1 mRNA expression in bovine mGSCs, highlighting the critical role of competing endogenous RNA (ceRNA) mechanisms. CONCLUSION Our research elucidates that circSMC1B, through let-7i binding, promotes bovine mGSCs proliferation and apoptosis by targeting HMGA1/NR6A1. These findings provide valuable resources for studying the functional aspects of circRNAs in testis development and enhance our understanding of the biological function of circSMC1B in promoting bull spermatogenesis.
Collapse
Affiliation(s)
- Yuan Gao
- College of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Halima Jafari
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Ge Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Zhaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China
| | - Ruihua Dang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, 712100, China.
| |
Collapse
|
3
|
Jing R, Pennisi CP, Nielsen TT, Larsen KL. Advanced supramolecular hydrogels and their applications in the formulation of next-generation bioinks for tissue engineering: A review. Int J Biol Macromol 2025; 311:143461. [PMID: 40280522 DOI: 10.1016/j.ijbiomac.2025.143461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/13/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Supramolecular hydrogels are three-dimensional structures composed of cross-linked macromolecules interconnected by dynamic physical bonds, which allow them to absorb and retain significant volumes of water. Their intrinsic properties, such as viscoelasticity, self-healing capabilities, and high water content, render them promising materials for cell-laden scaffolds utilized in bioinks. This review systematically summarizes the current state-of-the-art advancements in hydrogels for tissue engineering, categorizing them based on the nature of their supramolecular interactions. Particular emphasis is placed on the classification of supramolecular hydrogels and their associated properties, including kinetics, mechanical characteristics, responsiveness, and swelling behavior. The review specifically addresses the criteria that hydrogels must fulfill prior to their application in bioinks. Achieving biocompatibility and bioactivity necessitates the careful selection of hydrogel compositions with suitable properties, as well as the incorporation of external organic or inorganic bioactive molecules. Methods for measuring and enhancing biophysical and biochemical properties are discussed in detail, alongside an exploration of the unique requirements of bioinks tailored for each additive manufacturing method. This review paper serves as an instructive resource for the construction and characterization of supramolecular hydrogels, facilitating their application in bioinks for tissue engineering.
Collapse
Affiliation(s)
- Ruiqi Jing
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Cristian P Pennisi
- Department of Health Science and Technology, Aalborg University, Selma Lagerløfs Vej 249, 9260 Gistrup, Denmark
| | - Thorbjørn T Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Kim L Larsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
4
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kopij G, Kiezun M, Gudelska M, Dobrzyn K, Zarzecka B, Rytelewska E, Zaobidna E, Swiderska B, Malinowska A, Rak A, Kaminski T, Smolinska N. Visfatin impact on the proteome of porcine luteal cells during implantation. Sci Rep 2024; 14:14625. [PMID: 38918475 PMCID: PMC11199572 DOI: 10.1038/s41598-024-65577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024] Open
Abstract
Visfatin (VIS) is a hormone belonging to the adipokines' group secreted mainly by the adipose tissue. VIS plays a crucial role in the control of energy homeostasis, inflammation, cell differentiation, and angiogenesis. VIS expression was confirmed in the hypothalamic-pituitary-gonadal (HPG) axis structures, as well as in the uterus, placenta, and conceptuses. We hypothesised that VIS may affect the abundance of proteins involved in the regulation of key processes occurring in the corpus luteum (CL) during the implantation process in pigs. In the present study, we performed the high-throughput proteomic analysis (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the in vitro influence of VIS (100 ng/mL) on differentially regulated proteins (DRPs) in the porcine luteal cells (LCs) on days 15-16 of pregnancy (implantation period). We have identified 511 DRPs, 276 of them were up-regulated, and 235 down-regulated in the presence of VIS. Revealed DRPs were assigned to 162 gene ontology terms. Western blot analysis of five chosen DRPs, ADAM metallopeptidase with thrombospondin type 1 motif 1 (ADAMTS1), lanosterol 14-α demethylase (CYP51A1), inhibin subunit beta A (INHBA), notch receptor 3 (NOTCH3), and prostaglandin E synthase 2 (mPGES2) confirmed the veracity and accuracy of LC-MS/MS method. We indicated that VIS modulates the expression of proteins connected with the regulation of lipogenesis and cholesterologenesis, and, in consequence, may be involved in the synthesis of steroid hormones, as well as prostaglandins' metabolism. Moreover, we revealed that VIS affects the abundance of protein associated with ovarian cell proliferation, differentiation, and apoptosis, as well as CL new vessel formation and tissue remodelling. Our results suggest important roles for VIS in the regulation of ovarian functions during the peri-implantation period.
Collapse
Affiliation(s)
- Grzegorz Kopij
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marta Kiezun
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marlena Gudelska
- School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Dobrzyn
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Barbara Zarzecka
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Edyta Rytelewska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Zaobidna
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bianka Swiderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics PAS in Warsaw, Warsaw, Poland
| | - Agnieszka Rak
- Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Kraków, Poland
| | - Tadeusz Kaminski
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Nina Smolinska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| |
Collapse
|
6
|
Sakao K, Sho C, Miyata T, Takara K, Oda R, Hou DX. Verification of In Vitro Anticancer Activity and Bioactive Compounds in Cordyceps Militaris-Infused Sweet Potato Shochu Spirits. Molecules 2024; 29:2119. [PMID: 38731610 PMCID: PMC11085083 DOI: 10.3390/molecules29092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Cho Sho
- Kirishima Shuzo Co., Ltd., 4-28-1 Shimokawahigashi, Miyakonojo, Miyazaki 885-8588, Japan;
| | - Takeshi Miyata
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kensaku Takara
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Rio Oda
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
7
|
Peng Q, Weerapana E. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics. Cell Chem Biol 2024; 31:550-564.e9. [PMID: 38086369 PMCID: PMC10960692 DOI: 10.1016/j.chembiol.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 03/24/2024]
Abstract
The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.
Collapse
Affiliation(s)
- Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
8
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
9
|
Pierce L, Anderson H, Sarkar S, Bauer SR, Sarkar S. Experimental and computational approach to establish fit-for-purpose cell viability assays. Regen Med 2024; 19:27-45. [PMID: 38247346 DOI: 10.2217/rme-2023-0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
Aim: Cell viability assays are critical for cell-based products. Here, we demonstrate a combined experimental and computational approach to identify fit-for-purpose cell assays that can predict changes in cell proliferation, a critical biological response in cell expansion. Materials & methods: Jurkat cells were systematically injured using heat (45 ± 1°C). Cell viability was measured at 0 h and 24 h after treatment using assays for membrane integrity, metabolic function and apoptosis. Proliferation kinetics for longer term cultures were modeled using the Gompertz distribution to establish predictive models between cell viability results and proliferation. Results & conclusion: We demonstrate an approach for ranking these assays as predictors of cell proliferation and for setting cell viability specifications when a particular proliferation response is required.
Collapse
Affiliation(s)
- Laura Pierce
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Hidayah Anderson
- Division of Cellular & Gene Therapies, CBER, FDA, Silver Spring, MD 20993, USA
| | - Swarnavo Sarkar
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| | - Steven R Bauer
- Division of Cellular & Gene Therapies, CBER, FDA, Silver Spring, MD 20993, USA
| | - Sumona Sarkar
- Biosystems & Biomaterials Division, National Institute of Standards & Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
10
|
Zarei M, Hasanzadeh Azar M, Sayedain SS, Shabani Dargah M, Alizadeh R, Arab M, Askarinya A, Kaviani A, Beheshtizadeh N, Azami M. Material extrusion additive manufacturing of poly(lactic acid)/Ti6Al4V@calcium phosphate core-shell nanocomposite scaffolds for bone tissue applications. Int J Biol Macromol 2024; 255:128040. [PMID: 37981284 DOI: 10.1016/j.ijbiomac.2023.128040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
The use of porous scaffolds with appropriate mechanical and biological features for the host tissue is one of the challenges in repairing critical-size bone defects. With today's three-dimensional (3D) printing technology, scaffolds can be customized and personalized, thereby eliminating the problems associated with conventional methods. In this work, after preparing Ti6Al4V/Calcium phosphate (Ti64@CaP) core-shell nanocomposite via a solution-based process, by taking advantage of fused deposition modeling (FDM), porous poly(lactic acid) (PLA)-Ti64@CaP nanocomposite scaffolds were fabricated. Scanning electron microscope (SEM) showed that nanostructured calcium phosphate was distributed uniformly on the surface of Ti64 particles. Also, X-ray diffraction (XRD) indicated that calcium phosphate forms an octacalcium phosphate (OCP) phase. As a result of incorporating 6 wt% Ti64@CaP into the PLA, the compressive modulus and ultimate compressive strength values increased from 1.4 GPa and 29.5 MPa to 2.0 GPa and 53.5 MPa, respectively. Furthermore, the differential scanning calorimetry results revealed an increase in the glass transition temperature of PLA, rising from 57.0 to 62.4 °C, due to the addition of 6 wt% Ti64@CaP. However, it is worth noting that there was a moderate decrease in the crystallization and melting temperatures of the nanocomposite filament, which dropped from 97.0 to 89.5 °C and 167 to 162.9 °C, respectively. The scaffolds were seeded with human adipose tissue-derived mesenchymal stem cells (hADSCs) to investigate their biocompatibility and cell proliferation. Calcium deposition, ALP activity, and bone-related proteins and genes were also used to evaluate the bone differentiation potential of hADSCs. The obtained results showed that introducing Ti64@CaP considerably improved in vitro biocompatibility, facilitating the attachment, differentiation, and proliferation of hADSCs. Considering the findings of this study, the 3D-printed nanocomposite scaffold could be considered a promising candidate for bone tissue engineering applications.
Collapse
Affiliation(s)
- Masoud Zarei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahdi Hasanzadeh Azar
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Sayed Shahab Sayedain
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Reza Alizadeh
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mehdi Arab
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Askarinya
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Kaviani
- Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Li C, Li Y, Wang W, Scimeca M, Melino G, Du R, Shi Y. Deer antlers: the fastest growing tissue with least cancer occurrence. Cell Death Differ 2023; 30:2452-2461. [PMID: 37864097 PMCID: PMC10733395 DOI: 10.1038/s41418-023-01231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
Deer antlers are a bony organ solely able to acquired distinct unique attributes during evolution and all these attributes are against thus far known natural rules. One of them is as the fastest animal growing tissue (2 cm/day), they are remarkably cancer-free, despite high cell division rate. Although tumor-like nodules on the long-lived castrate antlers in some deer species do occur, but they are truly benign in nature. In this review, we tried to find the answer to this seemingly contradictory phenomenon based on the currently available information and give insights into possible clinic application. The antler growth center is located in its tip; the most intensive dividing cells are resident in the inner layer of reserve mesenchyme (RM), and these cells are more adopted to osteosarcoma rather than to normal bone tissues in gene expression profiles but acquire their energy mainly through aerobic oxidative phosphorylation pathway. To counteract propensity of neoplastic transformation, antlers evolved highly efficient apoptosis exactly in the RM, unparalleled by any known tissues; and annual wholesale cast to jettison the corps. Besides, some strong cancer suppressive genes including p53 cofactor genes and p53 regulator genes are highly positively selected by deer, which would have certainly contributed to curb tumorigenesis. Thus far, antler extracts and RM cells/exosomes have been tried on different cancer models either in vitro or in vivo, and all achieved positive results. These positive experimental results together with the anecdotal folklore that regular consumption of velvet antler is living with cancer-free would encourage us to test antlers in clinic settings.
Collapse
Affiliation(s)
- Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wenying Wang
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China.
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University/The First People's Hospital of Changzhou, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Li J, Zhao B, Zhang X, Dai Y, Yang N, Bao Z, Chen Y, Liu Y, Wu X. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines. Anim Biotechnol 2023; 34:4050-4059. [PMID: 37652434 DOI: 10.1080/10495398.2023.2252861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Hair follicle (HF) undergo periodic growth and development in mammals, which regulated by dermal papilla cells (DPCs) are reported to play an important role in HF morphogenesis and development. However, primary DPCs have low proliferative activity, age quickly, and fresh cell isolation is both time-consuming and laborious. In this study, we introduced the SV40 large T antigen (SV40T) into dissociated early passage rabbit vibrissae DPCs with lentiviral vectors and established seven immortalized DPC lines (R-1, R-2, R-3, R-4, R-5, R-6 and R-7). These cell lines displayed early passage morphology and high alkaline phosphatase activity. RT-PCR and immunofluorescence staining showed that all the immortalized cell lines expressed the DPC markers (α-SMA, IGF1, ALPL, FGF2, BMP2 and TGFβ2), but α-SMA was only expressed well in R-3, R-4, and R-7. Furthermore, it was found that R-7 was the only line to survive beyond 50 passages. Compared to melanoma cells, R-7 did not undergo malignant transformation. Karyotyping and cell growth viability analysis illustrated that the R-7 cell line preserved the basic characteristics of primary DPCs. The R-7 DPCs established have potential application for future hair research. The study provides the theoretical basis in the cell research of HF growth and development.
Collapse
Affiliation(s)
- Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Liu
- Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Bashandy SAE, Ebaid H, Al-Tamimi J, Hassan I, Omara EA, Elbaset MA, Alhazza IM, Siddique JA. Protective Effect of Daidzein against Diethylnitrosamine/Carbon Tetrachloride-Induced Hepatocellular Carcinoma in Male Rats. BIOLOGY 2023; 12:1184. [PMID: 37759583 PMCID: PMC10525464 DOI: 10.3390/biology12091184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is the second-largest cause of death among all cancer types. Many drugs have been used to treat the disease for a long time but have been mostly discontinued because of their side effects or the development of resistance in the patients with HCC. The administration of DZ orally is a great focus to address the clinical crisis. Daidzein (DZ) is a prominent isoflavone polyphenolic chemical found in soybeans and other leguminous plants. It has various pharmacological effects, including anti-inflammatory, antihemolytic, and antioxidant. This present study investigates the protective effect of DZ on chemically induced HCC in rat models. The DZ was administered orally four weeks before HCC induction and continued during treatment. Our study included four treatment groups: control (group 1, without any treatment), HCC-induced rats (group II), an HCC group treated with DZ at 20 mg/kg (group III), and an HCC group treated with DZ at 40 mg/kg (group IV). HCC rats showed elevation in all the HCC markers (AFP, GPC3, and VEGF), liver function markers (ALP, ALT, and AST), inflammatory markers (IL-6, TNF-α, and CRP), and lipid markers concomitant with a decrease in antioxidant enzymes and protein. However, groups III and IV demonstrated dose-dependent alleviation in the previous parameters resulting from HCC. In addition, the high dose of DZ reduces many hepatological changes in HCC rats. All study parameters improved with DZ administration. Due to its antioxidant and anti-inflammatory characteristics, DZ is a promising HCC treatment option for clinical use.
Collapse
Affiliation(s)
- Samir A. E. Bashandy
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt; (S.A.E.B.); (M.A.E.)
| | - Hossam Ebaid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Jameel Al-Tamimi
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Iftekhar Hassan
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Enayat A. Omara
- Pathology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt;
| | - Marawan A. Elbaset
- Pharmacology Department, National Research Centre, 33 El-Bohouth St., Dokki, Cairo 12622, Egypt; (S.A.E.B.); (M.A.E.)
| | - Ibrahim M. Alhazza
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.E.); (I.M.A.)
| | - Jamal A. Siddique
- Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University (CVUT), Praha 6, 16629 Prague, Czech Republic;
| |
Collapse
|
14
|
Chen J, Wang J, Wu X, Simon N, Svensson CI, Yuan J, Hart DA, Ahmed AS, Ackermann PW. eEF2 improves dense connective tissue repair and healing outcome by regulating cellular death, autophagy, apoptosis, proliferation and migration. Cell Mol Life Sci 2023; 80:128. [PMID: 37084140 PMCID: PMC10121543 DOI: 10.1007/s00018-023-04776-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
Outcomes following human dense connective tissue (DCT) repair are often variable and suboptimal, resulting in compromised function and development of chronic painful degenerative diseases. Moreover, biomarkers and mechanisms that guide good clinical outcomes after DCT injuries are mostly unknown. Here, we characterize the proteomic landscape of DCT repair following human Achilles tendon rupture and its association with long-term patient-reported outcomes. Moreover, the potential regulatory mechanisms of relevant biomarkers were assessed partly by gene silencing experiments. A mass-spectrometry based proteomic approach quantified a large number (769) of proteins, including 51 differentially expressed proteins among 20 good versus 20 poor outcome patients. A novel biomarker, elongation factor-2 (eEF2) was identified as being strongly prognostic of the 1-year clinical outcome. Further bioinformatic and experimental investigation revealed that eEF2 positively regulated autophagy, cell proliferation and migration, as well as reduced cell death and apoptosis, leading to improved DCT repair and outcomes. Findings of eEF2 as novel prognostic biomarker could pave the way for new targeted treatments to improve healing outcomes after DCT injuries.Trial registration: NCT02318472 registered 17 December 2014 and NCT01317160 registered 17 March 2011, with URL http://clinicaltrials.gov/ct2/show/NCT02318472 and http://clinicaltrials.gov/ct2/show/study/NCT01317160 .
Collapse
Affiliation(s)
- Junyu Chen
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinjie Wu
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Juan Yuan
- Department of Cell and Molecular Biology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aisha S Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Physiology, University of Helsinki, Helsinki, Finland.
| | - Paul W Ackermann
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| |
Collapse
|
15
|
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J, Yang Z. A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:817916. [PMID: 35574327 PMCID: PMC9096244 DOI: 10.3389/fonc.2022.817916] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ruixue Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
16
|
Chen Y, Jiang Y, Lao J, Zhou Y, Su L, Huang X. Characterization and Functional Study of FAM49B Reveals Its Effect on Cell Proliferation in HEK293T Cells. Genes (Basel) 2022; 13:genes13020388. [PMID: 35205432 PMCID: PMC8872254 DOI: 10.3390/genes13020388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/25/2023] Open
Abstract
FAM49B/Fam49b is a member of the Fam49 (Family with sequence similarity 49) gene family, which is characterized by the conserved domain, DUF1394 (Domain of Unknown Function 1394). It has also been named CYRI-B (CYFIP related RAC1 interactor B), implicating its important function of regulating RAC1-driven cytoskeleton remolding. In this study, to further investigate its functions and mechanisms affecting cell behaviors, HEK293T cells (where FAM49B is highly expressed) were used to establish a FAM49B knockout cell line by CRISPR/Cas9 genome editing technology. Our data have clearly revealed that there are triple alleles of FAM49B in the genome of HEK293T cells. Meanwhile, the proliferation deficiency of the FAM49B KO HEK293T cell line and the significantly changed cell proliferation related gene expression profiles, such as CCND1, have been uncovered. At the same time, the existence of isoform 3 has been confirmed in HEK293T cells. Our studies have suggested that FAM49B may also affect cell proliferation via Cyclins, besides its influence on the cytoskeleton.
Collapse
Affiliation(s)
- Yijian Chen
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Yuyan Jiang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Jihui Lao
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Yankuan Zhou
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
| | - Lida Su
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
- Key Laboratory of the Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou 310009, China
- Correspondence: (L.S.); (X.H.); Tel.: +86-571-8820-6786 (X.H.)
| | - Xiao Huang
- Institute of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.J.); (J.L.); (Y.Z.)
- Correspondence: (L.S.); (X.H.); Tel.: +86-571-8820-6786 (X.H.)
| |
Collapse
|
17
|
Signaling Pathways Regulated by UBR Box-Containing E3 Ligases. Int J Mol Sci 2021; 22:ijms22158323. [PMID: 34361089 PMCID: PMC8346999 DOI: 10.3390/ijms22158323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
UBR box E3 ligases, also called N-recognins, are integral components of the N-degron pathway. Representative N-recognins include UBR1, UBR2, UBR4, and UBR5, and they bind destabilizing N-terminal residues, termed N-degrons. Understanding the molecular bases of their substrate recognition and the biological impact of the clearance of their substrates on cellular signaling pathways can provide valuable insights into the regulation of these pathways. This review provides an overview of the current knowledge of the binding mechanism of UBR box N-recognin/N-degron interactions and their roles in signaling pathways linked to G-protein-coupled receptors, apoptosis, mitochondrial quality control, inflammation, and DNA damage. The targeting of these UBR box N-recognins can provide potential therapies to treat diseases such as cancer and neurodegenerative diseases.
Collapse
|
18
|
Kmiecik AM, Dzięgiel P, Podhorska-Okołów M. Nucleobindin-2/Nesfatin-1-A New Cancer Related Molecule? Int J Mol Sci 2021; 22:ijms22158313. [PMID: 34361082 PMCID: PMC8348729 DOI: 10.3390/ijms22158313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is a heterogeneous disease, and even tumors with similar clinicopathological characteristics show different biology, behavior, and treatment responses. As a result, there is an urgent need to define new prognostic and predictive markers to make treatment options more personalized. According to the latest findings, nucleobindin-2/nesfatin-1 (NUCB2/NESF-1) is an important factor in cancer development and progression. Nucleobindin-2 is a precursor protein of nesfatin-1. As NUCB2 and nesfatin-1 are colocalized in each tissue, their expression is often analyzed together as NUCB2. The metabolic function of NUCB2/NESF-1 is related to food intake, glucose metabolism, and the regulation of immune, cardiovascular and endocrine systems. Recently, it has been demonstrated that high expression of NUCB2/NESF-1 is associated with poor outcomes and promotes cell proliferation, migration, and invasion in, e.g., breast, colon, prostate, endometrial, thyroid, bladder cancers, or glioblastoma. Interestingly, nesfatin-1 is also considered an inhibitor of the proliferation of human adrenocortical carcinoma and ovarian epithelial carcinoma cells. These conflicting results make NUCB2/NESF-1 an interesting target of study in the context of cancer progression. The present review is the first to describe NUCB2/NESF-1 as a new prognostic and predictive marker in cancers.
Collapse
Affiliation(s)
- Alicja M. Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
19
|
Aloisio A, Nisticò N, Mimmi S, Maisano D, Vecchio E, Fiume G, Iaccino E, Quinto I. Phage-Displayed Peptides for Targeting Tyrosine Kinase Membrane Receptors in Cancer Therapy. Viruses 2021; 13:649. [PMID: 33918836 PMCID: PMC8070105 DOI: 10.3390/v13040649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/04/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases (RTKs) regulate critical physiological processes, such as cell growth, survival, motility, and metabolism. Abnormal activation of RTKs and relative downstream signaling is implicated in cancer pathogenesis. Phage display allows the rapid selection of peptide ligands of membrane receptors. These peptides can target in vitro and in vivo tumor cells and represent a novel therapeutic approach for cancer therapy. Further, they are more convenient compared to antibodies, being less expensive and non-immunogenic. In this review, we describe the state-of-the-art of phage display for development of peptide ligands of tyrosine kinase membrane receptors and discuss their potential applications for tumor-targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ileana Quinto
- Correspondence: (A.A.); (I.Q.): Tel.: +39-0961-3694057 (I.Q.)
| |
Collapse
|
20
|
Frishberg A, van den Munckhof I, Ter Horst R, Schraa K, Joosten LA, Rutten JH, Iancu AC, Dregoesc IM, Tigu BA, Netea MG, Riksen NP, Gat-Viks I. An integrative model of cardiometabolic traits identifies two types of metabolic syndrome. eLife 2021; 10:61710. [PMID: 33507147 PMCID: PMC7906604 DOI: 10.7554/elife.61710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/27/2021] [Indexed: 12/16/2022] Open
Abstract
Human diseases arise in a complex ecosystem composed of disease mechanisms and the whole-body state. However, the precise nature of the whole-body state and its relations with disease remain obscure. Here we map similarities among clinical parameters in normal physiological settings, including a large collection of metabolic, hemodynamic, and immune parameters, and then use the mapping to dissect phenotypic states. We find that the whole-body state is faithfully represented by a quantitative two-dimensional model. One component of the whole-body state represents ‘metabolic syndrome’ (MetS) – a conventional way to determine the cardiometabolic state. The second component is decoupled from the classical MetS, suggesting a novel ‘non-classical MetS’ that is characterized by dozens of parameters, including dysregulated lipoprotein parameters (e.g. low free cholesterol in small high-density lipoproteins) and attenuated cytokine responses of immune cells to ex vivo stimulations. Both components are associated with disease, but differ in their particular associations, thus opening new avenues for improved personalized diagnosis and treatment. These results provide a practical paradigm to describe whole-body states and to dissect complex disease within the ecosystem of the human body.
Collapse
Affiliation(s)
- Amit Frishberg
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inge van den Munckhof
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Horst
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kiki Schraa
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Leo Ab Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joost Hw Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Adrian C Iancu
- Department of Cardiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana M Dregoesc
- Department of Cardiology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bogdan A Tigu
- MedFuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Babeș-Bolyai University, Department of Biology and Geology, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences 12 Institute (LIMES), University of Bonn, Bonn, Germany
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
21
|
Srivastava S, Vishwanathan V, Birje A, Sinha D, D'Silva P. Evolving paradigms on the interplay of mitochondrial Hsp70 chaperone system in cell survival and senescence. Crit Rev Biochem Mol Biol 2020; 54:517-536. [PMID: 31997665 DOI: 10.1080/10409238.2020.1718062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.
Collapse
Affiliation(s)
- Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Abhijit Birje
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Devanjan Sinha
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
22
|
Hu Y, Zeng T, Xiao Z, Hu Q, Li Y, Tan X, Yue H, Wang W, Tan H, Zou J. Immunological role and underlying mechanisms of B7-H6 in tumorigenesis. Clin Chim Acta 2020; 502:191-198. [PMID: 31904350 DOI: 10.1016/j.cca.2019.12.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023]
Abstract
B7 homolog 6 (B7-H6) has been identified as involved in tumorigenesis. Elucidating its role and potential mechanism of action is essential for understanding tumorigenesis and the potential development of an effective clinical strategy. Abnormal overexpression of B7-H6 in various types of tumors was reported to be linked with poor prognosis. B7-H6 suppresses the initiation of the "caspase cascade" and induces anti-apoptosis by STAT3 pathway activation to provoke tumorigenesis. B7-H6 facilitates tumor proliferation and cell cycle progression by regulating apoptosis suppressors. B7-H6 induces cellular cytotoxicity, secretion of TNF-α and IFN-γ and B7-H6-specific BiTE triggers T cells to accelerate tumorigenesis. B7-H6 induces abnormal immunological progression by HER2-scFv mediated ADCC and NKp30 immune escape to promote tumorigenesis. B7-H6 promotes tumorigenesis via apoptosis inhibition, proliferation and immunological progression. B7-H6 may a valuable potential biomarker and therapeutic strategy for diagnostics, prognostics and treatment in cancer.
Collapse
Affiliation(s)
- Yuxuan Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qihao Hu
- Cardiothoracic Surgery, The Second Affiliated Hospital, University of South China, Hengyang, Hunan 421001, PR China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiongjin Tan
- The Second Department of Orthopaedic, 922 Hospital of PLA, Hengyang, Hunan 410011, PR China
| | - Haiyan Yue
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China; Department of Pathology, The Central Hospital of Shaoyang, Shaoyang, Hunan 422000, PR China
| | - Wensong Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Tan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
23
|
Huang P, Feng X, Zhao Z, Yang B, Fang T, Guo M, Xia J. p66Shc promotes HCC progression in the tumor microenvironment via STAT3 signaling. Exp Cell Res 2019; 383:111550. [DOI: 10.1016/j.yexcr.2019.111550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/19/2022]
|
24
|
Fan HW, Ni Q, Fan YN, Ma ZX, Li YB. C-type lectin domain family 5, member A (CLEC5A, MDL-1) promotes brain glioblastoma tumorigenesis by regulating PI3K/Akt signalling. Cell Prolif 2019; 52:e12584. [PMID: 30834619 PMCID: PMC6536598 DOI: 10.1111/cpr.12584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/04/2019] [Accepted: 01/19/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES Glioblastoma is the most common malignant glioma of all brain tumours. It is difficult to treat because of its poor response to chemotherapy and radiotherapy and high recurrence rate after treatment. The aetiology of glioblastoma is a result of disorders of multiple factors. Depending on cell signal transduction, these glioblastoma-associated factors lead to cell proliferation, differentiation and apoptosis. Therefore, investigation of the potential factors which involved in the development of glioblastoma could provide a new target for the treatment of glioblastoma. MATERIALS AND METHODS We analysed the transcript expression of CLEC5A in glioblastoma by accessing The Cancer Genome Atlas (TCGA). qRT-PCR was performed to detect the RNA expression of genes in cells and tissues, and Western blot was used to measure the protein levels (Cyclin D1, Bcl-2, BAX, PCNA, MMP2, MMP9, Akt and Akt phosphorylation) in tissues and cells. Cell proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8, transwell and flow cytometry assays, respectively. Ki67 level and lung metastasis were determined by immunochemistry and H&E staining. RESULTS In this study, we found that CLEC5A was highly upregulated in glioblastoma compared to normal brain tissues, which had an opposite relation with the overall patient survival. Downregulation of CLEC5A could inhibit cell proliferation, migration and invasion via promoting apoptosis and G1 arrest. In contrast, overexpression of CLEC5A stimulated cell proliferation, migration and invasion. In addition, we found that CLEC5A level was positively correlated with Akt phosphorylation level. Akt inhibitor or agonist could reverse the modulation effects of CLEC5A in glioblastoma. Moreover, In vivo results suggested that inhibition of CLEC5A significantly reduced tumour size, weight, cell proliferation ability and lung metastasis via inhibition of phosphorylation Akt. CONCLUSION Both in vitro and in vivo evidences supported that CLEC5A was involved in glioblastoma pathogenesis via regulation of PI3K/Akt pathway. Thus, CLEC5A might serve as a potential therapeutic target in the treatment of glioblastoma in the future.
Collapse
Affiliation(s)
- Hong-Wei Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Ni
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ya-Ni Fan
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhi-Xiang Ma
- Department of Clinical Pharmacology Lab, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying-Bin Li
- Department of Neurosurgery, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Zhang S, Gao Q, Li W, Zhu L, Shang Q, Feng S, Jia J, Jia Q, Shen S, Su Z. Shikonin inhibits cancer cell cycling by targeting Cdc25s. BMC Cancer 2019; 19:20. [PMID: 30616572 PMCID: PMC6323793 DOI: 10.1186/s12885-018-5220-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/13/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Shikonin, a natural naphthoquinone, is abundant in Chinese herb medicine Zicao (purple gromwell) and has a wide range of biological activities, especially for cancer. Shikonin and its analogues have been reported to induce cell-cycle arrest, but target information is still unclear. We hypothesized that shikonin, with a structure similar to that of quinone-type compounds, which are inhibitors of cell division cycle 25 (Cdc25) phosphatases, will have similar effects on Cdc25s. To test this hypothesis, the effects of shikonin on Cdc25s and cell-cycle progression were determined in this paper. METHODS The in vitro effects of shikonin and its analogues on Cdc25s were detected by fluorometric assay kit. The binding mode between shikonin and Cdc25B was modelled by molecular docking. The dephosphorylating level of cyclin-dependent kinase 1 (CDK1), a natural substrate of Cdc25B, was tested by Western blotting. The effect of shikonin on cell cycle progression was investigated by flow cytometry analysis. We also tested the anti-proliferation activity of shikonin on cancer cell lines by MTT assay. Moreover, in vivo anti-proliferation activity was tested in a mouse xenograft tumour model. RESULTS Shikonin and its analogues inhibited recombinant human Cdc25 A, B, and C phosphatase with IC50 values ranging from 2.14 ± 0.21 to 13.45 ± 1.45 μM irreversibly. The molecular modelling results showed that shikonin bound to the inhibitor binding pocket of Cdc25B with a favourable binding mode through hydrophobic interactions and hydrogen bonds. In addition, an accumulation of the tyrosine 15-phosphorylated form of CDK1 was induced by shikonin in a concentration-dependent manner in vitro and in vivo. We also confirmed that shikonin showed an anti-proliferation effect on three cancer cell lines with IC50 values ranging from 6.15 ± 0.46 to 9.56 ± 1.03 μM. Furthermore, shikonin showed a promising anti-proliferation effect on a K562 mouse xenograph tumour model. CONCLUSION In this study, we provide evidence for how shikonin induces cell cycle arrest and functions as a Cdc25s inhibitor. It shows an anti-proliferation effect both in vitro and in vivo by mediating Cdc25s.
Collapse
Affiliation(s)
- Shoude Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China. .,Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Wei Li
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Luwei Zhu
- Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Feng
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Junmei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Qiangqiang Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China
| | - Shuo Shen
- Qinghai Academy of Agriculture and Forestry Science, 251# Ningda Road, Xining, 810016, China
| | - Zhanhai Su
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251# Ningda Road, Xining, 810016, Qinghai, China. .,Department of Pharmacy, Medical College of Qinghai University, 16# Kunlun Road, Xining, 810016, Qinghai, China.
| |
Collapse
|
26
|
Zhu W, Su S, Xu Y, Xie Z, Bai Y, Liu W, Abe M, Akihisa T, Feng F, Zhang J. C 21 steroids from Streptocaulon juventas (Lour) Merr. induce apoptosis in HepG2. Steroids 2018; 140:167-172. [PMID: 30296543 DOI: 10.1016/j.steroids.2018.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/10/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
Three new C21 steroids, i.e., (3β,17α,20S)-pregn-5(6)-ene-3, 17, 20-triol-3-O-β-d-digitalopyranosyl-(1 → 4)-β-d-digitalopyranoside (4), (3β,17α,20S)-pregn-5(6)-ene-3, 17, 20-triol-20-O-β-d-glucopyranosyl-(1 → 6)-β-d-glucopyranosyl-(1 → 2)-β-d-digital-opyranoside (8), (3β, 20R)-pregn-14(15)-ene-3, 20, 21-triol-3-O-β-d-glucopy-ranoside (10), along with ten known C21 steroids were isolated from Streptocaulon juventas. Their structures were elucidated on the basis of 1D and 2D NMR spectroscopic techniques, mass spectrometry as well as comparison with the literature. All the isolated compounds were screened for their in vitro cytotoxicity against human liver cancer cells (HepG2) and the structure-activity relationships were also analyzed. Moreover, compounds 1-3, 5, 10-12, which displayed cytotoxic activities in HepG2 cells, were tested for the selective index (SI) by the ratio of cytotoxic effect on human hepatocytes (LO2) to that on HepG2. As a result, new compound 10 exhibited a good inhibitory activity against HepG2 with IC50 value 11.7 μM as well as high SI value 3.5. Furthermore, compound 10 could induce HepG2 cells apoptosis by flow cytometry.
Collapse
Affiliation(s)
- Wanfang Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Shengzhi Su
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yunhui Xu
- Marshall University, Marshall Institute for Interdisciplinary Research, Weisberg Engn Complex, RM 4117, 1628 Third Ave, Huntington, WV 25703, USA
| | - Zijian Xie
- Marshall University, Marshall Institute for Interdisciplinary Research, Weisberg Engn Complex, RM 4117, 1628 Third Ave, Huntington, WV 25703, USA
| | - Yidan Bai
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, PR China
| | - Masahiko Abe
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshihiro Akihisa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Food and Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
27
|
Abstract
High content imaging-based cell cycle analysis allows multiplexing of various parameters including DNA content, DNA synthesis, cell proliferation, and other cell cycle markers such as phosho-histone H3. 5'-Ethynyl-2'-deoxyuridine (EdU) incorporation is a thymidine analog that provides a sensitive method for the detection of DNA synthesis in proliferating cells that is a more convenient method than the traditional BrdU detection by antibody. Caspase 3 is activated in programmed cell death induced by both intrinsic (mitochondrial) and extrinsic factors (death ligand). Cell cycle and apoptosis are common parameters studied in the phenotypic analysis of compound toxicity and anti-cancer drugs. In this chapter, we describe methods for the detection of s-phase cell cycle progression by EdU incorporation, and caspase 3 activation using the CellEvent caspase 3/7 detection reagent.
Collapse
|
28
|
Chen C, Wu S, Lin X, Wu D, Fischbach S, Xiao X. ERK5 plays an essential role in gestational beta-cell proliferation. Cell Prolif 2017; 51:e12410. [PMID: 29159830 DOI: 10.1111/cpr.12410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/24/2017] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Restoring a functional beta-cell mass is a fundamental goal in treating diabetes. A complex signalling pathway network coordinates the regulation of beta-cell proliferation, although a role for ERK5 in this network has not been reported. This question was addressed in this study. MATERIALS AND METHODS We studied the activation of extracellular-signal-regulated kinase 5 (ERK5) in pregnant mice, a well-known mouse model of increased beta-cell proliferation. A specific inhibitor of ERK5 activation, BIX02189, was intraperitoneally injected into the pregnant mice to suppress ERK5 signalling. Beta-cell proliferation was determined by quantification of Ki-67+ beta cells. Beta-cell apoptosis was determined by TUNEL assay. The extent of beta-cell proliferation was determined by beta-cell mass. The alteration of ERK5 activation and CyclinD1 levels in purified mouse islets was examined by Western blotting. RESULTS Extracellular-signal-regulated kinase 5 phosphorylation, which represents ERK5 activation, was significantly upregulated in islets from pregnant mice. Suppression of ERK5 activation by BIX02189 in pregnant mice significantly reduced beta-cell proliferation, without affecting beta-cell apoptosis, resulting in increases in random blood glucose levels and impairment of glucose response of the mice. ERK5 seemed to activate CyclinD1 to promote gestational beta-cell proliferation. CONCLUSIONS Extracellular-signal-regulated kinase 5 plays an essential role in the gestational augmentation of beta-cell proliferation. ERK5 may be a promising target for increasing beta-cell mass in diabetes patients.
Collapse
Affiliation(s)
- Congde Chen
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suichun Wu
- Reproductive Medicine Centre, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Lin
- Department of Pediatric Surgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dazhou Wu
- Department of Pediatric Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shane Fischbach
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Xiangwei Xiao
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, USA
| |
Collapse
|
29
|
Di G, Kong L, Zhao Q, Ding T. MicroRNA-146a knockdown suppresses the progression of ankylosing spondylitis by targeting dickkopf 1. Biomed Pharmacother 2017; 97:1243-1249. [PMID: 29145150 DOI: 10.1016/j.biopha.2017.11.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) seriously threatens healthy and life quality of patients, however, there is no extremely effective drug to cure the disease. Therefore, it is urgent to understand molecular basis in the progression of AS. MicroRNA-146a (miR-146a) has been demonstrated to be associated with the development of AS. However, its molecular mechanism has not been fully established. In this study, it is found that the expression levels of miR-146a and dickkopf 1 (DKK1) were respectively upregulated and downregulated in hip capsule tissues of AS patients. Moreover, a negative correlation was displayed between miR-146a and DKK1 expression. Functional analysis revealed that miR-146a inhibitor restrained cell proliferation and osteogenic potential as well as enhanced apoptosis in AS fibroblasts, while miR-146a overexpression enhanced proliferation and osteogenic potential of AS fibroblasts. Bioinformatics analysis, dual luciferase reporter assays, qRT-PCR and immunoblotting assays revealed that miR-146a inhibited DKK1 expression by directly targeting 3'UTR region of DKK1. Mechanism studies further revealed that loss of DKK1 partly reversed the effect of miR-146a inhibitor on cell proliferation, apoptosis and osteogenic potential in AS fibroblasts. Taken together, our finding revealed that miR-146a knockdown hindered AS progression partially by regulating target DKK1 expression, offering a potential therapy application for AS patients.
Collapse
Affiliation(s)
- Guijuan Di
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| | - Lingli Kong
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Tao Ding
- Department of Anesthesiology, Huaihe Hospital of Henan University, Kaifeng 475000, China
| |
Collapse
|
30
|
Zhang J, Ma L, Wu ZF, Yu SL, Wang L, Ye WC, Zhang QW, Yin ZQ. Cytotoxic and apoptosis-inducing activity of C 21 steroids from the roots of Cynanchum atratum. Steroids 2017; 122:1-8. [PMID: 28327355 DOI: 10.1016/j.steroids.2017.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/21/2017] [Accepted: 03/13/2017] [Indexed: 11/29/2022]
Abstract
Two new (1-2) and two known C21 steroids (3-4) were isolated from the roots of Cynanchum atratum. Their structures were elucidated by detailed 1D and 2D spectroscopic. The MTT assay showed that compounds 1-4 displayed obvious cytotoxic activities against HepG2 cells with IC50 values ranging from 10.19μM to 76.12μM. Compounds 1-3 also exhibited cytotoxic effects in A549 cells with IC50 values of 30.87-95.39μM. Compound 3 showed the antiproliferative activity via G0/G1 cell cycle arrest and proapoptosis in HepG2 cells by Flowcytometry analysis. Western blotting analysis revealed that compound 3 could induce HepG2 cell apoptosis via the mitochondrial pathway by downregulating Bcl-2 expression, upregulating Bax protein expression, and activating caspase-9 and caspase-3.
Collapse
Affiliation(s)
- Jian Zhang
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Lin Ma
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China; Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Zheng-Feng Wu
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China; Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Shu-Le Yu
- Laboratory of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, PR China; Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products & Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products & Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, PR China
| | - Qing-Wen Zhang
- Institute of Chinese Medical Sciences (ICMS), University of Macau, PR China
| | - Zhi-Qi Yin
- Department of Natural Medicinal Chemistry & State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
31
|
Lee WJ, Lee SC, Lee JH, Rho GJ, Lee SL. Differential regulation of senescence and in vitro differentiation by 17β-estradiol between mesenchymal stem cells derived from male and female mini-pigs. J Vet Sci 2017; 17:159-70. [PMID: 26645340 PMCID: PMC4921664 DOI: 10.4142/jvs.2016.17.2.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/17/2015] [Accepted: 10/07/2015] [Indexed: 11/26/2022] Open
Abstract
The characterization and potential of mesenchymal stem cells (MSCs) are gender dependent and estrogen influences these properties. This study demonstrated that supplementation with 17β-estradiol (E2) increases the proliferation of bone marrow-MSCs derived from male and female mini-pigs (Mp- and Fp-BMSCs) in a concentration-dependent manner, with 10-12 M E2 suggested as the optimal dose of E2 that led to the greatest improvement in BMSCs proliferation. Supplementation of 10-12 M E2 resulted in down-regulation of β-galactosidase activity and pro-apoptotic activity in both BMSCs, while anti-apoptotic activity was up-regulated in only Fp-BMSCs. Further, E2 increased the osteogenic ability of Fp-BMSCs. Based on these findings, optimal utilization of E2 can improve cellular senescence and apoptosis, as well as in vitro osteogenesis of BMSCs, and could therefore be useful in stem cell therapy, particularly in bone regeneration for adult females.
Collapse
Affiliation(s)
- Won-Jae Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,PWG Genetics Pte. Ltd., 15 Tech Park Crescent, Singapore 638117, Singapore
| | - Seung-Chan Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Jeong-Hyun Lee
- Advanced Therapy Products Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Korea
| | - Gyu-Jin Rho
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| | - Sung-Lim Lee
- College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
32
|
Short bursts of cyclic mechanical compression modulate tissue formation in a 3D hybrid scaffold. J Mech Behav Biomed Mater 2017; 71:165-174. [PMID: 28342324 DOI: 10.1016/j.jmbbm.2017.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/21/2022]
Abstract
Among the cues affecting cells behaviour, mechanical stimuli are known to have a key role in tissue formation and mineralization of bone cells. While soft scaffolds are better at mimicking the extracellular environment, they cannot withstand the high loads required to be efficient substitutes for bone in vivo. We propose a 3D hybrid scaffold combining the load-bearing capabilities of polycaprolactone (PCL) and the ECM-like chemistry of collagen gel to support the dynamic mechanical differentiation of human embryonic mesodermal progenitor cells (hES-MPs). In this study, hES-MPs were cultured in vitro and a BOSE Bioreactor was employed to induce cells differentiation by mechanical stimulation. From day 6, samples were compressed by applying a 5% strain ramp followed by peak-to-peak 1% strain sinewaves at 1Hz for 15min. Three different conditions were tested: unloaded (U), loaded from day 6 to day 10 (L1) and loaded as L1 and from day 16 to day 20 (L2). Cell viability, DNA content and osteocalcin expression were tested. Samples were further stained with 1% osmium tetroxide in order to investigate tissue growth and mineral deposition by micro-computed tomography (µCT). Tissue growth involved volumes either inside or outside samples at day 21 for L1, suggesting cyclic stimulation is a trigger for delayed proliferative response of cells. Cyclic load also had a role in the mineralization process preventing mineral deposition when applied at the early stage of culture. Conversely, cyclic load during the late stage of culture on pre-compressed samples induced mineral formation. This study shows that short bursts of compression applied at different stages of culture have contrasting effects on the ability of hES-MPs to induce tissue formation and mineral deposition. The results pave the way for a new approach using mechanical stimulation in the development of engineered in vitro tissue as replacement for large bone fractures.
Collapse
|
33
|
Raquet M, Brun C, Exbrayat JM. Patterns of Apoptosis and Proliferation throughout the Biennial Reproductive Cycle of Viviparous Female Typhlonectes compressicauda (Amphibia, Gymnophiona). Int J Mol Sci 2016; 18:16. [PMID: 28025499 PMCID: PMC5297651 DOI: 10.3390/ijms18010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/08/2016] [Accepted: 12/15/2016] [Indexed: 02/07/2023] Open
Abstract
Typhlonectes compressicauda is an aquatic gymnophionan amphibian living in South America. Its breeding cycle is linked to seasons, characterized by a regular alternation of rainy and dry seasons. During a complex biennial cycle, the female genital tract undergoes a series of alternations of increasing and decreasing, governed by equilibrium of proliferation and apoptotic phenomena. Immunohistochemical methods were used to visualize cell proliferation with the detection of Ki67 antibody, a protein present in proliferative cells; terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Apostain were performed to detect apoptotic cells on sections of ovaries and oviducts. In ovaries, both phenomena affect the germinal nests and follicles according to the cycle period. In the oviduct, the balance was in favor of proliferation during preparation for reproduction, and in favor of apoptosis when genital ducts regress. Apoptosis and proliferation are narrowly implicated in the remodeling of the genital tract and they are accompanied by the differentiation of tissues according to the phase of the breeding cycle. These variations permit the capture of oocytes at ovulation, always at the same period, and the parturition after 6-7 months of gestation, at a period in which the newborns live with their mother, protected in burrows in the mud. During the intervening year of sexual inactivity, the female reconstitutes body reserves.
Collapse
Affiliation(s)
- Michel Raquet
- Laboratory of General Biology, Lyon Catholic University, UMRS 449, University of Lyon, 69288 Lyon Cedex 02, France.
- Laboratory of Reproduction and Comparative Development, Ecole Pratique des Hautes Etudes, Paris Sciences Lettres, 69288 Lyon Cedex 02, France.
| | - Claire Brun
- Laboratory of General Biology, Lyon Catholic University, UMRS 449, University of Lyon, 69288 Lyon Cedex 02, France.
- Laboratory of Reproduction and Comparative Development, Ecole Pratique des Hautes Etudes, Paris Sciences Lettres, 69288 Lyon Cedex 02, France.
| | - Jean-Marie Exbrayat
- Laboratory of General Biology, Lyon Catholic University, UMRS 449, University of Lyon, 69288 Lyon Cedex 02, France.
- Laboratory of Reproduction and Comparative Development, Ecole Pratique des Hautes Etudes, Paris Sciences Lettres, 69288 Lyon Cedex 02, France.
| |
Collapse
|
34
|
Su BH, Shieh GS, Tseng YL, Shiau AL, Wu CL. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity. Oncotarget 2016; 6:38308-26. [PMID: 26515462 PMCID: PMC4742001 DOI: 10.18632/oncotarget.5702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cells. Overexpression and nuclear localization of YB-1 are associated with poor prognosis and tumor recurrence in various cancers. Nuclear YB-1 transactivates the multidrug resistance 1 (MDR1) genes through the Y-box. Here, we developed a novel E1B55K-deleted adenovirus driven by the MDR1 promoter, designed Ad5GS3. We tested the feasibility of using YB-1 to transcriptionally regulate Ad5GS3 replication in cancer cells and thereby to enhance antitumor efficacy. We evaluated synergistic antitumor effects of oncolytic virotherapy in combination with chemotherapy. Our results show that adenovirus E1A induced E2F-1 activity to augment YB-1 expression, which shut down host protein synthesis in cancer cells during adenovirus replication. In cancer cells infected with Ad5WS1, an E1B55K-deleted adenovirus driven by the E1 promoter, E1A enhanced YB-1 expression, and then further phosphorylated Akt, which, in turn, triggered nuclear translocation of YB-1. Ad5GS3 in combination with chemotherapeutic agents facilitated nuclear localization of YB-1 and, in turn, upregulated the MDR1 promoter activity and enhanced Ad5GS3 replication in cancer cells. Thus, E1A, YB-1, and the MDR1 promoter form a positive feedback loop to promote Ad5GS3 replication in cancer cells, and this regulation can be further augmented when chemotherapeutic agents are added. In the in vivo study, Ad5GS3 in combination with etoposide synergistically suppressed tumor growth and prolonged survival in NOD/SCID mice bearing human lung tumor xenografts. More importantly, Ad5GS3 exerted potent oncolytic activity against clinical advanced lung adenocarcinoma, which was associated with elevated levels of nuclear YB-1 and cytoplasmic MDR1 expression in the advanced tumors. Therefore, Ad5GS3 may have therapeutic potential for cancer treatment, especially in combination with chemotherapy. Because YB-1 is expressed in a broad spectrum of cancers, this oncolytic adenovirus may be broadly applicable.
Collapse
Affiliation(s)
- Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
35
|
Rost-Roszkowska MM, Chajec Ł, Vilimova J, Tajovský K. Apoptosis and necrosis during the circadian cycle in the centipede midgut. PROTOPLASMA 2016; 253:1051-1061. [PMID: 26277351 DOI: 10.1007/s00709-015-0864-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/18/2015] [Indexed: 06/04/2023]
Abstract
Three types of cells have been distinguished in the midgut epithelium of two centipedes, Lithobius forficatus and Scolopendra cingulata: digestive, secretory, and regenerative cells. According to the results of our previous studies, we decided to analyze the relationship between apoptosis and necrosis in their midgut epithelium and circadian rhythms. Ultrastructural analysis showed that these processes proceed in a continuous manner that is independent of the circadian rhythm in L. forficatus, while in S. cingulata necrosis is activated at midnight. Additionally, the description of apoptosis and necrosis showed no differences between males and females of both species analyzed. At the beginning of apoptosis, the cell cytoplasm becomes electron-dense, apparently in response to shrinkage of the cell. Organelles such as the mitochondria, cisterns of endoplasmic reticulum transform and degenerate. Nuclei gradually assume lobular shapes before the apoptotic cell is discharged into the midgut lumen. During necrosis, however, the cytoplasm of the cell becomes electron-lucent, and the number of organelles decreases. While the digestive cells of about 10 % of L. forficatus contain rickettsia-like pathogens, the corresponding cells in S. cingulata are free of rickettsia. As a result, we can state that apoptosis in L. forficatus is presumably responsible for protecting the organism against infections, while in S. cingulata apoptosis is not associated with the elimination of pathogens. Necrosis is attributed to mechanical damage, and the activation of this process coincides with proliferation of the midgut regenerative cells at midnight in S. cingulata.
Collapse
Affiliation(s)
- M M Rost-Roszkowska
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007, Katowice, Poland.
- Silesian Medical College in Katowice, Mickiewicza 29, 40-085, Katowice, Poland.
| | - Ł Chajec
- Department of Animal Histology and Embryology, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
- Silesian Medical College in Katowice, Mickiewicza 29, 40-085, Katowice, Poland
| | - J Vilimova
- Faculty of Science, Department of Zoology, Charles University, Vinicna 7, 128 44, Prague 2, Czech Republic
| | - K Tajovský
- Biology Centre CAS, Institute of Soil Biology, Na Sadkach 7, CZ-370 05, Ceske Budejovice, Czech Republic
| |
Collapse
|
36
|
Kim G, Kim JY, Choi HS. Peptidyl-Prolyl cis/trans Isomerase NIMA-Interacting 1 as a Therapeutic Target in Hepatocellular Carcinoma. Biol Pharm Bull 2016; 38:975-9. [PMID: 26133706 DOI: 10.1248/bpb.b15-00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of proteins on serine or threonine residues preceding proline is a pivotal signaling mechanism regulating cell proliferation. The recent identification and characterization of the enzyme peptidyl-prolyl cis/trans isomerase never in mitosis A (NIMA)-interacting 1 (PIN1) has led to the discovery of a new mechanism regulating phosphorylation in cell signaling. PIN1 specifically binds phosphorylated serine or threonine residues immediately preceding proline (pSer/Thr-Pro) and then regulates protein functions, including catalytic activity, phosphorylation status, protein interactions, subcellular location, and protein stability, by promoting cis/trans isomerization of the peptide bond. Recent results have indicated that such conformational changes following phosphorylation represent a novel signaling mechanism in the regulation of many cellular functions. Understanding this mechanism also provides new insight into the pathogenesis and treatment of human hepatocellular carcinoma. A better understanding of the role of PIN1 in the pathogenesis of hepatocellular carcinoma may lead to the identification of molecular targets for prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Garam Kim
- College of Pharmacy, Chosun University
| | | | | |
Collapse
|
37
|
Song Y, Fu J, Zhou M, Xiao L, Feng X, Chen H, Huang W. Activated Hippo/Yes-Associated Protein Pathway Promotes Cell Proliferation and Anti-apoptosis in Endometrial Stromal Cells of Endometriosis. J Clin Endocrinol Metab 2016; 101:1552-61. [PMID: 26977530 PMCID: PMC4880175 DOI: 10.1210/jc.2016-1120] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CONTEXT The imbalance in cell proliferation and apoptosis is considered an important role in the pathogenesis of endometriosis, but the exact mechanisms remains unclear. A newly established signaling pathway–Hippo/Yes-associated protein (YAP) pathway plays a critical role in the proliferation and apoptosis processes. However, studies focusing on Hippo/YAP pathway and endometriosis are lacking. OBJECTIVE The objective was to explore the function of the Hippo/YAP pathway in endometriosis. SETTING AND DESIGN The expression of YAP was first investigated in endometrium of women with or without endometriosis. The role of YAP in cell proliferation and apoptosis is identified by transfection of endometrial stromal cells (ESCs) in vitro, subsequent Verteporfin treatments in eutopic ESCs in vitro, and endometriosis animal model of nude mice in vivo. RESULTS Our results revealed that increased expression of YAP and decreased expression of p-YAP in ectopic and eutopic endometrium compared with normal endometrium. YAP knockdown in eutopic ESCs decreased cell proliferation and enhanced cell apoptosis companied with decreased expression of TEAD1, CTGF, and B-cell lymphoma/leukemia (BCL)-2; whereas overexpression of YAP resulted in increased proliferation and decreased apoptosis of normal ESCs with increased expression of TEAD1, CTGF, and BCL-2. By chromatin immunoprecipitation qPCR CTGF and BCL-2 were identified as directly downstream target genes of YAP-TEAD1 active complex. Eutopic ESCs treated with Verteporfin revealed decreased proliferation and enhanced apoptosis whereas in endometriosis animal models of nude mice treated with Verteporfin, the size of endometriotic lesions was significantly reduced. CONCLUSIONS Our study suggests that the Hippo/YAP-signaling pathway plays a critical role in the pathogenesis of endometriosis and should present a novel therapeutic method against endometriosis.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Xue Feng
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Hengxi Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu Sichuan 610041, People's Republic of China
| |
Collapse
|
38
|
Abstract
Apoptosis is a regulated form of cell death that proceeds by defined biochemical pathways. Most apoptosis is controlled by interactions between pro-survival and pro-apoptotic Bcl-2 family proteins in which death is often the consequence of permeabilization of the mitochondrial outer membrane. Many drugs affect this equilibrium to favor apoptosis but this process is not completely understood. We show that the chemotherapeutic drug cisplatin initiates an apoptotic pathway by phosphorylation of a pro-survival Bcl-2 family member, Bcl-xL, by cyclin-dependent kinase 2. The phosphorylation occurred at a previously unreported site and its biologic significance was demonstrated by a phosphomimetic modification of Bcl-xL that was able to induce apoptosis without addition of cisplatin. The mechanism of cell death induction was similar to that initiated by pro-apoptotic Bcl-2 family proteins, that is, phosphorylated Bcl-xL translocated to the mitochondrial membrane, and formed pores in the membrane. This initiated cytochrome c release and caspase activation that resulted in cell death.
Collapse
|
39
|
Sivakumar D, Surapaneni KM, Prabu PC, Hari N, Thiruvasagam P, Rajasekaran M, Sivaraman T. Evaluation of the anticancer properties of the predicted hBaxBH3-mimetic compound 2-hydroxy-3,5-dinitrobenzamide in a mammary carcinogenesis-induced rat model. RSC Adv 2016. [DOI: 10.1039/c5ra23005e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Designing small molecular prototypes having potential to disrupt binding interfaces of pro-apoptotic–anti-apoptotic/BH3-only proteins is a promising strategy in cancer chemotherapy.
Collapse
Affiliation(s)
- Dakshinamurthy Sivakumar
- Structural Biology Lab
- Department of Bioinformatics
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
| | | | | | - Natarajan Hari
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Ponnusamy Thiruvasagam
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Muthu Rajasekaran
- Department of Biotechnology
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
- India
| | - Thirunavukkarasu Sivaraman
- Structural Biology Lab
- Department of Bioinformatics
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613 401
| |
Collapse
|
40
|
The Induction of Growth Inhibition and Apoptosis in HeLa and MCF-7 Cells by Teucrium sandrasicum, Having Effective Antioxidant Properties. Appl Biochem Biotechnol 2015; 178:1028-41. [PMID: 26578148 DOI: 10.1007/s12010-015-1926-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
The hidromethanolic (Met/W), ethyl acetate (EA(EA/W)), and water (W(EA/W)) extracts from Teucrium sandrasicum leaves (L) and flowers (F) were investigated for antioxidant properties and antiproliferative effects on HeLa, MCF-7, and L929. The highest DPPH scavenging, metal chelating capacities, and total phenolic and flavonoid contents were observed in Met/WL. The highest hydroxyl scavenging and reducing power capacities were found in EA(EA/W)L. Met/WL, EA(EA/W)L and EA(EA/W)F inhibited cancer cell growths, while they did not show significant cytotoxicity on L929. While the reactive oxygen species (ROS) levels were generally close to controls in HeLa, they were induced in MCF-7 with the treatment of Met/WL, EA(EA/W)L, and EA(EA/W)F and acted as antioxidant for L929. The highest apoptosis inductions were observed in Met/WL-treated HeLa and EA(EA/W)L-treated MCF-7, which were supported with the changes in mitochondrial membrane potentials. The highest caspase-9 activities were found in Met/WL-treated HeLa and EA(EA/W)F-treated MCF-7. Caspase-3 activity was only induced in EA(EA/W)F-treated HeLa.
Collapse
|
41
|
Nguyen LK, Matallanas DG, Romano D, Kholodenko BN, Kolch W. Competing to coordinate cell fate decisions: the MST2-Raf-1 signaling device. Cell Cycle 2015; 14:189-99. [PMID: 25607644 PMCID: PMC4353221 DOI: 10.4161/15384101.2014.973743] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
How do biochemical signaling pathways generate biological specificity? This question is fundamental to modern biology, and its enigma has been accentuated by the discovery that most proteins in signaling networks serve multifunctional roles. An answer to this question may lie in analyzing network properties rather than individual traits of proteins in order to elucidate design principles of biochemical networks that enable biological decision-making. We discuss how this is achieved in the MST2/Hippo-Raf-1 signaling network with the help of mathematical modeling and model-based analysis, which showed that competing protein interactions with affinities controlled by dynamic protein modifications can function as Boolean computing devices that determine cell fate decisions. In addition, we discuss areas of interest for future research and highlight how systems approaches would be of benefit.
Collapse
Affiliation(s)
- Lan K Nguyen
- a Systems Biology Ireland ; University College Dublin ; Belfield , Dublin , Ireland
| | | | | | | | | |
Collapse
|
42
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
43
|
Bhat SS, Anand D, Khanday FA. p66Shc as a switch in bringing about contrasting responses in cell growth: implications on cell proliferation and apoptosis. Mol Cancer 2015; 14:76. [PMID: 25890053 PMCID: PMC4421994 DOI: 10.1186/s12943-015-0354-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/29/2015] [Indexed: 01/19/2023] Open
Abstract
p66Shc, a member of the ShcA (Src homologous- collagen homologue) adaptor protein family, is one of the three isoforms of this family along with p46Shc and p52Shc. p66Shc, a 66 kDa protein is different from the other isoforms of the ShcA family. p66Shc is the longest isoform of the ShcA family. p66Shc has an additional CH domain at the N-terminal, called the CH2 domain, which is not not present in the other isoforms. This CH2 domain contains a very crucial S36 residue which is phosphorylated in response to oxidative stress and plays a role in apoptosis. Whereas p52Shc and p46Shc are ubiquitously expressed, p66Shc shows constrained expression. This adaptor protein has been shown to be involved in mediating and executing the post effects of oxidative stress and increasing body of evidence is pinpointing to its role in carcinogenesis as well. It shows proto-oncogenic as well as pro-apoptotic properties. This multitasking protein is involved in regulating different networks of cell signaling. On one hand it shows an increased expression profile in different cancers, has a positive role in cell proliferation and migration, whereas on the other hand it promotes apoptosis under oxidative stress conditions by acting as a sensor of ROS (Reactive Oxygen Species). This paradoxical role of p66Shc could be attributed to its involvement in ROS production, as ROS is known to both induce cell proliferation as well as apoptosis. p66Shc by regulating intracellular ROS levels plays a crucial role in regulating longevity and cell senescence. These multi-faceted properties of p66Shc make it a perfect candidate protein for further studies in various cancers and aging related diseases. p66Shc can be targeted in terms of it being used as a possible therapeutic target in various diseases. This review focuses on p66Shc and highlights its role in promoting apoptosis via different cell signaling networks, its role in cell proliferation, along with its presence and role in different forms of cancers.
Collapse
Affiliation(s)
- Sahar S Bhat
- Department Of Biotechnology, University of Kashmir, Srinagar, 190006, Kashmir, India.
| | - Deepak Anand
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| | - Firdous A Khanday
- Department of Life Sciences, King Fahad University of Petroleum and Minerals, Bld: 7, Room: 129, Dhahran, 31261, Kingdom of Saudi Arabia.
| |
Collapse
|
44
|
Tang C, Wang Y, Lan D, Feng X, Zhu X, Nie P, Yue H. Analysis of gene expression profiles reveals the regulatory network of cold-inducible RNA-binding protein mediating the growth of BHK-21 cells. Cell Biol Int 2015; 39:678-89. [DOI: 10.1002/cbin.10438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/09/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Cheng Tang
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| | - Yuanwei Wang
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| | - Daoliang Lan
- Institute of Qinghai-Tibetan Plateau; Southwest University for Nationalities; Chengdu 610041 China
| | - Xiaohui Feng
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| | - Xin Zhu
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| | - Peiting Nie
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| | - Hua Yue
- College of Life Science and Technology; Southwest University for Nationalities; Chengdu 610041 China
| |
Collapse
|
45
|
Lazarova DL, Chiaro C, Wong T, Drago E, Rainey A, O'Malley S, Bordonaro M. CBP Activity Mediates Effects of the Histone Deacetylase Inhibitor Butyrate on WNT Activity and Apoptosis in Colon Cancer Cells. J Cancer 2013; 4:481-90. [PMID: 23901348 PMCID: PMC3726710 DOI: 10.7150/jca.6583] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/13/2013] [Indexed: 12/17/2022] Open
Abstract
Mutations in the WNT/beta-catenin pathway are responsible for initiating the majority of colorectal cancers (CRCs). We have previously shown that hyperactivation of this signaling by histone deacetylase inhibitors (HDACis) such as butyrate, a fermentation product of dietary fiber, promotes CRC cell apoptosis. The extent of association between beta-catenin and the transcriptional coactivator CREB-binding protein (CBP) influences WNT/catenin signaling and, therefore, colonic cell physiology. CBP functions as a histone acetylase (HAT); therefore, we hypothesized that the modulation of WNT/catenin activity by CBP modifies the ability of the HDACi butyrate to hyperinduce WNT signaling and apoptosis in CRC cells. Our findings indicate that CBP affects the hyperinduction of WNT activity by butyrate. ICG-001, which specifically blocks association between CBP and beta-catenin, abrogates the butyrate-triggered increase in the number of CRC cells with high levels of WNT/catenin signaling. Combination treatment of CRC cells with ICG-001 and butyrate results in cell type-specific effects on apoptosis. Further, both butyrate and ICG-001 repress CRC cell proliferation, with additive effects in suppressing cell growth. Our study strongly suggests that ICG-001-like agents would be effective against butyrate/HDACi-resistant CRC cells. Therefore, ICG-001-like agents may represent an important therapeutic option for CRCs that exhibit low-fold hyperactivation of WNT activity and apoptosis in the presence of HDACis. The findings generated from this study may lead to approaches that utilize modulation of CBP activity to facilitate CRC therapeutic or chemopreventive strategies.
Collapse
Affiliation(s)
- Darina L Lazarova
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
| | - Christopher Chiaro
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
| | - Terrence Wong
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
| | - Eric Drago
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
| | - Anthony Rainey
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
- 2. Marywood University, 2300 Adams Avenue, Scranton, PA 18509
| | - Shannon O'Malley
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
- 3. The Pennsylvania State University, 201 Old Main, University Park, PA 16802
| | - Michael Bordonaro
- 1. Department of Basic Sciences, The Commonwealth Medical College, 525 Pine Street, Scranton, PA 18509, USA
| |
Collapse
|
46
|
Sinha K, Das J, Pal PB, Sil PC. Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 2013; 87:1157-1180. [PMID: 23543009 DOI: 10.1007/s00204-013-1034-4] [Citation(s) in RCA: 1263] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/28/2013] [Indexed: 12/15/2022]
Abstract
Oxidative stress basically defines a condition in which prooxidant-antioxidant balance in the cell is disturbed; cellular biomolecules undergo severe oxidative damage, ultimately compromising cells viability. In recent years, a number of studies have shown that oxidative stress could cause cellular apoptosis via both the mitochondria-dependent and mitochondria-independent pathways. Since these pathways are directly related to the survival or death of various cell types in normal as well as pathophysiological situations, a clear picture of these pathways for various active molecules in their biological functions would help designing novel therapeutic strategy. This review highlights the basic mechanisms of ROS production and their sites of formation; detail mechanism of both mitochondria-dependent and mitochondria-independent pathways of apoptosis as well as their regulation by ROS. Emphasis has been given on the redox-sensitive ASK1 signalosome and its downstream JNK pathway. This review also describes the involvement of oxidative stress under various environmental toxin- and drug-induced organ pathophysiology and diabetes-mediated apoptosis. We believe that this review would provide useful information about the most recent progress in understanding the mechanism of oxidative stress-mediated regulation of apoptotic pathways. It will also help to figure out the complex cross-talks between these pathways and their modulations by oxidative stress. The literature will also shed a light on the blind alleys of this field to be explored. Finally, readers would know about the ROS-regulated and apoptosis-mediated organ pathophysiology which might help to find their probable remedies in future.
Collapse
Affiliation(s)
- Krishnendu Sinha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Calcutta 700054, West Bengal, India
| | | | | | | |
Collapse
|
47
|
BDE-99 congener induces cell death by apoptosis of human hepatoblastoma cell line – HepG2. Toxicol In Vitro 2013; 27:580-7. [DOI: 10.1016/j.tiv.2012.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 11/21/2022]
|
48
|
Investigation on the effect of static magnetic field up to 15 mT on the viability and proliferation rate of rat bone marrow stem cells. In Vitro Cell Dev Biol Anim 2013; 49:212-9. [DOI: 10.1007/s11626-013-9580-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 01/09/2013] [Indexed: 11/29/2022]
|
49
|
Ragusa M, Statello L, Maugeri M, Majorana A, Barbagallo D, Salito L, Sammito M, Santonocito M, Angelica R, Cavallaro A, Scalia M, Caltabiano R, Privitera G, Biondi A, Di Vita M, Cappellani A, Vasquez E, Lanzafame S, Tendi E, Celeste S, Di Pietro C, Basile F, Purrello M. Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors. J Mol Med (Berl) 2012; 90:1421-1438. [PMID: 22660396 DOI: 10.1007/s00109-012-0918-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/12/2012] [Accepted: 05/10/2012] [Indexed: 12/11/2022]
Abstract
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway has a master control role in various cancer-related biological processes as cell growth, proliferation, differentiation, migration, and apoptosis. It also regulates many transcription factors that control microRNAs (miRNAs) and their biosynthetic machinery. To investigate on the still poorly characterised global involvement of miRNAs within the pathway, we profiled the expression of 745 miRNAs in three colorectal cancer (CRC) cell lines after blocking the pathway with three different inhibitors. This allowed the identification of two classes of post-treatment differentially expressed (DE) miRNAs: (1) common DE miRNAs in all CRC lines after treatment with a specific inhibitor (class A); (2) DE miRNAs in a single CRC line after treatment with all three inhibitors (class B). By determining the molecular targets, biological roles, network position of chosen miRNAs from class A (miR-372, miR-663b, miR-1226*) and class B (miR-92a-1*, miR-135b*, miR-720), we experimentally demonstrated that they are involved in cell proliferation, migration, apoptosis, and globally affect the regulation circuits centred on MAPK/ERK signaling. Interestingly, the levels of miR-92a-1*, miR-135b*, miR-372, miR-720 are significantly higher in biopsies from CRC patients than in normal controls; they also are significantly higher in CRC patients with mutated KRAS than in those with wild-type genotypes (Wilcoxon test, p < 0.05): the latter could be a downstream effect of ERK pathway overactivation, triggered by KRAS mutations. Finally, our functional data strongly suggest the following miRNA/target pairs: miR-92a-1*/PTEN-SOCS5; miR-135b*/LATS2; miR-372/TXNIP; miR-663b/CCND2. Altogether, these results contribute to deepen current knowledge on still uncharacterized features of MAPK/ERK pathway, pinpointing new oncomiRs in CRC and allowing their translation into clinical practice and CRC therapy.
Collapse
Affiliation(s)
- Marco Ragusa
- Dipartimento Gian Filippo Ingrassia, Unità di BioMedicina Molecolare Genomica e dei Sistemi Complessi, Genetica, Biologia Computazionale, Università di Catania, Via Santa Sofia 87, 95123 Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, Gwendoline-Ee CL. In vitro cytotoxicity of Strobilanthes crispus ethanol extract on hormone dependent human breast adenocarcinoma MCF-7 cell. Altern Ther Health Med 2012; 12:35. [PMID: 22471785 PMCID: PMC3377542 DOI: 10.1186/1472-6882-12-35] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/04/2012] [Indexed: 11/21/2022]
Abstract
Background Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear. Results Strobilanthes cripus was able to reduce cell viability and proliferation in MTT and BrdU assays. Both cell cycle progression and Tunel assay suggested that IC50 of S. crispus ethanol extract induced sub-G1 cell cycle phase, and DNA fragmentation. On the other hand, translocation of mitochondria cytochrome c release, induction of caspase 3/7 and p53 while suppress XIAP on treated MCF-7 cell were also observed in this study. Conclusion Our findings suggest that S. crispus ethanol extract induced apoptosis and DNA fragmentation on hormone dependent breast cancer cell line MCF-7 via mitochondria dependent p53 apoptosis pathway.
Collapse
|