1
|
Spudich JA. From amoeboid myosin to unique targeted medicines for a genetic cardiac disease. Front Physiol 2024; 15:1496569. [PMID: 39529926 PMCID: PMC11550953 DOI: 10.3389/fphys.2024.1496569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of fundamental basic research in the quest for much needed clinical treatments is a story that constantly must be retold. Funding of basic science in the USA by the National Institutes of Health and other agencies is provided under the assumption that fundamental research eventually will lead to improvements in healthcare worldwide. Understanding how basic research is connected to clinical developments is important, but just part of the story. Many basic science discoveries never see the light of day in a clinical setting because academic scientists are not interested in or do not have the inclination and/or support for entering the world of biotechnology. Even if the interest and inclination are there, often the unknowns about how to enter that world inhibit taking the initial step. Young investigators often ask me how I incorporated biotech opportunities into my otherwise purely academic research endeavors. Here I tell the story of the foundational basic science and early events of my career that led to forming the biotech companies responsible for the development of unique cardiac drugs, including mavacamten, a first in class human β-cardiac myosin inhibitor that is changing the lives of hypertrophic cardiomyopathy patients.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Hirata F. A molecular theory of the structural dynamics of protein induced by a perturbation. J Chem Phys 2016; 145:234106. [DOI: 10.1063/1.4971799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Fumio Hirata
- Toyota Physical and Chemical Research Institute (Toyota Riken), Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
3
|
Kobayashi C, Koike R, Ota M, Sugita Y. Hierarchical domain-motion analysis of conformational changes in sarcoplasmic reticulum Ca2+
-ATPase. Proteins 2015; 83:746-56. [DOI: 10.1002/prot.24763] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/15/2014] [Accepted: 12/21/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Chigusa Kobayashi
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
| | - Ryotaro Koike
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Motonori Ota
- Graduate School of Information Science; Nagoya University; Furo-Cho, Chikusa-Ku Nagoya Aichi 464-8601 Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, Research Division; RIKEN Advanced Institute for Computational Science; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN Theoretical Molecular Science Laboratory; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
- Laboratory for Biomolecular Function Simulation, Computational Biology Research Core; RIKEN Quantitative Biology Center; 7-1-26 Minatojima-Minamimachi, Chuo-Ku Kobe Hyogo Kobe 640-0047 Japan
- RIKEN iTHES; 2-1 Hirosawa Wako-Shi Saitama 351-0198 Japan
| |
Collapse
|
4
|
Nie QM, Togashi A, Sasaki TN, Takano M, Sasai M, Terada TP. Coupling of lever arm swing and biased Brownian motion in actomyosin. PLoS Comput Biol 2014; 10:e1003552. [PMID: 24762409 PMCID: PMC3998885 DOI: 10.1371/journal.pcbi.1003552] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/20/2014] [Indexed: 11/18/2022] Open
Abstract
An important unresolved problem associated with actomyosin motors is the role of Brownian motion in the process of force generation. On the basis of structural observations of myosins and actins, the widely held lever-arm hypothesis has been proposed, in which proteins are assumed to show sequential structural changes among observed and hypothesized structures to exert mechanical force. An alternative hypothesis, the Brownian motion hypothesis, has been supported by single-molecule experiments and emphasizes more on the roles of fluctuating protein movement. In this study, we address the long-standing controversy between the lever-arm hypothesis and the Brownian motion hypothesis through in silico observations of an actomyosin system. We study a system composed of myosin II and actin filament by calculating free-energy landscapes of actin-myosin interactions using the molecular dynamics method and by simulating transitions among dynamically changing free-energy landscapes using the Monte Carlo method. The results obtained by this combined multi-scale calculation show that myosin with inorganic phosphate (Pi) and ADP weakly binds to actin and that after releasing Pi and ADP, myosin moves along the actin filament toward the strong-binding site by exhibiting the biased Brownian motion, a behavior consistent with the observed single-molecular behavior of myosin. Conformational flexibility of loops at the actin-interface of myosin and the N-terminus of actin subunit is necessary for the distinct bias in the Brownian motion. Both the 5.5–11 nm displacement due to the biased Brownian motion and the 3–5 nm displacement due to lever-arm swing contribute to the net displacement of myosin. The calculated results further suggest that the recovery stroke of the lever arm plays an important role in enhancing the displacement of myosin through multiple cycles of ATP hydrolysis, suggesting a unified movement mechanism for various members of the myosin family. Myosin II is a molecular motor that is fueled by ATP hydrolysis and generates mechanical force by interacting with actin filament. Comparison among various myosin structures obtained by X-ray and electron microscope analyses has led to the hypothesis that structural change of myosin in ATP hydrolysis cycle is the driving mechanism of force generation. However, single-molecule experiments have suggested an alternative mechanism in which myosin moves stochastically in a biased direction along actin filament. Computer simulation serves as a platform for assessing these hypotheses by revealing the prominent features of the dynamically changing landscape of actin-myosin interaction. The calculated results show that myosin binds to actin at different locations of actin filament in the weak- and strong-binding states and that the free energy has a global gradient from the weak-binding site to the strong-binding site. Myosin relaxing into the strong-binding state therefore necessarily shows the biased Brownian motion toward the strong-binding site. Lever-arm swing is induced during this relaxation process; therefore, lever-arm swing and the biased Brownian motion are coupled to contribute to the net displacement of myosin. This coupling should affect the dynamical behaviors of muscle and cardiac systems.
Collapse
Affiliation(s)
- Qing-Miao Nie
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- Institute for Molecular Science, Okazaki, Japan
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Akio Togashi
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| | - Takeshi N. Sasaki
- Department of Human Informatics, Aichi Shukutoku University, Aichi, Japan
| | - Mitsunori Takano
- Department of Physics, Waseda University, Ohkubo, Shinjuku-ku, Tokyo, Japan
| | - Masaki Sasai
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
- * E-mail:
| | - Tomoki P. Terada
- Department of Computational Science and Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
5
|
Nie QM, Sasai M, Terada TP. Conformational flexibility of loops of myosin enhances the global bias in the actin–myosin interaction landscape. Phys Chem Chem Phys 2014; 16:6441-7. [DOI: 10.1039/c3cp54464h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Studies on biomechanics of skeletal muscle based on the working mechanism of myosin motors: An overview. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5438-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Nagy A, Takagi Y, Billington N, Sun SA, Hong DKT, Homsher E, Wang A, Sellers JR. Kinetic characterization of nonmuscle myosin IIb at the single molecule level. J Biol Chem 2012; 288:709-22. [PMID: 23148220 DOI: 10.1074/jbc.m112.424671] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nonmuscle myosin IIB (NMIIB) is a cytoplasmic myosin, which plays an important role in cell motility by maintaining cortical tension. It forms bipolar thick filaments with ~14 myosin molecule dimers on each side of the bare zone. Our previous studies showed that the NMIIB is a moderately high duty ratio (~20-25%) motor. The ADP release step (~0.35 s(-1)) of NMIIB is only ~3 times faster than the rate-limiting phosphate release (0.13 ± 0.01 s(-1)). The aim of this study was to relate the known in vitro kinetic parameters to the results of single molecule experiments and to compare the kinetic and mechanical properties of single- and double-headed myosin fragments and nonmuscle IIB thick filaments. Examination of the kinetics of NMIIB interaction with actin at the single molecule level was accomplished using total internal reflection fluorescence (TIRF) with fluorescence imaging with 1-nm accuracy (FIONA) and dual-beam optical trapping. At a physiological ATP concentration (1 mm), the rate of detachment of the single-headed and double-headed molecules was similar (~0.4 s(-1)). Using optical tweezers we found that the power stroke sizes of single- and double-headed heavy meromyosin (HMM) were each ~6 nm. No signs of processive stepping at the single molecule level were observed in the case of NMIIB-HMM in optical tweezers or TIRF/in vitro motility experiments. In contrast, robust motility of individual fluorescently labeled thick filaments of full-length NMIIB was observed on actin filaments. Our results are in good agreement with the previous steady-state and transient kinetic studies and show that the individual nonprocessive nonmuscle myosin IIB molecules form a highly processive unit when polymerized into filaments.
Collapse
Affiliation(s)
- Attila Nagy
- Laboratory of Molecular Physiology, HLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wu S, Liu J, Reedy MC, Tregear RT, Winkler H, Franzini-Armstrong C, Sasaki H, Lucaveche C, Goldman YE, Reedy MK, Taylor KA. Electron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions. PLoS One 2010; 5. [PMID: 20844746 PMCID: PMC2936580 DOI: 10.1371/journal.pone.0012643] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
Collapse
Affiliation(s)
- Shenping Wu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Jun Liu
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mary C. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Richard T. Tregear
- Medical Research Council Laboratory of Molecular Biology, Cambridge, England
| | - Hanspeter Winkler
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Clara Franzini-Armstrong
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hiroyuki Sasaki
- Division of Fine Morphology, Core Research Facilities, Jikei University School of Medicine, Tokyo, Japan
| | - Carmen Lucaveche
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Yale E. Goldman
- Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael K. Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
9
|
|
10
|
Kagawa Y, Hamamoto T, Endo H. The alpha/beta interfaces of alpha(1)beta(1), alpha(3)beta(3), and F1: domain motions and elastic energy stored during gamma rotation. J Bioenerg Biomembr 2009; 32:471-84. [PMID: 15254382 DOI: 10.1023/a:1005612923995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
ATP synthase (F(o)F(1)) consists of F(1) (ATP-driven motor) and F(o) (H(+)-driven motor). F(1) is a complex of alpha(3)beta(3)gammadeltaepsilon subunits, and gamma is the rotating cam in alpha(3)beta(3). Thermophilic F(1) (TF(1)) is exceptional in that it can be crystallized as a beta monomer and an alpha(3)beta(3) oligomer, and it is sufficiently stable to allow alphabeta refolding and reassembly of hybrid complexes containing 1, 2, and 3 modified alpha or beta. The nucleotide-dependent open-close conversion of conformation is an inherent property of an isolated beta and energy and signals are transferred through alpha/beta interfaces. The catalytic and noncatalytic interfaces of both mitochondrial F(1) (MF(1)) and TF(1) were analyzed by an atom search within the limits of 0.40 nm across the alphabeta interfaces. Seven (plus thermophilic loop in TF(1)) contact areas are located at both the catalytic and noncatalytic interfaces on the open beta form. The number of contact areas on closed beta increased to 11 and 9, respectively, in the catalytic and noncatalytic interfaces. The interfaces in the barrel domain are immobile. The torsional elastic strain applied through the mobile areas is concentrated in hinge residues and the P-loop in beta. The notion of elastic energy in F(o)F(1) has been revised. X-ray crystallography of F(1) is a static snap shot of one state and the elastic hypotheses are still inconsistent with the structure, dyamics, and kinetics of F(o)F(1). The domain motion and elastic energy in F(o)F(1) will be elucidated by time-resolved crystallography.
Collapse
Affiliation(s)
- Y Kagawa
- Department of Biochemistry, Jichi Medical School, Minamikawachi, Tochigi, 329-0498, Graduate School, Women's University of Nutrition, Sakado, Saitama 350-0288, Japan.
| | | | | |
Collapse
|
11
|
Masuda T. A deterministic mechanism producing the loose coupling phenomenon observed in an actomyosin system. Biosystems 2008; 95:104-13. [PMID: 18793694 DOI: 10.1016/j.biosystems.2008.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 08/19/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
Abstract
Myosins are molecular motors that convert the chemical energy of ATP into mechanical work called a power stroke. Class II myosin engaged in muscle contraction is reported to show a "loose coupling phenomenon", in which the number of power strokes is greater than the number of ATP hydrolyses. This phenomenon cannot be explained by the lever-arm hypothesis, which is currently accepted as a standard theory for myosin motility. In this paper, a model is proposed to reproduce the loose coupling phenomenon. The model is based on a mechanochemical process called "Driven by Detachment (DbD)" mechanism, which assumes that the energy of the power strokes originates from the potential energy generated by the attractive force between myosin and actin. During the docking process, the potential energy is converted into an intramolecular strain in a myosin molecule, which drives the power stroke after the myosin is firmly attached to an actin filament. The energy of ATP is used to temporarily reduce the attractive force and to increase the potential energy. Therefore, it is not directly linked to the power strokes. When myosin molecules work as an aggregate, the sliding movement of a myosin filament driven by the power strokes of some myosin heads makes other myosin heads that have completed their power strokes detach from the actin without consuming ATP. Under the DbD mechanism, these passively detached myosins can be again engaged in power strokes after the next attachment to actin. As a result, the number of power strokes becomes greater than the number of ATP hydrolyses, and the loose coupling phenomenon will be observed. A theoretical analysis indicates that the efficiency of converting the potential energy into intramolecular elastic energy determines the number of power strokes per each ATP hydrolysis. Computer simulations showed that the DbD mechanism actually produced the loose coupling phenomenon. A critical requirement for this mechanism is that ATP must preferentially facilitate the detachment of myosins that have completed their power strokes, but are still strongly attached to the actin. This requirement may be fulfilled by ATP hydrolysis tightly depending on the conformation of a myosin molecule.
Collapse
Affiliation(s)
- Tadashi Masuda
- Laboratory of Biosystem Modeling, School of Biomedical Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
12
|
Kagawa Y. Effect of fluctuation in step size on actin-myosin sliding motion. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:011923. [PMID: 17358200 DOI: 10.1103/physreve.75.011923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Indexed: 05/14/2023]
Abstract
It is possible that the step size, or power stroke, of a skeletal muscle myosin is not constant; rather, it fluctuates for each force generation. The estimated widths of the fluctuation are as large as the estimated values of the step size. Although such non-negligible fluctuation is presumed to affect the sliding motion, these effects remain unclear. We examined a system driven by a single myosin molecule sliding along an actin filament to reveal its basic effects. First, we calculated the sliding velocity of the system for each fluctuation width and found that the mean velocity increased with the fluctuation width. We also found that the estimated fluctuation widths satisfied the conditions for maximizing the sliding velocity. Next, we examined the sliding motion along a heterogeneous filament, on which binding sites for myosins were distributed randomly. We found that the loss in sliding velocity that was attributable to heterogeneity of the filament became small when fluctuation in the step size existed. This finding implied that the fluctuation stabilized velocity sliding along possible heterogeneous filaments. These benefits of fluctuation in step size might be used in biological systems, such as a muscle system, and are applicable to fabricated micromachines.
Collapse
Affiliation(s)
- Yuki Kagawa
- Department of Electrical Engineering & Bioscience, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
13
|
Abstract
Myosin–actin and kinesin–microtubule linear protein motor systems and their application in hybrid nanodevices are reviewed. Research during the past several decades has provided a wealth of understanding about the fundamentals of protein motors that continues to be pursued. It has also laid the foundations for a new branch of investigation that considers the application of these motors as key functional elements in laboratory-on-a-chip and other micro/nanodevices. Current models of myosin and kinesin motors are introduced and the effects of motility assay parameters, including temperature, toxicity, and in particular, surface effects on motor protein operation, are discussed. These parameters set the boundaries for gliding and bead motility assays. The review describes recent developments in assay motility confinement and unidirectional control, using micro- and nano-fabricated structures, surface patterning, microfluidic flow, electromagnetic fields, and self-assembled actin filament/microtubule tracks. Current protein motor assays are primitive devices, and the developments in governing control can lead to promising applications such as sensing, nano-mechanical drivers, and biocomputation.
Collapse
|
14
|
Andreev OA, Reshetnyak YK. Mechanism of formation of actomyosin interface. J Mol Biol 2006; 365:551-4. [PMID: 17081565 DOI: 10.1016/j.jmb.2006.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 10/04/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022]
Abstract
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.
Collapse
Affiliation(s)
- Oleg A Andreev
- Physics Department, University of Rhode Island, East Hall, 2 Lippitt Road, Kingston, RI 02881, USA.
| | | |
Collapse
|
15
|
O'Connell CB, Tyska MJ, Mooseker MS. Myosin at work: motor adaptations for a variety of cellular functions. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:615-30. [PMID: 16904206 DOI: 10.1016/j.bbamcr.2006.06.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/22/2006] [Accepted: 06/30/2006] [Indexed: 12/30/2022]
Abstract
Cells have evolved multiple mechanisms to overcome the effects of entropy and diffusion to create a highly ordered environment. For cells to function properly, some components must be anchored to provide a framework or structure. Others must be rapidly transported over long distances to generate asymmetries in cell morphology and composition. To accomplish long-range transport, cells cannot rely on diffusion alone as many large organelles and macromolecular complexes are essentially immobilized by the dense meshwork of the cytosol. One strategy used by cells to overcome diffusion is to harness the free energy liberated by ATP hydrolysis through molecular motors. Myosins are a family of actin based molecular motors that have evolved a variety of ways to contribute to cellular organization through numerous modifications to the manner they convert that free energy into mechanical work.
Collapse
|
16
|
Geislinger B, Kawai R. Brownian molecular motors driven by rotation-translation coupling. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 74:011912. [PMID: 16907132 DOI: 10.1103/physreve.74.011912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2006] [Indexed: 05/11/2023]
Abstract
We investigated three models of Brownian motors which convert rotational diffusion into directed translational motion by switching on and off a potential. In the first model a spatially asymmetric potential generates directed translational motion by rectifying rotational diffusion. It behaves much like a conventional flashing ratchet. The second model utilizes both rotational diffusion and drift to generate translational motion without spatial asymmetry in the potential. This second model can be driven by a combination of a Brownian motor mechanism (diffusion driven) or by powerstroke (drift driven) depending on the chosen parameters. In the third model, elements of both the Brownian motor and powerstroke mechanisms are combined by switching between three distinct states. Relevance of the model to biological motor proteins is discussed.
Collapse
Affiliation(s)
- Brian Geislinger
- Department of Physics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
17
|
Abstract
Recent insights regarding stem cells, repression and de-repression of gene expression, and the application of Complexity Theory to cell and molecular biology require a re-evaluation of many long-held dogmas regarding the nature of the human body in health and disease. Greater than expected cell plasticity, trafficking of cells between organs, 'cellular uncertainty', stochasticity of cell origins and fates, and a reconsideration of Cell Doctrine itself all logically follow from these observations and conceptual approaches. In this paper, these themes will be considered and some implications for the investigative pathologist will be explored.
Collapse
Affiliation(s)
- Neil D Theise
- Department of Pathology, Albert Einstein College of Medicine, Beth Israel Medical Center, New York, NY 10003, USA.
| |
Collapse
|
18
|
Neely LA, Patel S, Garver J, Gallo M, Hackett M, McLaughlin S, Nadel M, Harris J, Gullans S, Rooke J. A single-molecule method for the quantitation of microRNA gene expression. Nat Methods 2006; 3:41-6. [PMID: 16369552 DOI: 10.1038/nmeth825] [Citation(s) in RCA: 252] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/02/2005] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNA) are short endogenous noncoding RNA molecules that regulate fundamental cellular processes such as cell differentiation, cell proliferation and apoptosis through modulation of gene expression. Critical to understanding the role of miRNAs in this regulation is a method to rapidly and accurately quantitate miRNA gene expression. Existing methods lack sensitivity, specificity and typically require upfront enrichment, ligation and/or amplification steps. The Direct miRNA assay hybridizes two spectrally distinguishable fluorescent locked nucleic acid (LNA)-DNA oligonucleotide probes to the miRNA of interest, and then tagged molecules are directly counted on a single-molecule detection instrument. In this study, we show the assay is sensitive to femtomolar concentrations of miRNA (500 fM), has a three-log linear dynamic range and is capable of distinguishing among miRNA family members. Using this technology, we quantified expression of 45 human miRNAs within 16 different tissues, yielding a quantitative differential expression profile that correlates and expands upon published results.
Collapse
Affiliation(s)
- Lori A Neely
- US Genomics, 12 Gill Street, Suite 4700, Woburn, Massachusetts 01801, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Theise ND. Cell Doctrine in a Complex and Uncertain World: Time for Reappraisal? CLONING AND STEM CELLS 2005; 7:209-13. [PMID: 16390256 DOI: 10.1089/clo.2005.7.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Neil D Theise
- Department of Pathology, Division of Digestive Diseases, Beth Israel Medical Center/Albert Einstein College of Medicine, New York, New York 10003, USA.
| |
Collapse
|
20
|
Hikikoshi Iwane A, Tanaka H, Morimoto S, Ishijima A, Yanagida T. The Neck Domain of Myosin II Primarily Regulates the Actomyosin Kinetics, not the Stepsize. J Mol Biol 2005; 353:213-21. [PMID: 16169008 DOI: 10.1016/j.jmb.2005.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/09/2005] [Accepted: 08/10/2005] [Indexed: 11/28/2022]
Abstract
In order to study the role of the neck domain of myosin in muscle contraction, we measured the steps of individual myosin II molecules engineered to have no neck domain (light chain-binding domain) by optical trapping nanometry. The actin filament and myosin cofilaments interacted on a glass surface to minimize the angle between them, and to minimize the interaction between myosin and the glass surface. The results showed that the average myosin stepsize did not change much when the neck domain was removed, but the sliding velocity decreased approximately fivefold. Furthermore, the duration of steps for neckless myosin was several times longer at saturated ATP concentration, indicating that the slower velocity was due to a slower dissociation rate of myosin heads from actin. From these data, we conclude that the neck domain of myosin-II primarily regulates the actomyosin kinetics, not the mechanics.
Collapse
Affiliation(s)
- Atsuko Hikikoshi Iwane
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
21
|
Warshaw DM. Lever arms and necks: a common mechanistic theme across the myosin superfamily. J Muscle Res Cell Motil 2005; 25:467-74. [PMID: 15630611 DOI: 10.1007/s10974-004-1767-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
22
|
Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 2005; 105:1377-400. [PMID: 15826015 DOI: 10.1021/cr030071r] [Citation(s) in RCA: 683] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kazushi Kinbara
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
23
|
Shepard AA, Dumka D, Akopova I, Talent J, Borejdo J. Simultaneous measurement of rotations of myosin, actin and ADP in a contracting skeletal muscle fiber. J Muscle Res Cell Motil 2005; 25:549-57. [PMID: 15711885 DOI: 10.1007/s10974-004-5073-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 10/06/2004] [Indexed: 10/25/2022]
Abstract
The rotation of myosin heads and actin were measured simultaneously with an indicator of the enzymatic activity of myosin. To minimize complications due to averaging of signals from many molecules, the signal was measured in a small population residing in a femtoliter volume of a muscle fiber. The onset of rotation was synchronized by a sudden release of caged ATP. The orientation of cross-bridges was measured by anisotropy of recombinant fluorescent regulatory light chains exchanged with native regulatory light chains. The orientation of actin was measured by anisotropy of phalloidin added to actin filaments. The enzymatic activity of myosin was measured by dissociation of fluorescent ADP from the active site. The onset of all three events occurred at the same time. This suggests that in contracting muscle, actin does not move independently of myosin and that ATP hydrolysis is strongly coupled to the rotation of cross-bridges.
Collapse
Affiliation(s)
- A A Shepard
- Department of Molecular Biology and Immunology, University of North Texas, 3500 Camp Bowie Building, Fort Worth, TX 76107, USA
| | | | | | | | | |
Collapse
|
24
|
Tanaka-Takiguchi Y, Kakei T, Tanimura A, Takagi A, Honda M, Hotani H, Takiguchi K. The elongation and contraction of actin bundles are induced by double-headed myosins in a motor concentration-dependent manner. J Mol Biol 2004; 341:467-76. [PMID: 15276837 DOI: 10.1016/j.jmb.2004.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 05/27/2004] [Accepted: 06/08/2004] [Indexed: 11/15/2022]
Abstract
Many types of myosin have been found and characterized to date, and already nearly 20 classes have been identified. However, these myosin motors can be classified more simply into two groups according to their head-structure, i.e. double- or single-headed myosins. Why do some myosin motors possess a double-headed structure? One obvious possible reason would be that the two heads improve the motor's processivity and sliding performance. Previously, to investigate the possibility that the double-headed myosins simultaneously interact with parallel arrayed two actin filaments in the presence of Mg-ATP, we developed an in vitro assay system using actin bundles formed by inert polymers. Using that system, we show here that skeletal muscle heavy meromyosin (HMM), a double-headed myosin derivative, but not subfragment-1 (S-1), a single-headed one, was able to contract or elongate actin bundles in a concentration-dependent manner. Similar elongation or contraction of actin bundles can also be induced by other double-headed myosin species isolated in the native state from Dictyostelium, from green algae Chara or from chicken brain. The results of this study confirm that double-headed myosin motors can induce sliding movements among neighboring actin filaments. The double-headed structure of myosins may also be important for generating tension or elongation in actin bundles or gels, and for organizing polarity-sorted actin networks, not just for improving their motor processivity or activity.
Collapse
Affiliation(s)
- Yohko Tanaka-Takiguchi
- Department of Molecular Biology, School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Sherwood JJ, Waller GS, Warshaw DM, Lowey S. A point mutation in the regulatory light chain reduces the step size of skeletal muscle myosin. Proc Natl Acad Sci U S A 2004; 101:10973-8. [PMID: 15256600 PMCID: PMC503728 DOI: 10.1073/pnas.0401699101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 11/18/2022] Open
Abstract
Current evidence favors the theory that, when the globular motor domain of myosin attaches to actin, the light chain binding domain or "lever arm" rotates, and thereby generates movement of actin filaments. Myosin is uniquely designed for such a role in that a long alpha-helix (approximately 9 nm) extending from the C terminus of the catalytic core is stabilized by two calmodulin-like molecules, the regulatory light chain (RLC) and the essential light chain (ELC). Here, we introduce a single-point mutation into the skeletal myosin RLC, which results in a large (approximately 50%) reduction in actin filament velocity (V(actin)) without any loss in actin-activated MgATPase activity. Single-molecule analysis of myosin by optical trapping showed a comparable 2-fold reduction in unitary displacement or step size (d), without a significant change in the duration of the strongly attached state (tau(on)) after the power stroke. Assuming that V(actin) approximately d/tau(on), we can account for the change in velocity primarily by a change in the step size of the lever arm without incurring any change in the kinetic properties of the mutant myosin. These results suggest that a principal role for the many light chain isoforms in the myosin II class may be to modulate the flexural rigidity of the light chain binding domain to maximize tension development and movement during muscle contraction.
Collapse
Affiliation(s)
- Jennifer J Sherwood
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, 05405, USA
| | | | | | | |
Collapse
|
26
|
Shepard A, Borejdo J. Correlation between mechanical and enzymatic events in contracting skeletal muscle fiber. Biochemistry 2004; 43:2804-11. [PMID: 15005615 DOI: 10.1021/bi030233d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conventional hypothesis of muscle contraction postulates that the interaction between actin and myosin involves tight coupling between the power stroke and hydrolysis of ATP. However, some in vitro experiments suggested that hydrolysis of a single molecule of ATP caused multiple mechanical cycles. To test whether the tight coupling is present in contracting muscle, we simultaneously followed mechanical and enzymatic events in a small population of cross-bridges of glycerinated rabbit psoas fibers. Such small population behaves as a single cross-bridge when muscle contraction is initiated by a sudden release of caged ATP. Mechanical events were measured by changes of orientation of probes bound to the regulatory domain of myosin. Enzymatic events were simultaneously measured from the same cross-bridge population by the release of fluorescent ADP from the active site. If the conventional view were true, ADP desorption would occur simultaneously with dissociation of cross-bridges from thin filaments and would be followed by cross-bridge rebinding to thin filaments. Such sequence of events was indeed observed in contracting muscle fibers, suggesting that mechanical and enzymatic events are tightly coupled in vivo.
Collapse
Affiliation(s)
- A Shepard
- Department of Molecular Biology and Immunology, University of North Texas, 3500 Camp Bowie Boulevard, Fort Worth, Texas 7610, USA
| | | |
Collapse
|
27
|
Abstract
The epoch-making techniques for manipulating a single myosin molecule have recently been developed, and the unitary mechanical reactions of a single actomyosin, muscle motor molecule, are directly measured. The data show that the unitary mechanical step during sliding along an actin filament of approximately 5.5 nm, but groups of two to five rapid steps in succession produce displacements of approximately 11-30 nm. The instances of multiple stepping are produced by single myosin heads during one biochemical cycle of ATP hydrolysis. Thus, the coupling between ATP hydrolysis cycle and mechanical step is variable, i.e. loose-coupling. Such a unique operation of actomyosin molecules is different from that of man-made machines, and most likely explains the flexible and effective mechanisms of molecular machines in the biosystems.
Collapse
Affiliation(s)
- Kazuo Kitamura
- Single Molecule Processes Project, ICORP, JST, 2-4-14 Senba-higashi, Mino, Osaka 562-0035, Japan.
| | | |
Collapse
|
28
|
Navizet I, Lavery R, Jernigan RL. Myosin flexibility: structural domains and collective vibrations. Proteins 2004; 54:384-93. [PMID: 14747987 DOI: 10.1002/prot.10476] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The movement of the myosin motor along an actin filament involves a directed conformational change within the cross-bridge formed between the protein and the filament. Despite the structural data that has been obtained on this system, little is known of the mechanics of this conformational change. We have used existing crystallographic structures of three conformations of the myosin head, containing the motor domain and the lever arm, for structural comparisons and mechanical studies with a coarse-grained elastic network model. The results enable us to define structurally conserved domains within the protein and to better understand myosin flexibility. Notably they point to the role of the light chains in rigidifying the lever arm and to changes in flexibility as a consequence of nucleotide binding.
Collapse
Affiliation(s)
- Isabelle Navizet
- Molecular Structure Section, Laboratory of Experimental and Computational Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5677, USA
| | | | | |
Collapse
|
29
|
Lowey S. So near and yet so far from understanding molecular motors: recollections in honor of John T. Edsall. Biophys Chem 2003; 100:171-5. [PMID: 12646363 DOI: 10.1016/s0301-4622(02)00278-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Susan Lowey
- University of Vermont, College of Medicine, Department of Molecular Physiology and Biophysics, Health Science Research Facility, 149 Beaumont Ave, Burlington, VT 05405-0075, USA.
| |
Collapse
|
30
|
Allemand JF, Bensimon D, Croquette V. Stretching DNA and RNA to probe their interactions with proteins. Curr Opin Struct Biol 2003; 13:266-74. [PMID: 12831877 DOI: 10.1016/s0959-440x(03)00067-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When interacting with a single stretched DNA, many proteins modify its end-to-end distance. This distance can be monitored in real time using various micromanipulation techniques that were initially used to determine the elastic properties of bare nucleic acids and their mechanically induced structural transitions. These methods are currently being applied to the study of DNA enzymes such as DNA and RNA polymerases, topoisomerases and structural proteins such as RecA. They permit the measurement of the probability distributions of the rate, processivity, on-time, affinity and efficiency for a large variety of DNA-based molecular motors.
Collapse
Affiliation(s)
- Jean-François Allemand
- Ecole Normale Supérieure, Laboratoire de Physique Statistique, 24 rue Lhomond, 75005, Paris, France
| | | | | |
Collapse
|
31
|
Burgess S, Walker M, Wang F, Sellers JR, White HD, Knight PJ, Trinick J. The prepower stroke conformation of myosin V. J Cell Biol 2002; 159:983-91. [PMID: 12499355 PMCID: PMC2173995 DOI: 10.1083/jcb.200208172] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Revised: 11/08/2002] [Accepted: 11/14/2002] [Indexed: 11/22/2022] Open
Abstract
We have used electron microscopy and single-particle image processing to study head conformation in myosin V molecules. We find that in the presence of ATP, many heads have a sharply angled conformation that is rare in its absence. The sharply angled conformation is similar to a myosin II atomic structure proposed to mimic the prepower stroke state. The leading head in molecules attached to actin by both heads has a similar conformation, but is also sharply angled in a second plane by tethering through the trail head. The lead head lever joins the motor domain approximately 5 nm axially from where it joins the trail motor. These positions locate the converter subdomain and show the lead motor is in the prepower stroke conformation. Tethering by the trail head places the lead head motor domain at the correct axial position along the actin for binding, but at the wrong orientation. Attachment is achieved either by bending the lead head lever throughout its length or at the pliant point. The microscopy shows that most of the walking stride is produced by changes in lever angle brought about by converter movement, but is augmented by distortion produced by thermal energy.
Collapse
Affiliation(s)
- Stan Burgess
- Astbury Centre for Structural Molecular Biology and School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Matsunaga Y, Kostov KS, Komatsuzaki T. Multibasin Dynamics in Off-Lattice Minimalist Protein Landscapes. J Phys Chem A 2002. [DOI: 10.1021/jp025773j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yasuhiro Matsunaga
- Nonlinear Science Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan, and Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Konstantin S. Kostov
- Nonlinear Science Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan, and Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| | - Tamiki Komatsuzaki
- Nonlinear Science Laboratory, Department of Earth and Planetary Sciences, Faculty of Science, Kobe University, Nada, Kobe 657-8501, Japan, and Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637
| |
Collapse
|
33
|
Uyeda TQP, Tokuraku K, Kaseda K, Webb MR, Patterson B. Evidence for a novel, strongly bound acto-S1 complex carrying ADP and phosphate stabilized in the G680V mutant of Dictyostelium myosin II. Biochemistry 2002; 41:9525-34. [PMID: 12135375 DOI: 10.1021/bi026177i] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.
Collapse
Affiliation(s)
- Taro Q P Uyeda
- Gene Discovery Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8562, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
Analysis of a mutant with altered directionality has led to new insights into motor directionality. The prediction from current models for processivity of a two-heads-bound state has been confirmed by electron microscopy for myosin V and by unbinding experiments for kinesin. Evidence is emerging that non-processive motors bind their filament with one head, hydrolyze ATP and then release, requiring binding by a second motor to complete a step.
Collapse
Affiliation(s)
- Hideo Higuchi
- Center for Interdisciplinary Research and Department of Metallurgy, Graduate School of Engineering, Tohoku University, 980-8579, Sendai, Japan.
| | | |
Collapse
|
35
|
Schott DH, Collins RN, Bretscher A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 2002; 156:35-9. [PMID: 11781333 PMCID: PMC2173574 DOI: 10.1083/jcb.200110086] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myosins are molecular motors that exert force against actin filaments. One widely conserved myosin class, the myosin-Vs, recruits organelles to polarized sites in animal and fungal cells. However, it has been unclear whether myosin-Vs actively transport organelles, and whether the recently challenged lever arm model developed for muscle myosin applies to myosin-Vs. Here we demonstrate in living, intact yeast that secretory vesicles move rapidly toward their site of exocytosis. The maximal speed varies linearly over a wide range of lever arm lengths genetically engineered into the myosin-V heavy chain encoded by the MYO2 gene. Thus, secretory vesicle polarization is achieved through active transport by a myosin-V, and the motor mechanism is consistent with the lever arm model.
Collapse
Affiliation(s)
- Daniel H Schott
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
36
|
Kuznetsov YG, Malkin AJ, McPherson A. Self-repair of biological fibers catalyzed by the surface of a virus crystal. Proteins 2001; 44:392-6. [PMID: 11455612 DOI: 10.1002/prot.1104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Helical fibers, presumably proteinaceous and of microbial origin, have been visualized by atomic force microscopy on the surfaces of crystals of satellite tobacco mosaic virus. If the crystals are growing, then the fibers are incorporated intact into the crystal lattice. If broken on the crystal surface, then within a few minutes, the fibers self-reassemble to reestablish continuity. This, we believe, is the first observation of such a crystal surface-catalyzed repair of a biological structure. The surfaces of virus crystals provide ideal workbenches for the visualization and manipulation of nanoscale objects, particularly extended structures such as these fibers.
Collapse
Affiliation(s)
- Y G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-1931, USA
| | | | | |
Collapse
|
37
|
Baumann BA, Hambly BD, Hideg K, Fajer PG. The regulatory domain of the myosin head behaves as a rigid lever. Biochemistry 2001; 40:7868-73. [PMID: 11425314 DOI: 10.1021/bi002731h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The regulatory domain of the myosin head is believed to serve as a lever arm that amplifies force generated in the catalytic domain and transmits this strain to the thick filament. The lever arm itself either can be passive or may have a more active role storing some of the energy created by hydrolysis of ATP. A structural correlate which might distinguish between these two possibilities (a passive or an active role) is the stiffness of the domain in question. To this effect we have examined the motion of the proximal (ELC) and distal (RLC) subdomains of the regulatory domain in reconstituted myosin filaments. Each subdomain was labeled with a spin label at a unique cysteine residue, Cys-136 of ELC or Cys-154 of mutant RLC, and its mobility was determined using saturation transfer electron paramagnetic resonance spectroscopy. The mobility of the two domains was similar; the effective correlation time (tau(eff)) for ELC was 17 micros and that for RLC was 22 micros. Additionally, following a 2-fold change of the global dynamics of the myosin head, effected by decreasing the interactions with the filament surface (or the other myosin head), the coupling of the intradomain dynamics remained unchanged. These data suggest that the regulatory domain of the myosin head acts as a single mechanically rigid body, consistent with the regulatory domain serving as a passive lever.
Collapse
Affiliation(s)
- B A Baumann
- Molecular Biophysics Graduate Program, Florida State University, Tallahassee, Florida 32306, USA
| | | | | | | |
Collapse
|
38
|
Abstract
In recent years, the rapid development and progress of single-molecule detection techniques have opened up a new era of biological research. The advantage of single-molecule studies is that data are not obscured by the ensemble-averaged measurements inherent in classical biochemical experiments. These techniques are shedding light on the dynamic and mechanistic properties of molecular machines, both in vivo and in vitro. This review summarizes the single-molecule experiments that have been designed to investigate molecular motors, enzyme reactions, protein dynamics, DNA transcription and cell signaling.
Collapse
Affiliation(s)
- A Ishijima
- Dept of Applied Physics, School of Engineering, Nagoya University, Chikusaku, Nagoya, Japan
| | | |
Collapse
|
39
|
Wang XJ, Ai BQ, Liu LG. Modeling translocation of particles on one-dimensional polymer lattices. PHYSICAL REVIEW E 2001; 64:011906. [PMID: 11461287 DOI: 10.1103/physreve.64.011906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2000] [Revised: 01/09/2001] [Indexed: 11/07/2022]
Abstract
We introduce a general random walk model that is an extension of the random walk model proposed by Berg. The model can be used to describe a particle's translocation along a polymeric lattice with a nonuniform distribution of obstacles. These obstacles are representative of DNA-bound proteins, of drugs, and of a DNA packing environment. Using this model in the bacteriophage replication process, we show the effects of random obstacles on an ATP-driven particle's translocation along single-stranded DNA. The principal finding is that the average statistical time of the translocation process decreases with the increase of an obstacle's strength. We also find an interesting relation between the average statistical time and the DNA chain length. Our results can be used to explain some physiological phenomena. They show the usefulness of our model in an analysis of the effect of random obstacles on particles' translocation along one-dimensional polymer lattices.
Collapse
Affiliation(s)
- X J Wang
- Department of Physics, ZhongShan University, GuangZhou, People's Republic of China
| | | | | |
Collapse
|
40
|
Abstract
Recent experiments, drawing upon single-molecule, solution kinetic and structural techniques, have clarified our mechanistic understanding of class V myosins. The findings of the past two years can be summarized as follows: (1) Myosin V is a highly efficient processive motor, surpassing even conventional kinesin in the distance that individual molecules can traverse. (2) The kinetic scheme underlying ATP turnover resembles those of myosins I and II but with rate constants tuned to favor strong binding to actin. ADP release precedes dissociation from actin and is rate-limiting in the cycle. (3) Myosin V walks in strides averaging ∼36 nm, the long pitch pseudo-repeat of the actin helix, each step coupled to a single ATP hydrolysis. Such a unitary displacement, the largest molecular step size measured to date, is required for a processive myosin motor to follow a linear trajectory along a helical actin track.
Collapse
Affiliation(s)
- A Mehta
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399, USA.
| |
Collapse
|
41
|
Abstract
High-resolution structures of the motor domain of myosin II and lower resolution actin-myosin structures have led to the "swinging lever arm" model for myosin force generation. The available kinetic data are not all easily reconciled with this model and understanding the final details of the myosin motor mechanism must await actin-myosin co-crystals. The observation that myosin can populate multiple states in the absence of actin has nonetheless led to significant insights. The currently known myosin structures correspond to defined kinetic states that bind weakly (K(d)>microM) to actin. It is possible that the myosin lever arm could complete its swing before strong binding to actin and force generation--a process that would correspond, in the absence of load, to a Brownian ratchet. We further suggest that, under load, internal springs within the myosin head could decouple force generation and lever arm movement.
Collapse
Affiliation(s)
- A Houdusse
- Structural Motility, Institut Curie CNRS, UMR 144, 26 rue d'Ulm, 75248 05 Paris Cedex, France.
| | | |
Collapse
|
42
|
Bretscher A. The cytoskeleton: from regulation to function. Conference: the 15th Meeting of the European Cytoskeleton Forum. EMBO Rep 2000; 1:473-6. [PMID: 11263488 PMCID: PMC1083793 DOI: 10.1093/embo-reports/kvd123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- A Bretscher
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
43
|
Abstract
The long-standing swinging crossbridge or lever arm hypothesis for the motor action of myosin heads finds support in recent results from 3-D tomograms of insect flight muscle (IFM) fast frozen during active contraction and from both fluorescence polarization and X-ray diffraction during rapid stretches or releases of isometrically contracting fibers. The latter provide direct evidence for lever arm movements synchronous with force changes. Rebuilding the atomic model of nucleotide-free subfragment 1 (S1) to fit fast-frozen, active IFM crossbridges suggests a two-stage power stroke in which the catalytic domain rolls on actin from weak to strong binding; this is followed by a 5-nm lever arm swing of the light chain domain, which gives a total interaction distance of approx. 12 nm. Comparison of S1 crystal structures with in situ myosin heads suggests that actin binding may be necessary in order to view the full repertoire of myosin motor action. The differing positions of the catalytic domains of actin-attached myosin heads in contracting IFM suggest that both the actin-myosin binding energy and the hydrolysis of ATP may be used to cock the crossbridge and drive the power stroke.
Collapse
Affiliation(s)
- M C Reedy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
44
|
Clausen-Schaumann H, Seitz M, Krautbauer R, Gaub HE. Force spectroscopy with single bio-molecules. Curr Opin Chem Biol 2000; 4:524-30. [PMID: 11006539 DOI: 10.1016/s1367-5931(00)00126-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
For many biological molecules, force is an important functional and structural parameter. With the rapidly growing knowledge about the relation between structure, function, and force, single-molecule force spectroscopy has become a versatile analytical tool for the structural and functional investigation of single bio-molecules in their native environments. Within the past year, detailed insights into binding potentials of receptor ligand pairs, protein folding pathways, molecular motors, DNA mechanics and the functioning of DNA-binding agents (such as proteins and drugs), as well as the function of molecular motors, have been obtained.
Collapse
Affiliation(s)
- H Clausen-Schaumann
- Lehrstuhl für Angewandte Physik and Center for NanoScience, Ludwig-Maximilians-Universität, Amalienstrasse 54, D-80799 München, Germany
| | | | | | | |
Collapse
|
45
|
Affiliation(s)
- T Yanagida
- Department of Physiology and Biosignaling, Graduate School of Medicine, Osaka University, Suita, Japan
| | | |
Collapse
|