1
|
Wimalarathna R, Tsai CH, Shen CH. Transcriptional control of genes involved in yeast phospholipid biosynthesis. J Microbiol 2011; 49:265-73. [DOI: 10.1007/s12275-011-1130-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/04/2011] [Indexed: 11/29/2022]
|
2
|
Dimitrov A, Paupe V, Gueudry C, Sibarita JB, Raposo G, Vielemeyer O, Gilbert T, Csaba Z, Attie-Bitach T, Cormier-Daire V, Gressens P, Rustin P, Perez F, El Ghouzzi V. The gene responsible for Dyggve-Melchior-Clausen syndrome encodes a novel peripheral membrane protein dynamically associated with the Golgi apparatus. Hum Mol Genet 2008; 18:440-53. [PMID: 18996921 DOI: 10.1093/hmg/ddn371] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dyggve-Melchior-Clausen dysplasia (DMC) is a rare inherited dwarfism with severe mental retardation due to mutations in the DYM gene which encodes Dymeclin, a 669-amino acid protein of yet unknown function. Despite a high conservation across species and several predicted transmembrane domains, Dymeclin could not be ascribed to any family of proteins. Here we show, using in situ hybridization, that DYM is widely expressed in human embryos, especially in the cortex, the hippocampus and the cerebellum. Both the endogenous and the recombinant protein fused to green fluorescent protein co-localized with Golgi apparatus markers. Electron microscopy revealed that Dymeclin associates with the Golgi apparatus and with transitional vesicles of the reticulum-Golgi interface. Moreover, permeabilization assays revealed that Dymeclin is not a transmembrane but a peripheral protein of the Golgi apparatus as it can be completely released from the Golgi after permeabilization of the plasma membrane. Time lapse confocal microscopy experiments on living cells further showed that the protein shuttles between the cytosol and the Golgi apparatus in a highly dynamic manner and recognizes specifically a subset of mature Golgi membranes. Finally, we found that DYM mutations associated with DMC result in mis-localization and subsequent degradation of Dymeclin. These data indicate that DMC results from a loss-of-function of Dymeclin, a novel peripheral membrane protein which shuttles rapidly between the cytosol and mature Golgi membranes and point out a role of Dymeclin in cellular trafficking.
Collapse
|
3
|
Guerin ME, Kordulakova J, Schaeffer F, Svetlikova Z, Buschiazzo A, Giganti D, Gicquel B, Mikusova K, Jackson M, Alzari PM. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem 2007; 282:20705-14. [PMID: 17510062 DOI: 10.1074/jbc.m702087200] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterial phosphatidylinositol mannosides (PIMs) and metabolically derived cell wall lipoglycans play important roles in host-pathogen interactions, but their biosynthetic pathways are poorly understood. Here we focus on Mycobacterium smegmatis PimA, an essential enzyme responsible for the initial mannosylation of phosphatidylinositol. The structure of PimA in complex with GDP-mannose shows the two-domain organization and the catalytic machinery typical of GT-B glycosyltransferases. PimA is an amphitrophic enzyme that binds mono-disperse phosphatidylinositol, but its transferase activity is stimulated by high concentrations of non-substrate anionic surfactants, indicating that the early stages of PIM biosynthesis involve lipid-water interfacial catalysis. Based on structural, calorimetric, and mutagenesis studies, we propose a model wherein PimA attaches to the membrane through its N-terminal domain, and this association leads to enzyme activation. Our results reveal a novel mode of phosphatidylinositol recognition and provide a template for the development of potential antimycobacterial compounds.
Collapse
Affiliation(s)
- Marcelo E Guerin
- Unité de Biochimie Structurale (CNRS URA 2185), Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cai D, Zhong M, Wang R, Netzer WJ, Shields D, Zheng H, Sisodia SS, Foster DA, Gorelick FS, Xu H, Greengard P. Phospholipase D1 corrects impaired betaAPP trafficking and neurite outgrowth in familial Alzheimer's disease-linked presenilin-1 mutant neurons. Proc Natl Acad Sci U S A 2006; 103:1936-40. [PMID: 16449385 PMCID: PMC1413666 DOI: 10.1073/pnas.0510710103] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilins (PS1/PS2) regulate proteolysis of beta-amyloid precursor protein (betaAPP) and affect its intracellular trafficking. Here, we demonstrate that a PS1-interacting protein, phospholipase D1 (PLD1), affects intracellular trafficking of betaAPP. Overexpression of PLD1 in PS1wt cells promotes generation of betaAPP-containing vesicles from the trans-Golgi network. Conversely, inhibition of PLD1 activity by 1-butanol decreases betaAPP trafficking in both wt and PS1-deficient cells. The subcellular localization of PLD1 is altered, and PLD enzymatic activity is reduced in cells expressing familial Alzheimer's disease (FAD) PS1 mutations compared with PS1wt cells. Overexpression of wt, but not catalytically inactive, PLD1 increases budding of betaAPP-containing vesicles from the trans-Golgi network in FAD mutant cells. Surface delivery of betaAPP is also increased by PLD1 in these cells. The impaired neurite outgrowth capacity in FAD mutant neurons was corrected by introducing PLD1 into these cells. The results indicate that PLD1 may represent a therapeutic target for rescuing compromised neuronal function in AD.
Collapse
Affiliation(s)
- Dongming Cai
- *Laboratory of Molecular and Cellular Neuroscience, and Fisher Center for Research on Alzheimer Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Minghao Zhong
- Department of Biological Sciences, Hunter College of City University of New York, New York, NY 10021
| | - Runsheng Wang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - William J. Netzer
- *Laboratory of Molecular and Cellular Neuroscience, and Fisher Center for Research on Alzheimer Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
| | - Dennis Shields
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461
| | - Hui Zheng
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Sangram S. Sisodia
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, IL 60637
| | - David A. Foster
- Department of Biological Sciences, Hunter College of City University of New York, New York, NY 10021
| | - Fred S. Gorelick
- *Laboratory of Molecular and Cellular Neuroscience, and Fisher Center for Research on Alzheimer Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- Department of Internal Medicine, Veterans Affairs Connecticut Healthcare System and Yale University, West Haven, CT 06516; and
| | - Huaxi Xu
- *Laboratory of Molecular and Cellular Neuroscience, and Fisher Center for Research on Alzheimer Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- **Center for Neurosciences and Aging, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037
- To whom correspondence may be addressed. E-mail:
or
| | - Paul Greengard
- *Laboratory of Molecular and Cellular Neuroscience, and Fisher Center for Research on Alzheimer Disease, The Rockefeller University, 1230 York Avenue, New York, NY 10021
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
5
|
Gardocki ME, Bakewell M, Kamath D, Robinson K, Borovicka K, Lopes JM. Genomic analysis of PIS1 gene expression. EUKARYOTIC CELL 2005; 4:604-14. [PMID: 15755922 PMCID: PMC1087795 DOI: 10.1128/ec.4.3.604-614.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae PIS1 gene is essential and required for the final step in the de novo synthesis of phosphatidylinositol. Transcription of the PIS1 gene is uncoupled from the factors that regulate other yeast phospholipid biosynthetic genes. Most of the phospholipid biosynthetic genes are regulated in response to inositol and choline via a regulatory circuit that includes the Ino2p:Ino4p activator complex and the Opi1p repressor. PIS1 is regulated in response to carbon source and anaerobic growth conditions. Both of these regulatory responses are modest, which is not entirely surprising since PIS1 is essential. However, even modest regulation of PIS1 expression has been shown to affect phosphatidylinositol metabolism and to affect cell cycle progression. This prompted the present study, which employed a genomic screen, database mining, and more traditional promoter analysis to identify genes that affect PIS1 expression. A screen of the viable yeast deletion set identified 120 genes that affect expression of a PIS1-lacZ reporter. The gene set included several peroxisomal genes, silencing genes, and transcription factors. Factors suggested by database mining, such as Pho2 and Yfl044c, were also found to affect PIS1-lacZ expression. A PIS1 promoter deletion study identified an upstream regulatory sequence element that was required for carbon source regulation located downstream of three previously defined upstream activation sequence elements. Collectively, these studies demonstrate how a collection of genomic and traditional strategies can be implemented to identify a set of genes that affect the regulation of an essential gene.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
6
|
Gardocki ME, Jani N, Lopes JM. Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:89-100. [PMID: 15967713 DOI: 10.1016/j.bbalip.2005.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/14/2005] [Accepted: 05/19/2005] [Indexed: 12/22/2022]
Abstract
Phosphatidylinositol (PI) is a ubiquitous membrane lipid in eukaryotes. It is becoming increasingly obvious that PI and its metabolites play a myriad of very diverse roles in eukaryotic cells. The Saccharomyces cerevisiae PIS1 gene is essential and encodes PI synthase, which is required for the synthesis of PI. Recently, PIS1 expression was found to be regulated in response to carbon source and oxygen availability. It is particularly significant that the promoter elements required for these responses are conserved evolutionarily throughout the Saccharomyces genus. In addition, several genome-wide strategies coupled with more traditional screens suggest that several other factors regulate PIS1 expression. The impact of regulating PIS1 expression on PI synthesis will be discussed along with the possible role(s) that this may have on diseases such as cancer.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit MI 48202, USA
| | | | | |
Collapse
|
7
|
Wu CC, MacCoss MJ, Mardones G, Finnigan C, Mogelsvang S, Yates JR, Howell KE. Organellar proteomics reveals Golgi arginine dimethylation. Mol Biol Cell 2004; 15:2907-19. [PMID: 15047867 PMCID: PMC420113 DOI: 10.1091/mbc.e04-02-0101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Golgi complex functions to posttranslationally modify newly synthesized proteins and lipids and to sort them to their sites of function. In this study, a stacked Golgi fraction was isolated by classical cell fractionation, and the protein complement (the Golgi proteome) was characterized using multidimensional protein identification technology. Many of the proteins identified are known residents of the Golgi, and 64% of these are predicted transmembrane proteins. Proteins localized to other organelles also were identified, strengthening reports of functional interfacing between the Golgi and the endoplasmic reticulum and cytoskeleton. Importantly, 41 proteins of unknown function were identified. Two were selected for further analysis, and Golgi localization was confirmed. One of these, a putative methyltransferase, was shown to be arginine dimethylated, and upon further proteomic analysis, arginine dimethylation was identified on 18 total proteins in the Golgi proteome. This survey illustrates the utility of proteomics in the discovery of novel organellar functions and resulted in 1) a protein profile of an enriched Golgi fraction; 2) identification of 41 previously uncharacterized proteins, two with confirmed Golgi localization; 3) the identification of arginine dimethylated residues in Golgi proteins; and 4) a confirmation of methyltransferase activity within the Golgi fraction.
Collapse
Affiliation(s)
- Christine C Wu
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Collette J, Bocock JP, Ahn K, Chapman RL, Godbold G, Yeyeodu S, Erickson AH. Biosynthesis and alternate targeting of the lysosomal cysteine protease cathepsin L. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 241:1-51. [PMID: 15548418 DOI: 10.1016/s0074-7696(04)41001-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Upregulation of cathepsin L expression, whether during development or cell transformation, or mediated by ectopic expression from a plasmid, alters the targeting of the protease and thus its physiological function. Upregulated procathepsin L is targeted to small dense core vesicles and to the dense cores of multivesicular bodies, as well as to lysosomes and to the plasma membrane for selective secretion. The multivesicular vesicles resemble secretory lysosomes characterized in specialized cell types in that they are endosomes that stably store an upregulated protein and they possess the tetraspanin CD63. Morphologically the multivesicular endosomes also resemble late endosomes, but they store procathepsin L, not the active protease, and they are not the major site for LAMP-1 accumulation. Distinction between the lysosomal proenzyme and active protease thus identifies two populations of multivesicular endosomes in fibroblasts, one a storage compartment and one an enzymatically active compartment. A distinctive targeting pathway using aggregation is utilized to enrich the storage endosomes with a particular lysosomal protease that can potentially activate and be secreted.
Collapse
Affiliation(s)
- John Collette
- University of Miami School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, Florida 33101 USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Gardocki ME, Lopes JM. Expression of the yeast PIS1 gene requires multiple regulatory elements including a Rox1p binding site. J Biol Chem 2003; 278:38646-52. [PMID: 12890676 DOI: 10.1074/jbc.m305251200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PIS1 gene is required for de novo synthesis of phosphatidylinositol (PI), an essential phospholipid in Saccharomyces cerevisiae. PIS1 gene expression is unusual because it is uncoupled from the other phospholipid biosynthetic genes, which are regulated in response to inositol and choline. Relatively little is known about regulation of transcription of the PIS1 gene. We reported previously that PIS1 transcription is sensitive to carbon source. To further our understanding of the regulation of PIS1 transcription, we carried out a promoter deletion analysis that identified three regions required for PIS1 gene expression (upstream activating sequence (UAS) elements 1-3). Deletion of either UAS1 or UAS2 resulted in an approximately 45% reduction in expression, whereas removal of UAS3 yielded an 84% decrease in expression. A comparison of promoters among several Saccharomyces species shows that these sequences are highly conserved. Curiously, the UAS3 element region (-149 to -138) includes a Rox1p binding site. Rox1p is a repressor of hypoxic genes under aerobic growth conditions. Consistent with this, we have found that expression of a PIS1-cat reporter was repressed under aerobic conditions, and this repression was dependent on both Rox1p and its binding site. Furthermore, PI levels were elevated under anaerobic conditions. This is the first evidence that PI levels are affected by regulation of PIS1 transcription.
Collapse
|
10
|
Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D. Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 2003; 278:1957-65. [PMID: 12411436 DOI: 10.1074/jbc.m209137200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) synthesis has been implicated in maintaining the function of the Golgi apparatus. Here we demonstrate that the inhibition of PtdIns(4,5)P(2) synthesis in vitro in response to primary alcohol treatment and the kinetics of Golgi fragmentation in vivo were very rapid and tightly coupled. Preloading Golgi membranes with short chain phosphatidic acid abrogated the alcohol-mediated inhibition of PtdIns(4,5)P(2) synthesis in vitro. We also show that fragmentation of the Golgi apparatus in response to diminished PtdIns(4,5)P(2) synthesis correlated with both the phosphorylation of a Golgi form of beta III spectrin, a PtdIns(4,5)P(2)-interacting protein, and changes in its intracellular redistribution. The data are consistent with a model suggesting that the decreased PtdIns(4,5)P(2) synthesis and the phosphorylation state of beta III spectrin modulate the structural integrity of the Golgi apparatus.
Collapse
Affiliation(s)
- Anirban Siddhanta
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
11
|
Sweeney DA, Siddhanta A, Shields D. Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem 2002; 277:3030-9. [PMID: 11704660 DOI: 10.1074/jbc.m104639200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent work from our laboratory demonstrated that phosphatidic acid (PA) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)), are required to maintain the structural integrity of the Golgi apparatus. To investigate the role of these lipids in regulating Golgi structure and function, we developed a novel assay to follow the release of post-Golgi vesicles. Isolated rat liver Golgi membranes were incubated with [(3)H]CMP sialic acid to radiolabel endogenous soluble and membrane glycoproteins present in the late Golgi and trans-Golgi network. The release of post-Golgi secretory vesicles was determined by measuring incorporation of (3)H-labeled proteins into a medium speed supernatant. Vesicle budding was dependent on temperature, cytosol, energy and time. Electron microscopy of Golgi fractions prior to and after incubation demonstrated that the stacked Golgi cisternae generated a heterogeneous population of vesicles (50- to 350-nm diameter). Inhibition of phospholipase D-mediated PA synthesis, by incubation with 1-butanol, resulted in the complete fragmentation of the Golgi membranes in vitro into 50- to 100-nm vesicles; this correlated with diminished PtdIns(4,5)P(2) synthesis. Following alcohol washout, PA synthesis resumed and in the presence of cytosol PtdIns(4,5)P(2) synthesis was restored. Most significantly, under these conditions the fragmented Golgi elements reformed into flattened cisternae and the re-assembled Golgi supported vesicle release. These data demonstrate that inositol phospholipid synthesis is essential for the structure and function of the Golgi apparatus.
Collapse
Affiliation(s)
- David A Sweeney
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
12
|
Shimoni Y, Rattner JB. Type 1 diabetes leads to cytoskeleton changes that are reflected in insulin action on rat cardiac K(+) currents. Am J Physiol Endocrinol Metab 2001; 281:E575-85. [PMID: 11500313 DOI: 10.1152/ajpendo.2001.281.3.e575] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A sustained K(+) current (I(ss)) is attenuated in ventricular cells from streptozotocin (STZ)-induced diabetic rats. The in vitro addition of insulin to isolated cells augments I(ss) in a process that is blocked by disrupting either actin microfilaments (with cytochalasin D) or microtubules (with colchicine). When these agents are added at progressively later times, the effect of insulin becomes evident in a time-dependent manner. I(ss) is also augmented by insulin in control cells in a cytoskeleton-dependent manner. However, in contrast to diabetic cells, cytoskeleton-dependent augmentation of I(ss) by insulin occurs at a considerably faster rate in control cells. Immunofluorescent labeling shows a reduced density of beta-tubulin in diabetic cells, particularly in perinuclear regions. In vitro insulin replacement or in vivo insulin injections given to STZ-treated rats enhances beta-tubulin density. These results suggest an impairment of cytoskeleton function and structure under insulin-deficient conditions, which may have implications for cardiac function.
Collapse
Affiliation(s)
- Y Shimoni
- Department of Physiology and Biophysics, University of Calgary Health Sciences Centre, 3330 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
13
|
Yang Z, Li H, Chai Z, Fullerton MJ, Cao Y, Toh BH, Funder JW, Liu JP. Dynamin II regulates hormone secretion in neuroendocrine cells. J Biol Chem 2001; 276:4251-60. [PMID: 11032832 DOI: 10.1074/jbc.m006371200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dynamin family of GTP-binding proteins has been implicated as playing an important role in endocytosis. In Drosophila shibire, mutations of the single dynamin gene cause blockade of endocytosis and neurotransmitter release, manifest as temperature-sensitive neuromuscular paralysis. Mammals express three dynamin genes: the neural specific dynamin I, ubiquitous dynamin II, and predominantly testicular dynamin III. Mutations of dynamin I result in a blockade of synaptic vesicle recycling and receptor-mediated endocytosis. Here, we show that dynamin II plays a key role in controlling constitutive and regulated hormone secretion from mouse pituitary corticotrope (AtT20) cells. Dynamin II is preferentially localized to the Golgi apparatus where it interacts with G-protein betagamma subunit and regulates secretory vesicle release. The presence of dynamin II at the Golgi apparatus and its interaction with the betagamma subunit are mediated by the pleckstrin homology domain of the GTPase. Overexpression of the pleckstrin homology domain, or a dynamin II mutant lacking the C-terminal SH3-binding domain, induces translocation of endogenous dynamin II from the Golgi apparatus to the plasma membrane and transformation of dynamin II from activity in the secretory pathway to receptor-mediated endocytosis. Thus, dynamin II regulates secretory vesicle formation from the Golgi apparatus and hormone release from mammalian neuroendocrine cells.
Collapse
Affiliation(s)
- Z Yang
- Baker Medical Research Institute, Department of Pathology and Immunology, Monash University Medical School, Commercial Road, Prahran, Victoria 3181, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Frolov MV, Alatortsev VE. Molecular analysis of novel Drosophila gene, Gap69C, encoding a homolog of ADP-ribosylation factor GTPase-activating protein. DNA Cell Biol 2001; 20:107-13. [PMID: 11244568 DOI: 10.1089/104454901750070319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adenosine diphosphate-ribosylation factor, ARF1, regulates membrane traffic and structure in the endoplasmic reticulum-Golgi and endosomal systems. The ARF activity, in turn, is regulated by the guanine nucleotide exchange factors and GTPase-activating proteins (GAPs). We have cloned by transposon tagging a novel Drosophila gene, Gap69C, coding for a putative homolog of ARF1 GTPase-activating protein. The GAP69C protein shares an extensive similarity within its N-terminal zinc-finger domain with the rat and yeast homologs. This domain is known to be required for ARF-GAP activity. The Gap69C is a single-copy gene producing a major 2.1-kb mRNA throughout development, but its amount is decreased in larvae. The eye pigmentation produced by the reporter mini-white gene inserted into the 5' UTR of Gap69C suggests that the expression of Gap69C is nonuniform. In situ hybridization revealed a high level of Gap69C transcripts in the morphogenetic furrow of the eye imaginal disc, where cells are arrested in G(1). Generated by the excision of the P-element, the null allele of Gap69C was found to be viable and fertile and showed no apparent abnormal phenotype, indicating that Gap69C is not essential for fly development. Analysis of the Drosophila genome sequence revealed the presence of other genes related to Gap69C. We propose that the absence of a distinctive phenotype in Gap69C null mutants is attributable to redundancy with other homologs.
Collapse
Affiliation(s)
- M V Frolov
- Massachusetts General Hospital Cancer Center, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
15
|
Affiliation(s)
- V M Olkkonen
- Department of Biochemistry, National Public Health Institute, Helsinki, Finland
| | | |
Collapse
|
16
|
Sanders CR, Nagy JK. Misfolding of membrane proteins in health and disease: the lady or the tiger? Curr Opin Struct Biol 2000; 10:438-42. [PMID: 10981632 DOI: 10.1016/s0959-440x(00)00112-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protein misfolding is increasingly recognized as a factor in many diseases, including cystic fibrosis, Parkinson's, Alzheimer's and atherosclerosis. Many proteins involved in misfolding-based pathologies are membrane-associated, such that the bilayer may play roles in normal and aberrant folding. It can be argued that the in vivo partitioning of eukaryotic membrane proteins between folding and misfolding pathways is under kinetic control. Moreover, the balance between these pathways can be surprisingly delicate.
Collapse
Affiliation(s)
- C R Sanders
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA.
| | | |
Collapse
|
17
|
Siddhanta A, Backer JM, Shields D. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 2000; 275:12023-31. [PMID: 10766834 DOI: 10.1074/jbc.275.16.12023] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mammalian cells, activation of a Golgi-associated phospholipase D by ADP-ribosylation factor results in the hydrolysis of phosphatidylcholine to form phosphatidic acid (PA). This reaction stimulates the release of nascent secretory vesicles from the trans-Golgi network of endocrine cells. To understand the role of PA in mediating secretion, we have exploited the transphosphatidylation activity of phospholipase D. Rat anterior pituitary GH3 cells, which secrete growth hormone and prolactin, were treated with 1-butanol resulting in the synthesis of phosphatidylbutanol rather than PA. Under these conditions transport from the ER through the Golgi apparatus and secretion of polypeptide hormones were inhibited quantitatively. Furthermore, the in vitro synthesis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) by Golgi membranes was inhibited quantitatively. Most significantly, in the presence of 1-butanol the architecture of the Golgi apparatus was disrupted, resulting in its disassembly and fragmentation. Removal of the alcohol resulted in the rapid restoration of Golgi structure and secretion of growth hormone and prolactin. Our results suggest that PA stimulation of PtdIns(4,5)P(2) synthesis is required for maintaining the structural integrity and function of the Golgi apparatus.
Collapse
Affiliation(s)
- A Siddhanta
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|