1
|
Niu H, Nie Z, Long Y, Guo J, Tan J, Bi J, Yang H. Efficient pyridine biodegradation by Stenotrophomonas maltophilia J2: Degradation performance, mechanism, and immobilized application for wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132220. [PMID: 37549577 DOI: 10.1016/j.jhazmat.2023.132220] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Stenotrophomonas maltophilia J2, a highly efficient pyridine-degrading bacterium, was isolated from the aerobic tank of a pesticide-contaminated wastewater treatment plant. The strain J2 demonstrated an impressive pyridine degradation rate of 98.34% ± 0.49% within 72 h, at a pyridine concentration of 1100 mg·L-1, a temperature of 30 °C, a pH of 8.0, and a NaCl concentration of 0.5%. Notably, two new pyridine metabolic intermediates, 1,3-dihydroxyacetone and butyric acid, were discovered, indicating that J2 may degrade pyridine through two distinct metabolic pathways. Furthermore, the immobilized strain J2 was obtained by immobilizing J2 with biochar derived from the stem of Solidago canadensis L. In the pyridine-contaminated wastewater bioremediation experiment, the immobilized strain J2 was able to remove 2000 mg·L-1 pyridine with a 98.66% ± 0.47% degradation rate in 24 h, which was significantly higher than that of the control group (3.17% ± 1.24%), and remained above 90% in subsequent cycles until the 27th cycle. High-throughput sequencing analysis indicated that the J2 +B group had an elevated relative abundance of bacteria and functional genes that could be associated with the degradation of pyridine. The results offer a foundation for the effective use of immobilized strain in the treatment of recalcitrant pyridine-contaminated wastewater.
Collapse
Affiliation(s)
- Hongyu Niu
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Zimeng Nie
- School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Yu Long
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Jiayuan Guo
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China
| | - Ju Tan
- Changsha Ecological Monitoring Center of Hunan Province, 410001 Changsha, China
| | - Junping Bi
- Changsha Environmental Protection College, 410001 Changsha, China
| | - Haijun Yang
- College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China.
| |
Collapse
|
2
|
Shi J, Li Z, Zhang B, Li L, Sun W. Synergy between pyridine anaerobic mineralization and vanadium (V) oxyanion bio-reduction for aquifer remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126339. [PMID: 34118535 DOI: 10.1016/j.jhazmat.2021.126339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The co-occurrence of toxic pyridine (Pyr) and vanadium (V) oxyanion [V(V)] in aquifer has been of emerging concern. However, interactions between their biogeochemical fates remain poorly characterized, with absence of efficient route to decontamination of this combined pollution. In this work, microbial-driven Pyr degradation coupled to V(V) reduction was demonstrated for the first time. Removal efficiencies of Pyr and V(V) reached 94.8 ± 1.55% and 51.2 ± 0.20% in 72 h operation. The supplementation of co-substrate (glucose) deteriorated Pyr degradation slightly, but significantly promoted V(V) reduction efficiency to 84.5 ± 0.635%. Pyr was mineralized with NH4+-N accumulation, while insoluble vanadium (IV) was the major product from V(V) bio-reduction. It was observed that Bacillus and Pseudomonas realized synchronous Pyr and V(V) removals independently. Interspecific synergy between Pyr degraders and V(V) reducers also functioned with addition of co-substrate. V(V) was bio-reduced through alternative electron acceptor pathway conducted by gene nirS encoded nitrite reductase, which was evidenced by gene abundance and enzyme activity. Cytochrome c, nicotinamide adenine dinucleotide and extracellular polymeric substances also contributed to the coupled bioprocess. This work provides new insights into biogeochemical activities of Pyr and V(V), and proposes novel strategy for remediation of their co-contaminated aquifer.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zongyan Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lei Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
3
|
Nie Z, Yan B, Xu Y, Awasthi MK, Yang H. Characterization of pyridine biodegradation by two Enterobacter sp. strains immobilized on Solidago canadensis L. stem derived biochar. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125577. [PMID: 33689996 DOI: 10.1016/j.jhazmat.2021.125577] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
In this study, two pyridine-degrading strains namely Enterobacter cloacae complex sp. BD17 and Enterobacter sp.BD19 were isolated from the aerobic tank of a pesticide wastewater treatment plant. The mixed bacteria H4 composed of BD17 and BD19 at a ratio of 1:1 was immobilized by Solidago canadensis L. stem biochar with a dosage of 2 g·L-1. The highest pyridine removal rate of 91.70% was achieved by the immobilized H4 at an initial pyridine concentration of 200 mg·L-1, pH of 7.0, temperature of 28 °C and salinity of 3.0% within 36 h. The main intermediates of pyridine degradation by BD17 were pyridine-2-carboxamide, 2-aminopropanediamide, and 2-aminoacetamide, while 2-picolinic acid, isopropyl acetate, isopropyl alcohol, and acetaldehyde were identified with BD19 by adopting GC-MS technique. Interestingly, there was a possibility of totally mineralization of pyridine and the corresponding degradation pathways of BD17 and BD19 were revealed for the first time.
Collapse
Affiliation(s)
- Zimeng Nie
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, Hunan Province, China; Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunan Province, China
| | - Binghua Yan
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Yunhai Xu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, Hunan Province, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, PR China; Swedish Centre for Resource Recovery, University of Borås, 50190, Borås, Sweden.
| | - Haijun Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, Hunan Province, China.
| |
Collapse
|
4
|
Microbial Degradation of Pyridine: a Complete Pathway in Arthrobacter sp. Strain 68b Deciphered. Appl Environ Microbiol 2020; 86:AEM.00902-20. [PMID: 32471913 DOI: 10.1128/aem.00902-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022] Open
Abstract
Pyridine and its derivatives constitute the majority of heterocyclic aromatic compounds that occur largely as a result of human activities and contribute to environmental pollution. It is known that they can be degraded by various bacteria in the environment; however, the degradation of unsubstituted pyridine has not yet been completely resolved. In this study, we present data on the pyridine catabolic pathway in Arthrobacter sp. strain 68b at the level of genes, enzymes, and metabolites. The pyr gene cluster, responsible for the degradation of pyridine, was identified in a catabolic plasmid, p2MP. The pathway of pyridine metabolism consisted of four enzymatic steps and ended by the formation of succinic acid. The first step in the degradation of pyridine proceeds through a direct ring cleavage catalyzed by a two-component flavin-dependent monooxygenase system, encoded by pyrA (pyridine monooxygenase) and pyrE genes. The genes pyrB, pyrC, and pyrD were found to encode (Z)-N-(4-oxobut-1-enyl)formamide dehydrogenase, amidohydrolase, and succinate semialdehyde dehydrogenase, respectively. These enzymes participate in the subsequent steps of pyridine degradation. The metabolites of these enzymatic reactions were identified, and this allowed us to reconstruct the entire pyridine catabolism pathway in Arthrobacter sp. 68b.IMPORTANCE The biodegradation pathway of pyridine, a notorious toxicant, is relatively unexplored, as no genetic data related to this process have ever been presented. In this paper, we describe the plasmid-borne pyr gene cluster, which includes the complete set of genes responsible for the degradation of pyridine. A key enzyme, the monooxygenase PyrA, which is responsible for the first step of the catabolic pathway, performs an oxidative cleavage of the pyridine ring without typical activation steps such as reduction or hydroxylation of the heterocycle. This work provides new insights into the metabolism of N-heterocyclic compounds in nature.
Collapse
|
5
|
Improved Removal of Quinoline from Wastewater Using Coke Powder with Inorganic Ions. Processes (Basel) 2020. [DOI: 10.3390/pr8020156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this paper, laboratory batch adsorption tests were performed to study the adsorption behavior of coke powder in a quinoline aqueous solution with the absence and presence of inorganic ions (K+ and Ca2+). Adsorption isotherms, thermodynamic parameters, and kinetic models were used to understand the sorption mechanism, and zeta potential measurements were performed to elucidate the effect of the inorganic ions on the adsorption. The results showed that coke powder exhibited a reasonably good adsorption performance due to its pore structure and surface characteristics, and the presence of K+ and Ca2+ could further improve the adsorption. Without inorganic ions, the adsorption capacity of coke powder for quinoline and the removal efficiency of quinoline were 1.27 mg/g and 84.90%, respectively. At the ion concentration of 15 mmol, the adsorption capacity of coke powder and quinoline removal efficiency in the presence of K+ reached 1.38 mg/g and 92.02%, respectively, whereas those in the solutions with Ca2+ reached 1.40 mg/g and 93.31%, respectively. It was found that the adsorption of quinoline onto coke powder in the absence and presence of inorganic ions fit the Freundlich isotherm. Changes in the Gibbs free energy, the heat of adsorption, the entropy, and the activation energy of adsorption suggest that the adsorption was spontaneous and exothermic, which was dominated by physical adsorption, and that the added K+ and Ca2+ would favor the adsorption. In addition, the pseudo-second-order kinetic model was found to provide the best fit to the adsorption kinetic data, and K+ and Ca2+ increased the rate of quinoline adsorbed onto coke power. This improved adsorption due to inorganic ions was found to be a consequence of the decrease in the surface potential of coke powder particles, which resulted in a reduced thickness of water film around particles, as well as a decreased electrostatic repulsion between coke powder particles and quinoline molecules.
Collapse
|
6
|
Abstract
Pyridine is a toxic component in industrial wastewater, which is difficult to remove using conventional methods. In this study, the cost-effective coke powder was used to remove pyridine from a pyridine simulation wastewater. The removal efficiency and adsorption capacity of pyridine reached up to 67.32% and 0.4488 mg/g, respectively, at a coke powder concentration of 60 mg/L and an adsorption time of 30 min. The pyridine removal efficiency and adsorption capacity of coke powder reached saturation when the initial concentration was 40 mg/L. The pH of 2–12 in the solution was found to have little effect on the pyridine adsorption process of coke powder, while the coke powder with lower ash content was of better adsorbability for pyridine. The coke powder was regenerated by heat treatment, and reused for pyridine adsorption. It was found that the pyridine removal efficiency slightly decreased after nine times of reuse, in addition to a small cumulative weight loss rate of coke powder. Adsorption isotherm analysis showed that the adsorption of pyridine by coke powder could be well described by the Freundlich isothermal adsorption model, indicating multi-molecular layers mainly dominated the adsorption of pyridine on the surface of coke powder.
Collapse
|
7
|
Gupta N, O’Loughlin EJ, Sims GK. Microbial Degradation of Pyridine and Pyridine Derivatives. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Hou C, Shen J, Zhang D, Han Y, Ma D, Sun X, Li J, Han W, Wang L, Liu X. Bioaugmentation of a continuous-flow self-forming dynamic membrane bioreactor for the treatment of wastewater containing high-strength pyridine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3437-3447. [PMID: 27873111 DOI: 10.1007/s11356-016-8121-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
For the treatment of high-strength pyridine containing wastewater, a bioaugmented continuous-flow self-forming dynamic membrane bioreactor (CSFDMBR), which was consisted of a continuous flow airlift reactor (CFAR) and a dynamic membrane bioreactor (DMBR), was developed in this study. The results indicated that through the bioaugmentation by Rhizobium sp. NJUST18, CSFDMBR could be successfully started, which was confirmed by complete removal of pyridine, efficient nitrification, and significant increase of biomass. Pyridine could be effectively degraded in the CSFDMBR even at influent pyridine loading rate as high as 9.0 kg m-3 day-1, probably due to the efficient biomass retention in the CSFDMBR, which could be attributed to the formation of aerobic granules and the key role of dynamic membrane. CSFDMBR presented good polishing performance in treating pyridine wastewater, with effluent total organic carbon (TOC) and turbidity as low as 22.5 ± 6.8 mg L-1 and 3.8 ± 0.5 NTU, respectively. Membrane fouling could be effectively controlled, as indicated by backwash period as long as 60 days. The observed efficient performance highlights the potential for the full-scale application of the bioaugmented CSFDMBR, particularly for highly recalcitrant pollutant removal.
Collapse
Affiliation(s)
- Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
| | - Dejin Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Yi Han
- Department of Electrical and Computer Engineering, Lafayette College, 730 High St, Easton, PA, 18042, USA
| | - Dehua Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Xiuyun Sun
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Weiqing Han
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Xiaodong Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
| |
Collapse
|
9
|
Shanthi Sravan J, Naresh Kumar A, Venkata Mohan S. Multi-pollutant treatment of crystalline cellulosic effluent: Function of dissolved oxygen on process control. BIORESOURCE TECHNOLOGY 2016; 217:245-251. [PMID: 27005787 DOI: 10.1016/j.biortech.2016.02.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
Treatment of crystalline cellulose based wastewater was carried out in periodic discontinuous batch reactor (PDBR). Specific influence of dissolved oxygen on treatment of crystalline cellulosic (CC) wastewater was evaluated in three different microenvironments such as aerobic, anoxic and anaerobic. PDBR-aerobic biosystem documented relatively higher substrate degradation [2.63kgCOD/m(3)-day (92%)] in comparison to PDBR-anoxic [2.12kgCOD/m(3)-day (71%)] and PDBR-anaerobic [1.81kgCOD/m(3)-day (63%)], which is in accordance with the observed DO levels. Similarly, multipollutants viz., phosphates and nitrates removal was observed to be higher in aerobic followed by anoxic and anaerobic operations. Higher nitrate removal in aerobic operation might be attributed to the efficient denitrification carried out by the biocatalyst, which utilizes both nitrates and oxygen as oxidizing agents. Multiscan spectral profiles depicted reduction in color intensity in all three microenvironments that correlated with the substrate degradation observed. Despite the high organic load, PDBR functioned well without exhibiting process inhibition.
Collapse
Affiliation(s)
- J Shanthi Sravan
- Bioengineering and Environmental Science (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - A Naresh Kumar
- Bioengineering and Environmental Science (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Science (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India.
| |
Collapse
|
10
|
Shen J, Zhang X, Chen D, Liu X, Zhang L, Sun X, Li J, Bi H, Wang L. Kinetics study of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18. Bioprocess Biosyst Eng 2014; 37:1185-92. [PMID: 24425539 DOI: 10.1007/s00449-013-1089-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/01/2013] [Indexed: 10/25/2022]
Abstract
Biodegradation of pyridine by a novel bacterial strain, Rhizobium sp. NJUST18, was studied in batch experiments over a wide concentration range (from 100 to 1,000 mg l(-1)). Pyridine inhibited both growth of Rhizobium sp. NJUST18 and biodegradation of pyridine. The Haldane model could be fitted to the growth kinetics data well with the kinetic constants μ* = 0.1473 h(-1), K s = 793.97 mg l(-1), K i = 268.60 mg l(-1) and S m = 461.80 mg l(-1). The true μ max, calculated from μ*, was found to be 0.0332 h(-1). Yield coefficient Y X/S depended on S i and reached a maximum of 0.51 g g(-1) at S i of 600 mg l(-1). V max was calculated by fitting the pyridine consumption data with the Gompertz model. V max increased with initial pyridine concentration up to 14.809 mg l(-1) h(-1). The q S values, calculated from [Formula: see text], were fitted with the Haldane equation, yielding q Smax = 0.1212 g g(-1) h(-1) and q* = 0.3874 g g(-1) h(-1) at S m' = 507.83 mg l(-1), K s' = 558.03 mg l(-1), and K i' = 462.15 mg l(-1). Inhibition constants for growth and degradation rate value were in the same range. Compared with other pyridine degraders, μ max and S m obtained for Rhizobium sp. NJUST18 were relatively high. High K i and K i' values and extremely high K s and K s' values indicated that NJUST18 was able to grow on pyridine within a wide concentration range, especially at relatively high concentrations.
Collapse
Affiliation(s)
- Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tian F, Zhu R, Ouyang F. Synergistic photocatalytic degradation of pyridine using precious metal supported TiO2 with KBrO3. J Environ Sci (China) 2013; 25:2299-2305. [PMID: 24552059 DOI: 10.1016/s1001-0742(12)60304-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of precious metals catalysts (M/TiO2, M = Ru, Rh, Pd, Ag, Ir, Pt or Au) were prepared by a light deposition method and the synergistic photocatalytic degradations of pyridine (20 mg/L) under UV irradiation (365 nm) using M/TiO2 with electron capture agent KBrO3 have been investigated. The results show that KBrO3 has a greatly synergistic role on M/TiO2 and the photocatalytic activity of M/TiO2 is closely related to its work function. Ag could greatly enhance the activity of TiO2 due to the binding characteristics of pyridine on Ag. Under the conditions of 0.5 wt.% Ag loading, Ag/TiO2 concentration of 0.1 g/L, KBrO3 concentration of 10 mmol/L and reaction liquid pH value at 9, the pyridine can be degraded by 64% within 3 hr, doubled than TiO2 photocatalytic system. The degradation kinetics of pyridine follows first-order kinetics and k = 5.53 x 10(-3) min-1.
Collapse
Affiliation(s)
- Fei Tian
- Environmental Science and Engineering Research Center Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China.
| | - Rongshu Zhu
- Environmental Science and Engineering Research Center Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
| | - Feng Ouyang
- Environmental Science and Engineering Research Center Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
12
|
Wen D, Zhang J, Xiong R, Liu R, Chen L. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J Environ Sci (China) 2013; 25:2265-2271. [PMID: 24552055 DOI: 10.1016/s1001-0742(12)60278-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The bacterial strain Paracoccus denitrificans W12, which could utilize pyridine as its sole source of carbon and nitrogen, was added into a membrane bioreactor (MBR) to enhance the treatment of a pharmaceutical wastewater. The treatment efficiencies investigated showed that the removal of chemical oxygen demand, total nitrogen, and total phosphorus were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of pyridine was obtained in the bioaugmented reactor. When the hydraulic retention time was 60 hr and the influent concentration of pyridine was 250-500 mg/L, the mean effluent concentration of pyridine without adding W12 was 57.2 mg/L, while the pyridine was degraded to an average of 10.2 mg/L with addition of W12. The bacterial community structure of activated sludge during the bioaugmented treatment was analyzed using polymerase chain reaction -denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that the W12 inoculum reversed the decline of microbial community diversity, however, the similarity between bacterial community structure of the original sludge and that of the sludge after bioaugmentation decreased steadily during the wastewater treatment. Sequencing of the DNA recovered from DGGE gel indicated that Flavobacteriaceae sp., Sphingobium sp., Comamonas sp., and Hyphomicrobium sp. were the dominant organisms in time sequence in the bacterial community in the bioaugmented MBR. This implied that the bioaugmentation was affected by the adjustment of whole bacterial community structure in the inhospitable environment, rather than being due solely to the degradation performance of the bacterium added.
Collapse
Affiliation(s)
- Donghui Wen
- College of Environmental Sciences and Engineering, the Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University Beijing 100871, China.
| | - Jing Zhang
- College of Environmental Sciences and Engineering, the Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University Beijing 100871, China
| | - Ruilin Xiong
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Rui Liu
- Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Sun JQ, Xu L, Tang YQ, Chen FM, Liu WQ, Wu XL. Degradation of pyridine by one Rhodococcus strain in the presence of chromium (VI) or phenol. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:62-68. [PMID: 21592659 DOI: 10.1016/j.jhazmat.2011.04.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/29/2011] [Accepted: 04/09/2011] [Indexed: 05/30/2023]
Abstract
A Rhodococcus strain, Chr-9, which has the ability to degrade pyridine and phenol and reduce chromium (VI) (Cr (VI)) was isolated. The strain could grow with pyridine as the sole carbon and nitrogen source, and its pyridine-degradation capability was enhanced by 100 mg l(-1) phenol; however, the degradation of pyridine was inhibited when the phenol concentration was greater than 400 mg l(-1). The hydroxylation of pyridine suggested that the stimulation and inhibition of phenol to the pyridine degradation may be attributed to competition of phenol and pyridine for the hydroxylase gene. Strain Chr-9 was also able to reduce Cr (VI) when glucose and LB was used as the carbon source; however, the Cr (VI) reduction did not occur when pyridine was the sole carbon and energy source. In addition, strain Chr-9 could reduce Cr (VI) and simultaneously degrade pyridine in the presence of glucose. To the best of our knowledge, strain Chr-9 is the first Rhodococcus strain reported to degrade pyridine in the presence of Cr (VI), and the first strain with the pyridine degradation being stimulated by low concentrations of phenol.
Collapse
Affiliation(s)
- Ji-Quan Sun
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhao H, Liang L, Wen Liu H. Fast photo-catalytic degradation of pyridine in nano aluminum oxide suspension systems. J Environ Sci (China) 2011; 23 Suppl:S156-S158. [PMID: 25084582 DOI: 10.1016/s1001-0742(11)61101-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
UV light can degrade pyridine to ammonia nitrogen at room temperature. The decomposition of pyridine under UV irradiation with the help of aluminum oxide powders was rarely studied. While with the assist of alumina, fast photo-catalytic degradation of pyridine to 100 percentage ammonia nitrogen was realized within an hour. The promising promotion phenomena were confirmed in opening other nitrogen heterocyclic compounds (NHCs) such as quinoline and 2,2'-bipyridine. Scanning electron microscopy images showed the alumina powder was about 100 nm in size. X-ray diffraction results indicated that the sample was mainly a-Al203. Specific surface area of the sample was about 280 m(2)/g determined by BET method. The optimum dosages of catalysts and effects of pH value were also tested. There was no clear absorbance of the alumina sample showed in the range of 200-420 nm. It is believed that the interaction between pyridine and alumina surface hydroxyl caused by chemisorptions weakened the carbon-nitrogen bond and led to the promotion of the decomposition.
Collapse
Affiliation(s)
- Hong Zhao
- College of Environment & Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Lijun Liang
- College of Environment & Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| | - Hong Wen Liu
- Dalian Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
15
|
Chandra R, Yadav S, Bharagava RN. Biodegradation of pyridine raffinate by two bacterial co-cultures of Bacillus cereus (DQ435020) and Alcaligenes faecalis (DQ435021). World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0223-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026. J Ind Microbiol Biotechnol 2009; 36:1391-400. [DOI: 10.1007/s10295-009-0625-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
|
17
|
Chandra R, Bharagava RN, Kapley A, Purohit HJ. Isolation and characterization of potential aerobic bacteria capable for pyridine degradation in presence of picoline, phenol and formaldehyde as co-pollutants. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0114-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Bai Y, Sun Q, Zhao C, Wen D, Tang X. Simultaneous biodegradation of pyridine and quinoline by two mixed bacterial strains. Appl Microbiol Biotechnol 2009; 82:963-73. [DOI: 10.1007/s00253-009-1892-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 10/21/2022]
|
19
|
Mathur AK, Majumder CB, Chatterjee S, Roy P. Biodegradation of pyridine by the new bacterial isolates S. putrefaciens and B. sphaericus. JOURNAL OF HAZARDOUS MATERIALS 2008; 157:335-343. [PMID: 18295401 DOI: 10.1016/j.jhazmat.2007.12.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 12/28/2007] [Accepted: 12/31/2007] [Indexed: 05/25/2023]
Abstract
In this study, two bacterial strains capable of utilizing pyridine as a sole carbon source were isolated from biofilters. Based on the biochemical test, the organisms were identified as Shewanella putrefaciens and Bacillus sphaericus. In liquid cultures, S. putrefaciens and B. sphaericus degraded pyridine quite effectively up to 500 mg L(-1). S. putrefaciens degrades 500 mg L(-1) of pyridine completely within 140 h, whereas the B. sphaericus degrades 500 mg L(-1) of pyridine only nearly 75% and takes a longer duration of 150 h. S. putrefaciens used pyridine as sole carbon and energy source better than B. sphaericus. Monod's and Haldane's inhibitory growth models were used to obtain maximum specific growth rate (micro(max)), half saturation (K(s)) and substrate inhibition (K(i)) constant for pyridine by using S. putrefaciens and B. sphaericus. The high value of K(i) for S. putrefaciens than B. sphaericus indicates that the inhibition effect can be observed only in a high concentration range. The S. putrefaciens degrades pyridine with a faster rate than B. sphaericus. S. putrefaciens can be used effectively for the treatment of pyridine bearing wastewater and as an inoculum in a biofilter treating pyridine-laden gas.
Collapse
Affiliation(s)
- Anil Kumar Mathur
- Biotechnology Department, Motilal Nehru National Institute of Technology, Allahabad, India
| | | | | | | |
Collapse
|
20
|
Bai Y, Sun Q, Zhao C, Wen D, Tang X. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp. strain BW001. Biodegradation 2008; 19:915-26. [PMID: 18437507 DOI: 10.1007/s10532-008-9193-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 04/04/2008] [Indexed: 11/24/2022]
Abstract
A bacterial strain using pyridine as sole carbon, nitrogen and energy source was isolated from the activated sludge of a coking wastewater treatment plant. By means of morphologic observation, physiological characteristics study and 16S rRNA gene sequence analysis, the strain was identified as the species of Paracoccus. The strain could degrade 2,614 mg l(-1) of pyridine completely within 49.5 h. Experiment designed to track the metabolic pathway showed that pyridine ring was cleaved between the C2 and N, then the mineralization of the carbonous intermediate products may comply with the early proposed pathway and the transformation of the nitrogen may proceed on a new pathway of simultaneous heterotrophic nitrification and aerobic denitrification. During the degradation, NH3-N occurred and increased along with the decrease of pyridine in the solution; but the total nitrogen decreased steadily and equaled to the quantity of NH3-N when pyridine was degraded completely. Adding glucose into the medium as the extra carbon source would expedite the biodegradation of pyridine and the transformation of the nitrogen. The fragments of nirS gene and nosZ gene were amplified which implied that the BW001 had the potential abilities to reduce NO2- to NO and/or N2O, and then to N2.
Collapse
Affiliation(s)
- Yaohui Bai
- Department of Environmental Science, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Mudliar SN, Padoley KV, Bhatt P, Sureshkumar M, Lokhande SK, Pandey RA, Vaidya AN. Pyridine biodegradation in a novel rotating rope bioreactor. BIORESOURCE TECHNOLOGY 2008; 99:1044-51. [PMID: 17449244 DOI: 10.1016/j.biortech.2007.02.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 02/28/2007] [Accepted: 02/28/2007] [Indexed: 05/15/2023]
Abstract
A novel immobilised bioreactor has been developed especially for the treatment of pollutants characterized by high volatility along with high water solubility and low microbial yields. The new bioreactor referred to as the rotating rope bioreactor (RRB) provides higher interfacial area (per unit reactor liquid volume) along with high oxygen mass transfer rate, greater microbial culture stability; and consequently higher substrate loadings and removal rates in comparison to other conventional rectors for the treatment of volatile compounds. Pyridine was used as a model compound to demonstrate the enhanced performance with RRB, when compared to that reported with other conventional bioreactors. The experimental results indicate that the novel RRB system is able to degrade pyridine with removal efficiency of more than 85% at higher pyridine concentration (up to 1000 mg/l) and loading [up to 400 mg/m(2)/h (66.86 g/m(3)/h)], with a shorter hydraulic retention time (9-18 h). The reactor has been in operation for the past 15 months and no loss of activity has been observed.
Collapse
Affiliation(s)
- S N Mudliar
- National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India.
| | | | | | | | | | | | | |
Collapse
|
22
|
Biodegradation of pyridine by an isolated bacterial consortium/strain and bio-augmentation of strain into activated sludge to enhance pyridine biodegradation. Biodegradation 2008; 19:717-23. [DOI: 10.1007/s10532-008-9176-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Accepted: 01/15/2008] [Indexed: 11/25/2022]
|
23
|
Songhu Y, Yanchao H, Dajun R, Xiaohua L. Degradation of nitrogen-heterocyclic compounds by anodic oxidation and electro-Fenton methods. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2007; 79:759-64. [PMID: 17710920 DOI: 10.2175/106143006x115354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study describes the degradation of nitrogen-heterocyclic compounds (NHCs) by anodic oxidation and electro-Fenton. Using indole as a model nitrogen-heterocyclic compound, the removal of indole reached 68% and 97% by anodic oxidation and electro-Fenton, respectively, while the decay of TOC was 15% and 38% correspondingly. By the analysis of ultraviolet-visible spectra and liquid chromatography/mass spectrum, the degradation mechanism of indole by electro-Fenton was proposed as hydroxyl oxidation and anodic oxidation. The degradation of other NHCs including quinoline, isoquinoline and pyridine by anodic oxidation and electro-Fenton revealed the same sequence: quinoline approximately equal isoquinoline > indole >> pyridine. A significant correlation between ln k (natural logarithm of rate constants) and E(LUMO) (the energy of the lowest unoccupied molecular orbit) was obtained by quantitative structure-activity relationship analysis. Degradation of coking plant wastewater showed the removal of COD and TOC were 42% and 22% respectively after 180 min treatment by electro-Fenton.
Collapse
Affiliation(s)
- Yuan Songhu
- Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | | | | | | |
Collapse
|
24
|
Cuny P, Acquaviva M, Gilewicz M. Phenanthrene degradation, emulsification and surface tension activities of apseudomonas putidastrain isolated from a coastal oil contaminated microbial mat. ACTA ACUST UNITED AC 2004. [DOI: 10.1080/00785236.2004.10410236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Zhao H, Xu S, Zhong J, Bao X. Kinetic study on the photo-catalytic degradation of pyridine in TiO2 suspension systems. Catal Today 2004. [DOI: 10.1016/j.cattod.2004.06.086] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|