1
|
Beykou M, Bousgouni V, Moser N, Georgiou P, Bakal C. Biocompatibility characterisation of CMOS-based Lab-on-Chip electrochemical sensors for in vitro cancer cell culture applications. Biosens Bioelectron 2024; 262:116513. [PMID: 38941688 DOI: 10.1016/j.bios.2024.116513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Lab-on-Chip electrochemical sensors, such as Ion-Sensitive Field-Effect Transistors (ISFETs), are being developed for use in point-of-care diagnostics, such as pH detection of tumour microenvironments, due to their integration with standard Complementary Metal Oxide Semiconductor (CMOS) technology. With this approach, the passivation of the CMOS process is used as a sensing layer to minimise post-processing, and Silicon Nitride (Si3N4) is the most common material at the microchip surface. ISFETs have the potential to be used for cell-based assays however, there is a poor understanding of the biocompatibility of microchip surfaces. Here, we quantitatively evaluated cell adhesion, morphogenesis, proliferation and mechano-responsiveness of both normal and cancer cells cultured on a Si3N4, sensor surface. We demonstrate that both normal and cancer cell adhesion decreased on Si3N4. Activation of the mechano-responsive transcription regulators, YAP/TAZ, are significantly decreased in cancer cells on Si3N4 in comparison to standard cell culture plastic, whilst proliferation marker, Ki67, expression markedly increased. Non-tumorigenic cells on chip showed less sensitivity to culture on Si3N4 than cancer cells. Treatment with extracellular matrix components increased cell adhesion in normal and cancer cell cultures, surpassing the adhesiveness of plastic alone. Moreover, poly-l-ornithine and laminin treatment restored YAP/TAZ levels in both non-tumorigenic and cancer cells to levels comparable to those observed on plastic. Thus, engineering the electrochemical sensor surface with treatments will provide a more physiologically relevant environment for future cell-based assay development on chip.
Collapse
Affiliation(s)
- Melina Beykou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Vicky Bousgouni
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK
| | - Nicolas Moser
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK
| | - Pantelis Georgiou
- Imperial College London, Department of Electrical and Electronic Engineering, Circuits and Systems Group, South Kensington Campus, London, SW7 2AZ, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, Dynamical Cell Systems, London, SW3 6JB, UK; Cancer Research UK Convergence Science Centre, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
|
3
|
Fedi A, Vitale C, Giannoni P, Caluori G, Marrella A. Biosensors to Monitor Cell Activity in 3D Hydrogel-Based Tissue Models. SENSORS (BASEL, SWITZERLAND) 2022; 22:1517. [PMID: 35214418 PMCID: PMC8879987 DOI: 10.3390/s22041517] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/06/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Three-dimensional (3D) culture models have gained relevant interest in tissue engineering and drug discovery owing to their suitability to reproduce in vitro some key aspects of human tissues and to provide predictive information for in vivo tests. In this context, the use of hydrogels as artificial extracellular matrices is of paramount relevance, since they allow closer recapitulation of (patho)physiological features of human tissues. However, most of the analyses aimed at characterizing these models are based on time-consuming and endpoint assays, which can provide only static and limited data on cellular behavior. On the other hand, biosensing systems could be adopted to measure on-line cellular activity, as currently performed in bi-dimensional, i.e., monolayer, cell culture systems; however, their translation and integration within 3D hydrogel-based systems is not straight forward, due to the geometry and materials properties of these advanced cell culturing approaches. Therefore, researchers have adopted different strategies, through the development of biochemical, electrochemical and optical sensors, but challenges still remain in employing these devices. In this review, after examining recent advances in adapting existing biosensors from traditional cell monolayers to polymeric 3D cells cultures, we will focus on novel designs and outcomes of a range of biosensors specifically developed to provide real-time analysis of hydrogel-based cultures.
Collapse
Affiliation(s)
- Arianna Fedi
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Computer Science, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, 16126 Genoa, Italy
| | - Chiara Vitale
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy;
| | - Guido Caluori
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Pessac, France;
- INSERM UMR 1045, Cardiothoracic Research Center of Bordeaux, University of Bordeaux, 33600 Pessac, France
| | - Alessandra Marrella
- National Research Council of Italy, Institute of Electronics, Computer and Telecommunication Engineering (IEIIT), 16149 Genoa, Italy; (A.F.); (C.V.)
| |
Collapse
|
4
|
Azimzadeh M, Khashayar P, Amereh M, Tasnim N, Hoorfar M, Akbari M. Microfluidic-Based Oxygen (O 2) Sensors for On-Chip Monitoring of Cell, Tissue and Organ Metabolism. BIOSENSORS 2021; 12:bios12010006. [PMID: 35049634 PMCID: PMC8774018 DOI: 10.3390/bios12010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 05/08/2023]
Abstract
Oxygen (O2) quantification is essential for assessing cell metabolism, and its consumption in cell culture is an important indicator of cell viability. Recent advances in microfluidics have made O2 sensing a crucial feature for organ-on-chip (OOC) devices for various biomedical applications. OOC O2 sensors can be categorized, based on their transducer type, into two main groups, optical and electrochemical. In this review, we provide an overview of on-chip O2 sensors integrated with the OOC devices and evaluate their advantages and disadvantages. Recent innovations in optical O2 sensors integrated with OOCs are discussed in four main categories: (i) basic luminescence-based sensors; (ii) microparticle-based sensors; (iii) nano-enabled sensors; and (iv) commercial probes and portable devices. Furthermore, we discuss recent advancements in electrochemical sensors in five main categories: (i) novel configurations in Clark-type sensors; (ii) novel materials (e.g., polymers, O2 scavenging and passivation materials); (iii) nano-enabled electrochemical sensors; (iv) novel designs and fabrication techniques; and (v) commercial and portable electrochemical readouts. Together, this review provides a comprehensive overview of the current advances in the design, fabrication and application of optical and electrochemical O2 sensors.
Collapse
Affiliation(s)
- Mostafa Azimzadeh
- Medical Nanotechnology & Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 89195-999, Iran;
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd 89195-999, Iran
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd 89165-887, Iran
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, 9050 Ghent, Belgium;
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Nishat Tasnim
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Mina Hoorfar
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Correspondence: (M.H.); (M.A.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada;
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
- Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
- Correspondence: (M.H.); (M.A.)
| |
Collapse
|
5
|
Tsai SY, Huang CC, Chen PH, Tripathi A, Wang YR, Wang YL, Chen JC. Rapid Drug-Screening Platform Using Field-Effect Transistor-Based Biosensors: A Study of Extracellular Drug Effects on Transmembrane Potentials. Anal Chem 2021; 94:2679-2685. [PMID: 34919373 DOI: 10.1021/acs.analchem.1c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ion channel-modulating drugs play an important role in treating cardiovascular diseases. Facing the demands for continuous monitoring of drug effectiveness, the conventional techniques have become limited when investigating a long-term cellular physiology. To address the challenge, we propose a drug-screening platform using the stretch-out electrical double layer (EDL)-gated field-effect transistor-based biosensors (BioFETs). In this work, BioFETs were utilized to amplify electrophysiological signals from the mammalian cardiomyocytes (H9c2). The stretch-out configuration avoided a chemical corrosion on FETs and prolonged the lifetime of a BioFET system. A physical model is presented to elucidate the signal response to a drug effect on a cell. Fibronectin and gelatin were coated on sensors and served as the adhesive layers where H9c2 cells attached. BioFETs demonstrated an ability to qualitatively distinguish a depolarization and a polarization of the cytomembranes. The signal responses to the changes of transmembrane potentials were monitored in real-time, and they were highly correlated. The effects of nifedipine and calcium ions on cellular electrophysiology were examined and discussed. Due to the capability of a rapid detection, a prolonged lifetime, and an excellent sensitivity to an electrical change, a stretch-out EDL-gated BioFET can be a drug-screening platform for ion channel modulators.
Collapse
Affiliation(s)
- Shu-Yi Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Chih-Cheng Huang
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Po-Hsuan Chen
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Adarsh Tripathi
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yu-Rong Wang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China
| | - Yu-Lin Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.,Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, Republic of China.,Catholic Mercy Hospital, Catholic Mercy Medical Foundation, Hsinchu 30342, Taiwan, Republic of China
| |
Collapse
|
6
|
Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. SENSORS 2021; 21:s21217277. [PMID: 34770587 PMCID: PMC8588202 DOI: 10.3390/s21217277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Potentiometric pH measurements have long been used for the bioanalysis of biofluids, tissues, and cells. A glass pH electrode and ion-sensitive field-effect transistor (ISFET) can measure the time course of pH changes in a microenvironment as a result of physiological and biological activities. However, the signal interpretation of passive pH sensing is difficult because many biological activities influence the spatiotemporal distribution of pH in the microenvironment. Moreover, time course measurement suffers from stability because of gradual drifts in signaling. To address these issues, an active method of pH sensing was developed for the analysis of the cell barrier in vitro. The microenvironmental pH is temporarily perturbed by introducing a low concentration of weak acid (NH4+) or base (CH3COO−) to cells cultured on the gate insulator of ISFET using a superfusion system. Considering the pH perturbation originates from the semi-permeability of lipid bilayer plasma membranes, induced proton dynamics are used for analyzing the biomembrane barriers against ions and hydrated species following interaction with exogenous reagents. The unique feature of the method is the sensitivity to the formation of transmembrane pores as small as a proton (H+), enabling the analysis of cell–nanomaterial interactions at the molecular level. The new modality of cell analysis using ISFET is expected to be applied to nanomedicine, drug screening, and tissue engineering.
Collapse
|
7
|
Fuchs S, Johansson S, Tjell AØ, Werr G, Mayr T, Tenje M. In-Line Analysis of Organ-on-Chip Systems with Sensors: Integration, Fabrication, Challenges, and Potential. ACS Biomater Sci Eng 2021; 7:2926-2948. [PMID: 34133114 PMCID: PMC8278381 DOI: 10.1021/acsbiomaterials.0c01110] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 05/27/2021] [Indexed: 12/31/2022]
Abstract
Organ-on-chip systems are promising new in vitro research tools in medical, pharmaceutical, and biological research. Their main benefit, compared to standard cell culture platforms, lies in the improved in vivo resemblance of the cell culture environment. A critical aspect of these systems is the ability to monitor both the cell culture conditions and biological responses of the cultured cells, such as proliferation and differentiation rates, release of signaling molecules, and metabolic activity. Today, this is mostly done using microscopy techniques and off-chip analytical techniques and assays. Integrating in situ analysis methods on-chip enables improved time resolution, continuous measurements, and a faster read-out; hence, more information can be obtained from the developed organ and disease models. Integrated electrical, electrochemical, and optical sensors have been developed and used for chemical analysis in lab-on-a-chip systems for many years, and recently some of these sensing principles have started to find use in organ-on-chip systems as well. This perspective review describes the basic sensing principles, sensor fabrication, and sensor integration in organ-on-chip systems. The review also presents the current state of the art of integrated sensors and discusses future potential. We bring a technological perspective, with the aim of introducing in-line sensing and its promise to advance organ-on-chip systems and the challenges that lie in the integration to researchers without expertise in sensor technology.
Collapse
Affiliation(s)
- Stefanie Fuchs
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Sofia Johansson
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Anders Ø. Tjell
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Gabriel Werr
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| | - Torsten Mayr
- Institute
for Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Maria Tenje
- Department
of Materials Science and Engineering, Science for Life Laboratory, Uppsala University, Box 35, 751 03 Uppsala, Sweden
| |
Collapse
|
8
|
Hatano H, Goda T, Matsumoto A, Miyahara Y. Induced Proton Dynamics on Semiconductor Surfaces for Sensing Tight Junction Formation Enhanced by an Extracellular Matrix and Drug. ACS Sens 2019; 4:3195-3202. [PMID: 31763825 DOI: 10.1021/acssensors.9b01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the fields of tissue engineering and drug discovery, confirming the formation and maturation of epithelial cell tight junctions (TJs), which are necessary for blocking pathogenic invasion and absorption of nutrients and ions, at a high spatiotemporal resolution is essential. We previously developed a system of monitoring pH perturbation induced by weak acid exposure to cells cultured on an ion-sensitive field-effect transistor that enables a sensitive and specific detection of biomembrane injuries and TJ breakdowns caused by external stimuli such as nanomaterials and cytotoxins. In this study, we monitor time-lapse changes in the paracellular diffusion of growing epithelial cell monolayers using the pH perturbation assay as well as conventional permeability and trans-epithelial electrical resistance assays. The effects of the extracellular matrix and a TJ potentiator (KN-93) on epithelial TJ formation are evaluated. TJ formations were promoted on the substrate coated with Matrigel more than on the one coated with poly(l-lysine). KN-93 accelerated TJ formations in a dose-dependent manner. The pH perturbation assay denoted a longer incubation time for the completion of TJ formation compared with the conventional assays under the same conditions. Importantly, the pH perturbation assay is able to rigorously evaluate TJ formation, as the assay uses protons as the smallest indicator for detecting paracellular gaps, and the pH perturbation is specific to TJ alterations. These features for in vitro TJ evaluation using proton dynamics are advantageous for applications in tissue engineering and drug development.
Collapse
Affiliation(s)
- Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Nano Innovation Institute, Inner Mongolia University for Nationalities, No. 22 Huoline Street, Tongliao, Inner Mongolia 028000, P. R. China
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
9
|
Shi J, Tong L, Tong W, Chen H, Lan M, Sun X, Zhu Y. Current progress in long-term and continuous cell metabolite detection using microfluidics. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Santbergen MJ, van der Zande M, Bouwmeester H, Nielen MW. Online and in situ analysis of organs-on-a-chip. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Hatano H, Goda T, Matsumoto A, Miyahara Y. Induced Proton Perturbation for Sensitive and Selective Detection of Tight Junction Breakdown. Anal Chem 2018; 91:3525-3532. [DOI: 10.1021/acs.analchem.8b05237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
12
|
Kieninger J, Weltin A, Flamm H, Urban GA. Microsensor systems for cell metabolism - from 2D culture to organ-on-chip. LAB ON A CHIP 2018; 18:1274-1291. [PMID: 29619452 DOI: 10.1039/c7lc00942a] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Microsensor systems for cell metabolism are essential tools for investigation and standardization in cell culture. Electrochemical and optical read-out schemes dominate, which enable the marker-free, continuous, online recording of transient effects and deliver information beyond microscopy and end-point tests. There has been much progress in microfluidics and microsensors, but the translation of both into standard cell culture procedures is still limited. Within this critical review, we discuss different cell culture formats ranging from standard culture vessels to dedicated microfluidic platforms. Key aspects are the appropriate supply of cells, mass transport of metabolites to the sensors and generation of stimuli. Microfluidics enable the transition from static to dynamic conditions in culture and measurement. We illustrate the parameters oxygen (respiration), pH (acidification), glucose and lactate (energy metabolism) as well as short-lived reactive species (ROS/RNS) from the perspective of microsensor integration in 2D and 3D cell culture. We discuss different sensor principles and types, along with their limitations, microfabrication technologies and materials. The state-of-the-art of microsensor platforms for cell culture is discussed with respect to sensor performance, the number of parameters and timescale of application. That includes the advances from 2D culture to the increasingly important 3D approaches, with specific requirements for organotypic microtissues, spheroids and solid matrix cultures. We conclude on the current progress, potential, benefits and limitations of cell culture monitoring systems from monolayer culture to organ-on-chip systems.
Collapse
Affiliation(s)
- Jochen Kieninger
- Laboratory for Sensors, IMTEK - Department of Microsystems Engineering, University of Freiburg, Germany.
| | | | | | | |
Collapse
|
13
|
Imaizumi Y, Goda T, Schaffhauser DF, Okada JI, Matsumoto A, Miyahara Y. Proton-sensing transistor systems for detecting ion leakage from plasma membranes under chemical stimuli. Acta Biomater 2017; 50:502-509. [PMID: 27956364 DOI: 10.1016/j.actbio.2016.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023]
Abstract
The membrane integrity of live cells is routinely evaluated for cytotoxicity induced by chemical or physical stimuli. Recent progress in bioengineering means that high-quality toxicity validation is required. Here, we report a pH-sensitive transistor system developed for the continuous monitoring of ion leakage from cell membranes upon challenge by toxic compounds. Temporal changes in pH were generated with high reproducibility via periodic flushing of HepG2 cells on a gate insulator of a proton-sensitive field-effect transistor with isotonic buffer solutions with/without NH4Cl. The pH transients at the point of NH4Cl addition/withdrawal originated from the free permeation of NH3 across the semi-permeable plasma membranes, and the proton sponge effect produced by the ammonia equilibrium. Irreversible attenuation of the pH transient was observed when the cells were subjected to a membrane-toxic reagent. Experiments and simulations proved that the decrease in the pH transient was proportional to the area of the ion-permeable pores on the damaged plasma membranes. The pH signal was correlated with the degree of hemolysis produced by the model reagents. The pH assay was sensitive to the formation of molecularly sized pores that were otherwise not measurable via detection of the leakage of hemoglobin, because the hydrodynamic radius of hemoglobin was greater than 3.1nm in the hemolysis assay. The pH transient was not disturbed by inherent ion-transporter activity. The ISFET assay was applied to a wide variety of cell types. The system presented here is fast, sensitive, practical and scalable, and will be useful for validating cytotoxins and nanomaterials. STATEMENT OF SIGNIFICANCE The plasma membrane toxicity and hemolysis are widely and routinely evaluated in biomaterials science and biomedical engineering. Despite the recent development of a variety of methods/materials for efficient gene/drug delivery systems to the cytosol, the methodologies for safety validation remain unchanged in many years while leaving some major issues such as sensitivity, accuracy, and fast response. The paper describes a new way of measuring the plasma membrane leakage in real time upon challenge by toxic reagents using a solid-state transistor that is sensitive to proton as the smallest indicator. Our system was reliable and was correlated to the results from hemolysis assay with advanced features in sensitivity, fast response, and wide applicability to chemical species. The downsizing and integration features of semiconductor fabrication technologies may realize cytotoxicity assays at the single-cell level in multi-parallel.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan.
| | - Daniel F Schaffhauser
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Jun-Ichi Okada
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062 Japan.
| |
Collapse
|
14
|
Imaizumi Y, Goda T, Matsumoto A, Miyahara Y. Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems. Analyst 2017; 142:3451-3458. [DOI: 10.1039/c7an00502d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membrane injury and apoptosis of mammalian cells by chemical stimuli were distinguished using ammonia-perfused continuous pH-sensing systems.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 101-0062 Tokyo
- Japan
| |
Collapse
|
15
|
Imaizumi Y, Goda T, Toya Y, Matsumoto A, Miyahara Y. Oleyl group-functionalized insulating gate transistors for measuring extracellular pH of floating cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2016; 17:337-345. [PMID: 27877886 PMCID: PMC5101916 DOI: 10.1080/14686996.2016.1198217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 05/23/2023]
Abstract
The extracellular ionic microenvironment has a close relationship to biological activities such as by cellular respiration, cancer development, and immune response. A system composed of ion-sensitive field-effect transistors (ISFET), cells, and program-controlled fluidics has enabled the acquisition of real-time information about the integrity of the cell membrane via pH measurement. Here we aimed to extend this system toward floating cells such as T lymphocytes for investigating complement activation and pharmacokinetics through alternations in the plasma membrane integrity. We functionalized the surface of tantalum oxide gate insulator of ISFET with oleyl-tethered phosphonic acid for interacting with the plasma membranes of floating cells without affecting the cell signaling. The surface modification was characterized by X-ray photoelectron spectroscopy and water contact angle measurements. The Nernst response of -37.8 mV/pH was obtained for the surface-modified ISFET at 37 °C. The oleyl group-functionalized gate insulator successfully captured Jurkat T cells in a fluidic condition without acute cytotoxicity. The system was able to record the time course of pH changes at the cells/ISFET interface during the process of instant addition and withdrawal of ammonium chloride. Further, the plasma membrane injury of floating cells after exposure by detergent Triton™ X-100 was successfully determined using the modified ISFET with enhanced sensitivity as compared with conventional hemolysis assays.
Collapse
Affiliation(s)
- Yuki Imaizumi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yutaro Toya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
16
|
Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor. BIOSENSORS-BASEL 2016; 6:11. [PMID: 27043644 PMCID: PMC4931471 DOI: 10.3390/bios6020011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 12/01/2022]
Abstract
We present a novel method for the rapid measurement of pH fluxes at close proximity to the surface of the plasma membrane in mammalian cells using an ion-sensitive field-effect transistor (ISFET). In conjuction with an efficient continuous superfusion system, the ISFET sensor was capable of recording rapid changes in pH at the cells’ surface induced by intervals of ammonia loading and unloading, even when using highly buffered solutions. Furthermore, the system was able to isolate physiologically relevant signals by not only detecting the transients caused by ammonia loading and unloading, but display steady-state signals as would be expected by a proton transport-mediated influence on the extracellular proton-gradient. Proof of concept was demonstrated through the use of 5-(N-ethyl-N-isopropyl)amiloride (EIPA), a small molecule inhibitor of sodium/hydrogen exchangers (NHE). As the primary transporter responsible for proton balance during cellular regulation of pH, non-electrogenic NHE transport is notoriously difficult to detect with traditional methods. Using the NHE positive cell lines, Chinese hamster ovary (CHO) cells and NHE3-reconstituted mouse skin fibroblasts (MSF), the sensor exhibited a significant response to EIPA inhibition, whereas NHE-deficient MSF cells were unaffected by application of the inhibitor.
Collapse
|
17
|
Pettersen EO, Ebbesen P, Gieling RG, Williams KJ, Dubois L, Lambin P, Ward C, Meehan J, Kunkler IH, Langdon SP, Ree AH, Flatmark K, Lyng H, Calzada MJ, Peso LD, Landazuri MO, Görlach A, Flamm H, Kieninger J, Urban G, Weltin A, Singleton DC, Haider S, Buffa FM, Harris AL, Scozzafava A, Supuran CT, Moser I, Jobst G, Busk M, Toustrup K, Overgaard J, Alsner J, Pouyssegur J, Chiche J, Mazure N, Marchiq I, Parks S, Ahmed A, Ashcroft M, Pastorekova S, Cao Y, Rouschop KM, Wouters BG, Koritzinsky M, Mujcic H, Cojocari D. Targeting tumour hypoxia to prevent cancer metastasis. From biology, biosensing and technology to drug development: the METOXIA consortium. J Enzyme Inhib Med Chem 2014; 30:689-721. [PMID: 25347767 DOI: 10.3109/14756366.2014.966704] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/15/2014] [Indexed: 01/06/2023] Open
Abstract
The hypoxic areas of solid cancers represent a negative prognostic factor irrespective of which treatment modality is chosen for the patient. Still, after almost 80 years of focus on the problems created by hypoxia in solid tumours, we still largely lack methods to deal efficiently with these treatment-resistant cells. The consequences of this lack may be serious for many patients: Not only is there a negative correlation between the hypoxic fraction in tumours and the outcome of radiotherapy as well as many types of chemotherapy, a correlation has been shown between the hypoxic fraction in tumours and cancer metastasis. Thus, on a fundamental basis the great variety of problems related to hypoxia in cancer treatment has to do with the broad range of functions oxygen (and lack of oxygen) have in cells and tissues. Therefore, activation-deactivation of oxygen-regulated cascades related to metabolism or external signalling are important areas for the identification of mechanisms as potential targets for hypoxia-specific treatment. Also the chemistry related to reactive oxygen radicals (ROS) and the biological handling of ROS are part of the problem complex. The problem is further complicated by the great variety in oxygen concentrations found in tissues. For tumour hypoxia to be used as a marker for individualisation of treatment there is a need for non-invasive methods to measure oxygen routinely in patient tumours. A large-scale collaborative EU-financed project 2009-2014 denoted METOXIA has studied all the mentioned aspects of hypoxia with the aim of selecting potential targets for new hypoxia-specific therapy and develop the first stage of tests for this therapy. A new non-invasive PET-imaging method based on the 2-nitroimidazole [(18)F]-HX4 was found to be promising in a clinical trial on NSCLC patients. New preclinical models for testing of the metastatic potential of cells were developed, both in vitro (2D as well as 3D models) and in mice (orthotopic grafting). Low density quantitative real-time polymerase chain reaction (qPCR)-based assays were developed measuring multiple hypoxia-responsive markers in parallel to identify tumour hypoxia-related patterns of gene expression. As possible targets for new therapy two main regulatory cascades were prioritised: The hypoxia-inducible-factor (HIF)-regulated cascades operating at moderate to weak hypoxia (<1% O(2)), and the unfolded protein response (UPR) activated by endoplasmatic reticulum (ER) stress and operating at more severe hypoxia (<0.2%). The prioritised targets were the HIF-regulated proteins carbonic anhydrase IX (CAIX), the lactate transporter MCT4 and the PERK/eIF2α/ATF4-arm of the UPR. The METOXIA project has developed patented compounds targeting CAIX with a preclinical documented effect. Since hypoxia-specific treatments alone are not curative they will have to be combined with traditional anti-cancer therapy to eradicate the aerobic cancer cell population as well.
Collapse
|
18
|
Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P. Cell-based biosensors and their application in biomedicine. Chem Rev 2014; 114:6423-61. [PMID: 24905074 DOI: 10.1021/cr2003129] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Qingjun Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of the Ministry of Education, Department of Biomedical Engineering, Zhejiang University , Hangzhou 310027, China
| | | | | | | | | | | |
Collapse
|
19
|
Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban GA. Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. LAB ON A CHIP 2014; 14:138-46. [PMID: 24217869 DOI: 10.1039/c3lc50759a] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present a novel, multiparametric microphysiometry system for the dynamic online monitoring of human cancer cell metabolism. The optically transparent, modular, hybrid microsystem is based on a glass chip and combines a cell cultivation chamber, microfluidics and metabolic monitoring with fully integrated chemo- and biosensors. pH and oxygen are measured in the cell culture area, and biosensors for lactate and glucose are connected downstream by microfluidics. The wafer-level fabrication features thin-film platinum and iridium oxide microelectrodes on a glass chip, microfluidics in an epoxy resist, a hybrid assembly and an on-chip reference electrode. The reliable analytical performance of the sensors in cell culture medium was demonstrated. The pH sensors exhibit a long-term stable, linear response. The oxygen sensors show a linear behaviour, which is also observed for low oxygen concentrations. Glucose and lactate measurements show a linear, long-term stable, selective and reversible behaviour in the desired range. T98G human brain cancer cells were cultivated and cell culture metabolism was measured on-chip. Stop/flow cycles were applied and extracellular acidification, respiration, glucose consumption and lactate production were quantified. Long-term metabolic rates were determined and all parameters could be measured in the outlet channel. A placement downstream of the cell cultivation area for biosensors was realised. A highly effective medium exchange and undiluted sampling from the cell culture chamber with low flow rates (2 μl min(-1)) and low volumes (15 μl per cycle) were achieved. The drug screening application was demonstrated by detecting alteration and recovery effects of cellular metabolism induced by the addition of substances to the medium.
Collapse
Affiliation(s)
- Andreas Weltin
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Akhond M, Farhangfar A. Hydroquinone monosulfonate-doped polypyrrole electrodeposited on very low cost commercial junction field effect transistors as a novel ion sensitive field effect transistor pH sensor. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013. [DOI: 10.1007/s13738-013-0367-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Geldmacher Y, Oleszak M, Sheldrick WS. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.046] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Hu N, Wu C, Ha D, Wang T, Liu Q, Wang P. A novel microphysiometer based on high sensitivity LAPS and microfluidic system for cellular metabolism study and rapid drug screening. Biosens Bioelectron 2012; 40:167-73. [PMID: 22832132 DOI: 10.1016/j.bios.2012.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 06/15/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
Abstract
This study presents a novel microphysiometer for studying the mechanism of cellular metabolism and drug effect. Based on the photocurrent amplification of light-addressable potentiometric sensor (LAPS), the constant voltage detection mode was introduced to enhance the detection sensitivity to replace the conventional constant current mode with the slow feedback rate. The photocurrent amplification of LAPS was improved by developing the sensor structure and fabrication processes. The sensor unit with microfluidic system was designed to detect the concentration change of cellular acidic metabolites in the extracellular microenvironment rapidly. Characteristic test experiments and cellular metabolism experiments were carried out to determine the performance of microphysiometer. The result showed that sensitivity of microphysiometer is significantly enhanced to sense the fluctuation of cellular metabolism rapidly and sensitively in real-time detection of living cells under physiological condition. With these improvements, the novel microphysiometer holds promise as a utility platform for studying cellular metabolism and evaluating drug effect.
Collapse
Affiliation(s)
- Ning Hu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | | | | | |
Collapse
|
23
|
Schaffhauser DF, Patti M, Goda T, Miyahara Y, Forster IC, Dittrich PS. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion. PLoS One 2012; 7:e39238. [PMID: 22792166 PMCID: PMC3390327 DOI: 10.1371/journal.pone.0039238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34) demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.
Collapse
Affiliation(s)
| | - Monica Patti
- Institute for Physiology, University of Zurich, Zurich, Switzerland
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (PSD); (ICF); (YM)
| | - Ian Cameron Forster
- Institute for Physiology, University of Zurich, Zurich, Switzerland
- * E-mail: (PSD); (ICF); (YM)
| | - Petra Stephanie Dittrich
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail: (PSD); (ICF); (YM)
| |
Collapse
|
24
|
Sakaue H, Dan R, Shimizu M, Kazama H. Note: in vivo pH imaging system using luminescent indicator and color camera. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:076106. [PMID: 22852741 DOI: 10.1063/1.4737875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microscopic in vivo pH imaging system is developed that can capture the luminescent- and color-imaging. The former gives a quantitative measurement of a pH distribution in vivo. The latter captures the structural information that can be overlaid to the pH distribution for correlating the structure of a specimen and its pH distribution. By using a digital color camera, a luminescent image as well as a color image is obtained. The system uses HPTS (8-hydroxypyrene-1,3,6-trisulfonate) as a luminescent pH indicator for the luminescent imaging. Filter units are mounted in the microscope, which extract two luminescent images for using the excitation-ratio method. A ratio of the two images is converted to a pH distribution through a priori pH calibration. An application of the system to epidermal cells of Lactuca Sativa L is shown.
Collapse
Affiliation(s)
- Hirotaka Sakaue
- Aerospace Research and Development Directorate, Japan Aerospace Exploration Agency, Chofu, Tokyo 182-8522, Japan
| | | | | | | |
Collapse
|
25
|
Nazif MA, Rubbiani R, Alborzinia H, Kitanovic I, Wölfl S, Ott I, Sheldrick WS. Cytotoxicity and cellular impact of dinuclear organoiridium DNA intercalators and nucleases with long rigid bridging ligands. Dalton Trans 2012; 41:5587-98. [PMID: 22415580 DOI: 10.1039/c2dt00011c] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DNA binding modes and cleavage properties of novel dinuclear Ir(III) polypyridyl (pp) complexes [{(η(5)-C(5)Me(5))Ir(pp)}(2)(μ-B)](CF(3)SO(3))(4) depend on the lengths of their rigid bridging dipyridinyl ligands B. Mono-intercalation and strong DNA cleavage properties were observed for the dipyrido[2,3-a:2',3'-c]phenazine (dppz) complexes 1 (B = 4-[(E)-2-(4-pyridinyl)ethenyl]pyridine) and 3 (B = 4-(2-pyridin-4-ylethynyl)pyridine), whose intracationic Ir···Ir' distances are about 13.1 and 13.3 Å, respectively. In contrast, UV/Vis and CD spectra were in accordance with a stable intertwined bis-intercalation mode for pairs of cations of 5 (B = 1,4-di(2-pyridin-4-ylethynyl)benzene), whose much longer Ir···Ir' distance of 20.6 Å allows a stack of five aromatic chromophores to be sandwiched between its effectively parallel dppz ligands. Whereas both 1 and 3 cleaved DNA in the dark, complex 5 exhibited only photoinduced nuclease activity. A significantly higher antiproliferative activity towards MCF-7 breast carcinoma cells was observed for the nucleases 1 and 3, whose IC(50) values of 0.61 and 0.49 were much lower than that of 2.2 μM for bis-intercalator 5. Values of 3.8 μM, only slightly higher than that of 5, were recorded for the 5,6-dimethylphenanthroline complexes 4 and 6, whose bridging ligands are identical to those of 3 and 5, respectively. Marked antileukemic activity (IC(50) = 6-7 μM) associated with increased levels of reactive oxygen species and apoptosis induction was recorded for both 3 and 5 towards Jurkat cells at concentrations of 5 μM and above. Online studies with a sensor chip system indicated that 5 μM solutions of these complexes invoke a rapid and massive reduction in MCF-7 cell respiration.
Collapse
Affiliation(s)
- Mhd Ali Nazif
- Fakultät für Chemie und Biochemie, Ruhr-Universität-Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Geldmacher Y, Splith K, Kitanovic I, Alborzinia H, Can S, Rubbiani R, Nazif MA, Wefelmeier P, Prokop A, Ott I, Wölfl S, Neundorf I, Sheldrick WS. Cellular impact and selectivity of half-sandwich organorhodium(III) anticancer complexes and their organoiridium(III) and trichloridorhodium(III) counterparts. J Biol Inorg Chem 2012; 17:631-46. [DOI: 10.1007/s00775-012-0883-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
|
27
|
Di Capua R, Barra M, Santoro F, Viggiano D, Ambrosino P, Soldovieri MV, Taglialatela M, Tagliatela M, Cassinese A. Towards the realization of label-free biosensors through impedance spectroscopy integrated with IDES technology. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2012; 41:249-56. [PMID: 22237602 DOI: 10.1007/s00249-011-0782-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 11/28/2022]
Abstract
Impedance spectroscopy (IS) is a powerful technique for analysis of the complex electrical impedance of a large variety of biological systems, because it is sensitive both to surface phenomena and to changes of bulk properties. A simple and convenient method of analysis of cell properties by IS is described. An interdigitated electrodes configuration was used for the measurements; human epithelial cells were grown on the device to investigate the complex dielectric response as a function of frequency, in order to test the suitability of the device for use as a label-free biosensor. To test the ability of the device to detect channels in the cell membrane, the effect of drugs known to affect membrane integrity was also investigated. The frequency response of the admittance (i.e. the reciprocal of the impedance) can be well fitted by a model based on very simple assumptions about the cells coating the device surface and the current flow; from the calculations, membrane-specific capacitance and information about cell adhesion can be inferred. These preliminary efforts have shown that our configuration could lead to a label-free non-invasive technique for biosensing and cellular behavior monitoring which might prove useful in investigation of the basic properties of cells and the effect of drugs by estimation of some fundamental properties and modification of the electrical characteristics of the device.
Collapse
Affiliation(s)
- R Di Capua
- Health Sciences Department, University of Molise, Campobasso, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kasper C, Alborzinia H, Can S, Kitanovic I, Meyer A, Geldmacher Y, Oleszak M, Ott I, Wölfl S, Sheldrick WS. Synthesis and cellular impact of diene-ruthenium(II) complexes: a new class of organoruthenium anticancer agents. J Inorg Biochem 2011; 106:126-33. [PMID: 22115828 DOI: 10.1016/j.jinorgbio.2011.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/30/2011] [Accepted: 08/19/2011] [Indexed: 01/15/2023]
Abstract
The cytostatic properties and cellular effects of novel diene-ruthenium(II) complexes of the types OC-6-13-[RuCl(2)(pp)(cod)] 1-5 (pp=2,2'-bipyridyl (bpy), phen=1,10-phenanthroline (phen), 5,6-dimethylphenanthroline (5,6-Me2phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), ethylenediamine (en)) and OC-6-24-[RuCl{(Me(2)N)(2)CS}(pp)(cod)](CF(3)SO(3)) 6-8 (pp=phen, 5,6-Me(2)phen, dpq) have been studied for the human cancer cell lines MCF-7 and HT-29 and for Jurkat leukemia cells. CD spectra indicate that 7 causes a massive distortion of the CT DNA B double helix toward the A form. Whereas the neutral complexes 1, 2 and 5 exhibit only modest antiproliferative activity toward MCF-7 and HT-29 cells, the monocationic complexes are significantly more active, in particular the DNA-distorting complex 7 with its IC(50) values of 0.73 and 0.42 μM, respectively. As established by online monitoring with a cell-based sensor chip, this potent 5,6-Me(2)phen complex invokes dose-dependent decreases in MCF-7 cellular respiration and extracellular acidification rates and causes a time-delayed decrease in the impedance of the cell layers, that can be ascribed to cell death. Treatment of Jurkat cells with 7 leads to high concentrations of reactive oxygen species and the induction of apoptosis. The pronounced dose-dependent inhibition of oxygen consumption by isolated mice mitochondria indicates the involvement of an intrinsic mitochondrial pathway in the programmed cell death process.
Collapse
Affiliation(s)
- Christine Kasper
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
High-k dielectric Al₂O₃ nanowire and nanoplate field effect sensors for improved pH sensing. Biomed Microdevices 2011; 13:335-44. [PMID: 21203849 DOI: 10.1007/s10544-010-9497-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the last decade, field-effect transistors (FETs) with nanoscale dimensions have emerged as possible label-free biological and chemical sensors capable of highly sensitive detection of various entities and processes. While significant progress has been made towards improving their sensitivity, much is yet to be explored in the study of various critical parameters, such as the choice of a sensing dielectric, the choice of applied front and back gate biases, the design of the device dimensions, and many others. In this work, we present a process to fabricate nanowire and nanoplate FETs with Al(2)O(3) gate dielectrics and we compare these devices with FETs with SiO(2) gate dielectrics. The use of a high-k dielectric such as Al(2)O(3) allows for the physical thickness of the gate dielectric to be thicker without losing sensitivity to charge, which then reduces leakage currents and results in devices that are highly robust in fluid. This optimized process results in devices stable for up to 8 h in fluidic environments. Using pH sensing as a benchmark, we show the importance of optimizing the device bias, particularly the back gate bias which modulates the effective channel thickness. We also demonstrate that devices with Al(2)O(3) gate dielectrics exhibit superior sensitivity to pH when compared to devices with SiO(2) gate dielectrics. Finally, we show that when the effective electrical silicon channel thickness is on the order of the Debye length, device response to pH is virtually independent of device width. These silicon FET sensors could become integral components of future silicon based Lab on Chip systems.
Collapse
|
30
|
Wu YL, Hsu PY, Hsu CP, Wang CC, Lee LW, Lin JJ. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window. Biomed Microdevices 2011; 13:939-47. [PMID: 21695502 DOI: 10.1007/s10544-011-9563-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.
Collapse
Affiliation(s)
- You-Lin Wu
- Department of Electrical Engineering, National Chi Nan University, Puli, Nantou 54561, Taiwan ROC.
| | | | | | | | | | | |
Collapse
|
31
|
Highly cytotoxic substitutionally inert rhodium(III) tris(chelate) complexes: DNA binding modes and biological impact on human cancer cells. J Inorg Biochem 2011; 105:991-9. [PMID: 21569751 DOI: 10.1016/j.jinorgbio.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/14/2011] [Accepted: 04/13/2011] [Indexed: 11/24/2022]
Abstract
The antiproliferative properties and cellular impact of novel substitutionally inert rhodium(III) complexes of the types [Rh{(CH₃)₂ NCS₂}₂(pp)]Cl 3-5 (pp=5,6-Me₂phen, dpq, dppz) and OC-6-23-[Rh(2-S-py)₂(pp)]Cl 6 and 7 (2-S-py=pyridine-2-thiolate; pp=dpq, dppz) have been investigated for the adherent human cancer cell lines MCF-7 and HT-29 and for non-adherent Jurkat cells. Whereas CD and viscosity measurements indicate that the polypyridyl ligands of 4 and 5 intercalate into CT DNA, this is not the case for the analogous pyridine-2-thiolate complexes 6 and 7. Complexes 3-7 all exhibit a high antiproliferative activity towards MCF-7 and HT-29 cells, with IC(50) values in the range 0.055-0.285 μM. As established by online monitoring with a cell-based sensor chip, the highly cytostatic complex 6 (IC(50)=0.059 and 0.078 μM) invokes an immediate concentration-dependent reduction of MCF-7 cell respiration and a time-delayed decrease in cellular impedance, which can be ascribed to the induction of cell death. Annexin V/PI assays demonstrated that 6 also has a pronounced antiproliferative activity towards Jurkat cells and that it invokes extensive apoptosis and high concentrations of reactive oxygen species in these leukemia cells. The observation of a dose-dependent inhibition of the oxygen consumption of isolated mice mitochondria indicates the involvement of an intrinsic mitochondrial pathway in this process.
Collapse
|
32
|
Heilmann A, Altmann F, Cismak A, Baumann W, Lehmann M. Investigation of Cell-Sensor Hybrid Structures by Focused Ion Beam (FIB) Technology. ACTA ACUST UNITED AC 2011. [DOI: 10.1557/proc-983-0983-ll03-03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AbstractFor the investigation of the adhesion of mammalian cells on a semiconductor biosensor structure, nerve cells on silicon neurochips were prepared for scanning electron microscopy investigations (SEM) and cross-sectional preparation by focused ion beam technology (FIB). The cross-sectional pattern demonstrates the focal adhesion points of the nerve cells on the chip. Finally, SEM micrographs were taken parallel to the FIB ablation to investigate the cross section of the cells slice by slice in order to demonstrate the spatial distribution of focal contact positions for a possible three-dimensional reconstruction of the cell-silicon interface.
Collapse
|
33
|
Geldmacher Y, Kitanovic I, Alborzinia H, Bergerhoff K, Rubbiani R, Wefelmeier P, Prokop A, Gust R, Ott I, Wölfl S, Sheldrick WS. Cellular Selectivity and Biological Impact of Cytotoxic Rhodium(III) and Iridium(III) Complexes Containing Methyl‐Substituted Phenanthroline Ligands. ChemMedChem 2011; 6:429-39. [DOI: 10.1002/cmdc.201000517] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/11/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Yvonne Geldmacher
- Fakultät für Chemie und Biochemie, Ruhr‐Universität Bochum, 44780 Bochum (Germany), Fax: (+49) 234‐3214420
| | - Igor Kitanovic
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht‐Karls‐Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Hamed Alborzinia
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht‐Karls‐Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Katharina Bergerhoff
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht‐Karls‐Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - Riccardo Rubbiani
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig (Germany)
| | - Pascal Wefelmeier
- Department of Pediatric Oncology, Children's Hospital of Cologne, Amsterdamer Straße 59, 50735 Cologne (Germany)
| | - Aram Prokop
- Department of Pediatric Oncology, Children's Hospital of Cologne, Amsterdamer Straße 59, 50735 Cologne (Germany)
| | - Ronald Gust
- Institut für Pharmazie, Freie‐Universität Berlin, Königin‐Luise‐Straße 2‐4, 14195 Berlin (Germany)
| | - Ingo Ott
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig (Germany)
| | - Stefan Wölfl
- Institut für Pharmazie und Molekulare Biotechnologie, Ruprecht‐Karls‐Universität Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg (Germany)
| | - William S. Sheldrick
- Fakultät für Chemie und Biochemie, Ruhr‐Universität Bochum, 44780 Bochum (Germany), Fax: (+49) 234‐3214420
| |
Collapse
|
34
|
Bieda R, Kitanovic I, Alborzinia H, Meyer A, Ott I, Wölfl S, Sheldrick WS. Antileukemic activity and cellular effects of rhodium(III) crown thiaether complexes. Biometals 2011; 24:645-61. [DOI: 10.1007/s10534-011-9414-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 01/12/2011] [Indexed: 11/30/2022]
|
35
|
Wang P, Liu Q. Chemical Sensors and Measurement. ADVANCED TOPICS IN SCIENCE AND TECHNOLOGY IN CHINA 2011. [PMCID: PMC7122454 DOI: 10.1007/978-3-642-19525-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemical sensors have been widely used in the biomedical field. With the rapid development of microelectronics and microprocessing technology, chemical sensors have grown to be more and more miniaturized and integrated. Combined with new information processing technology, intelligent chemical sensor arrays such as e-Nose and e-Tongue have been developed. Meanwhile, microfluidic chips enable continuous monitoring of chemical substances in living organisms.
Collapse
Affiliation(s)
- Ping Wang
- Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Qingjun Liu
- Dept. of Biomedical Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Ona T, Shibata J. Advanced dynamic monitoring of cellular status using label-free and non-invasive cell-based sensing technology for the prediction of anticancer drug efficacy. Anal Bioanal Chem 2010; 398:2505-33. [DOI: 10.1007/s00216-010-4223-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/24/2010] [Accepted: 09/13/2010] [Indexed: 12/26/2022]
|
37
|
Electronic interfacing with living cells. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2009. [PMID: 19475369 DOI: 10.1007/10_2009_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
The direct interfacing of living cells with inorganic electronic materials, components or systems has led to the development of two broad categories of devices that can (1) transduce biochemical signals generated by biological components into electrical signals and (2) transduce electronically generated signals into biochemical signals. The first category of devices permits the monitoring of living cells, the second, enables control of cellular processes. This review will survey this exciting area with emphasis on the fundamental issues and obstacles faced by researchers. Devices and applications that use both prokaryotic (microbial) and eukaryotic (mammalian) cells will be covered. Individual devices described include microbial biofuel cells that produce electricity, bioelectrical reactors that enable electronic control of cellular metabolism, living cell biosensors for the detection of chemicals and devices that permit monitoring and control of mammalian physiology.
Collapse
|
38
|
Ponsonnet L, Boureanu M, Jaffrezic N, Othmane A, Dorel C, Lejeune P. Local pH variation as an initial step in bacterial surface-sensing and biofilm formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2008. [DOI: 10.1016/j.msec.2007.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
|
40
|
McKinley BA. ISFET and fiber optic sensor technologies: in vivo experience for critical care monitoring. Chem Rev 2008; 108:826-44. [PMID: 18179258 DOI: 10.1021/cr068120y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruce A McKinley
- Department of Surgery, The Methodist Hospital, Houston, TX 77030, USA.
| |
Collapse
|
41
|
Ceriotti L, Kob A, Drechsler S, Ponti J, Thedinga E, Colpo P, Ehret R, Rossi F. Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal Biochem 2007; 371:92-104. [PMID: 17709091 DOI: 10.1016/j.ab.2007.07.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/06/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
A multiparametric chip-based system was employed to measure cell adhesion, metabolism, and response to metal compounds previously classified as cytotoxic in immortalized mouse fibroblasts (BALB/3T3 cell line). The system measures in parallel, online, and in label-free conditions the extracellular acidification rates (with pH-sensitive field effect transistors [ISFETs]), the cellular oxygen consumption (with amperometric electrode structures [Clark-type sensors]), and cell adhesion (with impedimetric interdigitated electrode structures [IDESs]). The experimental protocol was optimized to monitor metabolism and adhesion of the BALB/3T3 cell line. A total of 70,000 cells and a bicarbonate buffer-free running low-glucose Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal clone serum III and 1mM Hepes were selected to maintain cells in good conditions on the chip during the measurements performed under perfusion conditions. Cells were exposed to sodium arsenite, cadmium chloride, and cis-platinum at concentrations ranging from 1 to 100 microM. The kinetics of cell response to these compounds was analyzed and suggests that the Clark-type sensors can be more sensitive than IDESs and ISFETs in detecting the presence of high chemical concentration when short exposure times (i.e., 2h) are considered. The cytotoxicity data obtained from the online measurements of acidification, respiration, and adhesion at 24h compare well, in terms of half-inhibition concentration values (IC(50)), with the ones obtained using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and colony-forming efficiency (CFE) assay. The results show a good sensitivity of the system combined with the advantages of the online and label-free detection methods that allow following cell status before, during, and after the treatment in the same experiment.
Collapse
Affiliation(s)
- L Ceriotti
- Nanotechnology and Molecular Imaging Unit, Institute for Health and Consumer Protection, Joint Research Centre, I-21020 Ispra, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bettaieb F, Ponsonnet L, Lejeune P, Ouada HB, Martelet C, Bakhrouf A, Jaffrézic-Renault N, Othmane A. Immobilization of E. coli bacteria in three-dimensional matrices for ISFET biosensor design. Bioelectrochemistry 2007; 71:118-25. [PMID: 17398167 DOI: 10.1016/j.bioelechem.2007.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 02/17/2007] [Accepted: 02/19/2007] [Indexed: 11/22/2022]
Abstract
In recent years, cell-based biosensors (CBBs) have been very useful in biomedicine, food industry, environmental monitoring and pharmaceutical screening. They constitute an economical substitute for enzymatic biosensors, but cell immobilization remains a limitation in this technology. To investigate into the potential applications of cell-based biosensors, we describe an electrochemical system based on a microbial biosensor using an Escherichia coli K-12 derivative as a primary transducer to detect biologically active agents. pH variations were recorded by an ion-sensitive field effect transistor (ISFET) sensor on bacteria immobilized in agarose gels. The ISFET device was directly introduced in 100 ml of this mixture or in a miniaturized system using a dialysis membrane that contains 1 ml of the same mixture. The bacterial activity could be detected for several days. The extracellular acidification rate (ECAR) was analyzed with or without the addition of a culture medium or an antibiotic solution. At first, the microorganisms acidified their micro-environment and then they alkalinized it. These two phases were attributed to an apparent substrate preference of bacteria. Cell treatment with an inhibitor or an activator of their metabolism was then monitored and streptomycin effect was tested.
Collapse
Affiliation(s)
- F Bettaieb
- CEGELY, UMR-CNRS 5005, Ecole Centrale de Lyon, 69134 Ecully Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Greve F, Frerker S, Bittermann AG, Burkhardt C, Hierlemann A, Hall H. Molecular design and characterization of the neuron-microelectrode array interface. Biomaterials 2007; 28:5246-58. [PMID: 17826828 DOI: 10.1016/j.biomaterials.2007.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 08/07/2007] [Indexed: 11/23/2022]
Abstract
Electrophysiological activities of neuronal networks can be recorded on microelectrode arrays (MEAs). This technique requires tight coupling between MEA-surfaces and cells. Therefore, this study investigated the interface between DRG neurons and MEA-surface materials after adsorption of neurite promoting proteins: laminin-111, fibronectin, L1Ig6 and poly-l-lysine. Moreover, substrate-induced effects on neuronal networks with time were analyzed. The thickness of adsorbed protein layers was found between approximately 1 nm for poly-l-lysine and approximately 80 nm for laminin-111 on platinum, gold and silicon nitride. The neuron-to-substrate interface was characterized by Scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and SEM after in situ focused-ion-beam milling demonstrating that the ventral cell membrane adhered inhomogeneously to laminin-111 or L1Ig6 surfaces. Tight areas of 20-30 nm and distant areas <1 microm alternated and even tightest areas did not correlate with the physical thickness of the protein layers. This study illustrates the difficulties to predict cell-to-material interfaces that contribute substantially to the success of in vitro or in vivo systems. Moreover, focused ion beam (FIB)/SEM is explored as a new technique to analyze such interfaces.
Collapse
Affiliation(s)
- Frauke Greve
- Physics Electronics Laboratory, Department of Physics, ETH Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Thedinga E, Kob A, Holst H, Keuer A, Drechsler S, Niendorf R, Baumann W, Freund I, Lehmann M, Ehret R. Online monitoring of cell metabolism for studying pharmacodynamic effects. Toxicol Appl Pharmacol 2007; 220:33-44. [PMID: 17320130 DOI: 10.1016/j.taap.2006.12.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 11/29/2006] [Accepted: 12/07/2006] [Indexed: 11/26/2022]
Abstract
To characterize modes of action of substances and their cytotoxic effects Bionas GmbH has developed a new screening system to allow the continuous recording of how an active substance can act (Bionas 2500 analyzing system). In the pharmaceutical industry it is important to acquire as much information as possible about the metabolic effects of an active substance. Most classical pre-clinical studies are very expensive and time-consuming. Often they are so-called end-point tests which require many individual tests before approximate statements can be made about how an effect takes its course. With the Bionas 2500 analyzing system metabolically relevant data including oxygen consumption, acidification rate and the adhesion (cell impedance) of cells can be measured in parallel, online and label-free. Using e.g. ion-sensitive field effect-transistors (ISFET) and electrode structures it is possible to observe metabolic parameters non-invasively and continuously over longer periods of time. The system has already been established for several cell models, cell lines as well as primary cells. It also offers the advantage that regenerative effects can be observed during the same test run.
Collapse
Affiliation(s)
- Elke Thedinga
- Bionas GmbH, Friedrich-Barnewitz-Str. 3, 18119 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Mestres P, Morguet A, Schmidt W, Kob A, Thedinga E. A New Method to Assess Drug Sensitivity on Breast Tumor Acute Slices Preparation. Ann N Y Acad Sci 2006; 1091:460-9. [PMID: 17341636 DOI: 10.1196/annals.1378.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A method for assessing tumor drug sensitivity is described that is based on preparation of tissue slices and use of silicon chips equipped with electrochemical sensors (multisensor array). The tumor slices (200-300 microM thick) are prepared after surgery and incubated in a medium for recovery after slicing. The advantage, compared to other preparations, is that the original three-dimensional structure is retained. Multisensor arrays measure: (a) pericellular acidification (anaerobic metabolism) and (b) oxygen consumption (respiration). The innovative aspect is that such measurements can be made online, as opposed to using a large battery of endpoint tests on cell vitality and proliferation. Electron microscopy of slices serves to determine cell density and structure and induction of apoptosis/necrosis. Slices of more than 200 breast tumors were used. Metabolic activity was inhibited by sodium fluoride, which reduces glycolysis, and potassium cyanide, which inhibits respiration. These changes are thus reflected in the curves of acidification and oxygen consumption. In other experiments the cytostatic Taxol, an anticytoskeletal agent, was used showing dose and time-dependent effects on acidification and oxygen consumption. In conclusion, the method presented here, is able to provide information on drug sensitivity of a tumor, which aids in designing individualized therapy and is used for drug screening.
Collapse
Affiliation(s)
- Pedro Mestres
- Department of Anatomy and Cell Biology, University Hospital, Building 61, University of Saarland, D-66421 Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
47
|
Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN. On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis. Biosens Bioelectron 2005; 21:696-704. [PMID: 16242607 DOI: 10.1016/j.bios.2005.01.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/07/2004] [Accepted: 01/04/2005] [Indexed: 11/21/2022]
Abstract
The current study was undertaken to fabricate a small micro-electrode on-chip to rapidly detect and quantify human CD4(+) cells in a minimal volume of blood through impedance measurements made with simple electronics that could be battery operated implemented in a hand held device. The micro-electrode surface was non-covalently modified sequentially by incubation with solutions of protein G', human albumin, monoclonal mouse anti-human CD4, and mouse IgG. The anti-human CD4 antibody served as the recognition and capture molecule for CD4(+) cells present in human blood. The binding of these biomolecules to the micro-electrodes was verified by impedance and cyclic voltammetry measurements. An increase in impedance was detected for each layer of protein adsorbed onto the micro-electrode surface. This process was shown to be highly repeatable. Increased impedance was measured when CD4(+) cells were captured on the micro-electrode, and the impedance also increased as the number of captured cells increased. Fluorescence microscopy of captured cells immunolabeled with anti-human CD4, CD8, and CD19 antibodies, and the nuclear label DAPI, confirmed that only CD4(+) cells were captured. The results were highly dependent on the specimen preparation method used. We conclude that the on-chip capture system can efficiently quantify the number of CD4(+) cells.
Collapse
Affiliation(s)
- Nirankar N Mishra
- Wadsworth Center, NYS Department of Health (NYSDOH), ESP, P-1 South, Albany, NY 12201-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bartic C, Borghs G. Organic thin-film transistors as transducers for (bio) analytical applications. Anal Bioanal Chem 2005; 384:354-65. [PMID: 16485329 DOI: 10.1007/s00216-005-0031-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of organic thin-film transistors (OTFTs) in sensorics is relatively new. Although electronic noses, electronic textiles and disposable biochemical sensors appear to be viable applications for this type of devices, the benefits of the technology still have to be proven. This paper aims to provide a review of the recent advances in the area of chemically sensitive field-effect devices based on organic thin-film transistors (OTFTs), with emphasis on bioanalytical applications. Detection principle, device configuration, materials and fabrication processes as well as sensor performances will be discussed, with emphasis on the potential for implementation in real applications and the important challenges ahead.
Collapse
|
49
|
Kintzios S, Marinopoulou I, Moschopoulou G, Mangana O, Nomikou K, Endo K, Papanastasiou I, Simonian A. Development of a novel, multi-analyte biosensor system for assaying cell division: identification of cell proliferation/death precursor events. Biosens Bioelectron 2005; 21:1365-73. [PMID: 15982866 DOI: 10.1016/j.bios.2005.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 04/06/2005] [Accepted: 04/06/2005] [Indexed: 12/14/2022]
Abstract
A novel, miniaturized biosensor system was created by combining the electrophysiological response of immobilized cells with superoxide-sensing technology, optical and fluorescence microscopy. Vero cells were immobilized in a calcium alginate matrix (at a density of 1.7 x 10(6) cells ml(-1)). A 0.5 cm x 0.5 cm piece of cell-containing gel matrix was aseptically adhered on a glass microscope slide with a microfabricated gold electrode array, sealed with a cover slip and provided with Dulbecco's medium +10% (v/v) fetal calf serum every day by means of a capillary feeding tube. During a culture period of 7 days, the membrane potential of immobilized cells was continuously monitored, while cell division was assayed with an optical microscope. In addition, daily measurements of immobilized cell membrane potential, viability, RNA and calcium concentration, radical oxygen species (ROS) and glutathione accumulation, were conducted by fluorescence microscopy after provision of an appropriate dye. Superoxide accumulation was assayed by covering the electrodes with superoxide dismutase (SOD). Maximum cell membrane potential values and superoxide production were observed upon initiation of cell division. Using the novel biosensor, we were able to correlate seven different cell physiological parameters to each other and formulate a model for ROS-mediated signaling function on cell division and death. In addition, we were able to predict cell proliferation or death by comparing the relative response of the electrophysiological and superoxide sensor during the culture period.
Collapse
Affiliation(s)
- S Kintzios
- Laboratory of Plant Physiology, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lehmann M, Baumann W. New insights into the nanometer-scaled cell-surface interspace by cell-sensor measurements. Exp Cell Res 2005; 305:374-82. [PMID: 15817162 DOI: 10.1016/j.yexcr.2005.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 01/18/2005] [Accepted: 01/24/2005] [Indexed: 01/03/2023]
Abstract
The culture of adherent cells on solid surfaces is an established in vitro method, and the adhesion process of a cell is considered as an important trigger for many cellular processes (e.g., polarity and tumor genesis). However, not all of the eliciting biochemical or biophysical reactions are yet understood. Interestingly, there are not much experimental data about the impact that the interspace between an adherent cell and the (solid) substrate has on the cell's behavior. This interspace is mainly built by the basolateral side of epithelial cells and the substrate. This paper gives some new results of non-invasive and non-optical measurements in the interspace. The measurements were made with silicon cell-sensor hybrids. Measurements of acidification, adhesion, and respiration are analyzed in view of the situation in the interspace. The results show that, in general, the release of an ion or molecule on the basolateral side can have much more influence on the biophysical situation than a release of an ion or molecule on the apical side. In particular, the apical acidification (i.e., amount of extruded protons) of, e.g., epithelial tumor cells is several orders of magnitude higher than the basolateral acidification. These experimental results are a simple consequence of the fact that the basolateral volume of the interspace is several orders of magnitudes smaller than the apical volume. These results have the following consequences for the cell adhesion:
Collapse
Affiliation(s)
- Mirko Lehmann
- Micronas GmbH, Hans-Bunte-Str. 19, 79108 Freiburg, Germany.
| | | |
Collapse
|