1
|
Yu K, Zhang K, Jakob RP, Maier T, Ward TR. An artificial nickel chlorinase based on the biotin-streptavidin technology. Chem Commun (Camb) 2024; 60:1944-1947. [PMID: 38277163 PMCID: PMC10863421 DOI: 10.1039/d3cc05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, we report on an artificial nickel chlorinase (ANCase) resulting from anchoring a biotinylated nickel-based cofactor within streptavidin (Sav). The resulting ANCase was efficient for the chlorination of diverse C(sp3)-H bonds. Guided by the X-ray analysis of the ANCase, the activity of the artificial chlorinase could be significantly improved. This approach opens interesting perspectives for late-stage functionalization of organic intermediates as it complements biocatalytic chlorination strategies.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Kailin Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Roman P Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| |
Collapse
|
2
|
Yu K, Zou Z, Igareta NV, Tachibana R, Bechter J, Köhler V, Chen D, Ward TR. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C( sp3)-H Bonds. J Am Chem Soc 2023; 145:16621-16629. [PMID: 37471698 PMCID: PMC10401721 DOI: 10.1021/jacs.3c03969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 07/22/2023]
Abstract
Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.
Collapse
Affiliation(s)
- Kun Yu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Zhi Zou
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Julia Bechter
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| |
Collapse
|
3
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Rumo C, Stein A, Klehr J, Tachibana R, Prescimone A, Häussinger D, Ward TR. An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp 3 C-H Functionalization via Intramolecular Carbene Insertion. J Am Chem Soc 2022; 144:11676-11684. [PMID: 35749305 PMCID: PMC9348757 DOI: 10.1021/jacs.2c03311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
The
selective functionalization
of sp3 C–H bonds
is a versatile tool for the diversification of organic compounds.
Combining attractive features of homogeneous and enzymatic catalysts,
artificial metalloenzymes offer an ideal means to selectively modify
these inert motifs. Herein, we report on a copper(I) heteroscorpionate
complex embedded within streptavidin that catalyzes the intramolecular
insertion of a carbene into sp3 C–H bonds. Target
residues for genetic optimization of the artificial metalloenzyme
were identified by quantum mechanics/molecular mechanics simulations.
Double-saturation mutagenesis yielded detailed insight on the contribution
of individual amino acids on the activity and the selectivity of the
artificial metalloenzyme. Mutagenesis at a third position afforded
a set of artificial metalloenzymes that catalyze the enantio- and
regioselective formation of β- and γ-lactams with high
turnovers and promising enantioselectivities.
Collapse
Affiliation(s)
- Corentin Rumo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Alina Stein
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Juliane Klehr
- Department of Biomedizin, University of Basel, Basel CH-4031, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
5
|
Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat Chem 2021; 13:1186-1191. [PMID: 34650235 PMCID: PMC8879416 DOI: 10.1038/s41557-021-00801-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/26/2021] [Indexed: 11/21/2022]
Abstract
Synthetic biology enables microbial hosts to produce complex molecules that are otherwise produced by organisms that are rare or difficult to cultivate, but the structures of these molecules are limited to those formed by chemical reactions catalyzed by natural enzymes. The integration of artificial metalloenzymes (ArMs) that catalyze unnatural reactions into metabolic networks could broaden the cache of molecules produced biosynthetically by microorganisms. We report an engineered microbial cell expressing a heterologous biosynthetic pathway, which contains both natural enzymes and ArMs, that produces an unnatural product with high diastereoselectivity. To create this hybrid biosynthetic organism, we engineered Escherichia coli (E. coli) with a heterologous terpene biosynthetic pathway and an ArM containing an iridium-porphyrin complex that was transported into the cell with a heterologous transport system. We improved the diastereoselectivity and product titer of the unnatural product by evolving the ArM and selecting the appropriate gene induction and cultivation conditions. This work shows that synthetic biology and synthetic chemistry can produce, together with natural and artificial enzymes in whole cells, molecules that were previously inaccessible to nature.
Collapse
|
6
|
Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat Chem 2021; 13:312-318. [PMID: 33603222 PMCID: PMC8675236 DOI: 10.1038/s41557-020-00633-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/16/2020] [Indexed: 11/17/2022]
Abstract
Enzymatic reactions through mononuclear metal hydrides are unknown in nature, despite the prevalence of such intermediates in the reactions of synthetic transition-metal catalysts. If metalloenzymes would react through abiotic intermediates like these, then the scope of enzyme-catalyzed reactions would expand. Here we show that zinc-containing carbonic anhydrase enzymes catalyze hydride transfers from silanes to ketones with high enantioselectivity and report mechanistic data providing strong evidence that the process involves a mononuclear zinc hydride. This work shows that abiotic silanes can act as reducing equivalents in an enzyme-catalyzed process and that monomeric hydrides of electropositive metals, which are typically unstable in protic environments, can be catalytic intermediates in enzymatic processes. Overall, this work bridges a gap between the types of transformations in molecular catalysis and biocatalysis.
Collapse
|
7
|
Cao Y, Li X, Ge J. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis. Trends Biotechnol 2021; 39:1173-1183. [PMID: 33551176 DOI: 10.1016/j.tibtech.2021.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Enzymatic catalysis, which has been driving biological processes in a green, mild, and efficient manner for billions of years, is increasingly being used in industrial processes to manufacture chemicals, pharmaceuticals, and materials for human society. Since enzymes were discovered, strategies to adapt enzymes for use as catalysts for industrial processes, such as chemical modification, immobilization, site-directed mutagenesis, directed evolution of enzymes, artificial metalloenzymes, and computational design, have been continuously pursued. In contrast to these strategies, editing enzymes to easily integrate biocatalysis with chemocatalysis is a potential way to apply enzymes in industry. Enzyme catalyst editing focuses on fine-tuning the microenvironment surrounding the enzyme or achieving a new catalytic function to construct better biocatalysis under non-natural conditions for the enzyme.
Collapse
Affiliation(s)
- Yufei Cao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
8
|
Mukherjee P, Maiti D. Evolution of strept(avidin)-based artificial metalloenzymes in organometallic catalysis. Chem Commun (Camb) 2020; 56:14519-14540. [PMID: 33150893 DOI: 10.1039/d0cc05450j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Artificial metalloenzymes have been recently established as efficient alternatives to traditional transition metal catalysts. The presence of a secondary coordination sphere in artificial metalloenzymes makes them advantageous over transition metal catalysts, which rely essentially on their first coordination sphere to exhibit their catalytic activity. Recent developments on streptavidin- and avidin-based artificial metalloenzymes have made them highly chemically and genetically evolved for selective organometallic transformations. In this review, we discuss the chemo-genetic optimization of streptavidin- and avidin-based artificial metalloenzymes for the enhancement of their catalytic activities towards a wide range of synthetic transformations. Considering the high impact in vivo applications of artificial metalloenzymes, their catalytic efficacies to promote abiological reactions in intracellular as well as periplasmic environment are also discussed. Overall, this review can provide an insight to readers regarding the design and systematic optimization of strept(avidin)-based artificial metalloenzymes for specific reactions.
Collapse
Affiliation(s)
- Prasun Mukherjee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | | |
Collapse
|
9
|
Nödling AR, Santi N, Williams TL, Tsai YH, Luk LYP. Enabling protein-hosted organocatalytic transformations. RSC Adv 2020; 10:16147-16161. [PMID: 33184588 PMCID: PMC7654312 DOI: 10.1039/d0ra01526a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022] Open
Abstract
In this review, the development of organocatalytic artificial enzymes will be discussed. This area of protein engineering research has underlying importance, as it enhances the biocompatibility of organocatalysis for applications in chemical and synthetic biology research whilst expanding the catalytic repertoire of enzymes. The approaches towards the preparation of organocatalytic artificial enzymes, techniques used to improve their performance (selectivity and reactivity) as well as examples of their applications are presented. Challenges and opportunities are also discussed.
Collapse
Affiliation(s)
- Alexander R Nödling
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Nicolò Santi
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Wu S, Zhou Y, Rebelein JG, Kuhn M, Mallin H, Zhao J, Igareta NV, Ward TR. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes. J Am Chem Soc 2019; 141:15869-15878. [PMID: 31509711 PMCID: PMC6805045 DOI: 10.1021/jacs.9b06923] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The biotin–streptavidin technology
has been extensively
exploited to engineer artificial metalloenzymes (ArMs) that catalyze
a dozen different reactions. Despite its versatility, the homotetrameric
nature of streptavidin (Sav) and the noncooperative binding of biotinylated
cofactors impose two limitations on the genetic optimization of ArMs:
(i) point mutations are reflected in all four subunits of Sav, and
(ii) the noncooperative binding of biotinylated cofactors to Sav may
lead to an erosion in the catalytic performance, depending on the
cofactor:biotin-binding site ratio. To address these challenges, we
report on our efforts to engineer a (monovalent) single-chain dimeric
streptavidin (scdSav) as scaffold for Sav-based ArMs. The versatility
of scdSav as host protein is highlighted for the asymmetric transfer
hydrogenation of prochiral imines using [Cp*Ir(biot-p-L)Cl] as cofactor. By capitalizing on a more precise genetic fine-tuning
of the biotin-binding vestibule, unrivaled levels of activity and
selectivity were achieved for the reduction of challenging prochiral
imines. Comparison of the saturation kinetic data and X-ray structures
of [Cp*Ir(biot-p-L)Cl]·scdSav with a structurally
related [Cp*Ir(biot-p-L)Cl]·monovalent scdSav
highlights the advantages of the presence of a single biotinylated
cofactor precisely localized within the biotin-binding vestibule of
the monovalent scdSav. The practicality of scdSav-based ArMs was illustrated
for the reduction of the salsolidine precursor (500 mM) to afford
(R)-salsolidine in 90% ee and >17 000 TONs.
Monovalent scdSav thus provides a versatile scaffold to evolve more
efficient ArMs for in vivo catalysis and large-scale applications.
Collapse
Affiliation(s)
- Shuke Wu
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Yi Zhou
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Johannes G Rebelein
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Miriam Kuhn
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Hendrik Mallin
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Jingming Zhao
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Nico V Igareta
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| | - Thomas R Ward
- Department of Chemistry , University of Basel , BPR 1096, Mattenstrasse 24a , CH-4058 Basel , Switzerland
| |
Collapse
|
11
|
Recent advances in the engineering and application of streptavidin-like molecules. Appl Microbiol Biotechnol 2019; 103:7355-7365. [DOI: 10.1007/s00253-019-10036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
|
12
|
Imam HT, Jarvis AG, Celorrio V, Baig I, Allen CCR, Marr AC, Kamer PCJ. Catalytic and biophysical investigation of rhodium hydroformylase. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01679a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rh-Containing artificial metalloenzymes based on two mutants of sterol carrier protein_2L (SCP_2L) have been shown to act as hydroformylases, exhibiting significant activity and unexpectedly high selectivity in the hydroformylation of alkenes.
Collapse
Affiliation(s)
- Hasan T. Imam
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
- School of Chemistry and Chemical Engineering
| | | | | | - Irshad Baig
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| | | | - Andrew C. Marr
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Paul C. J. Kamer
- Bioinspired Homo- & Heterogeneous Catalysis
- Leibniz Institute for Catalysis
- Rostock
- Germany
| |
Collapse
|
13
|
Nödling AR, Świderek K, Castillo R, Hall JW, Angelastro A, Morrill LC, Jin Y, Tsai Y, Moliner V, Luk LYP. Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angew Chem Int Ed Engl 2018; 57:12478-12482. [PMID: 30027571 PMCID: PMC6531919 DOI: 10.1002/anie.201806850] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/18/2018] [Indexed: 12/23/2022]
Abstract
There has been growing interest in performing organocatalysis within a supramolecular system as a means of controlling reaction reactivity and stereoselectivity. Here, a protein is used as a host for iminium catalysis. A pyrrolidine moiety is covalently linked to biotin and introduced to the protein host streptavidin for organocatalytic activity. Whereas in traditional systems stereoselectivity is largely controlled by the substituents added to the organocatalyst, enantiomeric enrichment by the reported supramolecular system is completely controlled by the host. Also, the yield of the model reaction increases over 10-fold when streptavidin is included. A 1.1 Å crystal structure of the protein-catalyst complex and molecular simulations of a key intermediate reveal the chiral scaffold surrounding the organocatalytic reaction site. This work illustrates that proteins can be an excellent supramolecular host for driving stereoselective secondary amine organocatalysis.
Collapse
Affiliation(s)
| | - Katarzyna Świderek
- Department de Química Física i AnalíticaUniversitat Jaume I12071CastellóSpain
| | - Raquel Castillo
- Department de Química Física i AnalíticaUniversitat Jaume I12071CastellóSpain
| | - Jonathan W. Hall
- School of Chemistry, Main BuildingCardiff UniversityCardiffCF10 3ATUK
| | | | - Louis C. Morrill
- School of Chemistry, Main BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Yi Jin
- School of Chemistry, Main BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Yu‐Hsuan Tsai
- School of Chemistry, Main BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Vicent Moliner
- Department de Química Física i AnalíticaUniversitat Jaume I12071CastellóSpain
| | - Louis Y. P. Luk
- School of Chemistry, Main BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
14
|
Schmidt M, Schreiber S, Franz L, Langhoff H, Farhang A, Horstmann M, Drexler HJ, Heller D, Schwarze M. Hydrogenation of Itaconic Acid in Micellar Solutions: Catalyst Recycling with Cloud Point Extraction? Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marcel Schmidt
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Saskia Schreiber
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Luise Franz
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Hauke Langhoff
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Ashkan Farhang
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
| | - Moritz Horstmann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Hans-Joachim Drexler
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Detlef Heller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, Rostock, D-18059, Germany
| | - Michael Schwarze
- Technische Universität Berlin, Department of Chemistry, Sekr. TC-8, Strasse des 17. Juni 124, Berlin, D-10623, Germany
- Technische Universität Berlin, Department of Process Engineering, Sekr. TK-01, Strasse des 17. Juni 135, Berlin, D-10623, Germany
| |
Collapse
|
15
|
Nödling AR, Świderek K, Castillo R, Hall JW, Angelastro A, Morrill LC, Jin Y, Tsai YH, Moliner V, Luk LYP. Reactivity and Selectivity of Iminium Organocatalysis Improved by a Protein Host. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Katarzyna Świderek
- Department de Química Física i Analítica; Universitat Jaume I; 12071 Castelló Spain
| | - Raquel Castillo
- Department de Química Física i Analítica; Universitat Jaume I; 12071 Castelló Spain
| | - Jonathan W. Hall
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| | - Antonio Angelastro
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| | - Louis C. Morrill
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| | - Yi Jin
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| | - Yu-Hsuan Tsai
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| | - Vicent Moliner
- Department de Química Física i Analítica; Universitat Jaume I; 12071 Castelló Spain
| | - Louis Y. P. Luk
- School of Chemistry, Main Building; Cardiff University; Cardiff CF10 3AT UK
| |
Collapse
|
16
|
Hestericová M, Heinisch T, Alonso-Cotchico L, Maréchal JD, Vidossich P, Ward TR. Directed Evolution of an Artificial Imine Reductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201711016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Martina Hestericová
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| | - Tillman Heinisch
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| | - Lur Alonso-Cotchico
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Jean-Didier Maréchal
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Pietro Vidossich
- Departament de Química; Universitat Autònoma de Barcelona; Edifici C.n. 08193 Cerdonyola del Vallès Barcelona Spain
| | - Thomas R. Ward
- Department Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 Basel 4002 Switzerland
| |
Collapse
|
17
|
Hestericová M, Heinisch T, Alonso-Cotchico L, Maréchal JD, Vidossich P, Ward TR. Directed Evolution of an Artificial Imine Reductase. Angew Chem Int Ed Engl 2018; 57:1863-1868. [PMID: 29265726 DOI: 10.1002/anie.201711016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Indexed: 11/06/2022]
Abstract
Artificial metalloenzymes, resulting from incorporation of a metal cofactor within a host protein, have received increasing attention in the last decade. The directed evolution is presented of an artificial transfer hydrogenase (ATHase) based on the biotin-streptavidin technology using a straightforward procedure allowing screening in cell-free extracts. Two streptavidin isoforms were yielded with improved catalytic activity and selectivity for the reduction of cyclic imines. The evolved ATHases were stable under biphasic catalytic conditions. The X-ray structure analysis reveals that introducing bulky residues within the active site results in flexibility changes of the cofactor, thus increasing exposure of the metal to the protein surface and leading to a reversal of enantioselectivity. This hypothesis was confirmed by a multiscale approach based mostly on molecular dynamics and protein-ligand dockings.
Collapse
Affiliation(s)
- Martina Hestericová
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| | - Tillman Heinisch
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| | - Lur Alonso-Cotchico
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Pietro Vidossich
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C.n., 08193, Cerdonyola del Vallès, Barcelona, Spain
| | - Thomas R Ward
- Department Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4002, Switzerland
| |
Collapse
|
18
|
Hestericová M, Heinisch T, Lenz M, Ward TR. Ferritin encapsulation of artificial metalloenzymes: engineering a tertiary coordination sphere for an artificial transfer hydrogenase. Dalton Trans 2018; 47:10837-10841. [DOI: 10.1039/c8dt02224k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Creating a tertiary coordination sphere around a transition metal catalyst incorporated within a protein affects its catalytic turnover and enantioselectivity.
Collapse
Affiliation(s)
| | | | - Markus Lenz
- Institute for Ecopreneurship
- School of Life Sciences
- University of Applied Sciences and Arts Northwestern Switzerland
- Muttenz
- Switzerland
| | | |
Collapse
|
19
|
Keller SG, Pannwitz A, Mallin H, Wenger OS, Ward TR. Streptavidin as a Scaffold for Light-Induced Long-Lived Charge Separation. Chemistry 2017; 23:18019-18024. [PMID: 29024136 DOI: 10.1002/chem.201703885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Indexed: 01/03/2023]
Abstract
Long-lived photo-driven charge separation is demonstrated by assembling a triad on a protein scaffold. For this purpose, a biotinylated triarylamine was added to a RuII -streptavidin conjugate bearing a methyl viologen electron acceptor covalently linked to the N-terminus of streptavidin. To improve the rate and lifetime of the electron transfer, a negative patch consisting of up to three additional negatively charged amino acids was engineered through mutagenesis close to the biotin-binding pocket of streptavidin. Time-resolved laser spectroscopy revealed that the covalent attachment and the negative patch were beneficial for charge separation within the streptavidin hosted triad; the charge separated state was generated within the duration of the excitation laser pulse, and lifetimes up to 3120 ns could be achieved with the optimized supramolecular triad.
Collapse
Affiliation(s)
- Sascha G Keller
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| | - Andrea Pannwitz
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Hendrik Mallin
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002, Basel, Switzerland
| |
Collapse
|
20
|
Schwizer F, Okamoto Y, Heinisch T, Gu Y, Pellizzoni MM, Lebrun V, Reuter R, Köhler V, Lewis JC, Ward TR. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem Rev 2017; 118:142-231. [PMID: 28714313 DOI: 10.1021/acs.chemrev.7b00014] [Citation(s) in RCA: 520] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The incorporation of a synthetic, catalytically competent metallocofactor into a protein scaffold to generate an artificial metalloenzyme (ArM) has been explored since the late 1970's. Progress in the ensuing years was limited by the tools available for both organometallic synthesis and protein engineering. Advances in both of these areas, combined with increased appreciation of the potential benefits of combining attractive features of both homogeneous catalysis and enzymatic catalysis, led to a resurgence of interest in ArMs starting in the early 2000's. Perhaps the most intriguing of potential ArM properties is their ability to endow homogeneous catalysts with a genetic memory. Indeed, incorporating a homogeneous catalyst into a genetically encoded scaffold offers the opportunity to improve ArM performance by directed evolution. This capability could, in turn, lead to improvements in ArM efficiency similar to those obtained for natural enzymes, providing systems suitable for practical applications and greater insight into the role of second coordination sphere interactions in organometallic catalysis. Since its renaissance in the early 2000's, different aspects of artificial metalloenzymes have been extensively reviewed and highlighted. Our intent is to provide a comprehensive overview of all work in the field up to December 2016, organized according to reaction class. Because of the wide range of non-natural reactions catalyzed by ArMs, this was done using a functional-group transformation classification. The review begins with a summary of the proteins and the anchoring strategies used to date for the creation of ArMs, followed by a historical perspective. Then follows a summary of the reactions catalyzed by ArMs and a concluding critical outlook. This analysis allows for comparison of similar reactions catalyzed by ArMs constructed using different metallocofactor anchoring strategies, cofactors, protein scaffolds, and mutagenesis strategies. These data will be used to construct a searchable Web site on ArMs that will be updated regularly by the authors.
Collapse
Affiliation(s)
- Fabian Schwizer
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yasunori Okamoto
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Yifan Gu
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Michela M Pellizzoni
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Vincent Lebrun
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Raphael Reuter
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| | - Jared C Lewis
- Searle Chemistry Laboratory, University of Chicago , 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| | - Thomas R Ward
- Department of Chemistry, Spitalstrasse 51, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
21
|
|
22
|
Heinisch T, Ward TR. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities. Acc Chem Res 2016; 49:1711-21. [PMID: 27529561 DOI: 10.1021/acs.accounts.6b00235] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The biotin-streptavidin technology offers an attractive means to engineer artificial metalloenzymes (ArMs). Initiated over 50 years ago by Bayer and Wilchek, the biotin-(strept)avidin techonology relies on the exquisite supramolecular affinity of either avidin or streptavidin for biotin. This versatile tool, commonly referred to as "molecular velcro", allows nearly irreversible anchoring of biotinylated probes within a (strept)avidin host protein. Building upon a visionary publication by Whitesides from 1978, several groups have been exploiting this technology to create artificial metalloenzymes. For this purpose, a biotinylated organometallic catalyst is introduced within (strept)avidin to afford a hybrid catalyst that combines features reminiscent of both enzymes and organometallic catalysts. Importantly, ArMs can be optimized by chemogenetic means. Combining a small collection of biotinylated organometallic catalysts with streptavidin mutants allows generation of significant diversity, thus allowing optimization of the catalytic performance of ArMs. Pursuing this strategy, the following reactions have been implemented: hydrogenation, alcohol oxidation, sulfoxidation, dihydroxylation, allylic alkylation, transfer hydrogenation, Suzuki cross-coupling, C-H activation, and metathesis. In this Account, we summarize our efforts in the latter four reactions. X-ray analysis of various ArMs based on the biotin-streptavidin technology reveals the versatility and commensurability of the biotin-binding vestibule to accommodate and interact with transition states of the scrutinized organometallic transformations. In particular, streptavidin residues at positions 112 and 121 recurrently lie in close proximity to the biotinylated metal cofactor. This observation led us to develop a streamlined 24-well plate streptavidin production and screening platform to optimize the performance of ArMs. To date, most of the efforts in the field of ArMs have focused on the use of purified protein samples. This seriously limits the throughput of the optimization process. With the ultimate goal of complementing natural enzymes in the context of synthetic and chemical biology, we outline the milestones required to ultimately implement ArMs within a cellular environment. Indeed, we believe that ArMs may allow signficant expansion of the natural enzymes' toolbox to access new-to-nature reactivities in vivo. With this ambitious goal in mind, we report on our efforts to (i) activate the biotinylated catalyst precursor upon incorporation within streptavidin, (ii) minimize the effect of the cellular environment on the ArM's performance, and (iii) demonstrate the compatibility of ArMs with natural enzymes in cascade reactions.
Collapse
Affiliation(s)
- Tillmann Heinisch
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
23
|
Liu Z, Lebrun V, Kitanosono T, Mallin H, Köhler V, Häussinger D, Hilvert D, Kobayashi S, Ward TR. Upregulation of an Artificial Zymogen by Proteolysis. Angew Chem Int Ed Engl 2016; 55:11587-90. [PMID: 27529471 DOI: 10.1002/anie.201605010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Indexed: 11/08/2022]
Abstract
Regulation of enzymatic activity is vital to living organisms. Here, we report the development and the genetic optimization of an artificial zymogen requiring the action of a natural protease to upregulate its latent asymmetric transfer hydrogenase activity.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P.R. China
| | - Vincent Lebrun
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Taku Kitanosono
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hendrik Mallin
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Valentin Köhler
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Shu Kobayashi
- Department of Chemistry, School of Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Thomas R Ward
- Department of Chemistry, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
24
|
Liu Z, Lebrun V, Kitanosono T, Mallin H, Köhler V, Häussinger D, Hilvert D, Kobayashi S, Ward TR. Upregulation of an Artificial Zymogen by Proteolysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Zhe Liu
- Department of Chemistry University of Basel 4056 Basel Switzerland
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu 273165 P.R. China
| | - Vincent Lebrun
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Taku Kitanosono
- Department of Chemistry School of Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Hendrik Mallin
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | - Valentin Köhler
- Department of Chemistry University of Basel 4056 Basel Switzerland
| | | | - Donald Hilvert
- Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Shu Kobayashi
- Department of Chemistry School of Sciences The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033 Japan
| | - Thomas R. Ward
- Department of Chemistry University of Basel 4056 Basel Switzerland
| |
Collapse
|
25
|
Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology. Nat Protoc 2016; 11:835-52. [DOI: 10.1038/nprot.2016.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Pàmies O, Diéguez M, Bäckvall JE. Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500290] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Robles VM, Dürrenberger M, Heinisch T, Lledós A, Schirmer T, Ward TR, Maréchal JD. Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin–Streptavidin Technology: An Induced Lock-and-Key Hypothesis. J Am Chem Soc 2014; 136:15676-83. [DOI: 10.1021/ja508258t] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Victor Muñoz Robles
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | | | - Tillmann Heinisch
- Biozenbtrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Agustí Lledós
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | - Tilman Schirmer
- Biozenbtrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Thomas R. Ward
- University of Basel, Spitalstrasse
51, CH-4056 Basel, Switzerland
| | - Jean-Didier Maréchal
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| |
Collapse
|
28
|
Muñoz Robles V, Vidossich P, Lledós A, Ward TR, Maréchal JD. Computational Insights on an Artificial Imine Reductase Based on the Biotin–Streptavidin Technology. ACS Catal 2014. [DOI: 10.1021/cs400921n] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Victor Muñoz Robles
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | - Pietro Vidossich
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | - Agustí Lledós
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | - Jean-Didier Maréchal
- Departament
de Química, Universitat Autònoma de Barcelona, Edifici
C.n., 08193 Cerdanyola
del Vallés, Barcelona, Spain
| |
Collapse
|
29
|
Quinto T, Schwizer F, Zimbron JM, Morina A, Köhler V, Ward TR. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin-Streptavidin Technology. ChemCatChem 2014. [DOI: 10.1002/cctc.201300825] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PWNM. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem Soc Rev 2013; 43:1734-87. [PMID: 24365792 DOI: 10.1039/c3cs60037h] [Citation(s) in RCA: 681] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The design of artificial catalysts able to compete with the catalytic proficiency of enzymes is an intense subject of research. Non-covalent interactions are thought to be involved in several properties of enzymatic catalysis, notably (i) the confinement of the substrates and the active site within a catalytic pocket, (ii) the creation of a hydrophobic pocket in water, (iii) self-replication properties and (iv) allosteric properties. The origins of the enhanced rates and high catalytic selectivities associated with these properties are still a matter of debate. Stabilisation of the transition state and favourable conformations of the active site and the product(s) are probably part of the answer. We present here artificial catalysts and biomacromolecule hybrid catalysts which constitute good models towards the development of truly competitive artificial enzymes.
Collapse
Affiliation(s)
- Matthieu Raynal
- Institute of Chemical Research of Catalonia (ICIQ), Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | | | | |
Collapse
|
31
|
Kajetanowicz A, Chatterjee A, Reuter R, Ward TR. Biotinylated Metathesis Catalysts: Synthesis and Performance in Ring Closing Metathesis. Catal Letters 2013. [DOI: 10.1007/s10562-013-1179-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Affiliation(s)
- Jared C. Lewis
- Searle
Chemistry Lab, Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
Nogueira ES, Schleier T, Dürrenberger M, Ballmer-Hofer K, Ward TR, Jaussi R. High-level secretion of recombinant full-length streptavidin in Pichia pastoris and its application to enantioselective catalysis. Protein Expr Purif 2013; 93:54-62. [PMID: 24184946 DOI: 10.1016/j.pep.2013.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/22/2013] [Accepted: 10/24/2013] [Indexed: 11/28/2022]
Abstract
Artificial metalloenzymes result from the incorporation of a catalytically competent biotinylated organometallic moiety into full-length (i.e. mature) streptavidin. With large-scale industrial biotechnology applications in mind, large quantities of recombinant streptavidin are required. Herein we report our efforts to produce wild-type mature and biotin-free streptavidin using the yeast Pichia pastoris expression system. The streptavidin gene was inserted into the expression vector pPICZαA in frame with the Saccharomyces cerevisiae α-mating factor secretion signal. In a fed-batch fermentation using a minimal medium supplemented with trace amounts of biotin, functional streptavidin was secreted at approximately 650mg/L of culture supernatant. This yield is approximately threefold higher than that from Escherichia coli, and although the overall expression process takes longer (ten days vs. two days), the downstream processing is simplified by eliminating denaturing/refolding steps. The purified streptavidin bound ∼3.2molecules of biotin per tetramer. Upon incorporation of a biotinylated piano-stool catalyst, the secreted streptavidin displayed identical properties to streptavidin produced in E. coli by showing activity as artificial imine reductase.
Collapse
Affiliation(s)
- Elisa S Nogueira
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
34
|
Zimbron JM, Heinisch T, Schmid M, Hamels D, Nogueira ES, Schirmer T, Ward TR. A Dual Anchoring Strategy for the Localization and Activation of Artificial Metalloenzymes Based on the Biotin–Streptavidin Technology. J Am Chem Soc 2013; 135:5384-8. [DOI: 10.1021/ja309974s] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeremy M. Zimbron
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Tillmann Heinisch
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Maurus Schmid
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Didier Hamels
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Elisa S. Nogueira
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Tilman Schirmer
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| | - Thomas R. Ward
- Biozentrum and Department of Chemistry, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
35
|
Hyster TK, Knörr L, Ward TR, Rovis T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 2012; 338:500-3. [PMID: 23112327 DOI: 10.1126/science.1226132] [Citation(s) in RCA: 651] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
Collapse
Affiliation(s)
- Todd K Hyster
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
36
|
Shaw WJ. The Outer-Coordination Sphere: Incorporating Amino Acids and Peptides as Ligands for Homogeneous Catalysts to Mimic Enzyme Function. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2012. [DOI: 10.1080/01614940.2012.679453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Reetz MT. Artificial Metalloenzymes as Catalysts in Stereoselective Diels-Alder Reactions. CHEM REC 2012; 12:391-406. [DOI: 10.1002/tcr.201100043] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Indexed: 11/05/2022]
|
38
|
|
39
|
Chevalley A, Salmain M. Enantioselective transfer hydrogenation of ketone catalysed by artificial metalloenzymes derived from bovine β-lactoglobulin. Chem Commun (Camb) 2012; 48:11984-6. [DOI: 10.1039/c2cc36980j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Creus M, Ward TR. Design and Evolution of Artificial Metalloenzymes: Biomimetic Aspects. PROGRESS IN INORGANIC CHEMISTRY 2011. [DOI: 10.1002/9781118148235.ch4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Deuss PJ, den Heeten R, Laan W, Kamer PCJ. Bioinspired Catalyst Design and Artificial Metalloenzymes. Chemistry 2011; 17:4680-98. [DOI: 10.1002/chem.201003646] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Ward TR. Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond. Acc Chem Res 2011; 44:47-57. [PMID: 20949947 DOI: 10.1021/ar100099u] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artificial metalloenzymes are created by incorporating an organometallic catalyst within a host protein. The resulting hybrid can thus provide access to the best features of two distinct, and often complementary, systems: homogeneous and enzymatic catalysts. The coenzyme may be positioned with covalent, dative, or supramolecular anchoring strategies. Although initial reports date to the late 1970s, artificial metalloenzymes for enantioselective catalysis have gained significant momentum only in the past decade, with the aim of complementing homogeneous, enzymatic, heterogeneous, and organic catalysts. Inspired by a visionary report by Wilson and Whitesides in 1978, we have exploited the potential of biotin-avidin technology in creating artificial metalloenzymes. Owing to the remarkable affinity of biotin for either avidin or streptavidin, covalent linking of a biotin anchor to a catalyst precursor ensures that, upon stoichiometric addition of (strept)avidin, the metal moiety is quantitatively incorporated within the host protein. In this Account, we review our progress in preparing and optimizing these artificial metalloenzymes, beginning with catalytic hydrogenation as a model and expanding from there. These artificial metalloenzymes can be optimized by both chemical (variation of the biotin-spacer-ligand moiety) and genetic (mutation of avidin or streptavidin) means. Such chemogenetic optimization schemes were applied to various enantioselective transformations. The reactions implemented thus far include the following: (i) The rhodium-diphosphine catalyzed hydrogenation of N-protected dehydroaminoacids (ee up to 95%); (ii) the palladium-diphosphine catalyzed allylic alkylation of 1,3-diphenylallylacetate (ee up to 95%); (iii) the ruthenium pianostool-catalyzed transfer hydrogenation of prochiral ketones (ee up to 97% for aryl-alkyl ketones and ee up to 90% for dialkyl ketones); (iv) the vanadyl-catalyzed oxidation of prochiral sulfides (ee up to 93%). A number of noteworthy features are reminiscent of homogeneous catalysis, including straightforward access to both enantiomers of the product, the broad substrate scope, organic solvent tolerance, and an accessible range of reactions that are typical of homogeneous catalysts. Enzyme-like features include access to genetic optimization, an aqueous medium as the preferred solvent, Michaelis-Menten behavior, and single-substrate derivatization. The X-ray characterization of artificial metalloenzymes provides fascinating insight into possible enantioselection mechanisms involving a well-defined second coordination sphere environment. Thus, such artificial metalloenzymes combine attractive features of both homogeneous and enzymatic kingdoms. In the spirit of surface borrowing, that is, modulating ligand affinity by harnessing existing protein surfaces, this strategy can be extended to selectively binding streptavidin-incorporated biotinylated ruthenium pianostool complexes to telomeric DNA. This application paves the way for chemical biology applications of artificial metalloenzymes.
Collapse
Affiliation(s)
- Thomas R. Ward
- Department of Chemistry, University of Basel, Spitalstrasse 51, CH-4056 Basel, Switzerland
| |
Collapse
|
43
|
Monnard FW, Heinisch T, Nogueira ES, Schirmer T, Ward TR. Human Carbonic Anhydrase II as a host for piano-stool complexes bearing a sulfonamide anchor. Chem Commun (Camb) 2011; 47:8238-40. [DOI: 10.1039/c1cc10345h] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Ringenberg MR, Ward TR. Merging the best of two worlds: artificial metalloenzymes for enantioselective catalysis. Chem Commun (Camb) 2011; 47:8470-6. [DOI: 10.1039/c1cc11592h] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Panek JJ, Ward TR, Jezierska-Mazzarello A, Novic M. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields. J Comput Aided Mol Des 2010; 24:719-32. [PMID: 20526651 PMCID: PMC2918797 DOI: 10.1007/s10822-010-9369-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 05/24/2010] [Indexed: 11/19/2022]
Abstract
In the field of enzymatic catalysis, creating activity from a non catalytic scaffold is a daunting task. Introduction of a catalytically active moiety within a protein scaffold offers an attractive means for the creation of artificial metalloenzymes. With this goal in mind, introduction of a biotinylated d(6)-piano-stool complex within streptavidin (SAV) affords enantioselective artificial transfer-hydrogenases for the reduction of prochiral ketones. Based on an X-ray crystal structure of a highly selective hybrid catalyst, displaying significant disorder around the biotinylated catalyst [eta(6)-(p-cymene)Ru(Biot-p-L)Cl], we report on molecular dynamics simulations to shed light on the protein-cofactor interactions and contacts. The results of these simulations with classical force field indicate that the SAV-biotin and SAV-catalyst complexes are more stable than ligand-free SAV. The point mutations introduced did not affect significantly the overall behavior of SAV and, unexpectedly, the P64G substitution did not provide additional flexibility to the protein scaffold. The metal-cofactor proved to be conformationally flexible, and the S112K or P64G mutants proved to enhance this effect in the most pronounced way. The network of intermolecular hydrogen bonds is efficient at stabilizing the position of biotin, but much less at fixing the conformation of an extended biotinylated ligand. This leads to a relative conformational freedom of the metal-cofactor, and a poorly localized catalytic metal moiety. MD calculations with ab initio potential function suggest that the hydrogen bonds alone are not sufficient factors for full stabilization of the biotin. The hydrophobic biotin-binding pocket (and generally protein scaffold) maintains the hydrogen bonds between biotin and protein.
Collapse
Affiliation(s)
- Jarosław J Panek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | | | | | |
Collapse
|
46
|
Jing Q, Kazlauskas R. Regioselective Hydroformylation of Styrene Using Rhodium-Substituted Carbonic Anhydrase. ChemCatChem 2010. [DOI: 10.1002/cctc.201000159] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Podtetenieff J, Taglieber A, Bill E, Reijerse EJ, Reetz MT. An Artificial Metalloenzyme: Creation of a Designed Copper Binding Site in a Thermostable Protein. Angew Chem Int Ed Engl 2010; 49:5151-5. [PMID: 20572232 DOI: 10.1002/anie.201002106] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- John Podtetenieff
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
48
|
Podtetenieff J, Taglieber A, Bill E, Reijerse E, Reetz M. An Artificial Metalloenzyme: Creation of a Designed Copper Binding Site in a Thermostable Protein. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002106] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Deuss P, Popa G, Botting C, Laan W, Kamer P. Highly Efficient and Site-Selective Phosphane Modification of Proteins through Hydrazone Linkage: Development of Artificial Metalloenzymes. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201002174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Deuss P, Popa G, Botting C, Laan W, Kamer P. Highly Efficient and Site-Selective Phosphane Modification of Proteins through Hydrazone Linkage: Development of Artificial Metalloenzymes. Angew Chem Int Ed Engl 2010; 49:5315-7. [DOI: 10.1002/anie.201002174] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|