1
|
Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol 2012; 27:1164-73. [PMID: 22764181 PMCID: PMC3743553 DOI: 10.1177/0883073812448533] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors' laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin (FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.
Collapse
Affiliation(s)
- Elisabetta Soragni
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | - Chunping Xu
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| | | | | | | | - Joel M. Gottesfeld
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California
| |
Collapse
|
2
|
Kumari D, Usdin K. The distribution of repressive histone modifications on silenced FMR1 alleles provides clues to the mechanism of gene silencing in fragile X syndrome. Hum Mol Genet 2010; 19:4634-42. [PMID: 20843831 DOI: 10.1093/hmg/ddq394] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and the most common known cause of autism. Most cases of FXS result from the expansion of a CGG·CCG repeat in the 5' UTR of the FMR1 gene that leads to gene silencing. It has previously been shown that silenced alleles are associated with histone H3 dimethylated at lysine 9 (H3K9Me2) and H3 trimethylated at lysine 27 (H3K27Me3), modified histones typical of developmentally repressed genes. We show here that these alleles are also associated with elevated levels of histone H3 trimethylated at lysine 9 (H3K9Me3) and histone H4 trimethylated at lysine 20 (H4K20Me3). All four of these modified histones are present on exon 1 of silenced alleles at levels comparable to that seen on pericentric heterochromatin. The two groups of histone modifications show a different distribution on fragile X alleles: H3K9Me2 and H3K27Me3 have a broad distribution, whereas H3K9Me3 and H4K20Me3 have a more focal distribution with the highest level of these marks being present in the vicinity of the repeat. This suggests that the trigger for gene silencing may be local to the repeat itself and perhaps involves a mechanism similar to that involved in the formation of pericentric heterochromatin.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Disease/NIH, Bethesda, MD 20892-0830, USA.
| | | |
Collapse
|
3
|
Marmolino D, Acquaviva F. Friedreich's Ataxia: from the (GAA)n repeat mediated silencing to new promising molecules for therapy. CEREBELLUM (LONDON, ENGLAND) 2009; 8:245-59. [PMID: 19165552 DOI: 10.1007/s12311-008-0084-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/14/2008] [Indexed: 10/25/2022]
Abstract
Friedreich's ataxia (FRDA) is a neurodegenerative disease due to a pathological expansion of a GAA triplet repeat in the first intron of the FXN gene encoding for the mitochondrial protein frataxin. The expansion is responsible for most cases of FRDA through the formation of a nonusual B-DNA structure and heterochromatin conformation that determine a direct transcriptional silencing and the subsequent reduction in frataxin expression. Among other functions, frataxin is an iron chaperone central for the assembly of iron-sulfur clusters in mitochondria; its reduction is associated with iron accumulation in mitochondria, increased cellular sensitivity to oxidative stress and cell damage. There is, nowadays, no effective therapy for FRDA and current therapeutic strategies mainly act to slow down the consequences of frataxin deficiency. Therefore, drugs that are able to increase the amount of frataxin are excellent candidates for a rational approach to FRDA therapy. Recently, several drugs have been assessed for their ability to increase the amount of cellular frataxin, including human recombinant erythropoietin, histone deacetylase inhibitors, and the PPAR-gamma agonists.
Collapse
Affiliation(s)
- Daniele Marmolino
- Laboratoire de Neurologie Expérimentale, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium,
| | | |
Collapse
|
4
|
Gottesfeld JM. Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 2007; 116:236-48. [PMID: 17826840 PMCID: PMC2080619 DOI: 10.1016/j.pharmthera.2007.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
This review concerns the development of small molecule therapeutics for the inherited neurodegenerative disease Friedreich ataxia (FRDA). FRDA is caused by transcriptional repression of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin and accompanying loss of frataxin protein. Frataxin insufficiency leads to mitochrondrial dysfunction and progressive neurodegeneration, along with scoliosis, diabetes and cardiomyopathy. Individuals with FRDA generally die in early adulthood from the associated heart disease, the most common cause of death in FRDA. While antioxidants and iron chelators have shown promise in ameliorating the symptoms of the disease, there is no effective therapy for FRDA that addresses the cause of the disease, the loss of frataxin protein. Gene therapy and protein replacement strategies for FRDA are promising approaches; however, current technology is not sufficiently advanced to envisage treatments for FRDA coming from these approaches in the near future. Since the FXN mutation in FRDA, expanded GAA.TTC triplets in an intron, does not alter the amino acid sequence of frataxin protein, gene reactivation would be of therapeutic benefit. Thus, a number of laboratories have focused on small molecule activators of FXN gene expression as potential therapeutics, and this review summarizes the current status of these efforts, as well as the molecular basis for gene silencing in FRDA.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Biology, MB-27, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Abstract
Major depressive disorder (MDD) is a common and highly heterogeneous psychiatric disorder encompassing a spectrum of symptoms involving deficits to a range of cognitive, psychomotor and emotional processes. As is the norm for aetiological studies into the majority of psychiatric phenotypes, particular focus has fallen on the interplay between genetic and environmental factors. There are, however, several epidemiological, clinical and molecular peculiarities associated with MDD that are hard to explain using traditional gene- and environment-based approaches. Our goal in this study is to demonstrate the benefits of looking beyond conventional 'DNA+environment' and 'DNA x environment' aetiological paradigms. Epigenetic factors - inherited and acquired modifications of DNA and histones that regulate various genomic functions occurring without a change in nuclear DNA sequence - offer new insights about many of the non-Mendelian features of major depression, and provide a direct mechanistic route via which the environment can interact with the genome. The study of epigenetics, especially in complex diseases, is a relatively new field of research, and optimal laboratory techniques and analysis methods are still being developed. Incorporating epigenetic research into aetiological studies of MDD thus presents a number of methodological and interpretive challenges that need to be addressed. Despite these difficulties, the study of DNA methylation and histone modifications has the potential to transform our understanding about the molecular aetiology of complex diseases.
Collapse
Affiliation(s)
- J Mill
- The Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | | |
Collapse
|
6
|
Weinhaeusel A, Morris MA, Antonarakis SE, Haas OA. DNA deamination enables direct PCR amplification of the cystatin B (CSTB) gene-associated dodecamer repeat expansion in myoclonus epilepsy type Unverricht-Lundborg. Hum Mutat 2004; 22:404-8. [PMID: 14517952 DOI: 10.1002/humu.10276] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Unverricht-Lundborg type of progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder that is caused by the dysfunction of the cystatin B (CSTB) gene product. In the vast majority of affected cases, mRNA transcription is impaired by a biallelic expansion of a dodecamer repeat within the 5'-untranslated region of the respective gene. Since this minisatellite contains exclusively G and C nucleotides, direct PCR analysis of allele expansion is extremely difficult and error prone. To circumvent these problems, we have developed a PCR assay that is based on the deamination of the DNA prior to amplification. We have developed a method based on PCR after DNA deamination of the GC-rich repeat region, which improves the PCR condition to such an extent that we were not only able to reliably amplify expanded alleles of affected individuals (homozygotes and compound heterozygotes), but also the two alleles of full mutation carriers, whose analysis is particularly difficult because of PCR bias and heteroduplex formation between the two alleles. We used promoter- and repeat-specific primer combinations to investigate whether dodecamer repeat expansion concurs with de novo methylation of the CSTB gene promoter in a similar fashion to other repeat expansion syndromes. We confirmed previous evidence obtained by HpaII digestion and Southern blot analysis that both the promoter and the repeat regions are unmethylated, in both healthy and affected individuals. Thus, in contrast to certain trinucleotide repeat expansion-associated diseases, such as fragile X syndrome (FRAXA) and myotonic dystrophy, methylation analyses can not be utilized for indirect diagnostic testing.
Collapse
Affiliation(s)
- Andreas Weinhaeusel
- Children's Cancer Research Institute, St. Anna Children's Hospital, Vienna, Austria.
| | | | | | | |
Collapse
|
7
|
Casella M, Lucarelli M, Simili M, Beffy P, Del Carratore R, Minichilli F, Chisari C, Simi S. Spontaneous chromosome loss and colcemid resistance in lymphocytes from patients with myotonic dystrophy type 1. Cytogenet Genome Res 2004; 100:224-9. [PMID: 14526184 DOI: 10.1159/000072858] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2002] [Accepted: 01/02/2003] [Indexed: 11/19/2022] Open
Abstract
Myotonic Dystrophy type 1 (DM1) is one of the many inherited human diseases whose molecular defect is the expansion of a trinucleotide DNA sequence. DM1 shares with fragile X syndrome (FMR1), another "unstable triplet syndrome", several molecular features not present in the remaining triplet diseases. As FMR1 is also characterised by chromosome instability at the site of the expanded triplet, lymphocytes from DM1 patients and healthy donors were cultured for micronucleus (MN) analysis, in order to verify if DM1 is also prone to chromosome instability. A FISH analysis was also carried out to detect the presence of centromeric sequences in the observed MN. The data indicate that DM1 patients present a percentage of centromere-positive MN significantly higher than controls, suggesting that chromosome loss is the main mechanism underlying the origin of the increased spontaneous instability. To further assess the proneness to instability of cells of DM1 patients, cultures from patients and controls were treated in vitro with growing concentrations of two different mutagens: colcemid, a "pure" aneugen compound whose target is tubulin, and mytomicin C, a strong clastogen. The results show that the patient group is significantly less sensitive to colcemid. These data, together with FISH analysis, suggest the presence, in DM1 patients, of an already damaged tubulin, which becomes no more sensitive to the effect of colcemid and which could be the main defect underlying the aneugenic effects in DM1.
Collapse
Affiliation(s)
- M Casella
- Institute of Clinical Physiology, CNR, Cellular Biology and Cytogenetics Unit, Pisa (Italy)
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Liu Z, Li P, Kocabas A, Karsi A, Ju Z. Microsatellite-containing genes from the channel catfish brain: evidence of trinucleotide repeat expansion in the coding region of nucleotide excision repair gene RAD23B. Biochem Biophys Res Commun 2001; 289:317-24. [PMID: 11716474 DOI: 10.1006/bbrc.2001.5978] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expansion of trinucleotide repeats within genes is well known to cause pathological conditions in humans. Here we report a large number of genes containing simple sequence repeats (SSR) from the brain of channel catfish, of which a homologue of the RAD23B gene was found to include (CCA) trinucleotide repeats within its coding region. Because of the importance of the RAD23B gene in the nucleotide excision repair (NER) system, the catfish RAD23B locus was further characterized. The (ACC) repeats encode a polythreonine (T) tract within the catfish RAD23B gene that is absent from the previously cloned human and mouse genes. A survey of the allele variation at the locus indicated the existence of variable microsatellite repeats in the NER RAD23B gene, suggesting that the trinucleotide repeats are expanding or shrinking. The majority of individuals harbor 10 (ACC) repeats within the RAD23B gene, but alleles with 8 and 11 repeats were also detected. The (ACC) repeats are limited to only channel catfish and the closely related blue catfish, but are absent from flathead catfish and the cloned human and mouse genes, suggesting that the microsatellite invasion into the RAD23B gene is a recent event in evolution.
Collapse
Affiliation(s)
- Z Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama 36849, USA.
| | | | | | | | | |
Collapse
|
9
|
Puopolo KM, Hollingshead SK, Carey VJ, Madoff LC. Tandem repeat deletion in the alpha C protein of group B streptococcus is recA independent. Infect Immun 2001; 69:5037-45. [PMID: 11447184 PMCID: PMC98598 DOI: 10.1128/iai.69.8.5037-5045.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Group B streptococci (GBS) contain a family of protective surface proteins characterized by variable numbers of repeating units within the proteins. The prototype alpha C protein of GBS from the type Ia/C strain A909 contains a series of nine identical 246-bp tandem repeat units. We have previously shown that deletions in the tandem repeat region of the alpha C protein affect both the immunogenicity and protective efficacy of the protein in animal models, and these deletions may serve as a virulence mechanism in GBS. The molecular mechanism of tandem repeat deletion is unknown. To determine whether RecA-mediated homologous recombination is involved in this process, we identified, cloned, and sequenced the recA gene homologue from GBS. A strain of GBS with recA deleted, A909DeltarecA, was constructed by insertional inactivation in the recA locus. A909DeltarecA demonstrated significant sensitivity to UV light, and the 50% lethal dose of the mutant strain in a mouse intraperitoneal model of sepsis was 20-fold higher than that of the parent strain. The spontaneous rate of tandem repeat deletion in the alpha C protein in vitro, as well as in our mouse model of immune infection, was studied using A909DeltarecA. We report that tandem repeat deletion in the alpha C protein does occur in the absence of a functional recA gene both in vitro and in vivo, indicating that tandem repeat deletion in GBS occurs by a recA-independent recombinatorial pathway.
Collapse
Affiliation(s)
- K M Puopolo
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | |
Collapse
|
10
|
Bowater RP, Wells RD. The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:159-202. [PMID: 11051764 DOI: 10.1016/s0079-6603(00)66029-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansions of specific DNA triplet repeats are the cause of an increasing number of hereditary neurological disorders in humans. In some diseases, such as Huntington's and several spinocerebellar ataxias, the repetitive DNA sequences are translated into long tracts of the same amino acid (usually glutamine), which alters interactions with cellular constituents and leads to the development of disease. For other disorders, including common genetic disorders such as myotonic dystrophy and fragile X syndrome, the DNA repeat is located in noncoding regions of transcribed sequences and disease is probably caused by altered gene expression. In studies in lower organisms, mammalian cells, and transgenic mice, high frequencies of length changes (increases and decreases) occur in long DNA triplet repeats. These observations are similar to other types of repetitive DNA sequences, which also undergo frequent length changes at genomic loci. A variety of processes acting on DNA influence the genetic stability of DNA triplet repeats, including replication, recombination, repair, and transcription. It is not yet known how these different multienzyme systems interact to produce the genetic mutation of expanded repeats. In vitro studies have identified that DNA triplet repeats can adopt several unusual DNA structures, including hairpins, triplexes, quadruplexes, slipped structures, and highly flexible and writhed helices. The formation of stable unusual structures within the cell is likely to disturb DNA metabolism and be a critical intermediate in the molecular mechanism(s) leading to genetic instabilities of DNA repeats and, hence, to disease pathogenesis.
Collapse
Affiliation(s)
- R P Bowater
- Molecular Biology Sector, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
11
|
Romero RM, Rojsitthisak P, Haworth IS. DNA Interstrand Crosslink Formation by Mechlorethamine at a Cytosine–Cytosine Mismatch Pair: Kinetics and Sequence Dependence. Arch Biochem Biophys 2001; 386:143-53. [PMID: 11368336 DOI: 10.1006/abbi.2000.2198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Expansion of the triplet repeat DNA sequence d[CGG]n.d[CCG]n is a characteristic of Fragile X syndrome, a human neurodegenerative disease. Stable intrastrand conformations formed by both d[CGG]n and d[CCG]n, and involving G-G and C-C mismatch pairs, respectively, are believed to be of importance in the development of the disease. We have shown previously that C-C mismatch pairs can be crosslinked covalently by mechlorethamine, a nitrogen mustard alkylating agent, and hence this reaction may be of value as a probe for conformers of d[CCG]n. To characterize the mechlorethamine C-C crosslink reaction further, here we report the kinetics and sequence dependence of formation of the crosslink species, using a series of model duplexes. The rate of reaction depends on the base sequence proximal to the C-C mismatch pair. Hence, in 19mer duplexes containing a central d[M4M3M2M1Cn1n2n3n4].d[N4N3N2N1Cm1m2m3m4] sequence, where M-m and N-n are complementary base pairs, the amount of crosslink increased with increasing G-C content of the eight base pairs neighboring the C-C mismatch and with the proximity of the G-C pairs to the C-C mismatch. Molecular dynamics simulations of the solvated duplexes provided an explanation of these data. Hence, for a C-C pair flanked by G-C base pairs the mismatched cytosine bases remain stacked within the duplex, but for a C-C pair flanked by A-T base pairs, the simulations suggested local opening of the duplex around the C-C pair, making it a less effective target for mechlorethamine.
Collapse
Affiliation(s)
- R M Romero
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles 90089-9121, USA
| | | | | |
Collapse
|
12
|
Abstract
Recent sequence and cytogenetic analyses of heterochromatin in Arabidopsis, together with other results from Arabidopsis and maize, indicate that plant heterochromatin can have very different origins, compositions and dynamics. Shared features that must determine and/or be a result of its unique biological properties are also revealed.
Collapse
Affiliation(s)
- J L Bennetzen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-392, USA.
| |
Collapse
|
13
|
Yu A, Fan HY, Liao D, Bailey AD, Weiner AM. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 2000; 5:801-10. [PMID: 10882116 DOI: 10.1016/s1097-2765(00)80320-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- A Yu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- S Henikoff
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| |
Collapse
|
15
|
Affiliation(s)
- L T Timchenko
- Department of Medicine, Section of Cardiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA. . edu
| |
Collapse
|