1
|
Wang X, Fu S, Yoo K, Wang X, Gan L, Zou T, Gao Q, Han H, Yang Z, Hu X, Chen H, Liu D, Li R. Individualized Structural Perturbations on Normative Brain Connectome Restrict Deep Brain Stimulation Outcomes in Parkinson's Disease. Mov Disord 2024; 39:1352-1363. [PMID: 38894532 DOI: 10.1002/mds.29874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) respond to deep brain stimulation (DBS) variably. However, how brain substrates restrict DBS outcomes remains unclear. OBJECTIVE In this article, we aim to identify prognostic brain signatures for explaining the response variability. METHODS We retrospectively investigated a cohort of patients with PD (n = 141) between 2017 and 2022, and defined DBS outcomes as the improvement ratio of clinical motor scores. We used a deviation index to quantify individual perturbations on a reference structural covariance network acquired with preoperative T1-weighted magnetic resonance imaging. The neurobiological perturbations of patients were represented as z scored indices based on the chronological perturbations measured on a group of normal aging adults. RESULTS After applying stringent statistical tests (z > 2.5) and correcting for false discoveries (P < 0.01), we found that accelerated deviations mainly affected the prefrontal cortex, motor strip, limbic system, and cerebellum in PD. Particularly, a negative network within the accelerated deviations, expressed as "more preoperative deviations, less postoperative improvements," could predict DBS outcomes (mean absolute error = 0.09, R2 = 0.15). Moreover, a fusion of personal brain predictors and medical responses significantly improved traditional evaluations of DBS outcomes. Notably, the most important brain predictor, a pathway connecting the cognitive unit (prefrontal cortex) and motor control unit (cerebellum and motor strip), partially mediates DBS outcomes with the age at surgery. CONCLUSIONS Our findings suggest that individual structural perturbations on the cognitive motor control circuit are critical for modulating DBS outcomes. Interventions toward the circuit have the potential for additional clinical improvements. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xuyang Wang
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Kwangsun Yoo
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
- Data Science Research Institute, Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Lin Gan
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Ting Zou
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Qing Gao
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Honghao Han
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Zhenzhe Yang
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaofei Hu
- Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Huafu Chen
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Rong Li
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Ten Oever S, Martin AE. Interdependence of "What" and "When" in the Brain. J Cogn Neurosci 2024; 36:167-186. [PMID: 37847823 DOI: 10.1162/jocn_a_02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
From a brain's-eye-view, when a stimulus occurs and what it is are interrelated aspects of interpreting the perceptual world. Yet in practice, the putative perceptual inferences about sensory content and timing are often dichotomized and not investigated as an integrated process. We here argue that neural temporal dynamics can influence what is perceived, and in turn, stimulus content can influence the time at which perception is achieved. This computational principle results from the highly interdependent relationship of what and when in the environment. Both brain processes and perceptual events display strong temporal variability that is not always modeled; we argue that understanding-and, minimally, modeling-this temporal variability is key for theories of how the brain generates unified and consistent neural representations and that we ignore temporal variability in our analysis practice at the peril of both data interpretation and theory-building. Here, we review what and when interactions in the brain, demonstrate via simulations how temporal variability can result in misguided interpretations and conclusions, and outline how to integrate and synthesize what and when in theories and models of brain computation.
Collapse
Affiliation(s)
- Sanne Ten Oever
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
- Maastricht University, The Netherlands
| | - Andrea E Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Davidson MJ, Keys RT, Szekely B, MacNeilage P, Verstraten F, Alais D. Continuous peripersonal tracking accuracy is limited by the speed and phase of locomotion. Sci Rep 2023; 13:14864. [PMID: 37684285 PMCID: PMC10491677 DOI: 10.1038/s41598-023-40655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Recent evidence suggests that perceptual and cognitive functions are codetermined by rhythmic bodily states. Prior investigations have focused on the cardiac and respiratory rhythms, both of which are also known to synchronise with locomotion-arguably our most common and natural of voluntary behaviours. Compared to the cardiorespiratory rhythms, walking is easier to voluntarily control, enabling a test of how natural and voluntary rhythmic action may affect sensory function. Here we show that the speed and phase of human locomotion constrains sensorimotor performance. We used a continuous visuo-motor tracking task in a wireless, body-tracking virtual environment, and found that the accuracy and reaction time of continuous reaching movements were decreased at slower walking speeds, and rhythmically modulated according to the phases of the step-cycle. Decreased accuracy when walking at slow speeds suggests an advantage for interlimb coordination at normal walking speeds, in contrast to previous research on dual-task walking and reach-to-grasp movements. Phasic modulations of reach precision within the step-cycle also suggest that the upper limbs are affected by the ballistic demands of motor-preparation during natural locomotion. Together these results show that the natural phases of human locomotion impose constraints on sensorimotor function and demonstrate the value of examining dynamic and natural behaviour in contrast to the traditional and static methods of psychological science.
Collapse
Affiliation(s)
| | | | - Brian Szekely
- Department of Psychology, University of Nevada, Reno, USA
| | | | - Frans Verstraten
- School of Psychology, The University of Sydney, Sydney, Australia
| | - David Alais
- School of Psychology, The University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Harrington DL, Shen Q, Wei X, Litvan I, Huang M, Lee RR. Functional topologies of spatial cognition predict cognitive and motor progression in Parkinson’s. Front Aging Neurosci 2022; 14:987225. [PMID: 36299614 PMCID: PMC9589098 DOI: 10.3389/fnagi.2022.987225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background Spatial cognition deteriorates in Parkinson’s disease (PD), but the neural substrates are not understood, despite the risk for future dementia. It is also unclear whether deteriorating spatial cognition relates to changes in other cognitive domains or contributes to motor dysfunction. Objective This study aimed to identify functional connectivity abnormalities in cognitively normal PD (PDCN) in regions that support spatial cognition to determine their relationship to interfacing cognitive functions and motor disability, and to determine if they predict cognitive and motor progression 2 years later in a PDCN subsample. Methods Sixty-three PDCN and 43 controls underwent functional MRI while judging whether pictures, rotated at various angles, depicted the left or right hand. The task activates systems that respond to increases in rotation angle, a proxy for visuospatial difficulty. Angle-modulated functional connectivity was analyzed for frontal cortex, posterior cortex, and basal ganglia regions. Results Two aberrant connectivity patterns were found in PDCN, which were condensed into principal components that characterized the strength and topology of angle-modulated connectivity. One topology related to a marked failure to amplify frontal, posterior, and basal ganglia connectivity with other brain areas as visuospatial demands increased, unlike the control group (control features). Another topology related to functional reorganization whereby regional connectivity was strengthened with brain areas not recruited by the control group (PDCN features). Functional topologies correlated with diverse cognitive domains at baseline, underscoring their influences on spatial cognition. In PDCN, expression of topologies that were control features predicted greater cognitive progression longitudinally, suggesting inefficient communications within circuitry normally recruited to handle spatial demands. Conversely, stronger expression of topologies that were PDCN features predicted less longitudinal cognitive decline, suggesting functional reorganization was compensatory. Parieto-occipital topologies (control features) had different prognostic implications for longitudinal changes in motor disability. Expression of one topology predicted less motor decline, whereas expression of another predicted increased postural instability and gait disturbance (PIGD) feature severity. Concurrently, greater longitudinal decline in spatial cognition predicted greater motor and PIGD feature progression, suggesting deterioration in shared substrates. Conclusion These novel discoveries elucidate functional mechanisms of visuospatial cognition in PDCN, which foreshadow future cognitive and motor disability.
Collapse
Affiliation(s)
- Deborah L. Harrington
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Deborah L. Harrington,
| | - Qian Shen
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Xiangyu Wei
- Research Service, VA San Diego Healthcare System, San Diego, CA, United States
- Revelle College, University of California, San Diego, La Jolla, CA, United States
| | - Irene Litvan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Mingxiong Huang
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| | - Roland R. Lee
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
5
|
Kinematic descriptions of upper limb function using simulated tasks in activities of daily living after stroke. Hum Mov Sci 2021; 79:102834. [PMID: 34252758 DOI: 10.1016/j.humov.2021.102834] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/13/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Assessment of upper limb function poststroke is critical for clinical management and determining the efficacy of interventions. We designed a unilateral upper limb task to simulate activities of daily living to examine how chronic stroke survivors manage reaching, grasping and handling skills simultaneously to perform the functional task using kinematic analysis. The aim of the study was to compare the motor strategies for performing a functional task between paretic and nonparetic arms. Sixteen chronic stroke survivors were instructed to control an ergonomic spoon to transfer liquid from a large bowl to a small bowl using paretic or nonparetic arm. Kinematic data were recorded using a Vicon motion capture system. Outcome measures included movement duration, relative timing, path length, joint excursions, and trial-to-trial variability. Results showed that movement duration, spoon path length, and trunk path length increased significantly when participants used paretic arm to perform the task. Participants tended to reduce shoulder and elbow excursions, and increase trunk excursions to perform the task with paretic arm and altered the relative timing of the task. Although participants used different motor strategies to perform the task with their paretic arms, we did not find the significant differences in trial-to trial variability of joint excursions between paretic and nonparetic arms. The results revealed differences in temporal and spatial aspects of motor strategies between paretic and nonparetic arms. Clinicians should explore the underlying causes of pathological movement patterns and facilitate preferred movement patterns of paretic arm.
Collapse
|
6
|
Ellery A. Tutorial Review of Bio-Inspired Approaches to Robotic Manipulation for Space Debris Salvage. Biomimetics (Basel) 2020; 5:E19. [PMID: 32408615 PMCID: PMC7345424 DOI: 10.3390/biomimetics5020019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
We present a comprehensive tutorial review that explores the application of bio-inspired approaches to robot control systems for grappling and manipulating a wide range of space debris targets. Current robot manipulator control systems exploit limited techniques which can be supplemented by additional bio-inspired methods to provide a robust suite of robot manipulation technologies. In doing so, we review bio-inspired control methods because this will be the key to enabling such capabilities. In particular, force feedback control may be supplemented with predictive forward models and software emulation of viscoelastic preflexive joint behaviour. This models human manipulation capabilities as implemented by the cerebellum and muscles/joints respectively. In effect, we are proposing a three-level control strategy based on biomimetic forward models for predictive estimation, traditional feedback control and biomimetic muscle-like preflexes. We place emphasis on bio-inspired forward modelling suggesting that all roads lead to this solution for robust and adaptive manipulator control. This promises robust and adaptive manipulation for complex tasks in salvaging space debris.
Collapse
Affiliation(s)
- Alex Ellery
- Department of Mechanical & Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa ON K1S 5B6, Canada
| |
Collapse
|
7
|
Odorfer TM, Wind T, Zeller D. Temporal Discrimination Thresholds and Proprioceptive Performance: Impact of Age and Nerve Conduction. Front Neurosci 2019; 13:1241. [PMID: 31803012 PMCID: PMC6877661 DOI: 10.3389/fnins.2019.01241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background Increasing attention is payed to the contribution of somatosensory processing in motor control. In particular, temporal somatosensory discrimination has been found to be altered differentially in common movement disorders. To date, there have only been speculations as to how impaired temporal discrimination and clinical motor signs may relate to each other. Prior to disentangling this relationship, potential confounders of temporal discrimination, in particular age and peripheral nerve conduction, should be assessed, and a quantifiable measure of proprioceptive performance should be established. Objective To assess the influence of age and polyneuropathy (PNP) on somatosensory temporal discrimination threshold (STDT), temporal discrimination movement threshold (TDMT), and behavioral measures of proprioception of upper and lower limbs. Methods STDT and TDMT were assessed in 79 subjects (54 healthy, 25 with PNP; age 30–79 years). STDT was tested with surface electrodes over the thenar or dorsal foot region. TDMT was probed with needle electrodes in flexor carpi radialis (FCR) and tibialis anterior (TA) muscle. Goniometer-based devices were used to assess limb proprioception during (i) active pointing to LED markers, (ii) active movements in response to variable visual cues, and (iii) estimation of limb position following passive movements. Pointing (or estimation) error was taken as a measure of proprioceptive performance. Results In healthy subjects, higher age was associated with higher STDT and TDMT at upper and lower extremities, while age did not correlate with proprioceptive performance. Patients with PNP showed higher STDT and TDMT values and decreased proprioceptive performance in active pointing tasks compared to matched healthy subjects. As an additional finding, there was a significant correlation between performance in active pointing tasks and temporal discrimination thresholds. Conclusion Given their notable impact on measures of temporal discrimination, age and peripheral nerve conduction need to be accounted for if STDT and TDMT are applied in patients with movement disorders. As a side observation, the correlation between measures of proprioception and temporal discrimination may prompt further studies on the presumptive link between these two domains.
Collapse
Affiliation(s)
| | - Teresa Wind
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Daniel Zeller
- Department of Neurology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Milot MH, Marchal-Crespo L, Beaulieu LD, Reinkensmeyer DJ, Cramer SC. Neural circuits activated by error amplification and haptic guidance training techniques during performance of a timing-based motor task by healthy individuals. Exp Brain Res 2018; 236:3085-3099. [PMID: 30132040 PMCID: PMC6223879 DOI: 10.1007/s00221-018-5365-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/17/2018] [Indexed: 01/07/2023]
Abstract
To promote motor learning, robotic devices have been used to improve subjects' performance by guiding desired movements (haptic guidance-HG) or by artificially increasing movement errors to foster a more rapid learning (error amplification-EA). To better understand the neurophysiological basis of motor learning, a few studies have evaluated brain regions activated during EA/HG, but none has compared both approaches. The goal of this study was to investigate using fMRI which brain networks were activated during a single training session of HG/EA in healthy adults learning to play a computerized pinball-like timing task. Subjects had to trigger a robotic device by flexing their wrist at the correct timing to activate a virtual flipper and hit a falling ball towards randomly positioned targets. During training with HG/EA, subjects' timing errors were decreased/increased, respectively, by the robotic device to delay or accelerate their wrist movement. The results showed that at the beginning of the training period with HG/EA, an error-detection network, including cerebellum and angular gyrus, was activated, consistent with subjects recognizing discrepancies between their intended actions and the actual movement timing. At the end of the training period, an error-detection network was still present for EA, while a memory consolidation/automatization network (caudate head and parahippocampal gyrus) was activated for HG. The results indicate that training movement with various kinds of robotic input relies on different brain networks. Better understanding the neurophysiological underpinnings of brain processes during HG/EA could prove useful for optimizing rehabilitative movement training for people with different patterns of brain damage.
Collapse
Affiliation(s)
- Marie-Hélène Milot
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon Gérald-Lasalle, 3001, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada.
| | - Laura Marchal-Crespo
- Sensory-Motor Systems Lab, Institute of Robotics and Intelligent Systems IRIS, ETH Zurich, TAN E3 Tannenstrasse 1, 8092, Zurich, Switzerland.,Gerontechnology and Rehabilitation Research Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, 3008, Bern, Switzerland
| | - Louis-David Beaulieu
- École de réadaptation, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Pavillon Gérald-Lasalle, 3001, 12e Avenue Nord, Sherbrooke, QC, J1H 5N4, Canada
| | - David J Reinkensmeyer
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA, 92697, USA
| | - Steven C Cramer
- Department of Mechanical and Aerospace Engineering, University of California, 4200 Engineering Gateway, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, 3120 Natural Sciences II, Irvine, CA, 92697, USA.,Department of Anatomy and Neurobiology, University of California, 364 Med Surge II, Irvine, CA, 92697, USA.,Department of Neurology, University of California, 200 S. Manchester AVE, Orange, CA, 92868, USA
| |
Collapse
|
9
|
Lacquaniti F, Bosco G, Gravano S, Indovina I, La Scaleia B, Maffei V, Zago M. Gravity in the Brain as a Reference for Space and Time Perception. Multisens Res 2016; 28:397-426. [PMID: 26595949 DOI: 10.1163/22134808-00002471] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.
Collapse
|
10
|
Bhangal S, Cho H, Geisler MW, Morsella E. The Prospective Nature of Voluntary Action: Insights from the Reflexive Imagery Task. REVIEW OF GENERAL PSYCHOLOGY 2016. [DOI: 10.1037/gpr0000071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Voluntary action is peculiar in several ways. For example, it is highly prospective in nature, requiring the activation of the representations of anticipated action-effects (e.g., a button pressed). These prospective action-effects can represent outcomes in the short-term (e.g., fingers snapping or uttering “cheers”) or in the long-term (e.g., building a house). In this review about the prospective nature of voluntary action, we first discuss in brief ideomotor theory, a theoretical approach that illuminates both the nature of the prospective representations in voluntary action and how these representations are acquired and subsequently used in the control of behavior. In this framework, prospective action-effects could be construed as ‘action options’ that, residing in consciousness, may or may not influence upcoming behavior, depending on the nature of the other prospective action-effects that happen to be coactivated at that time. In ideomotor theory, there is no homunculus that selects one prospective action-effect over another. Many of these prospective action-effects enter consciousness automatically. Second, we introduce the principle of atemporality and discuss the prospective nature of determining tendencies and mental simulation, all in the context of new findings from the Reflexive Imagery Task (RIT). The RIT reveals that, as a function of external control, prospective action-effects can enter consciousness in a reflex-like, automatic, and insuppressible manner. The RIT and its associated theoretical framework shed light on why the activation of such representations, though often undesired, is nonetheless adaptive and why not all of these prospective representations lead to overt action.
Collapse
Affiliation(s)
| | - Hyein Cho
- Department of Psychology, San Francisco State University
| | | | - Ezequiel Morsella
- Department of Psychology, San Francisco State University, and Department of Neurology, University of California, San Francisco
| |
Collapse
|
11
|
Heuer H, Lüttgen J. Robot assistance of motor learning: A neuro-cognitive perspective. Neurosci Biobehav Rev 2015; 56:222-40. [PMID: 26192105 DOI: 10.1016/j.neubiorev.2015.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 06/15/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
The last several years have seen a number of approaches to robot assistance of motor learning. Experimental studies have produced a range of findings from beneficial effects through null-effects to detrimental effects of robot assistance. In this review we seek an answer to the question under which conditions which outcomes should be expected. For this purpose we derive tentative predictions based on a classification of learning tasks in terms of the products of learning, the mechanisms involved, and the modulation of these mechanisms by robot assistance. Consistent with these predictions, the learning of dynamic features of trajectories is facilitated and the learning of kinematic and dynamic transformations is impeded by robotic guidance, whereas the learning of dynamic transformations can profit from robot assistance with error-amplifying forces. Deviating from the predictions, learning of spatial features of trajectories is impeded by haptic guidance, but can be facilitated by divergent force fields. The deviations point to the existence of additional effects of robot assistance beyond the modulation of learning mechanisms, e.g., the induction of a passive role of the motor system during practice with haptic guidance.
Collapse
Affiliation(s)
- Herbert Heuer
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany.
| | - Jenna Lüttgen
- Leibniz Research Centre for Working Environment and Human Factors, Ardeystr. 67, 44139 Dortmund, Germany
| |
Collapse
|
12
|
Bouchard AE, Corriveau H, Milot MH. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors. Front Syst Neurosci 2015; 9:52. [PMID: 25873868 PMCID: PMC4379877 DOI: 10.3389/fnsys.2015.00052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/12/2015] [Indexed: 11/13/2022] Open
Abstract
With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training—haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors’ movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects’ timing errors were decreased and increased, respectively, based on the subjects’ timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing.
Collapse
Affiliation(s)
- Amy E Bouchard
- Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Hélène Corriveau
- Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Marie-Hélène Milot
- Centre de Recherche sur le Vieillissement, Université de Sherbrooke, Sherbrooke, QC Canada
| |
Collapse
|
13
|
Coding of movements in the motor cortex. Curr Opin Neurobiol 2015; 33:34-9. [PMID: 25646932 DOI: 10.1016/j.conb.2015.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
The issue of coding of movement in the motor cortex has recently acquired special significance due to its fundamental importance in neuroprosthetic applications. The challenge of controlling a prosthetic arm by processed motor cortical activity has opened a new era of research in applied medicine but has also provided an 'acid test' for hypotheses regarding coding of movement in the motor cortex. The successful decoding of movement information from the activity of motor cortical cells using their directional tuning and population coding has propelled successful neuroprosthetic applications and, at the same time, asserted the utility of those early discoveries, dating back to the early 1980s.
Collapse
|
14
|
Gasser B, Cartmill EA, Arbib MA. Ontogenetic Ritualization of Primate Gesture as a Case Study in Dyadic Brain Modeling. Neuroinformatics 2013; 12:93-109. [DOI: 10.1007/s12021-013-9182-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Tanaka H, Sejnowski TJ. Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. J Neurophysiol 2012; 109:1182-201. [PMID: 23114209 DOI: 10.1152/jn.00279.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How neurons in the primary motor cortex control arm movements is not yet understood. Here we show that the equations of motion governing reaching simplify when expressed in spatial coordinates. In this fixed reference frame, joint torques are the sums of vector cross products between the spatial positions of limb segments and their spatial accelerations and velocities. The consequences that follow from this model explain many properties of neurons in the motor cortex, including directional broad, cosinelike tuning, nonuniformly distributed preferred directions dependent on the workspace, and the rotation of the population vector during arm movements. Remarkably, the torques can be directly computed as a linearly weighted sum of responses from cortical motoneurons, and the muscle tensions can be obtained as rectified linear sums of the joint torques. This allows the required muscle tensions to be computed rapidly from a trajectory in space with a feedforward network model.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|
16
|
Lüttgen J, Heuer H. Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics. Exp Brain Res 2012; 222:1-9. [DOI: 10.1007/s00221-012-3190-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/05/2012] [Indexed: 12/01/2022]
|
17
|
Naeem M, Prasad G, Watson DR, Kelso JAS. Functional dissociation of brain rhythms in social coordination. Clin Neurophysiol 2012; 123:1789-97. [PMID: 22425484 DOI: 10.1016/j.clinph.2012.02.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 02/03/2012] [Accepted: 02/13/2012] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The goal of this research was to investigate sub-band modulations in the mu domain in dyads performing different social coordination tasks. METHODS Dyads of subjects performed rhythmic finger movement under three different task conditions: intrinsic - maintain self-produced movement while ignoring their partner's movement; in-phase - synchronize with partner; and anti-phase - maintain syncopation with partner. Movement profiles of the dyads were used to estimate a synchronization index (SI) to verify differences in coordination according to each task. EEG was recorded during task performance and at baseline (partner's actions hidden from view). Log power ratios of mu band activity (active against baseline) were used to assess the relative levels of synchronization/de-synchronization in both the upper and lower mu bands. RESULTS Results confirm a functional dissociation of lower (8-10 Hz) and upper (10-12 Hz) mu bands in social coordination tasks. Lower mu band activity was independent of specific modulations across tasks and hemispheric preferences. Upper mu band activity was sensitive to coordination tasks and exhibited marked differences between the hemispheres. Accentuated de-synchronization of right relative to left hemisphere in the anti-phase task appeared related to the greater demand of perceptual-motor discrimination. Left hemisphere de-synchronization in both in-phase and anti-phase coordination was interpreted in terms of successful production of imitation. Right hemisphere synchronization in the intrinsic task was interpreted as inhibition of an imitative response tendency. CONCLUSIONS Functional dissociation of lower and upper mu band and hemispheric preferences exists in real-time social coordination. SIGNIFICANCE This research attests to the merit of analyzing sub-band activity in the alpha-mu domain in order to identify neural correlates of social coordination. Such 'neuromarkers' may be relevant for brain disorders such as apraxia and autism.
Collapse
Affiliation(s)
- Muhammad Naeem
- Intelligent Systems Research Centre, School of Computing and Intelligent Systems, University of Ulster, Magee Campus, Londonderry BT487JL, Northern Ireland, UK.
| | | | | | | |
Collapse
|
18
|
Carrozzo M, Moscatelli A, Lacquaniti F. Tempo rubato : animacy speeds up time in the brain. PLoS One 2010; 5:e15638. [PMID: 21206749 PMCID: PMC3012081 DOI: 10.1371/journal.pone.0015638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/18/2010] [Indexed: 11/25/2022] Open
Abstract
Background How do we estimate time when watching an action? The idea that events are timed by a centralized clock has recently been called into question in favour of distributed, specialized mechanisms. Here we provide evidence for a critical specialization: animate and inanimate events are separately timed by humans. Methodology/Principal Findings In different experiments, observers were asked to intercept a moving target or to discriminate the duration of a stationary flash while viewing different scenes. Time estimates were systematically shorter in the sessions involving human characters moving in the scene than in those involving inanimate moving characters. Remarkably, the animate/inanimate context also affected randomly intermingled trials which always depicted the same still character. Conclusions/Significance The existence of distinct time bases for animate and inanimate events might be related to the partial segregation of the neural networks processing these two categories of objects, and could enhance our ability to predict critically timed actions.
Collapse
Affiliation(s)
- Mauro Carrozzo
- Institute of Neuroscience, National Research Council, Rome, Italy
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
| | | | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Rome, Italy
- Centre of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy
- Department of Neuroscience, University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
19
|
Serrien DJ, Ivry RB, Swinnen SP. The missing link between action and cognition. Prog Neurobiol 2007; 82:95-107. [PMID: 17399884 DOI: 10.1016/j.pneurobio.2007.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 12/01/2006] [Accepted: 02/06/2007] [Indexed: 11/19/2022]
Abstract
The study of the neural correlates of motor behaviour at the systems level has received increasing consideration in recent years. One emerging observation from this research is that neural regions typically associated with cognitive operations may also be recruited during the performance of motor tasks. This apparent convergence between action and cognition - domains that have most often been studied in isolation - becomes especially apparent when examining new complex motor skills such as those involving sequencing or coordination, and when taking into account external (environment-related) factors such as feedback availability and internal (performer-related) factors such as pathology. Neurally, overlap between action and cognition is prominent in frontal lobe areas linked to response selection and monitoring. Complex motor tasks are particularly suited to reveal the crucial link between action and cognition and the generic brain areas at the interface between these domains.
Collapse
Affiliation(s)
- Deborah J Serrien
- School of Psychology, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | | | | |
Collapse
|
20
|
Merchant H, Georgopoulos AP. Neurophysiology of perceptual and motor aspects of interception. J Neurophysiol 2006; 95:1-13. [PMID: 16339504 DOI: 10.1152/jn.00422.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The interception of moving targets is a complex activity that involves a dynamic interplay of several perceptual and motor processes and therefore involves a rich interaction among several brain areas. Although the behavioral aspects of interception have been studied for the past three decades, it is only during the past decade that neural studies have been focused on this problem. In addition to the interception itself, several neural studies have explored, within that context, the underlying mechanisms concerning perceptual aspects of moving stimuli, such as optic flow and apparent motion. In this review, we discuss the wealth of knowledge that has accumulated on this topic with an emphasis on the results of neural studies in behaving monkeys.
Collapse
Affiliation(s)
- Hugo Merchant
- Instituto de Neurobiología, Universidad Nacional Autonoma de Mexico, Querétaro Qro, Mexico
| | | |
Collapse
|
21
|
Lesser RP. Chapter 26 Functional mapping in epilepsy patients' information from subdural electrodes. SUPPLEMENTS TO CLINICAL NEUROPHYSIOLOGY 2006; 59:191-5. [PMID: 16893111 DOI: 10.1016/s1567-424x(09)70030-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ronald P Lesser
- Department of Neurology and Neurosurgery, Johns Hopkins University, Baltimore, MD 21287-7247, USA.
| |
Collapse
|
22
|
Zago M, Lacquaniti F. Internal Model of Gravity for Hand Interception: Parametric Adaptation to Zero-Gravity Visual Targets on Earth. J Neurophysiol 2005; 94:1346-57. [PMID: 15817649 DOI: 10.1152/jn.00215.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Internal model is a neural mechanism that mimics the dynamics of an object for sensory motor or cognitive functions. Recent research focuses on the issue of whether multiple internal models are learned and switched to cope with a variety of conditions, or single general models are adapted by tuning the parameters. Here we addressed this issue by investigating how the manual interception of a moving target changes with changes of the visual environment. In our paradigm, a virtual target moves vertically downward on a screen with different laws of motion. Subjects are asked to punch a hidden ball that arrives in synchrony with the visual target. By using several different protocols, we systematically found that subjects do not develop a new internal model appropriate for constant speed targets, but they use the default gravity model and reduce the central processing time. The results imply that adaptation to zero-gravity targets involves a compression of temporal processing through the cortical and subcortical regions interconnected with the vestibular cortex, which has previously been shown to be the site of storage of the internal model of gravity.
Collapse
Affiliation(s)
- Myrka Zago
- Department of Neuromotor Physiology, Scientific Institute Foundation Santa Lucia, Rome.
| | | |
Collapse
|
23
|
Pineda JA. The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing". ACTA ACUST UNITED AC 2005; 50:57-68. [PMID: 15925412 DOI: 10.1016/j.brainresrev.2005.04.005] [Citation(s) in RCA: 664] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 04/15/2005] [Accepted: 04/21/2005] [Indexed: 11/25/2022]
Abstract
Existing evidence indicates that mu and other alpha-like rhythms are independent phenomena because of differences in source generation, sensitivity to sensory events, bilateral coherence, frequency, and power. Although mu suppression and enhancement echo sensorimotor processing in frontoparietal networks, they are also sensitive to cognitive and affective influences and likely reflect more than an idling brain state. Mu rhythms are present at early stages of human development and in other mammalian species. They exhibit adaptive and dynamically changing properties, including frequency acceleration and posterior-to-anterior shifts in focus. Furthermore, individuals can learn to control mu rhythms volitionally in a very short period of time. This raises questions about the mu rhythm's open neural architecture and ability to respond to cognitive, affective, and motor imagery, implying an even greater developmental and functional role than has previously been ascribed to it. Recent studies have suggested that mu rhythms reflect downstream modulation of motor cortex by prefrontal mirror neurons, i.e., cells that may play a critical role in imitation learning and the ability to understand the actions of others. It is proposed that mu rhythms represent an important information processing function that links perception and action-specifically, the transformation of "seeing" and "hearing" into "doing." In a broader context, this transformation function results from an entrainment/gating mechanism in which multiple alpha networks (visual-, auditory-, and somatosensory-centered domains), typically producing rhythmic oscillations in a locally independent manner, become coupled and entrained. A global or 'diffuse and distributed alpha system' comes into existence when these independent sources of alpha become coherently engaged in transforming perception to action.
Collapse
Affiliation(s)
- Jaime A Pineda
- Department of Cognitive Science and Neuroscience, University of California, San Diego, La Jolla, CA 92037-0515, USA.
| |
Collapse
|
24
|
Craig C, Pepping GJ, Grealy M. Intercepting beats in predesignated target zones. Exp Brain Res 2005; 165:490-504. [PMID: 15912367 DOI: 10.1007/s00221-005-2322-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 02/12/2005] [Indexed: 11/26/2022]
Abstract
Moving to a rhythm necessitates precise timing between the movement of the chosen limb and the timing imposed by the beats. However, the temporal information specifying the moment when a beat will sound (the moment onto which one must synchronise one's movement) is not continuously provided by the acoustic array. Because of this informational void, the actors need some form of prospective information that will allow them to act sufficiently ahead of time in order to get their hand in the right place at the right time. In this acoustic interception study, where participants were asked to move between two targets in such a way that they arrived and stopped in the target zone at the same time as a beat sounded, we tested a model derived from tau-coupling theory (Lee DN (1998) Ecol Psychol 10:221-250). This model attempts to explain the form of a potential timing guide that specifies the duration of the inter-beat intervals and also describes how this informational guide can be used in the timing and guidance of movements. The results of our first experiment show that, for inter-beat intervals of less than 3 s, a large proportion of the movement (over 70%) can be explained by the proposed model. However, a second experiment, which augments the time between beats so that it surpasses 3 s, shows a marked decline in the percentage of information/movement coupling. A close analysis of the movement kinematics indicates a lack of control and anticipation in the participants' movements. The implications of these findings, in light of other research studies, are discussed.
Collapse
Affiliation(s)
- Cathy Craig
- UMR Mouvement et Perception, Faculté des Sciences du Sport, Université de la Méditerranée, 163 Avenue de Luminy, 13288, Marseille, France.
| | | | | |
Collapse
|
25
|
Ochiai T, Mushiake H, Tanji J. Involvement of the ventral premotor cortex in controlling image motion of the hand during performance of a target-capturing task. ACTA ACUST UNITED AC 2004; 15:929-37. [PMID: 15483048 DOI: 10.1093/cercor/bhh193] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ventral premotor cortex (PMv) has been implicated in the visual guidance of movement. To examine whether neuronal activity in the PMv is involved in controlling the direction of motion of a visual image of the hand or the actual movement of the hand, we trained a monkey to capture a target that was presented on a video display using the same side of its hand as was displayed on the video display. We found that PMv neurons predominantly exhibited premovement activity that reflected the image motion to be controlled, rather than the physical motion of the hand. We also found that the activity of half of such direction-selective PMv neurons depended on which side (left versus right) of the video image of the hand was used to capture the target. Furthermore, this selectivity for a portion of the hand was not affected by changing the starting position of the hand movement. These findings suggest that PMv neurons play a crucial role in determining which part of the body moves in which direction, at least under conditions in which a visual image of a limb is used to guide limb movements.
Collapse
Affiliation(s)
- Tetsuji Ochiai
- Department of Physiology, Tohoku University school of Medicine, Japan
| | | | | |
Collapse
|
26
|
Grealy MA, Craig CM, Bourdin C, Coleman SG. Judging Time Intervals Using a Model of Perceptuo-Motor Control. J Cogn Neurosci 2004; 16:1185-95. [PMID: 15453973 DOI: 10.1162/0898929041920478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Estimating a time interval and temporally coordinating movements in space are fundamental skills, but the relationships between these different forms of timing, and the neural processes that they incur, are not well understood. While different theories have been proposed to account for time perception, time estimation, and the temporal patterns of coordination, there are no general mechanisms which unify these various timing skills. This study considers whether a model of perceptuo-motor timing, the τGUIDE, can also describe how certain judgements of elapsed time are made.
To evaluate this, an equation for determining interval estimates was derived from the τGUIDE model and tested in a task where participants had to throw a ball and estimate when it would hit the floor. The results showed that in accordance with the model, very accurate judgements could be made without vision (mean timing error 19.24 msec), and the model was a good predictor of skilled participants' estimate timing. It was concluded that since the τGUIDE principle provides temporal information in a generic form, it could be a unitary process that links different forms of timing.
Collapse
Affiliation(s)
- Madeleine A Grealy
- Department of Psychology, University of Strathclyde, Graham Hills Building, 40 George Street, Glasgow G1 1QE, Scotland, UK.
| | | | | | | |
Collapse
|
27
|
Georgopoulos A. Catching for Real and Catching for Fun in Ecological Psychology. Focus on “Internal Models of Target Motion: Expected Dynamics Overrides Measured Kinematics in Timing Manual Interceptions”. J Neurophysiol 2004; 91:1455. [PMID: 15010493 DOI: 10.1152/jn.01114.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Scott SH. The role of primary motor cortex in goal-directed movements: insights from neurophysiological studies on non-human primates. Curr Opin Neurobiol 2003; 13:671-7. [PMID: 14662367 DOI: 10.1016/j.conb.2003.10.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurophysiological studies on non-human primates have provided a large body of information on the response patterns of neurons in primary motor cortex during volitional motor tasks. Rather than finding a single simple pattern of activity in primary motor cortex neurons, these studies illustrate that neural activity in this area reflects many different types of information, including spatial goals, hand motion, joint motion, force output and electromyographic activity. This richness in the response characteristics of neurons makes estimates of any single variable on motor performance from population signals imprecise and prone to errors. It initially seems puzzling that so many different types of information are represented in primary motor cortex. However, such richness in neural responses reflects its important role in converting high-level behavioral goals generated in other cortical regions into complex spatiotemporal patterns to control not only alpha-motoneuron activity but also other features of spinal processing.
Collapse
Affiliation(s)
- Stephen H Scott
- Centre for Neuroscience Studies, Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|