1
|
de la Peña A, Retamal C, Pérez-Molina F, Díaz-Valdivia N, Veloso-Bahamondes F, Tapia D, Cancino J, Randow F, González A, Oyanadel C, Soza A. Galectin-8 drives ERK-dependent mitochondrial fragmentation, perinuclear relocation and mitophagy, with metabolic adaptations for cell proliferation. Eur J Cell Biol 2025; 104:151488. [PMID: 40209344 PMCID: PMC12162348 DOI: 10.1016/j.ejcb.2025.151488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/21/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025] Open
Abstract
Mitochondria adapt to the cell proliferative demands induced by growth factors through dynamic changes in morphology, distribution, and metabolic activity. Galectin-8 (Gal-8), a carbohydrate-binding protein that promotes cell proliferation by transactivating the EGFR-ERK signaling pathway, is overexpressed in several cancers. However, its impact on mitochondrial dynamics during cell proliferation remains unknown. Using MDCK and RPTEC kidney epithelial cells, we demonstrate that Gal-8 induces mitochondrial fragmentation and perinuclear redistribution. Additionally, mitochondria adopt donut-shaped morphologies, and live-cell imaging with two Keima-based reporters demonstrates Gal-8-induced mitophagy. ERK signaling inhibition abrogates all these Gal-8-induced mitochondrial changes and cell proliferation. Studies with established mutant versions of Gal-8 and CHO cells reveal that mitochondrial changes and proliferative response require interactions between the N-terminal carbohydrate recognition domain of Gal-8 and α-2,3-sialylated N-glycans at the cell surface. DRP1, a key regulator of mitochondrial fission, becomes phosphorylated in MDCK cells or overexpressed in RPTEC cells in an ERK-dependent manner, mediating mitochondrial fragmentation and perinuclear redistribution. Bafilomycin A abrogates Gal-8-induced cell proliferation, suggesting that mitophagy serves as an adaptation to cell proliferation demands. Functional analysis under Gal-8 stimulation shows that mitochondria maintain an active electron transport chain, partially uncoupled from ATP synthesis, and an increased membrane potential, indicative of healthy mitochondria. Meanwhile, the cells exhibit increased extracellular acidification rate and lactate production via aerobic glycolysis, a hallmark of an active proliferative state. Our findings integrate mitochondrial dynamics with metabolic adaptations during Gal-8-induced cell proliferation, with potential implications for physiology, disease, and therapeutic strategies.
Collapse
Affiliation(s)
- Adely de la Peña
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Nicole Díaz-Valdivia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Francisco Veloso-Bahamondes
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Diego Tapia
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Felix Randow
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Medicine, University of Cambridge, UK
| | - Alfonso González
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Escuela de Medicina, Facultad de Medicina, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| | - Claudia Oyanadel
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Departamento de Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina, CEBICEM, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile; Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
2
|
Vinaixa J, Martínez-Bosch N, Gibert J, Manero-Rupérez N, Santofimia-Castaño P, Baudou FG, Vera RE, Pease DR, Iglesias M, Sen S, Wang X, Almada LL, Marks DL, Moreno M, Iovanna JL, Rabinovich GA, Fernandez-Zapico ME, Navarro P. Nuclear Galectin-1 promotes KRAS-dependent activation of pancreatic cancer stellate cells. Proc Natl Acad Sci U S A 2025; 122:e2424051122. [PMID: 40172967 PMCID: PMC12002210 DOI: 10.1073/pnas.2424051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/28/2025] [Indexed: 04/04/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, primarily due to its complex tumor microenvironment (TME), which drives both disease progression and therapy resistance. Understanding the molecular mechanisms governing TME dynamics is essential for developing new treatment strategies for this devastating disease. In this study, we uncover an oncogenic role for Galectin-1 (Gal1), a glycan-binding protein abundantly expressed by activated pancreatic stellate cells (PSCs), a key component of the PDAC TME that orchestrates tumor progression. Our findings reveal that Gal1 expression is elevated in the nucleus of human PSCs in both tissue samples and cultured cell lines. Using chromatin immunoprecipitation followed by sequencing analysis (ChIP-seq), we identify Gal1 occupancy at the promoters of several cancer-associated genes, including KRAS, a pivotal oncogene involved in PDAC pathogenesis. We demonstrate that Gal1 binds to the KRAS promoter, sustaining KRAS expression in PSCs, which, in turn, maintains PSC activation and promotes the secretion of protumorigenic cytokines. Mechanistically, Gal1 is required to preserve histone H3 lysine 4 monomethylation levels and to recruit the histone methyltransferase MLL1 to target promoters. Collectively, our findings define a nuclear function of Gal1 in modulating the transcriptional landscape of cancer-associated genes in PSCs within the PDAC TME, mediated through an epigenetic mechanism. These insights enhance our understanding of PDAC pathology and open potential avenues for therapeutic interventions targeting intracellular Gal1.
Collapse
Affiliation(s)
- Judith Vinaixa
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
| | - Joan Gibert
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Patricia Santofimia-Castaño
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Federico G. Baudou
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján6700, Provincia de Buenos Aires, Argentina
| | - Renzo E. Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David R. Pease
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mar Iglesias
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
- Departament of Pathology, Hospital del Mar, Barcelona08003, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid28029, Spain
| | - Sandhya Sen
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Xiyin Wang
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Juan L. Iovanna
- Translational Research and Innovative Therapies Department, Cancer Research Center of Marseille, INSERM U1068, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, UMR 7258, Marseille13273, France
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad de Buenos Aires1428, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires1428, Argentina
- Caixa Research Institute, Barcelona08022, Spain
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN55905
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Research Institute, Associated Unit Hospital del Mar Research Institute/Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08003, Spain
- Department of Molecular and Cellular Biomedicine, Institute of Biomedical Research of Barcelona-Spanish National Research Council (IIBB-CSIC), Barcelona08036, Spain
- Institut d’Investigacions Biomediques August Pi Sunyer, Barcelona08036, Spain
| |
Collapse
|
3
|
Bertuzzi S, Lete MG, Franconetti A, Diercks T, Delgado S, Oyenarte I, Moure MJ, Nuñez‐Franco R, Valverde P, Lenza MP, Sobczak K, Jiménez‐Osés G, Paulson JC, Ardá A, Ereño‐Orbea J, Jiménez‐Barbero J. Exploring Glycan-Lectin Interactions in Natural-Like Environments: A View Using NMR Experiments Inside Cell and on Cell Surface. Chemistry 2025; 31:e202403102. [PMID: 39588609 PMCID: PMC11833217 DOI: 10.1002/chem.202403102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Glycan-mediated molecular recognition events are essential for life. NMR is widely used to monitor glycan binding to lectins in solution using isolated glycans and lectins. In this context, we herein explore diverse NMR methodologies, from both the receptor and ligand perspectives, to monitor glycan-lectin interactions under experimental conditions mimicking the native milieu inside cells and on cell surface. For the NMR experiments inside cells, galectin-7 is employed as model, since most galectins are soluble and carry out their functions in the cellular micro-environment. Using Danio Rerio oocytes, the 1H-15N HMQC NMR spectrum of a folded galectin has been observed inside cell for the first time, using a glycomimetic ligand (TDG) to overcoming the natural tendency of galectins to bind to numerous galactose-containing receptors within cells. Alternatively, most lectins, other than galectins, are displayed on the cell surface, providing a multivalent presentation to bind their glycan partners in cis (at the same cell) or in trans (on other cells). In this case, ligand-based STD-NMR experiments have been successfully applied to account for the interactions of natural glycans and glycomimetics with Siglec-10. These methodologies provide the proof-of-concept to open the door to the NMR analysis of the recognition of glycans in native-like settings.
Collapse
Affiliation(s)
- Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Marta G. Lete
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Antonio Franconetti
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Sandra Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Maria J. Moure
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Reyes Nuñez‐Franco
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Pablo Valverde
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Maria Pia Lenza
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Klaudia Sobczak
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - James C. Paulson
- Departments of Molecular Medicine and Immunology & MicrobiologyThe Scripps Research Institute10550 North Torrey Pines RoadLa Jolla, California92037USA
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - June Ereño‐Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Jesús Jiménez‐Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Department of Organic & Inorganic ChemistryFaculty of Science and TechnologyUniversity of the Basque Country, EHU-UPV48940Leioa, BizkaiaSpain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias28029MadridSpain
| |
Collapse
|
4
|
Iqbal M, Feng C, Zong G, Wang LX, Vasta GR. Galectin-3 disrupts tight junctions of airway epithelial cell monolayers by inducing expression and release of matrix metalloproteinases upon influenza A infection. Glycobiology 2025; 35:cwae093. [PMID: 39569730 PMCID: PMC11727335 DOI: 10.1093/glycob/cwae093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/03/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
Galectins are β-galactosyl-binding lectins with key roles in early development, immune regulation, and infectious disease. Influenza A virus (IAV) infects the airway epithelia, and in severe cases may lead to bacterial superinfections and hypercytokinemia, and eventually, to acute respiratory distress syndrome (ARDS) through the breakdown of airway barriers. The detailed mechanisms involved, however, remain poorly understood. Our prior in vivo studies in a murine model system revealed that upon experimental IAV and pneumococcal primary and secondary challenges, respectively, galectin-1 and galectin-3 (Gal-3) are released into the airway and bind to the epithelium that has been desialylated by the viral neuraminidase, contributing to secondary bacterial infection and hypercytokinemia leading to the clinical decline and death of the animals. Here we report the results of in vitro studies that reveal the role of the extracellular Gal-3 in additional detrimental effects on the host by disrupting the integrity of the airway epithelial barrier. IAV infection of the human airway epithelia cell line A549 increased release of Gal-3 and its binding to the A549 desialylated cell surface, notably to the transmembrane signaling receptors CD147 and integrin-β1. Addition of recombinant Gal-3 to A549 monolayers resulted in enhanced expression and release of matrix metalloproteinases, leading to disruption of cell-cell tight junctions, and a significant increase in paracellular permeability. This study reveals a critical mechanism involving Gal-3 that may significantly contribute to the severity of IAV infections by promoting disruption of tight junctions and enhanced permeability of the airway epithelia, potentially leading to lung edema and ARDS.
Collapse
Affiliation(s)
- Muddassar Iqbal
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Chiguang Feng
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
- Current address: Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry,University of Maryland, Chemistry Bldg, 1526, 8051 Regents Dr, College Park, MD 20742, USA
| | - Gerardo R Vasta
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Colwell Center, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
5
|
Gossink EM, Coffer PJ, Cutilli A, Lindemans CA. Immunomodulation by galectin-9: Distinct role in T cell populations, current therapeutic avenues and future potential. Cell Immunol 2025; 407:104890. [PMID: 39571310 DOI: 10.1016/j.cellimm.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/15/2024]
Abstract
Galectins, glycan-binding proteins, have been identified as critical regulators of the immune system. Recently, Galectin-9 (Gal-9) has emerged as biomarker that correlates with disease severity in a range of inflammatory conditions. However, Gal-9 has highly different roles in the context of immunoregulation, with the potential to either stimulate or suppress the immune response. Neutralizing antibodies targeting Gal-9 have been developed and are in early test phase investigating their therapeutic potential in cancer. Despite ongoing research, the mechanisms behind Gal-9 action remain not fully understood, and extrapolating the implications of targeting this molecule from previous studies is challenging. Here, we examine the pleiotropic function of Gal-9 focusing on conventional T lymphocytes, providing a current overview of its immunostimulatory and immunosuppressive roles. In particular, we highlight that Gal-9 differentially regulates immune responses depending on the context. Considering this complexity, further investigation of Gal-9's intricate biology is necessary to define therapeutic strategies in immune disorders and cancer treatment aimed at inducing or inhibiting Gal-9 signaling.
Collapse
Affiliation(s)
- Eva M Gossink
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Paul J Coffer
- Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands; Center of Molecular Medicine, University Medical Center Utrecht, 3584CG Utrecht, the Netherlands
| | - Caroline A Lindemans
- Princess Máxima Center for Pediatric Oncology, 3584CS Utrecht, the Netherlands; Division of Pediatrics, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Regenerative Medicine Center, University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| |
Collapse
|
6
|
Karlsson V, Stål E, Stoopendahl E, Ivarsson A, Leffler H, Lycke M, Sundqvist M, Sundfeldt K, Christenson K, Bernson E. Elevated Galectin-3 levels in the tumor microenvironment of ovarian cancer - implication of ROS mediated suppression of NK cell antitumor response via tumor-associated neutrophils. Front Immunol 2024; 15:1506236. [PMID: 39759523 PMCID: PMC11695286 DOI: 10.3389/fimmu.2024.1506236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Introduction Ovarian cancer is a lethal disease with low survival rates for women diagnosed in advanced stages. Current cancer immunotherapies are not efficient in ovarian cancer, and there is therefore a significant need for novel treatment options. The β-galactoside-binding lectin, Galectin-3, is involved in different immune processes and has been associated with poor outcome in various cancer diagnoses. Here, we investigated how Galectin-3 affects the interaction between natural killer (NK) cells and neutrophils in the tumor microenvironment of ovarian cancer. Method Ascites from the metastatic tumor microenvironment and cyst fluid from the primary tumor site were collected from patients with high-grade serous carcinoma (HGSC) together with peripheral blood samples. Galectin-3 concentration was measured in ascites, cyst fluid and serum or plasma. Neutrophils isolated from HGSC ascites and autologous blood were analyzed to evaluate priming status and production of reactive oxygen species. In vitro co-culture assays with NK cells, neutrophils and K562 target cells (cancer cell line) were conducted to evaluate NK cell viability, degranulation and cytotoxicity. Results High levels of Galectin-3 were observed in cyst fluid and ascites from patients with HGSC. Neutrophils present in HGSC ascites showed signs of priming; however, the priming status varied greatly among the patient samples. Galectin-3 induced production of reactive oxygen species in ascites neutrophils, but only from a fraction of the patient samples, which is in line with the heterogenous priming status of the ascites neutrophils. In co-cultures with NK cells and K562 target cells, we observed that Galectin-3-induced production of reactive oxygen species in neutrophils resulted in decreased NK cell viability and lowered anti-tumor responses. Conclusion Taken together, our results demonstrate high levels of Galectin-3 in the tumormicroenvironment of HGSC. High levels of Galectin-3 may induce production of reactiveoxygen species in ascites neutrophils in some patients. In turn, reactive oxygen species produced by neutrophils may modulate the NK cell anti-tumor immunity. Together, this study suggests further investigation to evaluate if a Galectin-3-targeting therapy may be used in ovarian cancer.
Collapse
Affiliation(s)
- Veronika Karlsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ebba Stål
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Emma Stoopendahl
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Anton Ivarsson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Maria Lycke
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elin Bernson
- Sahlgrenska Center for Cancer Research, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Qiu Q, Li C, Zhao X, Yang M, Ding S, Liang H, Chen T. Farnesylthiosalicylic Acid Through Inhibition of Galectin-3 Improves Neuroinflammation in Alzheimer Disease via Multiple Pathways. CNS Neurosci Ther 2024; 30:e70127. [PMID: 39592913 PMCID: PMC11598744 DOI: 10.1111/cns.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/23/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
AIMS Many factors affect the neuroinflammatory response in patients with Alzheimer disease (AD). Galectin-3 (Gal-3) is closely related to microglial activation in the nervous system and can promote the aggregation of cancer cells in tumors. This study aimed to investigate the mechanism by which farnesylthiosalicylic acid (FTS) affects neuroinflammation in Aβ1-42 mice through Gal-3. METHODS We used the Morris water maze, reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence to conduct our study. RESULTS FTS reduced the levels of proinflammatory factors and microglial activation in Aβ1-42 mice. FTS inhibited total and membrane expression levels of Gal-3 in Aβ1-42 mice, and the anti-inflammatory effect of FTS was reversed by Gal-3-adeno-associated viral (AAV). FTS reduced the expression levels of toll-like receptors (TLRs), effects that were reversed by Gal-3-AAV. Moreover, FTS ameliorated Aβ oligomerization and accumulation in Aβ1-42 mice, effects that were also reversed by Gal-3-AAV. FTS, through the inhibition of the Gal-3-c-Jun N-terminal kinase (JNK) pathway, reduced PS1 expression; in addition, inhibition of Gal-3 increased the Aβ-degrading enzymes in Aβ1-42 mice. FTS-induced improvements in cognition in Aβ1-42 mice were reversed by Gal-3-AAV. CONCLUSION FTS may through inhibiting Gal-3 reduce the expression of TLR4 and CD14 and alleviate Aβ pathology, downregulating Aβ-stimulated TLR2, TLR4, and CD14 expression, and thus alleviate neuroinflammation in Aβ1-42 mice.
Collapse
Affiliation(s)
- Qing Qiu
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Cui Li
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Xiaoli Zhao
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Mengting Yang
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Shushu Ding
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| | - Haiying Liang
- Department of PharmacyLongyan First Affiliated Hospital of Fujian Medical UniversityLongyanFujianChina
| | - Tingting Chen
- Department of Pharmacology, School of PharmacyNantong UniversityNantongJiangsuChina
| |
Collapse
|
8
|
Purić E, Nilsson UJ, Anderluh M. Galectin-8 inhibition and functions in immune response and tumor biology. Med Res Rev 2024; 44:2236-2265. [PMID: 38613488 DOI: 10.1002/med.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 03/03/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Galectins are among organisms' most abundantly expressed lectins (carbohydrate-binding proteins) that specifically bind β-galactosides. They act not only outside the cell, where they bind to extracellular matrix glycans, but also inside the cell, where they have a significant impact on signaling pathways. Galectin-8 is a galectin family protein encoded by the LGALS8 gene. Its role is evident in both T- and B-cell immunity and in the innate immune response, where it acts directly on dendritic cells and induces some pro-inflammatory cytokines. Galectin-8 also plays an important role in the defense against bacterial and viral infections. It is known to promote antibacterial autophagy by recognizing and binding glycans present on the vacuolar membrane, thus acting as a danger receptor. The most important role of galectin-8 is the regulation of cancer growth, metastasis, tumor progression, and tumor cell survival. Importantly, the expression of galectins is typically higher in tumor tissues than in noncancerous tissues. In this review article, we focus on galectin-8 and its function in immune response, microbial infections, and cancer. Given all of these functions of galectin-8, we emphasize the importance of developing new and selective galectin-8 inhibitors and report the current status of their development.
Collapse
Affiliation(s)
- Edvin Purić
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Lund, Sweden
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, University of Ljubljana, Faculty of Pharmacy, Ljubljana, Slovenia
| |
Collapse
|
9
|
Touarin P, Serrano B, Courbois A, Bornet O, Chen Q, Scott LG, Williamson JR, Sebban-Kreuzer C, Mancini SJC, Elantak L. Pre-B cell receptor acts as a selectivity switch for galectin-1 at the pre-B cell surface. Cell Rep 2024; 43:114541. [PMID: 39058594 DOI: 10.1016/j.celrep.2024.114541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Galectins are glycan-binding proteins translating the sugar-encoded information of cellular glycoconjugates into physiological activities, including immunity, cell migration, and signaling. Galectins also interact with non-glycosylated partners in the extracellular milieu, among which the pre-B cell receptor (pre-BCR) during B cell development. How these interactions might interplay with the glycan-decoding function of galectins is unknown. Here, we perform NMR experiments on native membranes to monitor Gal-1 binding to physiological cell surface ligands. We show that pre-BCR interaction changes Gal-1 binding to glycosylated pre-B cell surface receptors. At the molecular and cellular levels, we identify α2,3-sialylated motifs as key targeted epitopes. This targeting occurs through a selectivity switch increasing Gal-1 contacts with α2,3-sialylated poly-N-acetyllactosamine upon pre-BCR interaction. Importantly, we observe that this switch is involved in the regulation of pre-BCR activation. Altogether, this study demonstrates that interactions to non-glycosylated proteins regulate the glycan-decoding functions of galectins at the cell surface.
Collapse
Affiliation(s)
- Pauline Touarin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Bastien Serrano
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Audrey Courbois
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Olivier Bornet
- NMR platform, Institut de Microbiologie de la Méditerranée (IMM FR3479), Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | - Qian Chen
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - Lincoln G Scott
- Cassia, 3030 Bunker Hill Street, Suite 214, San Diego, CA 92109, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Corinne Sebban-Kreuzer
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France
| | | | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM UMR7255), Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, CNRS, Aix-Marseille University, Marseille, France.
| |
Collapse
|
10
|
Stachowiak K, Zabiszak M, Grajewski J, Teubert A, Bajek A, Jastrzab R. Thermodynamic Studies of Complexes in Cu(II)/Uridine-5'-Diphosphoglucuronic Acid System. Molecules 2024; 29:3695. [PMID: 39125099 PMCID: PMC11314288 DOI: 10.3390/molecules29153695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
A binary system of uridine-5'-diphosphoglucuronic acid with copper (II) ions was studied. Potentiometric studies in aqueous solutions using computer data analysis were carried out. The pH of dominance, the overall stability constants (logβ), and the equilibrium constants of the formation reaction (logKe) were determined for each complex compound formed in the studied system. Spectroscopic studies were carried out to determine the mode of coordination in the compounds studied. Cytotoxicity and metabolic activity tests of the compounds obtained showed an increase in the biological activity of the complexes tested against the free ligand. The current research may contribute to the knowledge of complex compounds of biomolecules found in the human body and may also contribute to the characterization of a group of complex compounds with potential anticancer properties.
Collapse
Affiliation(s)
- Klaudia Stachowiak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Michal Zabiszak
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Jakub Grajewski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| | - Anna Teubert
- Institute of Bioorganic Chemistry, Polish Academy of Science, Zygmunta Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Anna Bajek
- Faculty of Medicine, Department of Urology and Andrology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13, 85-067 Bydgoszcz, Poland;
| | - Renata Jastrzab
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (K.S.); (M.Z.)
| |
Collapse
|
11
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Hridoy HM, Hossain MP, Ali MH, Hasan I, Uddin MB, Alam MT, Kabir SR. Alocasia macrorrhiza rhizome lectin inhibits growth of pathogenic bacteria and human lung cancer cell in vitro and Ehrlich ascites carcinoma cell in vivo in mice. Protein Expr Purif 2024; 219:106484. [PMID: 38614377 DOI: 10.1016/j.pep.2024.106484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 μg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 μg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.
Collapse
Affiliation(s)
- Hossain Mohammad Hridoy
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Pervez Hossain
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Hasan Ali
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Imtiaj Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Belal Uddin
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Mohammad Taufiq Alam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
13
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Frederiks CL, Saiz Sierra L, Nierkens S, Mokry M, Nieuwenhuis EE, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal epithelial damage directly promotes galectin-9-driven modulation of T cell behavior. iScience 2024; 27:110072. [PMID: 38883813 PMCID: PMC11176658 DOI: 10.1016/j.isci.2024.110072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/05/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
The intestine is vulnerable to chemotherapy-induced damage due to the high rate of intestinal epithelial cell (IEC) proliferation. We have developed a human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced IEC damage on T cell behavior. Exposure of intestinal organoids to busulfan, fludarabine, and clofarabine induced damage-related responses affecting both the capacity to regenerate and transcriptional reprogramming. In ex vivo co-culture assays, prior intestinal organoid damage resulted in increased T cell activation, proliferation, and migration. We identified galectin-9 (Gal-9) as a key molecule released by damaged organoids. The use of anti-Gal-9 blocking antibodies or CRISPR/Cas9-mediated Gal-9 knock-out prevented intestinal organoid damage-induced T cell proliferation, interferon-gamma release, and migration. Increased levels of Gal-9 were found early after HSCT chemotherapeutic conditioning in the plasma of patients who later developed acute GVHD. Taken together, chemotherapy-induced intestinal damage can influence T cell behavior in a Gal-9-dependent manner which may provide novel strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Suze A. Jansen
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Coco de Koning
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Marliek van Hoesel
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Cynthia L. Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Leire Saiz Sierra
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584GX Utrecht, the Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
| | - Edward E.S. Nieuwenhuis
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- University College Roosevelt, Utrecht University, Middelburg 4331CB, the Netherlands
| | - Alan M. Hanash
- Departments of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY 10065, USA
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Paul J. Coffer
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CG, the Netherlands
| | - Caroline A. Lindemans
- Division of Pediatrics, University Medical Center Utrecht, Utrecht 3584GX, the Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht 3584CS, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht 3584CT, the Netherlands
| |
Collapse
|
14
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
15
|
Chand Daskhan G, Ton Tran HT, Cairo CW. Convergent synthesis of a hexadecavalent heterobifunctional ABO blood group glycoconjugate. Carbohydr Res 2024; 535:108988. [PMID: 38048747 DOI: 10.1016/j.carres.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
16
|
Jackson JJ, Siegmund AC, Bai WJ, Reed AB, Birkholz AB, Campuzano IDG, Créquer-Grandhomme A, Hu R, Modak RV, Sudom A, Javier N, Sanders C, Lo MC, Xie F, Cee VJ, Manzanillo P, Allen JG. Imidazolone as an Amide Bioisostere in the Development of β-1,3- N-Acetylglucosaminyltransferase 2 (B3GNT2) Inhibitors. J Med Chem 2023; 66:16120-16140. [PMID: 37988652 DOI: 10.1021/acs.jmedchem.3c01517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
B3GNT2 is responsible for elongation of cell surface long-chain polylactosamine, which influences the regulation of the immune response, making it an attractive target for immunomodulation. In the development of amide containing B3GNT2 inhibitors guided by structure-based drug design, imidazolones were found to successfully serve as amide bioisosteres. This novel imidazolone isosteric strategy alleviated torsional strain of the amide bond on binding to B3GNT2 and improved potency, isoform selectivity, as well as certain physicochemical and pharmacokinetic properties. Herein, we present the synthesis, SAR, X-ray cocrystal structures, and in vivo PK properties of imidazol-4-ones in the context of B3GNT2 inhibition.
Collapse
Affiliation(s)
- Jeffrey J Jackson
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Aaron C Siegmund
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Wen-Ju Bai
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Anthony B Reed
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Adam B Birkholz
- Center for Research Acceleration by Digital Innovation, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Iain D G Campuzano
- Center for Research Acceleration by Digital Innovation, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Amandine Créquer-Grandhomme
- Inflammation, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Ruozhen Hu
- Inflammation, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Rucha V Modak
- Inflammation, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Athena Sudom
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Noelle Javier
- Lead Discovery & Characterization, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Christiana Sanders
- Lead Discovery & Characterization, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Mei-Chu Lo
- Lead Discovery & Characterization, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Fang Xie
- Pharmacokinetics & Drug Metabolism, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - Victor J Cee
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Paolo Manzanillo
- Inflammation, Amgen Research, Amgen Inc., 750 Gateway Blvd, Ste 100, South San Francisco, California 94080, United States
| | - John G Allen
- Small Molecule Therapeutic Discovery, Amgen Research, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
17
|
Dam TK, Brewer CF. Multivalent lectin-carbohydrate interactions: Energetics and mechanisms of binding. Adv Carbohydr Chem Biochem 2023; 84:23-48. [PMID: 37979978 DOI: 10.1016/bs.accb.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The biological signaling properties of lectins, which are carbohydrate-binding proteins, are due to their ability to bind and cross-link multivalent glycoprotein receptors on the surface of normal and transformed cells. While the cross-linking properties of lectins with multivalent carbohydrates and glycoproteins are relatively well understood, the mechanisms of binding of lectins to multivalent glycoconjugates are less well understood. Recently, the thermodynamics of binding of lectins to synthetic clustered glycosides, a multivalent globular glycoprotein, and to linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules. Importantly, the mechanism of binding of lectins to mucins is similar to that for a variety of protein ligands binding to DNA. Recent analysis also shows that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects which facilitate binding and subsequent complex formation including enzymology.
Collapse
Affiliation(s)
- Tarun K Dam
- Formerly of the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - C Fred Brewer
- Department of Molecular Pharmacology, Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
18
|
Mackinnon AC, Tonev D, Jacoby B, Pinzani M, Slack RJ. Galectin-3: therapeutic targeting in liver disease. Expert Opin Ther Targets 2023; 27:779-791. [PMID: 37705214 DOI: 10.1080/14728222.2023.2258280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The rising incidence of liver diseases is a worldwide healthcare concern. However, the therapeutic options to manage chronic inflammation and fibrosis, the processes at the basis of morbidity and mortality of liver diseases, are very limited. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. Several Gal-3 inhibitors are currently in clinical development. AREAS COVERED This review describes our current understanding of the role of Gal-3 in chronic liver diseases, with special emphasis on fibrosis. Also, we review therapeutic advances based on Gal-3 inhibition, describing drug properties and their current status in clinical research. EXPERT OPINION Currently, the known effects of Gal-3 point to a direct activation of the NLRP3 inflammasome leading to its activation in liver macrophages and activated macrophages play a key role in tissue fibrogenesis. However, more research is needed to elucidate the role of Gal-3 in the different activation pathways, dissecting the intracellular and extracellular mechanisms of Gal-3, and its role in pathogenesis. Gal-3 could be a target for early therapy of numerous hepatic diseases and, given the lack of therapeutic options for liver fibrosis, there is a strong pharmacologic potential for Gal-3-based therapies.
Collapse
Affiliation(s)
| | - Dimitar Tonev
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Brian Jacoby
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Robert J Slack
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| |
Collapse
|
19
|
Radziejewska I. Galectin-3 and Epithelial MUC1 Mucin-Interactions Supporting Cancer Development. Cancers (Basel) 2023; 15:2680. [PMID: 37345016 DOI: 10.3390/cancers15102680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Aberrant glycosylation of cell surface proteins is a very common feature of many cancers. One of the glycoproteins, which undergoes specific alterations in the glycosylation of tumor cells is epithelial MUC1 mucin, which is highly overexpressed in the malignant state. Such changes lead to the appearance of tumor associated carbohydrate antigens (TACAs) on MUC1, which are rarely seen in healthy cells. One of these structures is the Thomsen-Friedenreich disaccharide Galβ1-3GalNAc (T or TF antigen), which is typical for about 90% of cancers. It was revealed that increased expression of the T antigen has a big impact on promoting cancer progression and metastasis, among others, due to the interaction of this antigen with the β-galactose binding protein galectin-3 (Gal-3). In this review, we summarize current information about the interactions between the T antigen on MUC1 mucin and Gal-3, and their impact on cancer progression and metastasis.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2a, 15-222 Białystok, Poland
| |
Collapse
|
20
|
Jansen SA, Cutilli A, de Koning C, van Hoesel M, Sierra LS, Nierkens S, Mokry M, Nieuwenhuis EES, Hanash AM, Mocholi E, Coffer PJ, Lindemans CA. Chemotherapy-induced intestinal injury promotes Galectin-9-driven modulation of T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.30.538862. [PMID: 37163028 PMCID: PMC10168344 DOI: 10.1101/2023.04.30.538862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The intestine is vulnerable to chemotherapy-induced toxicity due to its high epithelial proliferative rate, making gut toxicity an off-target effect in several cancer treatments, including conditioning regimens for allogeneic hematopoietic cell transplantation (allo-HCT). In allo-HCT, intestinal damage is an important factor in the development of Graft-versus-Host Disease (GVHD), an immune complication in which donor immune cells attack the recipient's tissues. Here, we developed a novel human intestinal organoid-based 3D model system to study the direct effect of chemotherapy-induced intestinal epithelial damage on T cell behavior. Chemotherapy treatment using busulfan, fludarabine, and clofarabine led to damage responses in organoids resulting in increased T cell migration, activation, and proliferation in ex- vivo co-culture assays. We identified galectin-9 (Gal-9), a beta-galactoside-binding lectin released by damaged organoids, as a key molecule mediating T cell responses to damage. Increased levels of Gal-9 were also found in the plasma of allo-HCT patients who later developed acute GVHD, supporting the predictive value of the model system in the clinical setting. This study highlights the potential contribution of chemotherapy-induced epithelial damage to the pathogenesis of intestinal GVHD through direct effects on T cell activation and trafficking promoted by galectin-9.
Collapse
|
21
|
Ito Y, Usui-Ouchi A, Ebihara N. Galectin-3, a damage-associated molecular pattern, in tears of patients with vernal keratoconjunctivitis. Jpn J Ophthalmol 2023:10.1007/s10384-023-00994-9. [PMID: 37079165 DOI: 10.1007/s10384-023-00994-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/24/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE Galectin-3 is a damage-associated molecular pattern (DAMPs), released from damaged or dying cells. In this study, we investigated the concentration and source of galectin-3 in the tears of patients with vernal keratoconjunctivitis (VKC) and evaluated whether the concentration of galectin-3 in tears represents a biomarker of corneal epithelial damage. STUDY DESIGN Clinical and experimental. METHODS We measured the concentration of galectin-3 in tear samples from 26 patients with VKC and 6 healthy controls by enzyme-linked immunosorbent assay (ELISA). The expression of galectin-3 in cultured human corneal epithelial cells (HCEs) stimulated with or without tryptase or chymase was investigated by polymerase chain reaction (PCR), ELISA, and Western blotting. We also estimated the concentration of galectin-3 in the supernatants of cultured HCEs induced to necrosis. Finally, we investigated whether recombinant galectin-3 induced the expression of various genes related to cell migration or the cell cycle in HCEs by using microarray analysis. RESULTS High concentrations of galectin-3 were detected in the tears of patients with VKC. The concentration showed significant correlation with the severity of corneal epithelial damage. Stimulation of cultured HCEs with various concentrations of tryptase or chymase had no effect on the expression of galectin-3. However, high concentrations of galectin-3 were detected in the supernatants of necrotic HCEs. Recombinant human galectin-3 induced various cell migration- and cell cycle-related genes. CONCLUSION The concentrations of galectin-3 in the tears of patients with VKC may represent a biomarker of the severity of corneal epithelial damage.
Collapse
Affiliation(s)
- Yousuke Ito
- Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan
| | - Ayumi Usui-Ouchi
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan
| | - Nobuyuki Ebihara
- Department of Ophthalmology, Juntendo University Urayasu Hospital, 2-1-1, Tomioka, Urayasu-shi, Chiba, Japan.
| |
Collapse
|
22
|
Morishita A, Oura K, Tadokoro T, Shi T, Fujita K, Tani J, Atsukawa M, Masaki T. Galectin-9 in Gastroenterological Cancer. Int J Mol Sci 2023; 24:ijms24076174. [PMID: 37047155 PMCID: PMC10094448 DOI: 10.3390/ijms24076174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Immunochemotherapy has become popular in recent years. The detailed mechanisms of cancer immunity are being elucidated, and new developments are expected in the future. Apoptosis allows tissues to maintain their form, quantity, and function by eliminating excess or abnormal cells. When apoptosis is inhibited, the balance between cell division and death is disrupted and tissue homeostasis is impaired. This leads to dysfunction and the accumulation of genetically abnormal cells, which can contribute to carcinogenesis. Lectins are neither enzymes nor antibodies but proteins that bind sugar chains. Among soluble endogenous lectins, galectins interact with cell surface sugar chains outside the cell to regulate signal transduction and cell growth. On the other hand, intracellular lectins are present at the plasma membrane and regulate signal transduction by regulating receptor–ligand interactions. Galectin-9 expressed on the surface of thymocytes induces apoptosis of T lymphocytes and plays an essential role in immune self-tolerance by negative selection in the thymus. Furthermore, the administration of extracellular galectin-9 induces apoptosis of human cancer and immunodeficient cells. However, the detailed pharmacokinetics of galectin-9 in vivo have not been elucidated. In addition, the cell surface receptors involved in galectin-9-induced apoptosis of cancer cells have not been identified, and the intracellular pathways involved in apoptosis have not been fully investigated. We have previously reported that galectin-9 induces apoptosis in various gastrointestinal cancers and suppresses tumor growth. However, the mechanism of galectin-9 and apoptosis induction in gastrointestinal cancers and the detailed mechanisms involved in tumor growth inhibition remain unknown. In this article, we review the effects of galectin-9 on gastrointestinal cancers and its mechanisms.
Collapse
|
23
|
Abdullayev S, Kadav P, Bandyopadhyay P, Medrano FJ, Rabinovich GA, Dam TK, Romero A, Roy R. Selectively Modified Lactose and N-Acetyllactosamine Analogs at Three Key Positions to Afford Effective Galectin-3 Ligands. Int J Mol Sci 2023; 24:ijms24043718. [PMID: 36835132 PMCID: PMC9962200 DOI: 10.3390/ijms24043718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Galectins constitute a family of galactose-binding lectins overly expressed in the tumor microenvironment as well as in innate and adaptive immune cells, in inflammatory diseases. Lactose ((β-D-galactopyranosyl)-(1→4)-β-D-glucopyranose, Lac) and N-Acetyllactosamine (2-acetamido-2-deoxy-4-O-β-D-galactopyranosyl-D-glucopyranose, LacNAc) have been widely exploited as ligands for a wide range of galectins, sometimes with modest selectivity. Even though several chemical modifications at single positions of the sugar rings have been applied to these ligands, very few examples combined the simultaneous modifications at key positions known to increase both affinity and selectivity. We report herein combined modifications at the anomeric position, C-2, and O-3' of each of the two sugars, resulting in a 3'-O-sulfated LacNAc analog having a Kd of 14.7 µM against human Gal-3 as measured by isothermal titration calorimetry (ITC). This represents a six-fold increase in affinity when compared to methyl β-D-lactoside having a Kd of 91 µM. The three best compounds contained sulfate groups at the O-3' position of the galactoside moieties, which were perfectly in line with the observed highly cationic character of the human Gal-3 binding site shown by the co-crystal of one of the best candidates of the LacNAc series.
Collapse
Affiliation(s)
- Shuay Abdullayev
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
| | - Priyanka Kadav
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Purnima Bandyopadhyay
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Vuelta de Obligado 2490, C1428 Ciudad de Buenos Aires, Argentina
| | - Tarun K. Dam
- Laboratory of Mechanistic Glycobiology, Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Antonio Romero
- Centro de Investigaciones Biológicas “Margarita Salas” (CIB), CSIC, E-28040 Madrid, Spain
- Correspondence: (A.R.); (R.R.)
| | - René Roy
- Glycosciences and Nanomaterials Laboratory, Université du Québec à Montréal, Succ. Centre-Ville, P.O. Box 8888, Montréal, QC H3C 3P8, Canada
- Correspondence: (A.R.); (R.R.)
| |
Collapse
|
24
|
Brocca ME, Mora-Rubio A, Alonso-Calviño E, Fernández-López E, Díez-Revuelta N, Martos-Puñal D, Aguilar J, Higuero AM, Abad-Rodríguez J. Normal Cortical Myelination in Galectin-4-Deficient Mice. Cells 2022; 11:3485. [PMID: 36359880 PMCID: PMC9658391 DOI: 10.3390/cells11213485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2024] Open
Abstract
Myelin, critical for the correct function of the nervous system, is organized in different patterns that can include long non-myelinated axonal segments. How myelin patterning is regulated remains unexplained. The carbohydrate-binding protein galectin-4 (Gal-4) influences oligodendrocyte differentiation in vitro and is associated with non-myelinable axon segments (NMS) in cultured neurons. In consequence, Gal-4 has been proposed as a myelin patterning regulator, although no in vivo studies have corroborated this hypothesis. We used Gal-4-deficient mice (Lgals4-KO) to study the role of Gal-4 in cortical myelination in vivo. We show that cultured neurons of Lgals4-KO mice form NMS that are regulated as in control neurons. In addition, oligodendrocyte/myelin markers expression measured by biochemical and immunochemical means, and cortical myelin microstructure studied by in-depth image analysis appear unaltered in these animals. Consistently, myelin displays an essentially normal function assessed by in vivo electrophysiology and locomotion analyses. In conclusion, cortical myelin of Lgals4-KO mice does not show any significant defect in composition, organization or function, pointing to a negligible role of Gal-4 in myelination in vivo or, as discussed, to unknown mechanisms that compensate its absence.
Collapse
Affiliation(s)
- María Elvira Brocca
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Arancha Mora-Rubio
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Elena Alonso-Calviño
- Experimental Neurophysiology and Neuronal Circuits Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Elena Fernández-López
- Experimental Neurophysiology and Neuronal Circuits Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Natalia Díez-Revuelta
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - David Martos-Puñal
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Juan Aguilar
- Experimental Neurophysiology and Neuronal Circuits Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Alonso M. Higuero
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| | - José Abad-Rodríguez
- Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos (SESCAM), Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
25
|
Rio-Aige K, Girbal M, Selma-Royo M, Parra-Llorca A, González S, Martínez-Costa C, Castell M, Collado MC, Pérez-Cano FJ, Rodríguez-Lagunas MJ. Galectins-1, -3 and -9 Are Present in Breast Milk and Have a Role in Early Life Development. Nutrients 2022; 14:nu14204338. [PMID: 36297023 PMCID: PMC9611974 DOI: 10.3390/nu14204338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
Abstract
Galectins (Gal) are a family of conserved soluble proteins with high affinity for β-galactoside structures. They have been recognized as important proteins for successful pregnancy. However, little is known about their presence in breast milk and their role in early infancy. Gal-1, -3 and -9 concentrations were evaluated by Multiplex immunoassays in mother–infant pairs from the MAMI cohort in maternal plasma (MP) (n = 15) and umbilical cord plasma (UCP) (n = 15) at birth and in breast milk samples (n = 23) at days 7 and 15 postpartum. Data regarding mother and infant characteristics were collected. Gal-9 was present in a lower concentration range than Gal-1 and Gal-3 in plasma, specifically in UCP. A major finding in the current study is that Gal-1, -3 and -9 were detected for the first time in all the transitional breast milk samples and no differences were found when comparing the two breastfeeding time points. Finally, Gal levels were associated with some maternal and infant characteristics, such as gestational age, pregnancy weight gain, maternal diet, the gender, infant growth and infant infections. In conclusion, Gal levels seem to be involved in certain developmental aspects of early life.
Collapse
Affiliation(s)
- Karla Rio-Aige
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Marina Girbal
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Marta Selma-Royo
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain
| | - Anna Parra-Llorca
- Neonatal Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Sonia González
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33071 Oviedo, Spain
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA, ISPA), 33011 Oviedo, Spain
| | - Cecilia Martínez-Costa
- Department of Pediatrics, INCLIVA Biomedical Research Institute, University of Valencia, Avenida Blasco Ibáñez 15-17, 46010 Valencia, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), National Research Council, 46980 Valencia, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence:
| | - María J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
26
|
Light-driven single-cell rotational adhesion frequency assay. ELIGHT 2022; 2:13. [PMID: 35965781 PMCID: PMC9358104 DOI: 10.1186/s43593-022-00020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 01/13/2023]
Abstract
The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases.
Collapse
|
27
|
Wu AM. Loci and motifs of the GalNAcα1 → 3/O related glycotopes in the mammalian glycoconjugates and their lectin recognition roles. Glycoconj J 2022; 39:633-651. [PMID: 35962217 DOI: 10.1007/s10719-022-10068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 11/04/2022]
Abstract
Galα1 → and GalNAcα1 → are the two essential key sugars in human blood group AB active glycotopes, in which GalNAcα1 → related sequences are located at both sides of the nonreducing and the reducing ends of human blood group A active O-glycans. It is also found at the nonreducing ends of GlcNAc N-glycans and glycosphingolipid(GSL) of human blood group A active glycotopes (Ah) and Forssman antigen (Fp). When monosaccharides and their α, β anomers are involved in basic units to express the complex size of the combining sites of the GalNAcα1 → specific lectins, they can be divided into a cavity site to accommodate the GalNAcα → key sugar and a subsite with a wide and broad range of recognition area to adopt the rest part of sugar sequences or glycotopes. The function of the subsite is assumed to act as an enhancement factor to increase its affinity power. The following three points are the theme of this mini review: (1) the loci and distribution of the GalNAcα1 → related glycotopes in mammalian glycoconjugates are illustrated and their chemical structures are advanced by the expression of the disaccharide units and code system; (2) the sizes and motifs of GalNAcα1 → specific lectin-glycan interactions are given and (3) the role of the polyvalent blood group Ah and Bh glycotopes as blood group AB antigens are proposed. These three highlights should provide an essential background required for the advances in this field.
Collapse
Affiliation(s)
- Albert M Wu
- Glycome Research Laboratory, Institute of Molecular and Cellular Biology, College of Medicine, Chang-Gung University, Tao-yuan, 33302, Taiwan.
| |
Collapse
|
28
|
Loghry HJ, Sondjaja NA, Minkler SJ, Kimber MJ. Secreted filarial nematode galectins modulate host immune cells. Front Immunol 2022; 13:952104. [PMID: 36032131 PMCID: PMC9402972 DOI: 10.3389/fimmu.2022.952104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including Brugia malayi. Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable. Progress to address deficiencies in the approach to LF control is hindered by a poor mechanistic understanding of host-parasite interactions, including mechanisms of host immunomodulation by the parasite, a critical adaptation for establishing and maintaining infections. The canonical type 2 host response to helminth infection characterized by anti-inflammatory and regulatory immune phenotypes is modified by filarial nematodes during chronic LF. Current efforts at identifying parasite-derived factors driving this modification focus on parasite excretory-secretory products (ESP), including extracellular vesicles (EVs). We have previously profiled the cargo of B. malayi EVs and identified B. malayi galectin-1 and galectin-2 as among the most abundant EV proteins. In this study we further investigated the function of these proteins. Sequence analysis of the parasite galectins revealed highest homology to mammalian galectin-9 and functional characterization identified similar substrate affinities consistent with this designation. Immunological assays showed that Bma-LEC-2 is a bioactive protein that can polarize macrophages to an alternatively activated phenotype and selectively induce apoptosis in Th1 cells. Our data shows that an abundantly secreted parasite galectin is immunomodulatory and induces phenotypes consistent with the modified type 2 response characteristic of chronic LF infection.
Collapse
|
29
|
Liu Y, Ding H, Li J, Lou X, Yang M, Zheng Y. Light-driven single-cell rotational adhesion frequency assay. ELIGHT 2022; 2:13. [PMID: 35965781 DOI: 10.1186/s43593-022-00013-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 05/23/2023]
Abstract
UNLABELLED The interaction between cell surface receptors and extracellular ligands is highly related to many physiological processes in living systems. Many techniques have been developed to measure the ligand-receptor binding kinetics at the single-cell level. However, few techniques can measure the physiologically relevant shear binding affinity over a single cell in the clinical environment. Here, we develop a new optical technique, termed single-cell rotational adhesion frequency assay (scRAFA), that mimics in vivo cell adhesion to achieve label-free determination of both homogeneous and heterogeneous binding kinetics of targeted cells at the subcellular level. Moreover, the scRAFA is also applicable to analyze the binding affinities on a single cell in native human biofluids. With its superior performance and general applicability, scRAFA is expected to find applications in study of the spatial organization of cell surface receptors and diagnosis of infectious diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1186/s43593-022-00020-4.
Collapse
Affiliation(s)
- Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jingang Li
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
| | - Xin Lou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Mingcheng Yang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 China
- Songshan Lake Materials Laboratory, Dongguan, 523808 Guangdong China
| | - Yuebing Zheng
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712 USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
30
|
Grazier JJ, Sylvester PW. Role of Galectins in Metastatic Breast Cancer. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-galectins] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Dukh M, Cacaccio J, Durrani FA, Kumar I, Watson R, Tabaczynski WA, Joshi P, Missert JR, Baumann H, Pandey RK. Impact of mono- and di-β-galactose moieties in in vitro / in vivo anticancer efficacy of pyropheophorbide-carbohydrate conjugates by photodynamic therapy. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2022; 5:100047. [PMID: 36568335 PMCID: PMC9776133 DOI: 10.1016/j.ejmcr.2022.100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the impact of mono- and di-β-galactose moieties in tumor uptake and photodynamic therapy (PDT) efficacy, HPPH [3-(1'-hexyloxy)ethyl-3-devinylpyropheophorobide-a], the meso pyropheophorbide-a [3-ethyl-3-devinyl-pyropheophorbide-a], and the corresponding 20-benzoic acid analogs were used as starting materials. Reaction of the intermediates containing one or two carboxylic acid functionalities with 1-aminogalactose afforded the desired 172- or 20(4')- mono- and 172, 20(4')-di galactose conjugated photosensitizers (PSs) with and without a carboxylic acid group. The overall lipophilicity caused by the presence of galactose in combination with either an ethyl or (1'-hexyloxy)ethyl side chain at position-3 of the macrocycle made a significant difference in in vitro uptake by tumor cells and photoreaction upon light exposure. Interestingly, among the PSs investigated, compared to HPPH 1 the carbohydrate conjugates 2 and 11 in which β-galactose moieties are conjugated at positions 172 and 20(4') of meso-pyro pheophorbide-a showed similar in vitro efficacy in FaDu cell lines, but in SCID mice bearing FaDu tumors (head & neck) Ps 11 gave significantly improved long-term tumor cure.
Collapse
Affiliation(s)
- Mykhaylo Dukh
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | | | - Ishaan Kumar
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | - Ramona Watson
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Penny Joshi
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA
| | | | - Heinz Baumann
- Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ravindra K. Pandey
- PDT Center, Cell Stress Biology, Buffalo, NY, 14263, USA,Corresponding author. (R.K. Pandey)
| |
Collapse
|
32
|
Stowell SR, Rodrigues LC, Dias-Baruffi M, Cummings RD, Arthur CM. Examining Galectin Binding Specificity Using Glycan Microarrays. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2442:151-168. [PMID: 35320525 DOI: 10.1007/978-1-0716-2055-7_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glycan binding proteins (GBPs) possess the unique ability to regulate a wide variety of biological processes through interactions with highly modifiable cell surface glycans. While many studies demonstrate the impact of glycan modification on GBP recognition and activity, the relative contribution of subtle changes in glycan structure on GBP binding can be difficult to define. To overcome limitations in the analysis of GBP-glycan interactions, recent studies utilized glycan microarray platforms containing hundreds of structurally defined glycans. These studies not only provided important information regarding GBP-glycan interactions in general but have also resulted in significant insight into binding specificity and biological activity of the galectin family. We will describe the methods used when employing glycan microarray platforms to examine galectin-glycan binding specificity and function.
Collapse
Affiliation(s)
- Sean R Stowell
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA
| | - Lilian C Rodrigues
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Dias-Baruffi
- Department of Clinical Analysis, Toxicological and Bromatological, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Connie M Arthur
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Glycomics Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Fundora JB, Zhu J, Yanek LR, Go M, Shakeel F, Brooks SS, Yang J, Hackam DJ, Everett AD, Shores DR. Galectin-4 as a Novel Biomarker of Neonatal Intestinal Injury. Dig Dis Sci 2022; 67:863-871. [PMID: 33738671 PMCID: PMC8939249 DOI: 10.1007/s10620-021-06929-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/26/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Neonates are at risk of gastrointestinal emergencies including necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP). Identifying biomarkers to aid in diagnosis is imperative. We hypothesized that circulating intestinal-specific protein concentrations would distinguish infants with intestinal injury from controls. AIMS To identify serum concentrations of intestinal-specific protein(s) in infants with intestinal injury and controls. METHODS We used an in silico approach to identify intestinal-specific proteins. We collected serum from control infants and infants with NEC or SIP and measured protein concentrations using ELISA. If baseline concentrations were near the detection limit in initial control assays, we proceeded to assess concentrations in a larger cohort of controls and infants with injury. Control infants were frequency matched to infants with injury and compared with nonparametric and mixed-effects models analysis. RESULTS We evaluated four proteins with high intestinal expression: Galectin-4 (Gal-4), S100G, Trefoil Factor-3, and alanyl aminopeptidase. Only Gal-4 demonstrated consistent results near the lower limit of quantification in controls and was studied in the larger cohorts. Gal-4 concentration was low in 111 control infants (median 0.012 ng/ml). By contrast, Gal-4 was significantly increased at diagnosis in infants with surgical NEC and SIP (n = 14, p ≤ 0.001 and n = 8, p = 0.031) compared to matched controls, but not in infants with medical NEC (n = 32, p = 0.10). CONCLUSIONS Of the intestinal-specific proteins evaluated, circulating Gal-4 concentrations were at the assay detection limit in control infants. Gal-4 concentrations were significantly elevated in infants with surgical NEC or SIP, suggesting that Gal-4 may serve as a biomarker for neonatal intestinal injury.
Collapse
Affiliation(s)
- Jennifer B Fundora
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University School of Medicine, 1800 Orleans St, Suite 8534, Baltimore, MD, 21287, USA.
| | - Jie Zhu
- Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, 720 Rutland Ave. Ross Building 1129, Baltimore, MD, 21205, USA
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St 1830 Building Suite 8024, Baltimore, MD, 21287, USA
| | - Mitzi Go
- Division of Neonatology, Maternal, Fetal and Neonatal Institute, Johns Hopkins All Children's Hospital, 501 6th Ave S, St. Petersburg, FL, 33701, USA
| | - Fauzia Shakeel
- Division of Neonatology, Maternal, Fetal and Neonatal Institute, Johns Hopkins All Children's Hospital, 501 6th Ave S, St. Petersburg, FL, 33701, USA
| | - Sandra S Brooks
- Division of Neonatology, Maternal, Fetal and Neonatal Institute, Johns Hopkins All Children's Hospital, 501 6th Ave S, St. Petersburg, FL, 33701, USA
| | - Jun Yang
- Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, 720 Rutland Ave. Ross Building 1129, Baltimore, MD, 21205, USA
| | - David J Hackam
- Department of Surgery, Division of Pediatric Surgery, Johns Hopkins University School of Medicine, 1800 Orleans St, Suite 7310, Baltimore, MD, 21287, USA
| | - Allen D Everett
- Department of Pediatrics, Division of Pediatric Cardiology, Johns Hopkins University School of Medicine, 720 Rutland Ave. Ross Building 1129, Baltimore, MD, 21205, USA
| | - Darla R Shores
- Department of Pediatrics, Division of Pediatric Gastroenterology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| |
Collapse
|
34
|
Xie J, Yu P, Wang Z, Li J. Recent Advances of Self-Healing Polymer Materials via Supramolecular Forces for Biomedical Applications. Biomacromolecules 2022; 23:641-660. [PMID: 35199999 DOI: 10.1021/acs.biomac.1c01647] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Noncovalent interactions can maintain the three-dimensional structures of biomacromolecules (e.g., polysaccharides and proteins) and control specific recognition in biological systems. Supramolecular chemistry was gradually developed as a result, and this led to design and application of self-healing materials. Self-healing materials have attracted attention in many fields, such as coatings, bionic materials, elastomers, and flexible electronic devices. Nevertheless, self-healing materials for biomedical applications have not been comprehensively summarized, even though many reports have been focused on specific areas. In this Review, we first introduce the different categories of supramolecular forces used in preparing self-healing materials and then describe biological applications developed in the last 5 years, including antibiofouling, smart drug/protein delivery, wound healing, electronic skin, cartilage lubrication protection, and tissue engineering scaffolds. Finally, the limitations of current biomedical applications are indicated, key design points are offered for new biological self-healing materials, and potential directions for biological applications are highlighted.
Collapse
Affiliation(s)
- Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
35
|
Ivashenka A, Wunder C, Chambon V, Dransart E, Johannes L, Shafaq-Zadah M. Transcytosis of Galectin-3 in Mouse Intestine. Methods Mol Biol 2022; 2442:367-390. [PMID: 35320536 DOI: 10.1007/978-1-0716-2055-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GlycoLipid-Lectin (GL-Lect) hypothesis provides a conceptual framework to explain how endocytic pits are built in processes of clathrin-independent endocytosis. According to this hypothesis, oligomeric cellular or pathogenic lectins interact with glycosylated plasma membrane lipids in a way such as to drive the formation of tubular endocytic pits that then detach to generate clathrin-independent endocytic carriers for the cellular uptake of cellular or pathogenic products. This process operates in a complementary manner to the conventional clathrin pathway for biological function linked to cell polarity. Up to date, the premises of the GL-Lect hypothesis have been based on model membrane and cell culture experiments. It has therefore become urgent to extend its exploration to complex organisms. In the current protocol, we describe methods to study the endocytosis and transcytosis of a key driver of the GL-Lect mechanism, the cellular galectin-3, and of one of its cargoes, lactotransferrin, in enterocytes of the intact jejunum of mice. In a step-by-step manner, we present the generation of fluorescent endocytic ligands, tissue preparation for cellular uptake measurements, binding and internalization assays, tissue fixation and preparation for sectioning, light and electron microscopical observations, and quantification of data by image processing. Pitfalls are discussed to optimize the chances of success with the described methods.
Collapse
Affiliation(s)
- Alena Ivashenka
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Christian Wunder
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Valerie Chambon
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Estelle Dransart
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| | - Massiullah Shafaq-Zadah
- Cellular and Chemical Biology Unit, Endocytic Trafficking and Intracellular Delivery Team, U1143 INSERM, UMR3666 CNRS, Institut Curie, PSL Research University, Paris Cedex, France.
| |
Collapse
|
36
|
Dam TK, Edwards JL, Kadav PD, Brewer CF. Mechanism of Mucin Recognition by Lectins: A Thermodynamic Study. Methods Mol Biol 2022; 2442:169-185. [PMID: 35320526 DOI: 10.1007/978-1-0716-2055-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isothermal titration microcalorimetry (ITC) can directly determine the thermodynamic binding parameters of biological molecules including affinity constant, binding stoichiometry, heat of binding (enthalpy) and indirectly the entropy, and free energy of binding. ITC has been extensively used to study the binding of lectins to mono- and oligosaccharides, but limitedly in applications to lectin-glycoprotein interactions. Inherent experimental challenges to ITC include sample precipitation during the experiment and relative high amount of sample required, but careful design of experiments can minimize these problems and allow valuable information to be obtained. For example, the thermodynamics of binding of lectins to multivalent globular and linear glycoproteins (mucins) have been described. The results are consistent with a dynamic binding mechanism in which lectins bind and jump from carbohydrate to carbohydrate epitope in these molecules leading to increased affinity. Importantly, the mechanism of binding of lectins to mucins appears similar to that for a variety of protein ligands binding to DNA. Recent results also show that high-affinity lectin-mucin cross-linking interactions are driven by favorable entropy of binding that is associated with the bind and jump mechanism. The results suggest that the binding of ligands to biopolymers, in general, may involve a common mechanism that involves enhanced entropic effects that facilitate binding interactions.
Collapse
Affiliation(s)
- Tarun K Dam
- Laboratory of Mechanistic Glycobiology Department of Chemistry, Michigan Technological University, Houghton, MI, USA.
- Health Research Institute, Michigan Technological University, Houghton, MI, USA.
| | - Jared L Edwards
- Laboratory of Mechanistic Glycobiology Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | - Priyanka D Kadav
- Laboratory of Mechanistic Glycobiology Department of Chemistry, Michigan Technological University, Houghton, MI, USA
| | - C Fred Brewer
- Departments of Molecular Pharmacology, and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
37
|
Rosa-Fernandes L, Oba-Shinjo SM, Macedo-da-Silva J, Marie SKN, Palmisano G. Aberrant Protein Glycosylation in Brain Cancers, with Emphasis on Glioblastoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1382:39-70. [DOI: 10.1007/978-3-031-05460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
38
|
Mehta-D'souza P. Evaluation of Galectin Binding by Surface Plasmon Resonance. Methods Mol Biol 2022; 2442:125-135. [PMID: 35320523 DOI: 10.1007/978-1-0716-2055-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface plasmon resonance (SPR) instruments, like the BIAcore 3000, are useful for studying the binding between macromolecules in real time. The high sensitivity and low sample consumption in the Biacore enables the measurement of rapid kinetics and low affinities characteristics of many biological interactions. This chapter describes the affinity measurement of Galectins-1, -2 and -3 and their glycoside ligands using this approach.
Collapse
|
39
|
The Diagnostic and Therapeutic Potential of Galectin-3 in Cardiovascular Diseases. Biomolecules 2021; 12:biom12010046. [PMID: 35053194 PMCID: PMC8774137 DOI: 10.3390/biom12010046] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Galectin-3 plays a prominent role in chronic inflammation and has been implicated in the development of many disease conditions, including heart disease. Galectin-3, a regulatory protein, is elevated in both acute and chronic heart failure and is involved in the inflammatory pathway after injury leading to myocardial tissue remodelling. We discussed the potential utility of galectin-3 as a diagnostic and disease severity/prognostic biomarker in different cardio/cerebrovascular diseases, such as acute ischemic stroke, acute coronary syndromes, heart failure and arrhythmogenic cardiomyopathy. Over the last decade there has been a marked increase in the understanding the role of galectin-3 in myocardial fibrosis and inflammation and as a therapeutic target for the treatment of heart failure and myocardial infarction.
Collapse
|
40
|
Nguyen TB, Pires DEV, Ascher DB. CSM-carbohydrate: protein-carbohydrate binding affinity prediction and docking scoring function. Brief Bioinform 2021; 23:6457169. [PMID: 34882232 DOI: 10.1093/bib/bbab512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022] Open
Abstract
Protein-carbohydrate interactions are crucial for many cellular processes but can be challenging to biologically characterise. To improve our understanding and ability to model these molecular interactions, we used a carefully curated set of 370 protein-carbohydrate complexes with experimental structural and biophysical data in order to train and validate a new tool, cutoff scanning matrix (CSM)-carbohydrate, using machine learning algorithms to accurately predict their binding affinity and rank docking poses as a scoring function. Information on both protein and carbohydrate complementarity, in terms of shape and chemistry, was captured using graph-based structural signatures. Across both training and independent test sets, we achieved comparable Pearson's correlations of 0.72 under cross-validation [root mean square error (RMSE) of 1.58 Kcal/mol] and 0.67 on the independent test (RMSE of 1.72 Kcal/mol), providing confidence in the generalisability and robustness of the final model. Similar performance was obtained across mono-, di- and oligosaccharides, further highlighting the applicability of this approach to the study of larger complexes. We show CSM-carbohydrate significantly outperformed previous approaches and have implemented our method and make all data freely available through both a user-friendly web interface and application programming interface, to facilitate programmatic access at http://biosig.unimelb.edu.au/csm_carbohydrate/. We believe CSM-carbohydrate will be an invaluable tool for helping assess docking poses and the effects of mutations on protein-carbohydrate affinity, unravelling important aspects that drive binding recognition.
Collapse
Affiliation(s)
- Thanh Binh Nguyen
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Victoria, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
41
|
Kremsreiter SM, Kroell ASH, Weinberger K, Boehm H. Glycan-Lectin Interactions in Cancer and Viral Infections and How to Disrupt Them. Int J Mol Sci 2021; 22:10577. [PMID: 34638920 PMCID: PMC8508825 DOI: 10.3390/ijms221910577] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glycan-lectin interactions play an essential role in different cellular processes. One of their main functions is involvement in the immune response to pathogens or inflammation. However, cancer cells and viruses have adapted to avail themselves of these interactions. By displaying specific glycosylation structures, they are able to bind to lectins, thus promoting pathogenesis. While glycan-lectin interactions promote tumor progression, metastasis, and/or chemoresistance in cancer, in viral infections they are important for viral entry, release, and/or immune escape. For several years now, a growing number of investigations have been devoted to clarifying the role of glycan-lectin interactions in cancer and viral infections. Various overviews have already summarized and highlighted their findings. In this review, we consider the interactions of the lectins MGL, DC-SIGN, selectins, and galectins in both cancer and viral infections together. A possible transfer of ways to target and disrupt them might lead to new therapeutic approaches in different pathological backgrounds.
Collapse
Affiliation(s)
- Stefanie Maria Kremsreiter
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Ann-Sophie Helene Kroell
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Katharina Weinberger
- Institute for Pharmacy and Molecular Biotechnology (IPMB), Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany; (S.M.K.); (A.-S.H.K.); (K.W.)
| | - Heike Boehm
- Max-Planck-Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| |
Collapse
|
42
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
43
|
Barbalinardo M, Biagetti M, Valle F, Cavallini M, Falini G, Montroni D. Green Biocompatible Method for the Synthesis of Collagen/Chitin Composites to Study Their Composition and Assembly Influence on Fibroblasts Growth. Biomacromolecules 2021; 22:3357-3365. [PMID: 34278777 DOI: 10.1021/acs.biomac.1c00463] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A green biocompatible route for the deposition and simultaneous assembly, by pH increment, of collagen/chitin composites was proposed. Both assembled and unassembled samples with different collagen/chitin ratios were synthesized, maintaining the β-chitin polymorph. The first set showed a microfibrous organization with compositional submicron homogeneity. The second set presented a nanohomogeneous composition based on collagen nanoaggregates and chitin nanofibrils. The sets were tested as scaffolds for fibroblast growth (NIH-3T3) to study the influence of composition and assembly. In the unassembled scaffolds, the positive influence of collagen on cell growth mostly worn out in 48 h, while the addition of chitin enhanced this effect for over 72 h. The assembled samples showed higher viability at 24 h but a less positive effect on viability along the time. This work highlighted critical aspects of the influence that composition and assembly has on fibroblast growth, a knowledge worth exploiting in scaffold design and preparation.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Michele Biagetti
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Valle
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy.,Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), ISMN-CNR, 40129 Bologna, Italy
| | - Massimiliano Cavallini
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| | - Devis Montroni
- Dipartimento di Chimica "G. Ciamician", Alma Mater Studiorum-Università di Bologna, via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
44
|
You X, Wu J, Zhao X, Jiang X, Tao W, Chen Z, Huang C, Zheng T, Shen X. Fibroblastic galectin-1-fostered invasion and metastasis are mediated by TGF-β1-induced epithelial-mesenchymal transition in gastric cancer. Aging (Albany NY) 2021; 13:18464-18481. [PMID: 34260413 PMCID: PMC8351703 DOI: 10.18632/aging.203295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/22/2021] [Indexed: 04/16/2023]
Abstract
Background The gastric cancer (GC) microenvironment has important effects on biological behaviors, such as tumor cell invasion and metastasis. However, the mechanism by which the GC microenvironment promotes GC cell invasion and metastasis is unknown. The present study aimed to clarify the effects and mechanism of galectin-1 (GAL-1, encoded by LGALS1) on GC invasion and metastasis in the GC microenvironment. Methods The expression of GAL-1/ LGALS1 was determined using western blotting, immunohistochemistry, and quantitative real-time reverse transcription PCR in GC tissues. Besides, methods including stable transfection, Matrigel invasion and migration assays, and wound-healing assays in vitro; and metastasis assays in vivo, were also conducted. Results GAL-1 from cancer-associated fibroblasts (CAFs) induced the epithelial-mesenchymal transition (EMT) of GC cells though the transforming growth factor beta (TGF-β1)/ Sma- and mad-related protein (Smad) pathway, and affected the prognosis of patients with GC. The level of GAL-1 was high in CAFs, and treating MGC-803 and SGC -7901 cell line with the conditioned medium from CAFs promoted their invasion and metastasis abilities. Overexpression of LGALS1 promoted the expression of TGF-β1 and induced EMT of GC cell lines. A TGF-β1 antagonist inhibited the invasion and migration of GC cells. In vivo, overexpression of LGALS1 promoted GC growth and metastasis, and the TGF-β1 antagonist dramatically reversed these events. Conclusions These findings suggested that high expression of GAL-1 in the GC microenvironment predicts a poor prognosis in patients with GC by promoting the migration and invasion of GC cells via EMT through the TGF-β1/Smad signaling pathway. The results might provide new therapeutic targets to treat GC.
Collapse
Affiliation(s)
- Xiaolan You
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Jian Wu
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Xiaojun Zhao
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Xingyu Jiang
- Department of Clinical Speciality, Nanjing Medical University, Nanjing 210009, Jiangsu, China
| | - Wenxuan Tao
- Department of Clinical Speciality, Southeast University, Nanjing 210009, Jiangsu, China
| | - Zhiyi Chen
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Chuanjiang Huang
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Tingrui Zheng
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| | - Xianhe Shen
- Department of Gastrointestinal Surgery, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People’s Hospital), Taizhou 225300, Jiangsu, China
| |
Collapse
|
45
|
Towards a Better Understanding of the Relationships between Galectin-7, p53 and MMP-9 during Cancer Progression. Biomolecules 2021; 11:biom11060879. [PMID: 34198494 PMCID: PMC8231854 DOI: 10.3390/biom11060879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
It has been almost 25 years since the discovery of galectin-7. This member of the galectin family has attracted interest from many working in the cancer field given its highly restricted expression profile in epithelial cells and the fact that cancers of epithelial origin (carcinoma) are among the most frequent and deadly cancer subtypes. Initially described as a p53-induced gene and associated with apoptosis, galectin-7 is now recognized as having a protumorigenic role in many cancer types. Several studies have indeed shown that galectin-7 is associated with aggressive behavior of cancer cells and induces expression of MMP-9, a member of the matrix metalloproteinases (MMP) family known to confer invasive behavior to cancer cells. It is therefore not surprising that many studies have examined its relationships with p53 and MMP-9. However, the relationships between galectin-7 and p53 and MMP-9 are not always clear. This is largely because p53 is often mutated in cancer cells and such mutations drastically change its functions and, consequently, its association with galectin-7. In this review, we discuss the functional relationships between galectin-7, p53 and MMP-9 and reconcile some apparently contradictory observations. A better understanding of these relationships will help to develop a working hypothesis and model that will provide the basis for further research in the hope of establishing a new paradigm for tackling the role of galectin-7 in cancer.
Collapse
|
46
|
Abstract
The Golgi complex plays a central role in protein secretion by regulating cargo sorting and trafficking. As these processes are of functional importance to cell polarity, motility, growth, and division, there is considerable interest in achieving a comprehensive understanding of Golgi complex biology. However, the unique stack structure of this organelle has been a major hurdle to our understanding of how proteins are secreted through the Golgi apparatus. Herein, we summarize available relevant research to gain an understanding of protein secretion via the Golgi complex. This includes the molecular mechanisms of intra-Golgi trafficking and cargo export in the trans-Golgi network. Moreover, we review recent insights on signaling pathways regulated by the Golgi complex and their physiological significance.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
47
|
Characterizing ligand-induced conformational changes in clinically relevant galectin-1 by H N/H 2O (D 2O) exchange. Biochimie 2021; 187:48-56. [PMID: 34022292 DOI: 10.1016/j.biochi.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/19/2023]
Abstract
Glycans of cellular glycoconjugates serve as biochemical signals for a multitude of (patho)physiological processes via binding to their receptors (e.g. lectins). In the case of human adhesion/growth-regulatory galectin-1 (Gal-1), small angle neutron scattering and fluorescence correlation spectroscopy have revealed a significant decrease of its gyration radius and increase of its diffusion coefficient upon binding lactose, posing the pertinent question on the nature and region(s) involved in the underlying structural alterations. Requiring neither a neutron source nor labeling, diffusion measurements by 1H NMR spectroscopy are shown here to be sufficiently sensitive to detect this ligand-induced change. In order to figure out which region(s) of Gal-1 is (are) affected at the level of peptides, we first explored the use of H/D exchange mass spectrometry (HDX MS). Hereby, we found a reduction in proton exchange kinetics beyond the lactose-binding site. The measurement of fast HN/H2O exchange by phase-modulated NMR clean chemical exchange (CLEANEX) NMR on 15N-labeled Gal-1 then increased the spatial resolution to the level of individual amino acids. The mapped regions with increased protection from HN/H2O (D2O) exchange that include the reduction of solvent exposure around the interface can underlie the protein's compaction. These structural changes have potential to modulate this galectin's role in lattice formation on the cell surface and its interaction(s) with protein(s) at the F-face.
Collapse
|
48
|
Xu L, Hartz RA, Beno BR, Ghosh K, Shukla JK, Kumar A, Patel D, Kalidindi N, Lemos N, Gautam SS, Kumar A, Ellsworth BA, Shah D, Sale H, Cheng D, Regueiro-Ren A. Synthesis, Structure-Activity Relationships, and In Vivo Evaluation of Novel Tetrahydropyran-Based Thiodisaccharide Mimics as Galectin-3 Inhibitors. J Med Chem 2021; 64:6634-6655. [PMID: 33988358 DOI: 10.1021/acs.jmedchem.0c02001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Galectin-3 is a member of a family of β-galactoside-binding proteins. A substantial body of literature reports that galectin-3 plays important roles in cancer, inflammation, and fibrosis. Small-molecule galectin-3 inhibitors, which are generally lactose or galactose-based derivatives, have the potential to be valuable disease-modifying agents. In our efforts to identify novel galectin-3 disaccharide mimics to improve drug-like properties, we found that one of the monosaccharide subunits can be replaced with a suitably functionalized tetrahydropyran ring. Optimization of the structure-activity relationships around the tetrahydropyran-based scaffold led to the discovery of potent galectin-3 inhibitors. Compounds 36, 40, and 45 were selected for further in vivo evaluation. The synthesis, structure-activity relationships, and in vivo evaluation of novel tetrahydropyran-based galectin-3 inhibitors are described.
Collapse
Affiliation(s)
- Li Xu
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brett R Beno
- Department of Computer-Aided Drug Design & Molecular Analytics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Jinal K Shukla
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Amit Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dipal Patel
- Department of Metabolism and Pharmacokinetics, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Narasimharaju Kalidindi
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Nadine Lemos
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Shashyendra Singh Gautam
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anoop Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Bruce A Ellsworth
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Devang Shah
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Harinath Sale
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Dong Cheng
- Department of Cardiovascular and Fibrosis Discovery Biology, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Alicia Regueiro-Ren
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
49
|
Abstract
Galectin-3 (Gal3) exhibits dynamic oligomerization and promiscuous binding, which can lead to concomitant activation of synergistic, antagonistic, or noncooperative signaling pathways that alter cell behavior. Conferring signaling pathway selectivity through mutations in the Gal3-glycan binding interface is challenged by the abundance of common carbohydrate types found on many membrane glycoproteins. Here, employing alpha-helical coiled-coils as scaffolds to create synthetic Gal3 constructs with defined valency, we demonstrate that oligomerization can physically regulate extracellular signaling activity of Gal3. Constructs with 2 to 6 Gal3 subunits ("Dimer," "Trimer," "Tetramer," "Pentamer," "Hexamer") demonstrated glycan-binding properties and cell death-inducing potency that scaled with valency. Dimer was the minimum functional valency. Unlike wild-type Gal3, which signals apoptosis and mediates agglutination, synthetic Gal3 constructs induced cell death without agglutination. In the presence of CD45, Hexamer was distributed on the cell membrane, whereas it clustered in absence of CD45 via membrane glycans other than those found on CD7. Wild-type Gal3, Pentamer, and Hexamer required CD45 and CD7 to signal apoptosis, and the involvement of caspases in apoptogenic signaling was increased in absence of CD45. However, wild-type Gal3 depended on caspases to signal apoptosis to a greater extent than Hexamer, which had greater caspase dependence than Pentamer. Diminished caspase activation downstream of Hexamer signaling led to decreased pannexin-1 hemichannel opening and interleukin-2 secretion, events facilitated by the increased caspase activation downstream of wild-type Gal3 signaling. Thus, synthetic fixation of Gal3 multivalency can impart physical control of its outside-in signaling activity by governing membrane glycoprotein engagement and, in turn, intracellular pathway activation.
Collapse
|
50
|
Rezende CP, Martins Oliveira Brito PK, Pessoni AM, Da Silva TA, Goldman GH, Almeida F. Altered expression of genes related to innate antifungal immunity in the absence of galectin-3. Virulence 2021; 12:981-988. [PMID: 33779504 PMCID: PMC8009118 DOI: 10.1080/21505594.2021.1903212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Galectin-3 (Gal-3) is the most studied member of the animal galectin family, which comprises β-galactoside-binding lectins and participates in several cellular events. Its expression in cells involved in innate and adaptive immunity is related to anti- and proinflammatory functions, signaling an important role in inflammatory, infectious, and tumorigenesis processes. Mice deficient in Gal-3 exhibit important phenotypes, but it is unclear whether these phenotypes reflect an impairment of the functions of this protein. Gal-3 plays an important role in modulating the immune response to different pathogenic microorganisms. However, the role of Gal-3 in immunity to infection is still poorly understood. Therefore, we investigated the effects of Gal-3 deletion on the expression of genes involved in the innate immune response in the lungs, spleens, and brains of Gal-3 KO mice. Gene profiling expression analysis suggested that Gal-3 deletion resulted in differentially modulated expression of the genes encoding beta-glucan, mannose and chitin-responsive pattern recognition receptors, signal transduction, inflammation, and phagocytosis. Our data thus suggest the importance of Gal-3 expression in the host innate immune system.
Collapse
Affiliation(s)
- Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | | | - Andre Moreira Pessoni
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Thiago Aparecido Da Silva
- Department of Cellular and Molecular Biology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Gustavo H Goldman
- Departamento De Ciencias Farmaceuticas, Faculdade De Ciencias Farmaceuticas De Ribeirao Preto, Universidade De Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|