1
|
He W, Kirmizialtin S. Mechanism of Cationic Lipid Induced DNA Condensation: Lipid-DNA Coordination and Divalent Cation Charge Fluctuations. Biomacromolecules 2024; 25:4819-4830. [PMID: 39011747 PMCID: PMC11323003 DOI: 10.1021/acs.biomac.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The condensation of nucleic acids by lipids is a widespread phenomenon in biology with crucial implications for drug delivery. However, the mechanisms of DNA assembly in lipid bilayers remain insufficiently understood due to challenges in measuring and assessing each component's contribution in the lipid-DNA-cation system. This study uses all-atom molecular dynamics simulations to investigate DNA condensation in cationic lipid bilayers. Our exhaustive exploration of the thermodynamic factors reveals unique roles for phospholipid head groups and cations. We observed that bridging cations between lipid and DNA drastically reduce charges, while mobile magnesium cations "ping-ponging" between double strands create charge fluctuations. While the first factor stabilizes the DNA-lipid complex, the latter creates attractive forces to induce the spontaneous condensation of DNAs. This novel mechanism not only sheds light on the current data regarding cationic lipid-induced DNA condensation but also provides potential design strategies for creating efficient gene delivery vectors for drug delivery.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Miller LM, Hawkins L, Jarrold MF. Compaction, Relaxation, and Linearization of Megadalton-Sized DNA Plasmids: DNA Structures Probed by CD-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1969-1975. [PMID: 39013154 DOI: 10.1021/jasms.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
High purity plasmid DNA is a raw material for recombinant protein production as well as an active ingredient in DNA vaccines. There are four primary plasmid structures that can be observed in a typical plasmid formulation: supercoiled, relaxed (circular), linearized, and condensed. Determining what structures are present in a sample is important, as the structure can affect activity; the supercoiled structure has the highest activity, and >90% supercoiled is desired for industry standards. Recently, charge detection mass spectrometry (CD-MS) was used to distinguish two of the structures, supercoiled and condensed, by measuring the charge deposited on the ions by positive mode electrospray. Here, CD-MS is used to probe the structures of DNA plasmids during compaction with polycations, and through enzymatic treatment to relax and linearize plasmids. We find that all four structural types for plasmid DNA have unique charging profiles that can be distinguished using CD-MS. The extent of mechanical shearing of the DNA plasmids during electrospray is strongly influenced by the structural type.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Luke Hawkins
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3
|
Singh N, Singh A, Dhanka M, Bhatia D. DNA functionalized programmable hybrid biomaterials for targeted multiplexed applications. J Mater Chem B 2024. [PMID: 38973587 DOI: 10.1039/d4tb00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
With the advent of DNA nanotechnology, DNA-based biomaterials have emerged as a unique class of materials at the center of various biological advances. Owing to DNA's high modification capacity via programmable Watson-Crick base-pairing, DNA structures of desired design with increased complexity have been developed. However, the limited scalability, along with poor mechanical properties, high synthesis costs, and poor stability, reduced the adaptability of DNA-based materials to complex biological applications. DNA-based hybrid biomaterials were designed to overcome these limitations by conjugating DNA with functional materials. Today, DNA-based hybrid materials have attracted significant attention in biological engineering with broad application prospects in biomedicine, clinical diagnosis, and nanodevices. Here, we summarize the recent advances in DNA-based hybrid materials with an in-depth understanding of general molecular design principles, functionalities, and applications. Finally, the challenges and prospects associated with DNA-based hybrid materials are discussed at the end of this review.
Collapse
Affiliation(s)
- Nihal Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Ankur Singh
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Mukesh Dhanka
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| | - Dhiraj Bhatia
- Discipline of Bioengineering, Indian Institute of Technology Gandhinagar, Gujarat, India, 382355.
| |
Collapse
|
4
|
Ramírez-Contreras D, Vázquez-Rodríguez S, García-García A, Noriega L, Mendoza A, Sánchez-Gaytán BL, Meléndez FJ, Castro ME, Cárdenas-García M, González-Vergara E. L-Citrullinato-Bipyridine and L-Citrullinato-Phenanthroline Mixed Copper Complexes: Synthesis, Characterization and Potential Anticancer Activity. Pharmaceutics 2024; 16:747. [PMID: 38931869 PMCID: PMC11207372 DOI: 10.3390/pharmaceutics16060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here, two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2'-bipyridine. These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT studies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7) showed promising results. Docking studies with DNA were also conducted, indicating potential anticancer properties.
Collapse
Affiliation(s)
- Diego Ramírez-Contreras
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Sergio Vázquez-Rodríguez
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Amalia García-García
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva s/n, 18003 Granada, Spain
| | - Lisset Noriega
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida 97310, Mexico;
| | - Angel Mendoza
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Brenda L. Sánchez-Gaytán
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Francisco J. Meléndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico;
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Puebla 72410, Mexico
| | - Enrique González-Vergara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| |
Collapse
|
5
|
Kodikara S, Gyawali P, Gleeson JT, Jákli A, Sprunt S, Balci H. Impact of Divalent Cations on In-Layer Positional Order of DNA-Based Liquid Crystals: Implications for DNA Condensation. Biomacromolecules 2024; 25:1009-1017. [PMID: 38166360 PMCID: PMC10866144 DOI: 10.1021/acs.biomac.3c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024]
Abstract
The layered liquid crystalline phases formed by DNA molecules, which include rigid and flexible segments ("gapped DNA"), enable the study of both end-to-end stacking and side-to-side (helix-to-helix) lateral interactions, forming a model system to study such interactions at physiologically relevant DNA and ion concentrations. The observed layer structure exhibits long-range interlayer and in-layer positional correlations. In particular, the in-layer order has implications for DNA condensation, as it reflects whether these normally repulsive interactions become attractive under certain ionic conditions. Using synchrotron small-angle X-ray scattering measurements, we investigate the impact of divalent Mg2+ cations (in addition to a constant 150 mM Na+) on the stability of the inter- and in-layer DNA ordering as a function of temperature between 5 and 65 °C. DNA constructs with different terminal base pairings were created to mediate the strength of the attractive end-to-end stacking interactions between the blunt ends of the gapped DNA constructs. We demonstrate that the stabilities at a fixed DNA concentration of both interlayer and in-layer order are significantly enhanced even at a few mM Mg2+ concentration. The stabilities are even higher at 30 mM Mg2+; however, a marked decrease is observed at 100 mM Mg2+, suggesting a change in the nature of side-by-side interactions within this Mg2+ concentration range. We discuss the implications of these results in terms of counterion-mediated DNA-DNA attraction and DNA condensation.
Collapse
Affiliation(s)
- Sineth
G. Kodikara
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Prabesh Gyawali
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - James T. Gleeson
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Antal Jákli
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Samuel Sprunt
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Hamza Balci
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
6
|
Mishra G, Bhattacharjee SM. Sheetlike structure in the proximity of compact DNA. Phys Rev E 2024; 109:024409. [PMID: 38491671 DOI: 10.1103/physreve.109.024409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
We determine the phase diagram of DNA with inter- and intrastrand native-pair interactions that mimic the compaction of DNA. We show that DNA takes an overall sheetlike structure in the region where an incipient transition to a compact phase would have occurred. The stability of this phase is due to the extra entropy from the folding of the sheet, which is absent in the remaining polymerlike states of the phase diagram.
Collapse
Affiliation(s)
- Garima Mishra
- Department of Physics, Ashoka University, Sonepat 131029, India
| | | |
Collapse
|
7
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
8
|
Collette D, Dunlap D, Finzi L. Macromolecular Crowding and DNA: Bridging the Gap between In Vitro and In Vivo. Int J Mol Sci 2023; 24:17502. [PMID: 38139331 PMCID: PMC10744201 DOI: 10.3390/ijms242417502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The cellular environment is highly crowded, with up to 40% of the volume fraction of the cell occupied by various macromolecules. Most laboratory experiments take place in dilute buffer solutions; by adding various synthetic or organic macromolecules, researchers have begun to bridge the gap between in vitro and in vivo measurements. This is a review of the reported effects of macromolecular crowding on the compaction and extension of DNA, the effect of macromolecular crowding on DNA kinetics, and protein-DNA interactions. Theoretical models related to macromolecular crowding and DNA are briefly reviewed. Gaps in the literature, including the use of biologically relevant crowders, simultaneous use of multi-sized crowders, empirical connections between macromolecular crowding and liquid-liquid phase separation of nucleic materials are discussed.
Collapse
Affiliation(s)
| | | | - Laura Finzi
- Department of Physics, College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA; (D.C.); (D.D.)
| |
Collapse
|
9
|
Tripathi K, Garg H, Rajesh R, Vemparala S. The conformational phase diagram of charged polymers in the presence of attractive bridging crowders. J Chem Phys 2023; 159:204903. [PMID: 38010332 DOI: 10.1063/5.0172696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023] Open
Abstract
Using extensive molecular dynamics simulations, we obtain the conformational phase diagram of a charged polymer in the presence of oppositely charged counterions and neutral attractive crowders for monovalent, divalent, and trivalent counterion valencies. We demonstrate that the charged polymer can exist in three phases: (1) an extended phase for low charge densities and weak polymer-crowder attractive interactions [Charged Extended (CE)]; (2) a collapsed phase for high charge densities and weak polymer-crowder attractive interactions, primarily driven by counterion condensation [Charged Collapsed due to Intra-polymer interactions [(CCI)]; and (3) a collapsed phase for strong polymer-crowder attractive interactions, irrespective of the charge density, driven by crowders acting as bridges or cross-links [Charged Collapsed due to Bridging interactions [(CCB)]. Importantly, simulations reveal that the interaction with crowders can induce collapse, despite the presence of strong repulsive electrostatic interactions, and can replace condensed counterions to facilitate a direct transition from the CCI and CE phases to the CCB phase.
Collapse
Affiliation(s)
- Kamal Tripathi
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Hitesh Garg
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - R Rajesh
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Satyavani Vemparala
- The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
10
|
Krupyanskii YF. Determination of DNA architecture of bacteria under various types of stress, methodological approaches, problems, and solutions. Biophys Rev 2023; 15:1035-1051. [PMID: 37974993 PMCID: PMC10643406 DOI: 10.1007/s12551-023-01122-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/23/2023] [Indexed: 11/19/2023] Open
Abstract
Actively growing cells maintain a dynamic, far from equilibrium order through metabolism. Under starvation stress or under stress of exposure to the analog of the anabiosis autoinducer (4-hexylresorcinol), cells go into a dormant state (almost complete lack of metabolism) or even into a mummified state. In a dormant state, cells are forced to use the physical mechanisms of DNA protection. The architecture of DNA in the dormant and mummified state of cells was studied by x-ray diffraction of synchrotron radiation and transmission electron microscopy (TEM). Diffraction experiments indicate the appearance of an ordered organization of DNA. TEM made it possible to visualize the type of DNA ordering. Intracellular nanocrystalline, liquid-crystalline, and folded nucleosome-like structures of DNA have been found. The structure of DNA within a cell in an anabiotic dormant state and dormant state (starvation stress) coincides (forms nanocrystalline structures). Data suggest the universality of DNA condensation by a protein Dps for a dormant state, regardless of the type of stress. The mummified state is very different in structure from the dormant state (has no ordering within a cell). It turned out that it is possible to visualize DNA conformation in toroidal and liquid crystal structures in which there is either no or a very small amount of the Dps protein. Observation of the DNA conformation in nanocrystals and folded nucleosome-like structures so far has been inconclusive. The methodological advances described will facilitate high-resolution visualization of the DNA conformation in the near future.
Collapse
Affiliation(s)
- Yu. F. Krupyanskii
- N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Department of Structure of Matter, 119991, Kosygina 4, Moscow, Russia
| |
Collapse
|
11
|
Sievert MD, Bishop MF, McMullen T. Entropy of Charge Inversion in DNA including One-Loop Fluctuations. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1373. [PMID: 37895495 PMCID: PMC10606583 DOI: 10.3390/e25101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
The entropy and charge distributions have been calculated for a simple model of polyelectrolytes attached to the surface of DNA using a field-theoretic method that includes fluctuations to the lowest one-loop order beyond mean-field theory. Experiments have revealed correlation-driven behavior of DNA in charged solutions, including charge inversion and condensation. In our model, the condensed polyelectrolytes are taken to be doubly charged dimers of length comparable to the distance between sites along the phosphate chains. Within this lattice gas model, each adsorption site is assumed to have either a vacancy or a positively charged dimer attached with the dimer oriented either parallel or perpendicular to the double-helix DNA chain. We find that the inclusion of the fluctuation terms decreases the entropy by ∼50% in the weak-binding regime. There, the bound dimer concentration is low because the dimers are repelled from the DNA molecule, which competes with the chemical potential driving them from the solution to the DNA surface. Surprisingly, this decrease in entropy due to correlations is so significant that it overcompensates for the entropy increase at the mean-field level, so that the total entropy is even lower than in the absence of interactions between lattice sites. As a bonus, we present a transparent exposition of the methods used that could be useful to students and others wishing to use this formulation to extend this calculation to more realistic models.
Collapse
Affiliation(s)
- Matthew D. Sievert
- Department of Physics, New Mexico State University, Las Cruces, NM 88003-8001, USA
| | - Marilyn F. Bishop
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA;
| | - Tom McMullen
- Department of Physics, Virginia Commonwealth University, Richmond, VA 23284-2000, USA;
| |
Collapse
|
12
|
Miller LM, Draper BE, Barnes LF, Ofoegbu PC, Jarrold MF. Analysis of Megadalton-Sized DNA by Charge Detection Mass Spectrometry: Entropic Trapping and Shearing in Nanoelectrospray. Anal Chem 2023. [PMID: 37267126 DOI: 10.1021/acs.analchem.3c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The analysis of nucleic acids by conventional mass spectrometry is complicated by counter ions which cause mass heterogeneity and limit the size of the DNA that can be analyzed. In this work, we overcome this limitation using charge detection mass spectrometry to analyze megadalton-sized DNA. Using positive mode electrospray, we find two dramatically different charge distributions for DNA plasmids. A low charge population that charges like compact DNA origami and a much higher charge population, with charges that extend over a broad range. For the high-charge population, the deviation between the measured mass and mass expected from the DNA sequence is consistently around 1%. For the low-charge population, the deviation is larger and more variable. The high-charge population is attributed to the supercoiled plasmid in a random coil configuration, with the broad charge distribution resulting from the rich variety of geometries the random coil can adopt. High-resolution measurements show that the mass distribution shifts to slightly lower mass with increasing charge. The low-charge population is attributed to a condensed form of the plasmid. We suggest that the condensed form results from entropic trapping where the random coil must undergo a geometry change to squeeze through the Taylor cone and enter an electrospray droplet. For the larger plasmids, shearing (mechanical breakup) occurs during electrospray or in the electrospray interface. Shearing is reduced by lowering the salt concentration.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc, 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Polycarp C Ofoegbu
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
13
|
Nguyen NTT, Ngo AT, Hoang TX. Energetic preference and topological constraint effects on the formation of DNA twisted toroidal bundles. J Chem Phys 2023; 158:114904. [PMID: 36948817 DOI: 10.1063/5.0134710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
DNA toroids are compact torus-shaped bundles formed by one or multiple DNA molecules being condensed from the solution due to various condensing agents. It has been shown that the DNA toroidal bundles are twisted. However, the global conformations of DNA inside these bundles are still not well understood. In this study, we investigate this issue by solving different models for the toroidal bundles and performing replica-exchange molecular dynamics (REMD) simulations for self-attractive stiff polymers of various chain lengths. We find that a moderate degree of twisting is energetically favorable for toroidal bundles, yielding optimal configurations of lower energies than for other bundles corresponding to spool-like and constant radius of curvature arrangements. The REMD simulations show that the ground states of the stiff polymers are twisted toroidal bundles with the average twist degrees close to those predicted by the theoretical model. Constant-temperature simulations show that twisted toroidal bundles can be formed through successive processes of nucleation, growth, quick tightening, and slow tightening of the toroid, with the two last processes facilitating the polymer threading through the toroid's hole. A relatively long chain of 512 beads has an increased dynamical difficulty to access the twisted bundle states due to the polymer's topological constraint. Interestingly, we also observed significantly twisted toroidal bundles with a sharp U-shaped region in the polymer conformation. It is suggested that this U-shaped region makes the formation of twisted bundles easier by effectively reducing the polymer length. This effect can be equivalent to having multiple chains in the toroid.
Collapse
Affiliation(s)
- Nhung T T Nguyen
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
| | - Anh T Ngo
- Chemical Engineering Department, University of Illinois at Chicago, Chicago, Illinois 60608, USA
| | - Trinh X Hoang
- Institute of Physics, Vietnam Academy of Science and Technology, 10 Dao Tan, Ba Dinh, Hanoi 11108, Vietnam
| |
Collapse
|
14
|
Gupta S, Aggarwal S, Munde M. New Insights into the Role of Ligand-Binding Modes in GC-DNA Condensation through Thermodynamic and Spectroscopic Studies. ACS OMEGA 2023; 8:4554-4565. [PMID: 36777612 PMCID: PMC9909821 DOI: 10.1021/acsomega.2c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 06/18/2023]
Abstract
In biological systems, the unprompted assembly of DNA molecules by cationic ligands into condensed structures is ubiquitous. The ability of ligands to provoke DNA packaging is crucial to the molecular organization and functional control of DNA, yet their underlined physical roles have remained elusive. Here, we have examined the DNA condensation mechanism of four cationic ligands, including their primary DNA-binding modes through extensive biophysical studies. We observed contrasting changes for these ligands binding to poly[dGdC]:poly[dGdC] (GC-DNA) and poly[dAdT]:poly[dAdT] (AT-DNA). Based on a CD spectroscopic study, it was confirmed that only GC-DNA undergoes B- to Ψ-type DNA transformation in the presence of ligands. In the fluorescence displacement assay (FDA), the ability of ligands to displace GC-DNA-bound EtBr follows the order: protamine21+ > cohex3+ > Ni2+ > spermine4+, which indicates that there is no direct correlation between the ligand charge and its ability to displace the drug from the DNA, indicating that GC-DNA condensation is not just influenced by electrostatic interaction but ligand-specific interactions may also have played a crucial role. Furthermore, the detailed ITC-binding studies suggested that DNA-ligand interactions are generally driven by unfavorable enthalpy and favorable entropy. The correlations from various studies insinuate that cationic ligands show major groove binding as one of the preferred binding modes during GC-DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department
of Applied Science, The NorthCap University, Sector 23-A, Gurgaon, Haryana 122017, India
| | - Soumya Aggarwal
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
15
|
Cheng X, Huang J, Wang R, Xu Y, Wu N, Zhou J, Liu X, Wang H, Chen H. Inorganic-organic coprecipitation: spontaneous formation of enclosed and porous silica compartments with enriched biopolymers. NANOSCALE 2023; 15:2394-2401. [PMID: 36651126 DOI: 10.1039/d2nr05320a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We show that it is possible to spontaneously form all-enclosed compartments with microporous shells and enriched biopolymers via simple coprecipitation of silica and biopolymers. The reaction involves mild conditions and tolerates the random mixing of multiple reagents. Such a synthetic advance points to a new direction for resolving the chicken-egg dilemma of how the early life forms were hosted: without a physical barrier it would be difficult to maintain organized reactions, but without organized reactions, it would be difficult to create a cell membrane. In our synthesis, the divalent cation Ca2+ plays a critical role in the co-precipitation and in creating hollow compartments after simple dilution with water. The precursor of silica, poly(silicic acid), is a negatively charged, cross-linked polymer. It could be co-precipitated with negatively charged biopolymers such as DNA and proteins, whereas the remaining silica precursor forms a conformal and microporous shell on the surface of the initial precipitate. After etching, the biopolymers are retained inside the hollow compartments. The fact that multiple favorable conditions are easily brought together in enclosed compartments opens new possibilities in theorizing the host of early life forms.
Collapse
Affiliation(s)
- Xuejun Cheng
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jie Huang
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Ruoxu Wang
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yue Xu
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Nan Wu
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Jie Zhou
- State Key Laboratory of Materials Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.
| | - Xueyang Liu
- Institute of Advanced Synthesis (IAS) and School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Hong Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Hongyu Chen
- Department of Chemistry, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Erenpreisa J, Giuliani A, Yoshikawa K, Falk M, Hildenbrand G, Salmina K, Freivalds T, Vainshelbaum N, Weidner J, Sievers A, Pilarczyk G, Hausmann M. Spatial-Temporal Genome Regulation in Stress-Response and Cell-Fate Change. Int J Mol Sci 2023; 24:2658. [PMID: 36769000 PMCID: PMC9917235 DOI: 10.3390/ijms24032658] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
Complex functioning of the genome in the cell nucleus is controlled at different levels: (a) the DNA base sequence containing all relevant inherited information; (b) epigenetic pathways consisting of protein interactions and feedback loops; (c) the genome architecture and organization activating or suppressing genetic interactions between different parts of the genome. Most research so far has shed light on the puzzle pieces at these levels. This article, however, attempts an integrative approach to genome expression regulation incorporating these different layers. Under environmental stress or during cell development, differentiation towards specialized cell types, or to dysfunctional tumor, the cell nucleus seems to react as a whole through coordinated changes at all levels of control. This implies the need for a framework in which biological, chemical, and physical manifestations can serve as a basis for a coherent theory of gene self-organization. An international symposium held at the Biomedical Research and Study Center in Riga, Latvia, on 25 July 2022 addressed novel aspects of the abovementioned topic. The present article reviews the most recent results and conclusions of the state-of-the-art research in this multidisciplinary field of science, which were delivered and discussed by scholars at the Riga symposium.
Collapse
Affiliation(s)
| | - Alessandro Giuliani
- Istituto Superiore di Sanita Environment and Health Department, 00161 Roma, Italy
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Martin Falk
- Institute of Biophysics, The Czech Academy of Sciences, 612 65 Brno, Czech Republic
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Georg Hildenbrand
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Science Aschaffenburg, 63743 Aschaffenburg, Germany
| | - Kristine Salmina
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Talivaldis Freivalds
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV1004 Riga, Latvia
| | - Ninel Vainshelbaum
- Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
- Doctoral Study Program, University of Latvia, LV1004 Riga, Latvia
| | - Jonas Weidner
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Aaron Sievers
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
- Institute for Human Genetics, University Hospital Heidelberg, 69117 Heidelberg, Germany
| | - Götz Pilarczyk
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| | - Michael Hausmann
- Kirchhoff Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Xiong Q, Lee OS, Mirkin CA, Schatz G. Ethanol-Induced Condensation and Decondensation in DNA-Linked Nanoparticles: A Nucleosome-like Model for the Condensed State. J Am Chem Soc 2023; 145:706-716. [PMID: 36573457 DOI: 10.1021/jacs.2c11834] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inspired by the conventional use of ethanol to induce DNA precipitation, ethanol condensation has been applied as a routine method to dynamically tune "bond" lengths (i.e., the surface-to-surface distances between adjacent nanoparticles that are linked by DNA) and thermal stabilities of colloidal crystals involving DNA-linked nanoparticles. However, the underlying mechanism of how the DNA bond that links gold nanoparticles changes in this class of colloidal crystals in response to ethanol remains unclear. Here, we conducted a series of all-atom molecular dynamic (MD) simulations to explore the free energy landscape for DNA condensation and decondensation. Our simulations confirm that DNA condensation is energetically much more favorable under 80% ethanol conditions than in pure water, as a result of ethanol's role in enhancing electrostatic interactions between oppositely charged species. Moreover, the condensed DNA adopts B-form in pure water and A-form in 80% ethanol, which indicates that the higher-order transition does not affect DNA's conformational preferences. We further propose a nucleosome-like supercoiled model for the DNA condensed state, and we show that the DNA end-to-end distance derived from this model matches the experimentally measured DNA bond length of about 3 nm in the fully condensed state for DNA where the measured length is 16 nm in water. Overall, this study provides an atomistic understanding of the mechanism underlying ethanol-induced condensation and water-induced decondensation, while our proposed nucleosome-like model allows the design of new strategies for interpreting experimental studies of DNA condensation.
Collapse
Affiliation(s)
- Qinsi Xiong
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| | - One-Sun Lee
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| | - Chad A Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States.,Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois60208, United States.,International Institute for Nanotechnology, Northwestern University, Evanston, Illinois60208, United States
| | - George Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois60208-3113, United States
| |
Collapse
|
18
|
Fujino K, Nishio T, Fujioka K, Yoshikawa Y, Kenmotsu T, Yoshikawa K. Activation/Inhibition of Gene Expression Caused by Alcohols: Relationship with the Viscoelastic Property of a DNA Molecule. Polymers (Basel) 2022; 15:polym15010149. [PMID: 36616499 PMCID: PMC9823369 DOI: 10.3390/polym15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Alcohols are used in the life sciences because they can condense and precipitate DNA. Alcohol consumption has been linked to many diseases and can alter genetic activity. In the present report, we carried out experiments to make clear how alcohols affect the efficiency of transcription-translation (TX-TL) and translation (TL) by adapting cell-free gene expression systems with plasmid DNA and RNA templates, respectively. In addition, we quantitatively analyzed intrachain fluctuations of single giant DNA molecules based on the fluctuation-dissipation theorem to gain insight into how alcohols affect the dynamical property of a DNA molecule. Ethanol (2-3%) increased gene expression levels four to five times higher than the control in the TX-TL reaction. A similar level of enhancement was observed with 2-propanol, in contrast to the inhibitory effect of 1-propanol. Similar alcohol effects were observed for the TL reaction. Intrachain fluctuation analysis through single DNA observation showed that 1-propanol markedly increased both the spring and damping constants of single DNA in contrast to the weak effects observed with ethanol, whereas 2-propanol exhibits an intermediate effect. This study indicates that the activation/inhibition effects of alcohol isomers on gene expression correlate with the changes in the viscoelastic mechanical properties of DNA molecules.
Collapse
Affiliation(s)
- Kohei Fujino
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307 Dresden, Germany
- Correspondence: (T.N.); (K.Y.)
| | - Keita Fujioka
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Takahiro Kenmotsu
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto 610-0394, Japan
- Correspondence: (T.N.); (K.Y.)
| |
Collapse
|
19
|
Singh TV, Shagolsem LS. Universality and Identity Ordering in Heteropolymer Coil–Globule Transition. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Thoudam Vilip Singh
- Department of Physics, National Institute of Technology Manipur, Imphal795004, India
| | - Lenin S. Shagolsem
- Department of Physics, National Institute of Technology Manipur, Imphal795004, India
| |
Collapse
|
20
|
Liu Y, Chen J, Cheng Y, Li Y, Li X, Zhang Z, Xu X, Lin Y, Xu J, Li Z. A simple and rapid technique of template preparation for PCR. Front Microbiol 2022; 13:1024827. [PMID: 36439815 PMCID: PMC9686307 DOI: 10.3389/fmicb.2022.1024827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Many techniques have been developed for extracting DNA, but most are often complex, time-consuming, and/or expensive. In this study, we describe a simple, rapid and cost-effective technique for preparing DNA template for PCR. This technique involves 0.1 M potassium hydroxide treatment at 100°C for 10 min followed by centrifugation. The suspended centrifuged sediments were shown as excellent templates for PCR. Templates prepared using this technique worked for diverse microorganisms belonging to bacteria, fungi and oomycetes and their amplification efficiencies were comparable to/better than those prepared using common but relatively more complex, time-consuming, and/or expensive methods, including commercial DNA extraction kits. Furthermore, this technology is suitable for high-throughput batch processing and for amplifications of long DNA fragments. Flow cytometry and scanning electronic microscopy analyzes showed that this technique generated primarily damaged cells and cell-bound DNA, not free naked DNA. This technique provides a great convenience for simple PCR template preparation.
Collapse
Affiliation(s)
- Yunyun Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Jia Chen
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Cheng
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Yi Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Xinwen Li
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Zhengbing Zhang
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Xiumei Xu
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Yufeng Lin
- Plant Protection and Inspection Station, Agriculture and Rural Department of Hunan Province, Changsha, China
| | - Jianping Xu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Jianping Xu,
| | - Zhimin Li
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, China
- *Correspondence: Zhimin Li,
| |
Collapse
|
21
|
Wang D, Min H, Wang Z, Wang X, Li H, Cao M, Wang J. Core-Shell Structures from the Coassembly of Lipoprotein-like Nanoparticles and Plasmid DNA for Gene Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12198-12206. [PMID: 36170670 DOI: 10.1021/acs.langmuir.2c01829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We reported self-assembled core-shell nanoparticles (NPs) based on lipoprotein-like NPs and plasmid DNA (pDNA). Lipoprotein-like NPs were prepared using cholic acid (CA)-modified lipopeptides. We designed six different lipopeptides with different peptide segments to construct a series of NPs. It was proven that these NPs have different positive surface charges. These NPs could bind pDNA through electrostatic interaction to form core-shell complexes. The interactions between NPs and pDNA were systematically investigated. The number of NP charges determines the strength of the interaction between NPs and pDNA. Thus, various types of core-shell structures, such as loose and dense core-shell NPs, were found in this system. Cytotoxicity test confirmed that the carriers had no toxicity. We also proved that the core-shell structures have a good cell transfection effect. This study would expand the application of lipopeptide assemblies in the gene delivery field, which may lead to the development of peptide-based gene vectors for therapeutic application.
Collapse
Affiliation(s)
- Dong Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Haofeng Min
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Zhaoyu Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Xinhao Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Meiwen Cao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| | - Jiqian Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
| |
Collapse
|
22
|
Conformational Behavior of Single Circular Semiflexible Polyelectrolyte in Presence of Multivalent Counterions. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2842-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Ngo ATP, Gollomp K. Building a better
NET
: Neutrophil extracellular trap targeted therapeutics in the treatment of infectious and inflammatory disorders. Res Pract Thromb Haemost 2022. [DOI: 10.1002/rth2.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Anh T. P. Ngo
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
| | - Kandace Gollomp
- Division of Hematology Children's Hospital of Philadelphia Philadelphia Pennsylvania USA
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
24
|
Krupyanskii YF, Kovalenko VV, Loiko NG, Generalova AA, Moiseenko AV, Tereshkin EV, Sokolova OS, Tereshkina KB, El’-Registan GI, Popov AN. Architecture of Condensed DNA in the Nucleoid of Escherichia coli Bacterium. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922040133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
25
|
Chen X, Karmaker N, Cloutier P, Bass AD, Zheng Y, Sanche L. Low-Energy Electron Damage to Plasmid DNA in Thin Films: Dependence on Substrates, Surface Density, Charging, Environment, and Uniformity. J Phys Chem B 2022; 126:5443-5457. [PMID: 35834372 DOI: 10.1021/acs.jpcb.2c03664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of low-energy electrons (LEEs) with DNA plays a significant role in the mechanisms leading to biological damage induced by ionizing radiation, particularly in radiotherapy, and its sensitization by chemotherapeutic drugs and nanoparticles. Plasmids constitute the form of DNA found in mitochondria and appear as a suitable model of genomic DNA. In a search for the best LEE targets, damage was induced to plasmids, in thin films in vacuum, by 6, 10, and 100 eV electrons under single collision conditions. The yields of single- and double-strand breaks, other cluster damage, isolated base lesions, and crosslinks were measured by electrophoresis and enzyme treatment. The films were deposited on oriented graphite or polycrystalline tantalum, with or without DNA autoassembly via diaminopropane (Dap) intercalation. Yields were correlated with the influence of vacuum, film uniformity, surface density, substrates, and the DNA environment. Aided by surface potential measurements and scanning electron microscopy and atomic force microscopy images, the lyophilized Dap-DNA films were found to be the most practical high-quality targets. These studies pave the way to the fabrication of LEE target-films composed of plasmids intercalated with biomolecules that could mimic the cellular environment; for example, as a first step, by replacing Dap with an amino acid.
Collapse
Affiliation(s)
- Xingju Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Nanda Karmaker
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China.,Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| |
Collapse
|
26
|
Cruz-León S, Vanderlinden W, Müller P, Forster T, Staudt G, Lin YY, Lipfert J, Schwierz N. Twisting DNA by salt. Nucleic Acids Res 2022; 50:5726-5738. [PMID: 35640616 PMCID: PMC9177979 DOI: 10.1093/nar/gkac445] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 12/11/2022] Open
Abstract
The structure and properties of DNA depend on the environment, in particular the ion atmosphere. Here, we investigate how DNA twist -one of the central properties of DNA- changes with concentration and identity of the surrounding ions. To resolve how cations influence the twist, we combine single-molecule magnetic tweezer experiments and extensive all-atom molecular dynamics simulations. Two interconnected trends are observed for monovalent alkali and divalent alkaline earth cations. First, DNA twist increases monotonously with increasing concentration for all ions investigated. Second, for a given salt concentration, DNA twist strongly depends on cation identity. At 100 mM concentration, DNA twist increases as Na+ < K+ < Rb+ < Ba2+ < Li+ ≈ Cs+ < Sr2+ < Mg2+ < Ca2+. Our molecular dynamics simulations reveal that preferential binding of the cations to the DNA backbone or the nucleobases has opposing effects on DNA twist and provides the microscopic explanation of the observed ion specificity. However, the simulations also reveal shortcomings of existing force field parameters for Cs+ and Sr2+. The comprehensive view gained from our combined approach provides a foundation for understanding and predicting cation-induced structural changes both in nature and in DNA nanotechnology.
Collapse
Affiliation(s)
- Sergio Cruz-León
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| | - Willem Vanderlinden
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Peter Müller
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Tobias Forster
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Georgina Staudt
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Yi-Yun Lin
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Jan Lipfert
- Department of Physics and Center for Nanoscience (CeNS), LMU Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Nadine Schwierz
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Liang H, de Pablo JJ. A Coarse-Grained Molecular Dynamics Study of Strongly Charged Polyelectrolyte Coacervates: Interfacial, Structural, and Dynamical Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Ru XM, Yang ZY, Ran SY. Lanthanide ions induce DNA compaction with ionic specificity. Int J Biol Macromol 2022; 210:292-299. [DOI: 10.1016/j.ijbiomac.2022.04.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/05/2022]
|
29
|
Tang J, Katashima T, Gupit CI, Li X, Mitsukami Y, Yokoyama Y, Sakumichi N, Chung UI, Shibayama M, Sakai T. Non-swellability of polyelectrolyte gel in divalent salt solution due to aggregation formation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Lee C, Do S, Lee JY, Kim M, Kim SM, Shin Y, Kim DN. Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Res 2022; 50:4187-4196. [PMID: 35390157 PMCID: PMC9023257 DOI: 10.1093/nar/gkac232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/27/2022] [Accepted: 03/26/2022] [Indexed: 11/22/2022] Open
Abstract
Programmability of DNA sequences enables the formation of synthetic DNA nanostructures and their macromolecular assemblies such as DNA hydrogels. The base pair-level interaction of DNA is a foundational and powerful mechanism to build DNA structures at the nanoscale; however, its temperature sensitivity and weak interaction force remain a barrier for the facile and scalable assembly of DNA structures toward higher-order structures. We conducted this study to provide an alternative, non-base-pairing approach to connect nanoscale DNA units to yield micrometer-sized gels based on the sequential phase transition of amphiphilic unit structures. Strong electrostatic interactions between DNA nanostructures and polyelectrolyte spermines led to the formation of giant phase-separated aggregates of monomer units. Gelation could be initiated by the addition of NaCl, which weakened the electrostatic DNA-spermine interaction while attractive interactions between cholesterols created stable networks by crosslinking DNA monomers. In contrast to the conventional DNA gelation techniques, our system used solid aggregates as a precursor for DNA microgels. Therefore, in situ gelation could be achieved by depositing aggregates on the desired substrate and subsequently initiating a phase transition. Our approach can expand the utility and functionality of DNA hydrogels by using more complex nucleic acid assemblies as unit structures and combining the technique with top-down microfabrication methods.
Collapse
Affiliation(s)
- Chanseok Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Sungho Do
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Jae Young Lee
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea
| | - Minju Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon 22012, Korea
| | - Yongdae Shin
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Do-Nyun Kim
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Korea.,Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea.,Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
31
|
Samanta D, Zhou W, Ebrahimi SB, Petrosko SH, Mirkin CA. Programmable Matter: The Nanoparticle Atom and DNA Bond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107875. [PMID: 34870875 DOI: 10.1002/adma.202107875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Indexed: 05/21/2023]
Abstract
Colloidal crystal engineering with DNA has led to significant advances in bottom-up materials synthesis and a new way of thinking about fundamental concepts in chemistry. Here, programmable atom equivalents (PAEs), comprised of nanoparticles (the "atoms") functionalized with DNA (the "bonding elements"), are assembled through DNA hybridization into crystalline lattices. Unlike atomic systems, the "atom" (e.g., the nanoparticle shape, size, and composition) and the "bond" (e.g., the DNA length and sequence) can be tuned independently, yielding designer materials with unique catalytic, optical, and biological properties. In this review, nearly three decades of work that have contributed to the evolution of this class of programmable matter is chronicled, starting from the earliest examples based on gold-core PAEs, and then delineating how advances in synthetic capabilities, DNA design, and fundamental understanding of PAE-PAE interactions have led to new classes of functional materials that, in several cases, have no natural equivalent.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Wenjie Zhou
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
- Department of Chemical Engineering and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
32
|
Vasiliu T, Mocci F, Laaksonen A, Engelbrecht LDV, Perepelytsya S. Caging Polycations: Effect of Increasing Confinement on the Modes of Interaction of Spermidine3+ With DNA Double Helices. Front Chem 2022; 10:836994. [PMID: 35281557 PMCID: PMC8915389 DOI: 10.3389/fchem.2022.836994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022] Open
Abstract
Polyamines have important roles in the modulation of the cellular function and are ubiquitous in cells. The polyamines putrescine2+, spermidine3+, and spermine4+ represent the most abundant organic counterions of the negatively charged DNA in the cellular nucleus. These polyamines are known to stabilize the DNA structure and, depending on their concentration and additional salt composition, to induce DNA aggregation, which is often referred to as condensation. However, the modes of interactions of these elongated polycations with DNA and how they promote condensation are still not clear. In the present work, atomistic molecular dynamics (MD) computer simulations of two DNA fragments surrounded by spermidine3+ (Spd3+) cations were performed to study the structuring of Spd3+ “caged” between DNA molecules. Microsecond time scale simulations, in which the parallel DNA fragments were constrained at three different separations, but allowed to rotate axially and move naturally, provided information on the conformations and relative orientations of surrounding Spm3+ cations as a function of DNA-DNA separation. Novel geometric criteria allowed for the classification of DNA-Spd3+ interaction modes, with special attention given to Spd3+ conformational changes in the space between the two DNA molecules (caged Spd3+). This work shows how changes in the accessible space, or confinement, around DNA affect DNA-Spd3+ interactions, information fundamental to understanding the interactions between DNA and its counterions in environments where DNA is compacted, e.g. in the cellular nucleus.
Collapse
Affiliation(s)
- Tudor Vasiliu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
| | - Francesca Mocci
- Dipartimento di Scienze Chimiche e Geologiche, Cagliari University, Cagliari, Italy
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| | - Aatto Laaksonen
- Centre of Advanced Research in Bionanoconjugates and Biopolymers “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Dipartimento di Scienze Chimiche e Geologiche, Cagliari University, Cagliari, Italy
- Division of Energy Science, Energy Engineering, Luleå University of Technology, Luleå, Sweden
- Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| | | | - Sergiy Perepelytsya
- Bogolyubov Institute for Theoretical Physics of the NAS of Ukraine, Kyiv, Ukraine
- *Correspondence: Francesca Mocci, ; Aatto Laaksonen, ; Sergiy Perepelytsya,
| |
Collapse
|
33
|
Khatun S, Singh A, Shikha K, Ganguly A, Gupta AN. Plasmid DNA Undergoes Two Compaction Regimes under Macromolecular Crowding. ACS Macro Lett 2022; 11:186-192. [PMID: 35574767 DOI: 10.1021/acsmacrolett.1c00593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The laser light scattering experiments were performed to explore the role of dextran (size (d): 2.6, 6.9, and 17.0 nm) in compacting the plasmids (pBS: 2.9 kbps; pCMV-Tag2B: 4.3 kbps; and pET28a: 5.3 kbps) in vitro in the volume fraction (ϕ) range 0.01 to 0.15 of the macromolecular crowder. Two compaction regimes were observed in terms of the radius of gyration (Rg) for plasmid-dextran combinations, wherein the plasmid diffusivity is governed by normal diffusion and subdiffusion, respectively. Generalized scaling, Rg ∼ ϕ-1/(1+x), where x represents the conformational geometry of plasmids, is reported. The plasmid conformation depends on the crowder's size, with larger conformational changes observed in the presence of smaller crowders. The second virial coefficient (A2) and translational diffusion coefficient (Dt) indicate that entropically driven depletion of crowders, excluded volume, and interplasmid repulsive interactions govern plasmids' conformational changes, validated herein from the scaling of Dt with molecular weight.
Collapse
Affiliation(s)
- Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| | - Kumari Shikha
- School of Bio Science, Indian Institute of Technology, Kharagpur 721302, India
| | - Agneyo Ganguly
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
34
|
Du G, Belić D, Del Giudice A, Alfredsson V, Carnerup AM, Zhu K, Nyström B, Wang Y, Galantini L, Schillén K. Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Guanqun Du
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Domagoj Belić
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
- Department of Physics Josip Juraj Strossmayer University of Osijek 31000 Osijek Croatia
| | - Alessandra Del Giudice
- Department of Chemistry Sapienza University of Rome P.O. Box 34-Roma 62, Piazzale A. Moro 5 00185 Roma Italy
| | - Viveka Alfredsson
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Anna M. Carnerup
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| | - Kaizheng Zhu
- Department of Chemistry University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - Bo Nyström
- Department of Chemistry University of Oslo P.O. Box 1033, Blindern 0315 Oslo Norway
| | - Yilin Wang
- Key Laboratory of Colloid and Interface Science Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Luciano Galantini
- Department of Chemistry Sapienza University of Rome P.O. Box 34-Roma 62, Piazzale A. Moro 5 00185 Roma Italy
| | - Karin Schillén
- Division of Physical Chemistry Department of Chemistry Lund University P.O. Box 124 22100 Lund Sweden
| |
Collapse
|
35
|
Du G, Belić D, Del Giudice A, Alfredsson V, Carnerup AM, Zhu K, Nyström B, Wang Y, Galantini L, Schillén K. Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angew Chem Int Ed Engl 2022; 61:e202113279. [PMID: 34757695 PMCID: PMC9300030 DOI: 10.1002/anie.202113279] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/07/2022]
Abstract
Condensation of DNA helices into hexagonally packed bundles and toroids represents an intriguing example of functional organization of biological macromolecules at the nanoscale. The condensation models are based on the unique polyelectrolyte features of DNA, however here we could reproduce a DNA-like condensation with supramolecular helices of small chiral molecules, thereby demonstrating that it is a more general phenomenon. We show that the bile salt sodium deoxycholate can form supramolecular helices upon interaction with oppositely charged polyelectrolytes of homopolymer or block copolymers. At higher order, a controlled hexagonal packing of the helices into DNA-like bundles and toroids could be accomplished. The results disclose unknown similarities between covalent and supramolecular non-covalent helical polyelectrolytes, which inspire visionary ideas of constructing supramolecular versions of biological macromolecules. As drug nanocarriers the polymer-bile salt superstructures would get advantage of a complex chirality at molecular and supramolecular levels, whose effect on the nanocarrier assisted drug efficiency is a still unexplored fascinating issue.
Collapse
Affiliation(s)
- Guanqun Du
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Domagoj Belić
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
- Department of PhysicsJosip Juraj Strossmayer University of Osijek31000OsijekCroatia
| | - Alessandra Del Giudice
- Department of ChemistrySapienza University of RomeP.O. Box 34-Roma 62, Piazzale A. Moro 500185RomaItaly
| | - Viveka Alfredsson
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Anna M. Carnerup
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| | - Kaizheng Zhu
- Department of ChemistryUniversity of OsloP.O. Box 1033, Blindern0315OsloNorway
| | - Bo Nyström
- Department of ChemistryUniversity of OsloP.O. Box 1033, Blindern0315OsloNorway
| | - Yilin Wang
- Key Laboratory of Colloid and Interface ScienceBeijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Luciano Galantini
- Department of ChemistrySapienza University of RomeP.O. Box 34-Roma 62, Piazzale A. Moro 500185RomaItaly
| | - Karin Schillén
- Division of Physical ChemistryDepartment of ChemistryLund UniversityP.O. Box 12422100LundSweden
| |
Collapse
|
36
|
Higher-order structure of DNA determines its positioning in cell-size droplets under crowded conditions. PLoS One 2021; 16:e0261736. [PMID: 34937071 PMCID: PMC8694483 DOI: 10.1371/journal.pone.0261736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Background It is becoming clearer that living cells use water/water (w/w) phase separation to form membraneless organelles that exhibit various important biological functions. Currently, it is believed that the specific localization of biomacromolecules, including DNA, RNA and proteins in w/w microdroplets is closely related to their bio-activity. Despite the importance of this possible role of micro segregation, our understanding of the underlying physico-chemical mechanism is still unrefined. Further research to unveil the underlying mechanism of the localization of macromolecules in relation to their steric conformation in w/w microdroplets is needed. Principal findings Single-DNA observation of genome-size DNA (T4 GT7 bacteriophage DNA; 166kbp) by fluorescence microscopy revealed that DNAs are spontaneously incorporated into w/w microdroplets generated in a binary aqueous polymer solution with polyethylene glycol (PEG) and dextran (DEX). Interestingly, DNAs with elongated coil and shrunken conformations exhibit Brownian fluctuation inside the droplet. On the other hand, tightly packed compact globules, as well as assemblies of multiple condensed DNAs, tend to be located near the interface in the droplet. Conclusion and significance The specific localization of DNA molecules depending on their higher-order structure occurs in w/w microdroplet phase-separation solution under a binary aqueous polymer solution. Such an aqueous solution with polymers mimics the crowded conditions in living cells, where aqueous macromolecules exist at a level of 30–40 weight %. The specific positioning of DNA depending on its higher-order structure in w/w microdroplets is expected to provide novel insights into the mechanism and function of membraneless organelles and micro-segregated particles in living cells.
Collapse
|
37
|
Fraccia TP, Zanchetta G. Liquid–liquid crystalline phase separation in biomolecular solutions. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Dabhade A, Chaudhury S. Simulation Study of the Conformational Properties of Diblock Polyelectrolytes in Salt Solutions. Chem Asian J 2021; 16:3354-3362. [PMID: 34410041 DOI: 10.1002/asia.202100905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Coarse-grained molecular dynamics simulations are performed to understand the behavior of diblock polyelectrolytes in solutions of divalent salt by studying the conformations of chains over a wide range of salt concentrations. The polymer molecules are modeled as bead spring chains with different charged fractions and the counterions and salt ions are incorporated explicitly. Upon addition of a divalent salt, the salt cations replace the monovalent counterions, and the condensation of divalent salt cations onto the polyelectrolyte increases, and the chains favor to collapse. The condensation of ions changes with the salt concentration and depends on the charged fraction. Also, the degree of collapse at a given salt concentration changes with the increasing valency of the counterion due to the bridging effect. As a quantitative measure of the distribution of counterions around the polyelectrolyte chain, we study the radial distribution function between monomers on different polyelectrolytes and the counterions inside the counterion worm surrounding a polymer chain at different concentrations of the divalent salt. Our simulation results show a strong dependence of salt concentration on the conformational properties of diblock copolymers and indicate that it can tune the self-assembly behaviors of such charged polyelectrolyte block copolymers.
Collapse
Affiliation(s)
- Akash Dabhade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, 411008, Maharashtra, India
| |
Collapse
|
39
|
Mansel BW, Su CJ, Chen CY, Young CM, Huang YC, Yang CC, Chen HL. Superhelical DNA liquid crystals from dendrimer-induced DNA compaction. SOFT MATTER 2021; 17:7287-7293. [PMID: 34319332 DOI: 10.1039/d1sm00547b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrostatic compaction of double stranded DNA induced by a positively charged poly(amidoamine) (PAMAM) dendrimer of generation four (G4) was found to produce two unique types of DNA mesophases, in which the DNA bent into superhelices packed in a tetragonal or hexagonal lattice. The structure formed at a lower dendrimer charge density was three-dimensionally (3D) ordered, as characterized by the P41212 space group with a 41 screw axis in a tetragonal arrangement, showing that the weakly bent DNA superhelices with a pitch length of ca. 5.0 nm possessed both identical handedness and phase conservation. The 3D ordered structure transformed into a 2D mesophase at a higher dendrimer charge density, wherein the strongly bent superhelices with a pitch length of ca. 4.0 nm organized in a hexagonal lattice without lateral coherence of helical trajectory. The counterion valency of the protonic acid that is used to charge the dendrimer was found to influence the phase diagram. Under a given dendrimer charge density, the complex with a multivalent acid-protonated dendrimer tended to form structures with less curved DNA, attesting that the driving force of charge matching was reduced by increasing the counterion valency of the dendrimer.
Collapse
Affiliation(s)
- Bradley W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Paiva REF, Peterson EJ, Malina J, Zoepfl M, Hampton JD, Johnson WE, Graminha A, Ourahmane A, McVoy MA, Brabec V, Berners‐Price SJ, Farrell NP. On the Biology of Werner's Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raphael E. F. Paiva
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
| | - Erica J. Peterson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| | - Jaroslav Malina
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Mary Zoepfl
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - J. David Hampton
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University Richmond Virginia 23298-0033 USA
| | - Wyatt E. Johnson
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Angelica Graminha
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
| | - Amine Ourahmane
- Department of Pediatrics Virginia Commonwealth University Richmond VA 23298-0163 USA
| | - Michael A. McVoy
- Department of Pediatrics Virginia Commonwealth University Richmond VA 23298-0163 USA
| | - Viktor Brabec
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 61265 Brno Czech Republic
| | - Susan J. Berners‐Price
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
| | - Nicholas P. Farrell
- Institute for Glycomics Griffith University Gold Coast Campus Southport Qld. 4222 Australia
- Department of Chemistry Virginia Commonwealth University Richmond VA 23284-2006 USA
- Massey Cancer Center Virginia Commonwealth University Richmond VA 23298-0037 USA
| |
Collapse
|
41
|
de Paiva REF, Peterson EJ, Malina J, Zoepfl M, Hampton JD, Johnson WE, Graminha A, Ourahmane A, McVoy MA, Brabec V, Berners-Price SJ, Farrell NP. On the Biology of Werner's Complex. Angew Chem Int Ed Engl 2021; 60:17123-17130. [PMID: 34105220 PMCID: PMC8464317 DOI: 10.1002/anie.202105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/30/2021] [Indexed: 11/05/2022]
Abstract
Werner's Complex, as a cationic coordination complex (CCC), has hitherto unappreciated biological properties derived from its binding affinity to highly anionic biomolecules such as glycosaminoglycans (GAGs) and nucleic acids. Competitive inhibitor and spectroscopic assays confirm the high affinity to GAGs heparin, heparan sulfate (HS), and its pentasaccharide mimetic Fondaparinux (FPX). Functional consequences of this affinity include inhibition of FPX cleavage by bacterial heparinase and mammalian heparanase enzymes with inhibition of cellular invasion and migration. Werner's Complex is a very efficient condensing agent for DNA and tRNA. In proof-of-principle for translational implications, it is demonstrated to display antiviral activity against human cytomegalovirus (HCMV) at micromolar concentrations with promising selectivity. Exploitation of non-covalent hydrogen-bonding and electrostatic interactions has motivated the unprecedented discovery of these properties, opening new avenues of research for this iconic compound.
Collapse
Affiliation(s)
- Raphael E F de Paiva
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
| | - Erica J Peterson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
| | - Jaroslav Malina
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - J David Hampton
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, 23298-0033, USA
| | - Wyatt E Johnson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Angelica Graminha
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
| | - Amine Ourahmane
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298-0163, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298-0163, USA
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61265, Brno, Czech Republic
| | - Susan J Berners-Price
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
| | - Nicholas P Farrell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Qld., 4222, Australia
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284-2006, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298-0037, USA
| |
Collapse
|
42
|
Saraswathi SK, Karunakaran V, Maiti KK, Joseph J. DNA Condensation Triggered by the Synergistic Self-Assembly of Tetraphenylethylene-Viologen Aggregates and CT-DNA. Front Chem 2021; 9:716771. [PMID: 34368086 PMCID: PMC8341308 DOI: 10.3389/fchem.2021.716771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 01/24/2023] Open
Abstract
Development of small organic chromophores as DNA condensing agents, which explore supramolecular interactions and absorbance or fluorescence-based tracking of condensation and gene delivery processes, is in the initial stages. Herein, we report the synthesis and electrostatic/groove binding interaction-directed synergistic self-assembly of the aggregates of two viologen-functionalized tetraphenylethylene (TPE-V) molecules with CT-DNA and subsequent concentration-dependent DNA condensation process. TPE-V molecules differ in their chemical structure according to the number of viologen units. Photophysical and morphological studies have revealed the interaction of the aggregates of TPE-V in Tris buffer with CT-DNA, which transforms the fibrous network structure of CT-DNA to partially condensed beads-on-a-string-like arrangement with TPE-V aggregates as beads via electrostatic and groove binding interactions. Upon further increasing the concentration of TPE-V, the "beads-on-a-string"-type assembly of TPE-V/CT-DNA complex changes to completely condensed compact structures with 40-50 nm in diameter through the effective charge neutralization process. Enhancement in the melting temperature of CT-DNA, quenching of the fluorescence emission of ethidium bromide/CT-DNA complex, and the formation of induced CD signal in the presence of TPE-V molecules support the observed morphological changes and thereby verify the DNA condensation abilities of TPE-V molecules. Decrease in the hydrodynamic size, increase in the zeta potential value with the addition of TPE-V molecules to CT-DNA, failure of TPE-V/cucurbit(8)uril complex to condense CT-DNA, and the enhanced DNA condensation ability of TPE-V2 with two viologen units compared to TPE-V1 with a single viologen unit confirm the importance of positively charged viologen units in the DNA condensation process. Initial cytotoxicity analysis on A549 cancer and WI-38 normal cells revealed that these DNA condensing agents are non-toxic in nature and hence could be utilized in further cellular delivery studies.
Collapse
Affiliation(s)
- Sajena Kanangat Saraswathi
- Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Varsha Karunakaran
- Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kaustabh Kumar Maiti
- Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Joshy Joseph
- Photosciences and Photonics Section, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
43
|
Lee WK, Kwon K, Choi Y, Lee JS. Dynamic metallization of spherical DNA via conformational transition into gold nanostructures with controlled sizes and shapes. J Colloid Interface Sci 2021; 594:160-172. [PMID: 33761393 DOI: 10.1016/j.jcis.2021.02.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the reversible condensation properties of DNA, DNA metallization during controlled conformational transitions has been rarely investigated. We perform dynamic metallization of spherically condensed DNA nanoparticles (DNA NPs) via a globule-to-coil transition. A positively charged new Au3+ reagent is prepared via ligand-exchange of conventional complex Au3+ ions, which was used to synthesize spherically condensed DNA NPs simply based on the fundamental electrostatic and coordinative interactions between DNA and Au3+ions. Interestingly, the size of the Au3+-condensed DNA NPs (Au3+-DNA NPs) and the type of reducing agents lead to the formation of different Au nanostructures with unprecedented morphologies (cracked NPs, bowl-shaped NPs, and small NPs), owing to the controlled conformational changes in the Au3+-DNA NPs during metallization. The condensed DNA NPs play significant roles for Au nanostructures as (1) the dynamic template for the synthesis, (2) the reservoir and supply of Au3+ for the growth, and (3) the surface stabilizer. The synthesized Au nanostructures are remarkably stable against high ionic strength and exhibit catalytic activities and excellent SERS properties. This is the first study on the morphological control and concomitant dynamic metallization of spherically condensed DNA, proposing new synthetic routes for bioinorganic nanomaterials.
Collapse
Affiliation(s)
- Won Kyu Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kihun Kwon
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeonho Choi
- Department of Bioengineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
44
|
Sinclair TR, van den Hengel SK, Raza BG, Rutjes SA, de Roda Husman AM, Peijnenburg WJGM, Roesink HEDW, de Vos WM. Surface chemistry-dependent antiviral activity of silver nanoparticles. NANOTECHNOLOGY 2021; 32:365101. [PMID: 34020439 DOI: 10.1088/1361-6528/ac03d6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The toxicity towards viruses of silver nanoparticles (AgNPs) has been reported to be dependent on several factors such as particle concentration, size, and shape. Although these factors may indeed contribute to the toxicity of AgNPs, the results presented in this work demonstrate that surface chemistry and especially surface charge is a crucial factor governing their antiviral activity. Here, this work investigated the influence of capping agents representing various surface charges ranging from negative to positive. These AgNPs were capped with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP) mercaptoacetic acid (MAA) and (branched polyethyleneimine (BPEI). We show that AgNPs exhibited surface charge-dependent toxicity towards MS2 bacteriophages. Among the capping agents under investigation, BPEI capped AgNPs (Ag/BPEI) exhibited the highest reduction of MS2 resulting in ≥6 log10-units reductions, followed by 4-5 log10-units reductions with PVP and PEG capping's and 3-4 log10-units with MAA and citrate cappings. Bare nanoparticles reported a mere 1-2 log10-units reduction. Electrostatic interaction between the positively charged BPEI-coating and the negatively charged virus surface played a significant role in bringing the MS2 closer to toxic silver ions (Ag+). Further results obtained from TEM showed that Ag/BPEI nanoparticles could directly damage the structure of the MS2 bacteriophages. AgNPs and cationic capping agents' observed synergy can lead to much lower and much more efficient dosing of AgNPs for antiviral applications.
Collapse
Affiliation(s)
- Terica R Sinclair
- Membrane Science & Technology, MESA + Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Sanne K van den Hengel
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
- National Institute for Public health and the environment (RIVM), A van Leeuwenhoeklaan, 9, 3721 MA Bilthoven, The Netherlands
| | - Brahzil G Raza
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Saskia A Rutjes
- National Institute for Public health and the environment (RIVM), A van Leeuwenhoeklaan, 9, 3721 MA Bilthoven, The Netherlands
| | - Ana Maria de Roda Husman
- National Institute for Public health and the environment (RIVM), A van Leeuwenhoeklaan, 9, 3721 MA Bilthoven, The Netherlands
- Institute of Risk Assessment Sciences, IRAS within the faculties of Veterinary Medicine, Medicine and Sciences of Utrecht University, The Netherlands
| | - Willie J G M Peijnenburg
- National Institute for Public health and the environment (RIVM), A van Leeuwenhoeklaan, 9, 3721 MA Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, 2300 RA Leiden, The Netherlands
| | - H Erik D W Roesink
- Membrane Science & Technology, MESA + Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| | - Wiebe M de Vos
- Membrane Science & Technology, MESA + Institute for Nanotechnology, University of Twente, Faculty of Science and Technology, PO Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
45
|
Abeyratne-Perera HK, Basu S, Chandran PL. Shells of compacted DNA as nanocontainers transporting proteins in multiplexed delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112184. [PMID: 34225845 DOI: 10.1016/j.msec.2021.112184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Polyethyleneimine (PEI) polymers are known to compact DNA strands into spheroid, toroid, or rod structures. A formulation with mannose-grafted PEI (PEIm), however, was reported to compact DNA into ~100 nm spheroids that indented like thin-walled pressurized shells. The goal of the study is to understand why mannose bristles divert the traditional pathway of PEI-DNA compaction to produce shell-like structures, and to manipulate the process so that proteins can be packed into the core of the assembling shells for co-delivering DNA and proteins into cells. DLS, AFM, and TEM imaging provide a consistent picture that BSA proteins can be packed into the shells without altering the shell architecture, as long as the proteins were added during the time course of shell assembly. Force spectroscopy studies reveal that DNA shells that buckle also have a rich surface-coating of mannose, indicating that a micelle-like partitioning of hydrophobic and hydrophilic layers governs shell assembly. When HEK293T cells are spiked with BSA-laden DNA shells, co-transfection of DNA and BSA is observed at higher levels than control formulations. Distinct micron-sized features appear having both green fluorescence from BSA-FITC and blue fluorescence from NucBlue DNA stain, suggesting BSA release in nucleus and secretory granules. With DNA nanocontainers, proteins can take advantage of the efficiency of PEI-based DNA transfection for hitchhiking into cells while being shielded from the challenges of the intracellular route. DNA nanocontainers are rapid to assemble, not dependent on the DNA sequence, and can be adapted for different protein types; thereby having potential to serve as a high-throughput platform in scenarios where DNA and protein have to be released at the same site and time within cells (e.g., theranostics, multiplexed co-delivery, gene editing).
Collapse
Affiliation(s)
- Hashanthi K Abeyratne-Perera
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America
| | - Saswati Basu
- Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America
| | - Preethi L Chandran
- Biochemistry and Molecular Biology Department, College of Medicine, Howard University, Washington, DC, United States of America; Chemical Engineering Department, College of Engineering and Architecture, Howard University, Washington, DC, United States of America.
| |
Collapse
|
46
|
Floyd C, Chandresekaran A, Ni H, Ni Q, Papoian GA. Segmental Lennard-Jones interactions for semi-flexible polymer networks. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1910358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Carlos Floyd
- Biophysics Program, University of Maryland, College Park, MD, USA
| | | | - Haoran Ni
- Biophysics Program, University of Maryland, College Park, MD, USA
| | - Qin Ni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA
| | - Garegin A. Papoian
- Biophysics Program, University of Maryland, College Park, MD, USA
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, USA
| |
Collapse
|
47
|
|
48
|
Krupyanskii YF. Architecture of Nucleoid in the Dormant Cells of Escherichia coli. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2021. [DOI: 10.1134/s199079312102007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Muzzopappa F, Hertzog M, Erdel F. DNA length tunes the fluidity of DNA-based condensates. Biophys J 2021; 120:1288-1300. [PMID: 33640380 PMCID: PMC8059207 DOI: 10.1016/j.bpj.2021.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/31/2021] [Accepted: 02/15/2021] [Indexed: 02/09/2023] Open
Abstract
Living organisms typically store their genomic DNA in a condensed form. Mechanistically, DNA condensation can be driven by macromolecular crowding, multivalent cations, or positively charged proteins. At low DNA concentration, condensation triggers the conformational change of individual DNA molecules into a compacted state, with distinct morphologies. Above a critical DNA concentration, condensation goes along with phase separation into a DNA-dilute and a DNA-dense phase. The latter DNA-dense phase can have different material properties and has been reported to be rather liquid-like or solid-like depending on the characteristics of the DNA and the solvent composition. Here, we systematically assess the influence of DNA length on the properties of the resulting condensates. We show that short DNA molecules with sizes below 1 kb can form dynamic liquid-like assemblies when condensation is triggered by polyethylene glycol and magnesium ions, binding of linker histone H1, or nucleosome reconstitution in combination with linker histone H1. With increasing DNA length, molecules preferentially condense into less dynamic more solid-like assemblies, with phage λ-DNA with 48.5 kb forming mostly solid-like assemblies under the conditions assessed here. The transition from liquid-like to solid-like condensates appears to be gradual, with DNA molecules of roughly 1–10 kb forming condensates with intermediate properties. Titration experiments with linker histone H1 suggest that the fluidity of condensates depends on the net number of attractive interactions established by each DNA molecule. We conclude that DNA molecules that are much shorter than a typical human gene are able to undergo liquid-liquid phase separation, whereas longer DNA molecules phase separate by default into rather solid-like condensates. We speculate that the local distribution of condensing factors can modulate the effective length of chromosomal domains in the cell. We anticipate that the link between DNA length and fluidity established here will improve our understanding of biomolecular condensates involving DNA.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France
| | - Maud Hertzog
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France
| | - Fabian Erdel
- MCD, Center for Integrative Biology (CBI), University of Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
50
|
Lai CL, Chen C, Ou SC, Prentiss M, Pettitt BM. Interactions between identical DNA double helices. Phys Rev E 2021; 101:032414. [PMID: 32289903 DOI: 10.1103/physreve.101.032414] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/09/2023]
Abstract
The molecular mechanism of specific interactions between double stranded DNA molecules has been investigated for many years. Problems remain in how confinement, ions, and condensing agents change the interactions. We consider how the orientational alignment of DNAs contributes to the interactions via free energy simulations. Here we report on the effective interactions between two parallel DNA double helices in 150-mM NaCl solution using all atom models. We calculate the potential of mean force (PMF) of DNA-DNA interactions as a function of two coordinates, interhelical separation of parallel double helices and relative rotation of a DNA molecule with respect to the other about the helical axis. We generate the two-dimensional PMF to better understand the effective interactions when a DNA molecule is in juxtaposition with another. The analysis of the ion and solvent distributions around the DNA and particularly in the interface region shows that certain alignments of the DNA pair enhance the interactions. At local free energy minima in distance and alignment, water molecules and Na^{+} ions form a hydrogen bonded network with the phosphates from each DNA. This network contributes an attractive energy component to the DNA-DNA interactions. Our results provide a molecular mechanism whereby local DNA-DNA interactions, depending on the helical orientation, give a potential mechanism for stabilizing pairing of much larger lengths of homologous DNA that have been seen experimentally. The study suggests an atomically detailed local picture of relevance to certain aspects of DNA condensation or aggregation.
Collapse
Affiliation(s)
- Chun-Liang Lai
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Chuanying Chen
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Shu-Ching Ou
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Mara Prentiss
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - B Montgomery Pettitt
- Department of Biochemistry & Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, Texas 77555, USA
| |
Collapse
|