1
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
2
|
Vogel A, Arnese R, Gudino Carrillo RM, Sehr D, Deszcz L, Bylicki A, Meinhart A, Clausen T. UNC-45 assisted myosin folding depends on a conserved FX 3HY motif implicated in Freeman Sheldon Syndrome. Nat Commun 2024; 15:6272. [PMID: 39054317 PMCID: PMC11272940 DOI: 10.1038/s41467-024-50442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Myosin motors are critical for diverse motility functions, ranging from cytokinesis and endocytosis to muscle contraction. The UNC-45 chaperone controls myosin function mediating the folding, assembly, and degradation of the muscle protein. Here, we analyze the molecular mechanism of UNC-45 as a hub in myosin quality control. We show that UNC-45 forms discrete complexes with folded and unfolded myosin, forwarding them to downstream chaperones and E3 ligases. Structural analysis of a minimal chaperone:substrate complex reveals that UNC-45 binds to a conserved FX3HY motif in the myosin motor domain. Disrupting the observed interface by mutagenesis prevents myosin maturation leading to protein aggregation in vivo. We also show that a mutation in the FX3HY motif linked to the Freeman Sheldon Syndrome impairs UNC-45 assisted folding, reducing the level of functional myosin. These findings demonstrate that a faulty myosin quality control is a critical yet unexplored cause of human myopathies.
Collapse
Affiliation(s)
- Antonia Vogel
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Renato Arnese
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Ricardo M Gudino Carrillo
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
- Medical University, Vienna, Austria
| | - Daria Sehr
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Luiza Deszcz
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Andrzej Bylicki
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology, Vienna BioCenter, Vienna, Austria.
- Vienna BioCenter Core Facilities, Vienna, Austria.
| |
Collapse
|
3
|
Boschi F. How to estimate the sarcomere size based on oblique sections of skeletal muscle. J Anat 2023; 243:648-657. [PMID: 37243921 PMCID: PMC10485579 DOI: 10.1111/joa.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Ultrastructural analysis of muscular biopsy is based on images of longitudinal sections of the fibers. Sometimes, due to experimental limitations, the resulting sections are instead oblique, and no accurate morphological information can be extracted with standard analysis methods. Thus, the biopsy is performed again, but this is too invasive and time-consuming. In this study, we focused our attention on the sarcomere's shape and we investigated which is the structural information that can be obtained from oblique sections. A routine was written in MATLAB to allow the visualization of how a sarcomere's section appears in ultrastructural images obtained by Transmission Electron Microscopy (TEM) at different secant angles. The routine was used also to analyze the intersection between a cylinder and a plane to show how the Z-bands and M-line lengths vary at different secant angles. Moreover, we explored how to calculate sarcomere's radius and length as well as the secant angle from ultrastructural images, based only on geometrical considerations (Pythagorean theorem and trigonometric functions). The equations to calculate these parameters starting from ultrastructural image measurements were found. Noteworthy, to obtain the real sarcomere length in quasi-longitudinal sections, a small correction in the standard procedure is needed and highlighted in the text. In conclusion, even non-longitudinal sections of skeletal muscles can be used to extrapolate morphological information of sarcomeres, which are important parameters for diagnostic purposes.
Collapse
Affiliation(s)
- Federico Boschi
- Department of Engineering of Innovation MedicineUniversity of VeronaVeronaItaly
| |
Collapse
|
4
|
Rodriguez Garcia M, Schmeckpeper J, Landim-Vieira M, Coscarella IL, Fang X, Ma W, Spran PA, Yuan S, Qi L, Kahmini AR, Shoemaker MB, Atkinson JB, Kekenes-Huskey PM, Irving TC, Chase PB, Knollmann BC, Pinto JR. Disruption of Z-Disc Function Promotes Mechanical Dysfunction in Human Myocardium: Evidence for a Dual Myofilament Modulatory Role by Alpha-Actinin 2. Int J Mol Sci 2023; 24:14572. [PMID: 37834023 PMCID: PMC10572656 DOI: 10.3390/ijms241914572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The ACTN2 gene encodes α-actinin 2, located in the Z-disc of the sarcomeres in striated muscle. In this study, we sought to investigate the effects of an ACTN2 missense variant of unknown significance (p.A868T) on cardiac muscle structure and function. Left ventricular free wall samples were obtained at the time of cardiac transplantation from a heart failure patient with the ACTN2 A868T heterozygous variant. This variant is in the EF 3-4 domain known to interact with titin and α-actinin. At the ultrastructural level, ACTN2 A868T cardiac samples presented small structural changes in cardiomyocytes when compared to healthy donor samples. However, contractile mechanics of permeabilized ACTN2 A868T variant cardiac tissue displayed higher myofilament Ca2+ sensitivity of isometric force, reduced sinusoidal stiffness, and faster rates of tension redevelopment at all Ca2+ levels. Small-angle X-ray diffraction indicated increased separation between thick and thin filaments, possibly contributing to changes in muscle kinetics. Molecular dynamics simulations indicated that while the mutation does not significantly impact the structure of α-actinin on its own, it likely alters the conformation associated with titin binding. Our results can be explained by two Z-disc mediated communication pathways: one pathway that involves α-actinin's interaction with actin, affecting thin filament regulation, and the other pathway that involves α-actinin's interaction with titin, affecting thick filament activation. This work establishes the role of α-actinin 2 in modulating cross-bridge kinetics and force development in the human myocardium as well as how it can be involved in the development of cardiac disease.
Collapse
Affiliation(s)
| | - Jeffrey Schmeckpeper
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | - Xuan Fang
- Department of Cell & Molecular Physiology, Loyola University, Chicago, IL 60660, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Payton A. Spran
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Shengyao Yuan
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Lin Qi
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aida Rahimi Kahmini
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - M. Benjamin Shoemaker
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James B. Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Thomas C. Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Björn C. Knollmann
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jose Renato Pinto
- Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Bulgay C, Cepicka L, Dalip M, Yıldırım S, Ceylan Hİ, Yılmaz ÖÖ, Ulucan K, Badicu G, Cerit M. The relationships between ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance characteristics in professional soccer players. BMC Sports Sci Med Rehabil 2023; 15:121. [PMID: 37749582 PMCID: PMC10518950 DOI: 10.1186/s13102-023-00733-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND Current research on athletic performance focuses on genetic variants that contribute significantly to individuals' performance. ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms are variants frequently associated with athletic performance among different populations. However, there is limited research examining the pre-and post-test results of some variants of athletic performance in soccer players. Therefore, the presented research is to examine the relationships between the ACTN3 rs1815739 and PPARA-α rs4253778 gene polymorphisms and athletic performance improvement rates in adaptations to six weeks of training in elite soccer players using some athletic performance tests. METHODOLOGY Twenty-two soccer players between the ages of 18 and 35 voluntarily participated in the study. All participants were actively engaged in a rigorous six-day-a-week training program during the pre-season preparation period. Preceding and following the training program, a battery of diverse athletic performance tests was administered to the participants. Moreover, Genomic DNA was extracted from oral epithelial cells using the Invitrogen DNA isolation kit (Invitrogen, USA), following the manufacturer's protocol. Genotyping was conducted using real-time PCR. To assess the pre- and post-test performance differences of soccer players, the Wilcoxon Signed Rank test was employed. RESULTS Upon analyzing the results of the soccer players based on the ACTN3 genotype variable, it was observed that there were no statistically significant differences in the SJ (Squat Jump), 30m sprint, CMJ (Counter Movement Jump), and DJ (Drop Jump) performance tests (p > 0.05). However, a statistically significant difference was identified in the YOYO IRT 2 (Yo-Yo Intermittent Recovery Test Level 2) and 1RM (One Repetition Maximum) test outcomes (YOYO IRT 2: CC, CT, and TT, p = 0.028, 0.028, 0.008, 0.000, respectively; 1RM: CC, CT, and TT, p = 0.010, 0.34, 0.001, respectively). Regarding the PPARA-α genotype variable, the statistical analysis revealed no significant differences in the SJ, 30m sprint, CMJ, and DJ performance tests (p > 0.05). Nevertheless, a statistically significant difference was observed in the YOYO IRT 2 and 1RM test results (YOYO IRT 2: CC, CG p = 0.001, 0.020; 1RM: CC, p = 0.000) CONCLUSIONS: The current study demonstrated significant enhancements in only YOYO INT 2 and 1RM test outcomes across nearly all gene variants following the six-day-a-week training program. Other performance tests, such as the 30m sprint, SJ, CMJ, and DJ tests did not exhibit statistically significant differences. These findings contribute novel insights into the molecular processes involving PPARA-α rs4253778 and ACTN3 rs1815739 that underpin enhancements in endurance (YOYO INT 2) and maximal strength (1RM) aspects of athletic performance. However, to comprehensively elucidate the mechanisms responsible for the association between these polymorphisms and athletic performance, further investigations are warranted. It is thought that the use of field and genetic analyses together to support each other will be an important detail for athletes to reach high performance.
Collapse
Affiliation(s)
- Celal Bulgay
- Sports Science Faculty, Bingol University, Bingöl, 12000 Türkiye
| | - Ladislav Cepicka
- Department of Physical Education and Sport, Faculty of Education, University of West Bohemia, Pilsen, 30100 Czech Republic
| | - Metin Dalip
- Faculty of Physical Culture and Health, University in Tetovo, Tetova, 1200 Republic of North Macedonia
| | - Selin Yıldırım
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| | - Halil İ. Ceylan
- Kazim Karabekir Faculty of Education, Ataturk University, Erzurum, 25240 Türkiye
| | - Özlem Ö. Yılmaz
- Institute of Health Sciences Marmara University, İstanbul, 34722 Türkiye
| | - Korkut Ulucan
- Department of Medical Biology and Genetics, Marmara University, İstanbul, 34722 Türkiye
| | - Georgian Badicu
- Faculty of Physical Education and Mountain Sports, Transilvania University of Braşov, Brasov, 500068 Romania
| | - Mesut Cerit
- Sports Science Faculty, Lokman Hekim University, Ankara, 06510 Türkiye
| |
Collapse
|
6
|
Tesoriero C, Greco F, Cannone E, Ghirotto F, Facchinello N, Schiavone M, Vettori A. Modeling Human Muscular Dystrophies in Zebrafish: Mutant Lines, Transgenic Fluorescent Biosensors, and Phenotyping Assays. Int J Mol Sci 2023; 24:8314. [PMID: 37176020 PMCID: PMC10179009 DOI: 10.3390/ijms24098314] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of myopathies characterized by progressive muscle weakness leading to death from heart or respiratory failure. MDs are caused by mutations in genes involved in both the development and organization of muscle fibers. Several animal models harboring mutations in MD-associated genes have been developed so far. Together with rodents, the zebrafish is one of the most popular animal models used to reproduce MDs because of the high level of sequence homology with the human genome and its genetic manipulability. This review describes the most important zebrafish mutant models of MD and the most advanced tools used to generate and characterize all these valuable transgenic lines. Zebrafish models of MDs have been generated by introducing mutations to muscle-specific genes with different genetic techniques, such as (i) N-ethyl-N-nitrosourea (ENU) treatment, (ii) the injection of specific morpholino, (iii) tol2-based transgenesis, (iv) TALEN, (v) and CRISPR/Cas9 technology. All these models are extensively used either to study muscle development and function or understand the pathogenetic mechanisms of MDs. Several tools have also been developed to characterize these zebrafish models by checking (i) motor behavior, (ii) muscle fiber structure, (iii) oxidative stress, and (iv) mitochondrial function and dynamics. Further, living biosensor models, based on the expression of fluorescent reporter proteins under the control of muscle-specific promoters or responsive elements, have been revealed to be powerful tools to follow molecular dynamics at the level of a single muscle fiber. Thus, zebrafish models of MDs can also be a powerful tool to search for new drugs or gene therapies able to block or slow down disease progression.
Collapse
Affiliation(s)
- Chiara Tesoriero
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Francesca Greco
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Elena Cannone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Francesco Ghirotto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| | - Nicola Facchinello
- Neuroscience Institute, Italian National Research Council (CNR), 35131 Padua, Italy
| | - Marco Schiavone
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (C.T.); (F.G.); (F.G.); (A.V.)
| |
Collapse
|
7
|
Barber DM, Emrick T, Grason GM, Crosby AJ. Self-spinning filaments for autonomously linked microfibers. Nat Commun 2023; 14:625. [PMID: 36739283 PMCID: PMC9899204 DOI: 10.1038/s41467-023-36355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 01/30/2023] [Indexed: 02/06/2023] Open
Abstract
Filamentous bundles are ubiquitous in Nature, achieving highly adaptive functions and structural integrity from assembly of diverse mesoscale supramolecular elements. Engineering routes to synthetic, topologically integrated analogs demands precisely coordinated control of multiple filaments' shapes and positions, a major challenge when performed without complex machinery or labor-intensive processing. Here, we demonstrate a photocreasing design that encodes local curvature and twist into mesoscale polymer filaments, enabling their programmed transformation into target 3-dimensional geometries. Importantly, patterned photocreasing of filament arrays drives autonomous spinning to form linked filament bundles that are highly entangled and structurally robust. In individual filaments, photocreases unlock paths to arbitrary, 3-dimensional curves in space. Collectively, photocrease-mediated bundling establishes a transformative paradigm enabling smart, self-assembled mesostructures that mimic performance-differentiating structures in Nature (e.g., tendon and muscle fiber) and the macro-engineered world (e.g., rope).
Collapse
Affiliation(s)
- Dylan M Barber
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003-9263, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003-9263, USA.
| | - Gregory M Grason
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003-9263, USA.
| | - Alfred J Crosby
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, MA, 01003-9263, USA.
| |
Collapse
|
8
|
Zhang Y, Yin D, Pang X, Deng Z, Yan S. Biomechanical properties of honeybee abdominal muscles during stretch activation. J Mech Behav Biomed Mater 2023; 138:105639. [PMID: 36577321 DOI: 10.1016/j.jmbbm.2022.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The mechanical properties of the honeybee's abdominal muscles endow its abdomen with movement flexibility to perform various activities. However, the biomechanical properties of abdominal muscles during stretch activation remain unclear. To clarify this issue, we observed the microstructures of the abdominal muscles to obtain structural information. The similarity and symmetry of abdominal muscle distribution contribute to the ability to drive abdominal movement. Combined with the segmented structure characteristics, an experimental device to measure muscle stretch measurement of honeybees was developed to investigate the mechanical properties of the abdominal muscles. During measurement, the muscles were kept in a solution to maintain a physiological environment. The mechanical properties of abdominal muscles included phases: the ascending phase with proportional increase, stable phase with slight fluctuation, and decay phase with parabolic decline. These findings indicate that the nonlinear and rate-sensitive mechanical properties of the abdominal muscles enable them to rapidly adapt to environmental changes. The stretch force and stiffness coefficient reached 0.660 ± 0.139 mN and 14.364 ± 2.961 N/m, respectively. A simplified biomechanical model of the muscle fiber considering the hierarchical microstructure was introduced, in which the mechanical properties were consistent with the experimental data. Further analysis of the effects of the activation probability and the effective range of binding sites on the mechanical properties demonstrated the critical role in force generation, revealing the mechanism of underlying muscle stretch activation in the honeybee abdomen. The findings can provide a new reference for studying the biomechanical properties of the muscles of other arthropod insects.
Collapse
Affiliation(s)
- Yuling Zhang
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Danni Yin
- School of Materials and Mechanical Engineering, Beijing Technology and Business University, Beijing, 100048, PR China
| | - Xu Pang
- School of Engineering and Technology, China University of Geosciences (Beijing), 100083, Beijing, PR China
| | - Zhizhong Deng
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
9
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
10
|
Wilburn D, Fletcher E, Ismaeel A, Miserlis D, Zechmann B, Koutakis P. Chemical and cryo-collection of muscle samples for transmission electron microscopy using Methacarn and dimethyl sulfoxide ✰. Ultramicroscopy 2022; 241:113600. [PMID: 35988477 PMCID: PMC9511158 DOI: 10.1016/j.ultramic.2022.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/08/2022] [Accepted: 08/10/2022] [Indexed: 01/24/2023]
Abstract
Muscle samples are commonly chemically fixed or frozen immediately upon collection for biochemical and morphological analysis. Certain fixatives such as glutaraldehyde and osmium tetroxide are widely used for transmission electron microscopy (TEM) and lead to adequate preservation of muscle ultrastructure, but do not preserve the molecular features of samples. Methacarn is suggested to be a preferable chemical fixative for light microscopy because it maintains immunohistological features of samples. However, the efficacy of methacarn to preserve ultrastructural features as a primary chemical fixative for TEM is currently unclear. Additionally, cryo-preservation of samples for TEM analysis involves freezing processes such as plunge freezing, slam freezing, or high pressure freezing. High pressure freezing is the considered the gold standard but requires costly equipment and may not be a viable option for many labs collecting tissue samples from remote locations. Dimethyl sulfoxide (DMSO) is a commonly used cryoprotectant that may allow for better structural preservation of samples by impairing ice damage that occurs during plunge/snap freezing. We aimed to assess the effectiveness of methacarn as a primary chemical fixative and determine the effect of pre-coating samples with DMSO before plunge/snap freezing tissues to be prepared for TEM. The micrographs of the methcarn-fixed samples indicate a loss of Z-disk integrity, intermyofibrillar space, mitochondria structure, and lipids. Ultimately, methacarn is not a viable primary fixative for tissue sample preparation for TEM. Similarly, liquid nitrogen freezing of samples wrapped in aluminum foil produced non-uniform Z-disk alignments that appeared smeared with swollen mitochondria. DMSO coating before freezing appears to lessen the alterations to contractile and mitochondrial morphological structures. DMSO appears to be useful for preserving the ultrastructure of sarcomeres if samples are covered before freezing.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, 254-710-2911, B.207 Baylor Science Building, One Bear Place #97388, 76798-7388, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Dimitrios Miserlis
- Department of Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Bernd Zechmann
- Department of Biology, Baylor University, Waco, TX 76706, USA; Center for Microscopy and Imaging, Baylor University, Waco, Texas 76706, USA
| | | |
Collapse
|
11
|
Katti P, Hall AS, Parry HA, Ajayi PT, Kim Y, Willingham TB, Bleck CKE, Wen H, Glancy B. Mitochondrial network configuration influences sarcomere and myosin filament structure in striated muscles. Nat Commun 2022; 13:6058. [PMID: 36229433 PMCID: PMC9561657 DOI: 10.1038/s41467-022-33678-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
Sustained muscle contraction occurs through interactions between actin and myosin filaments within sarcomeres and requires a constant supply of adenosine triphosphate (ATP) from nearby mitochondria. However, it remains unclear how different physical configurations between sarcomeres and mitochondria alter the energetic support for contractile function. Here, we show that sarcomere cross-sectional area (CSA) varies along its length in a cell type-dependent manner where the reduction in Z-disk CSA relative to the sarcomere center is closely coordinated with mitochondrial network configuration in flies, mice, and humans. Further, we find myosin filaments near the sarcomere periphery are curved relative to interior filaments with greater curvature for filaments near mitochondria compared to sarcoplasmic reticulum. Finally, we demonstrate variable myosin filament lattice spacing between filament ends and filament centers in a cell type-dependent manner. These data suggest both sarcomere structure and myofilament interactions are influenced by the location and orientation of mitochondria within muscle cells.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Hailey A Parry
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter T Ajayi
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuho Kim
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - T Bradley Willingham
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Christopher K E Bleck
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Han Wen
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian Glancy
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health Bethesda, Bethesda, MD, USA.
| |
Collapse
|
12
|
Jiang S, Alisafaei F, Huang YY, Hong Y, Peng X, Qu C, Puapatanakul P, Jain S, Miner JH, Genin GM, Suleiman HY. An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures. SCIENCE ADVANCES 2022; 8:eabn6027. [PMID: 36044576 PMCID: PMC9432837 DOI: 10.1126/sciadv.abn6027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Shumeng Jiang
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Farid Alisafaei
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yin-Yuan Huang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Yuan Hong
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Xiangjun Peng
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Chengqing Qu
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Pongpratch Puapatanakul
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, USA
| | - Hani Y. Suleiman
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Brown M, Li J, Moraes C, Tabrizian M, Li-Jessen NY. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Biomaterials 2022; 289:121786. [DOI: 10.1016/j.biomaterials.2022.121786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
14
|
Morelli C, Ingrasciotta G, Jacoby D, Masri A, Olivotto I. Sarcomere protein modulation: The new frontier in cardiovascular medicine and beyond. Eur J Intern Med 2022; 102:1-7. [PMID: 35534374 DOI: 10.1016/j.ejim.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 01/10/2023]
Abstract
Over the past decade, the constant progress in science and technologies has provided innovative drug molecules that address specific disease mechanisms thus opening the era of drugs targeting the underlying pathophysiology of the disease. In this scenario, a new paradigm of modulation has emerged, following the development of small molecules capable of interfering with sarcomere contractile proteins. Potential applications include heart muscle disease and various forms of heart failure, although promising targets also include conditions affecting the skeletal muscle, such as degenerative neuromuscular diseases. In cardiac patients, a cardiac myosin stimulator, omecamtiv mecarbil, has shown efficacy in heart failure with reduced systolic function, lowering heart failure related events or cardiovascular death, while two inhibitors, mavacamten and aficamten, in randomized trials targeting hypertrophic cardiomyopathy, have been shown to reduce hypercontractility and left ventricular outflow obstruction improving functional capacity. Based on years of intensive basic and translational research, these agents are the prototypes of active pipelines promising to deliver an array of molecules in the near future. We here review the available evidence and future perspectives of myosin modulation in cardiovascular medicine.
Collapse
Affiliation(s)
- Cristina Morelli
- Azienda Ospedaliera Universitaria Careggi and University of Florence, Florence, Italy
| | - Gessica Ingrasciotta
- Azienda Ospedaliera Universitaria Careggi and University of Florence, Florence, Italy
| | - Daniel Jacoby
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, New Haven, CT, USA
| | - Ahmad Masri
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Iacopo Olivotto
- Azienda Ospedaliera Universitaria Careggi and University of Florence, Florence, Italy.
| |
Collapse
|
15
|
Wang W, Xu X, Zhang C, Huang H, Zhu L, Yue K, Zhu M, Yang S. Skeletal Muscle Fibers Inspired Polymeric Actuator by Assembly of Triblock Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105764. [PMID: 35253397 PMCID: PMC9069194 DOI: 10.1002/advs.202105764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/18/2022] [Indexed: 05/05/2023]
Abstract
Inspired by the striated structure of skeletal muscle fibers, a polymeric actuator by assembling two symmetric triblock copolymers, namely, polystyrene-b-poly(acrylic acid)-b-polystyrene (SAS) and polystyrene-b-poly(ethylene oxide)-b-polystyrene (SES) is developed. Owing to the microphase separation of the triblock copolymers and hydrogen-bonding complexation of their middle segments, the SAS/SES assembly forms a lamellar structure with alternating vitrified S and hydrogen-bonded A/E association layers. The SAS/SES strip can be actuated and operate in response to environmental pH. The contraction ratio and working density of the SAS/SES actuator are approximately 50% and 90 kJ m-3 , respectively; these values are higher than those of skeletal muscle fibers. In addition, the SAS/SES actuator shows a "catch-state", that is, it can maintain force without energy consumption, which is a feature of mollusc muscle but not skeletal muscle. This study provides a biomimetic approach for the development of artificial polymeric actuators with outstanding performance.
Collapse
Affiliation(s)
- Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Xian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Caihong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Hao Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Kan Yue
- South China Advanced Institute for Soft Mater Science and TechnologySchool of Molecular Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCenter for Advanced Low‐dimension MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
16
|
Garrad M, Zadeh MN, Romero C, Scarpa F, Conn AT, Rossiter J. Design and Characterisation of a Muscle-Mimetic Dielectrophoretic Ratcheting Actuator. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3149039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Millane RP, Wojtas DH, Hong Yoon C, Blakeley ND, Bones PJ, Goyal A, Squire JM, Luther PK. Geometric frustration in the myosin superlattice of vertebrate muscle. J R Soc Interface 2021; 18:20210585. [PMID: 34905966 PMCID: PMC8672065 DOI: 10.1098/rsif.2021.0585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/16/2021] [Indexed: 11/12/2022] Open
Abstract
Geometric frustration results from an incompatibility between minimum energy arrangements and the geometry of a system, and gives rise to interesting and novel phenomena. Here, we report geometric frustration in a native biological macromolecular system---vertebrate muscle. We analyse the disorder in the myosin filament rotations in the myofibrils of vertebrate striated (skeletal and cardiac) muscle, as seen in thin-section electron micrographs, and show that the distribution of rotations corresponds to an archetypical geometrically frustrated system---the triangular Ising antiferromagnet. Spatial correlations are evident out to at least six lattice spacings. The results demonstrate that geometric frustration can drive the development of structure in complex biological systems, and may have implications for the nature of the actin--myosin interactions involved in muscle contraction. Identification of the distribution of myosin filament rotations with an Ising model allows the extensive results on the latter to be applied to this system. It shows how local interactions (between adjacent myosin filaments) can determine long-range order and, conversely, how observations of long-range order (such as patterns seen in electron micrographs) can be used to estimate the energetics of these local interactions. Furthermore, since diffraction by a disordered system is a function of the second-order statistics, the derived correlations allow more accurate diffraction calculations, which can aid in interpretation of X-ray diffraction data from muscle specimens for structural analysis.
Collapse
Affiliation(s)
- Rick P. Millane
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - David H. Wojtas
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Chun Hong Yoon
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Nicholas D. Blakeley
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Philip J. Bones
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Abhishek Goyal
- Computational Imaging Group, Department of Electrical and Computer Engineering, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - John M. Squire
- Muscle Contraction Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Pradeep K. Luther
- National Heart and Lung Institute, Sir Alexander Fleming Building, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
18
|
Cisterna B, Malatesta M, Zancanaro C, Boschi F. A computational approach to quantitatively define sarcomere dimensions and arrangement in skeletal muscle. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 211:106437. [PMID: 34624632 DOI: 10.1016/j.cmpb.2021.106437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils. In section, each myofibril is organized in serially end-to-end arranged sarcomeres connected by Z lines. In muscle disorders, these structural and functional units can undergo structural alterations in terms of Z-line and sarcomere lengths, as well as lateral alignment of Z-line among adjacent myofibrils. In this view, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. In this work, specific quantitative parameters characterizing the sarcomere and myofibril arrangement were defined using a computerized analysis of ultrastructural images. METHODS computerized analysis was carried out on transmission electron microscopy pictures of the murine vastus lateralis muscle. Samples from both euploid (control) and trisomic (showing myofiber alterations) Ts65Dn mice were used. Two routines were written in MATLAB to measure specific structural parameters on sarcomeres and myofibrils. The output included the Z-line, M-line, and sarcomere lengths, the Aspect Ratio (AsR) and Curviness (Cur) sarcomere shape parameters, myofibril axis (α angle), and the H parameter (evaluation of sequence of Z-lines of adjacent myofibrils). RESULTS Both routines worked well in control (euploid) skeletal muscle yielding consistent quantitative data of sarcomere and myofibril structural organization. In comparison with euploid, trisomic muscle showed statistically significant lower Z-line length, similar M-line length, and statistically significant lower sarcomere length. Both AsR and Cur were statistically significantly lower in trisomic muscle, suggesting the sarcomere is barrel-shaped in the latter. The angle (α) distribution showed that the sarcomere axes are almost parallel in euploid muscle, while a large variability occurs in trisomic tissue. The mean value of H was significantly higher in trisomic versus euploid muscle indicating that Z-lines are not perfectly aligned in trisomic muscle. CONCLUSIONS Our procedure allowed us to accurately extract and quantify sarcomere and myofibril parameters from the high-resolution electron micrographs thereby yielding an effective tool to quantitatively define trisomy-associated muscle alterations. These results pave the way to future objective quantification of skeletal muscle changes in pathological conditions. SHORT ABSTRACT The skeletal muscle is composed of integrated tissues mainly composed of myofibers i.e., long, cylindrical syncytia, whose cytoplasm is mostly occupied by parallel myofibrils organized in serially end-to-end arranged sarcomeres. Several pieces of evidence have highlighted that in muscle disorders and diseases the sarcomere structure may be altered. Therefore, objectifying alterations of the myofibril and sarcomere architecture would provide a solid foundation for qualitative observations. A computerized analysis was carried out on transmission electron microscopy images of euploid (control) and trisomic (showing myofiber alterations) skeletal muscle. Two routines were written in MATLAB to measure nine sarcomere and myofibril structural parameters. Our computational method confirmed and expanded on previous qualitative ultrastructural findings defining several trisomy-associated skeletal muscle alterations. The proposed procedure is a potentially useful tool to quantitatively define skeletal muscle changes in pathological conditions involving the sarcomere.
Collapse
Affiliation(s)
- Barbara Cisterna
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Manuela Malatesta
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Carlo Zancanaro
- Anatomy and Histology Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, Verona 37134, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, Verona 37134, Italy.
| |
Collapse
|
19
|
Peng X, Feng G, Zhang Y, Sun Y. PRC1 Stabilizes Cardiac Contraction by Regulating Cardiac Sarcomere Assembly and Cardiac Conduction System Construction. Int J Mol Sci 2021; 22:11368. [PMID: 34768802 PMCID: PMC8583368 DOI: 10.3390/ijms222111368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 01/01/2023] Open
Abstract
Cardiac development is a complex process that is strictly controlled by various factors, including PcG protein complexes. Several studies have reported the critical role of PRC2 in cardiogenesis. However, little is known about the regulation mechanism of PRC1 in embryonic heart development. To gain more insight into the mechanistic role of PRC1 in cardiogenesis, we generated a PRC1 loss-of-function zebrafish line by using the CRISPR/Cas9 system targeting rnf2, a gene encoding the core subunit shared by all PRC1 subfamilies. Our results revealed that Rnf2 is not involved in cardiomyocyte differentiation and heart tube formation, but that it is crucial to maintaining regular cardiac contraction. Further analysis suggested that Rnf2 loss-of-function disrupted cardiac sarcomere assembly through the ectopic activation of non-cardiac sarcomere genes in the developing heart. Meanwhile, Rnf2 deficiency disrupts the construction of the atrioventricular canal and the sinoatrial node by modulating the expression of bmp4 and other atrioventricular canal marker genes, leading to an impaired cardiac conduction system. The disorganized cardiac sarcomere and defective cardiac conduction system together contribute to defective cardiac contraction. Our results emphasize the critical role of PRC1 in the cardiac development.
Collapse
Affiliation(s)
- Xixia Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gang Feng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhua Sun
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; (X.P.); (G.F.); (Y.Z.)
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
20
|
Zhang Y, Pang X, Yang Y, Yan S. Effect of calcium ion on the morphology structure and compression elasticity of muscle fibers from honeybee abdomen. J Biomech 2021; 127:110652. [PMID: 34358879 DOI: 10.1016/j.jbiomech.2021.110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
Muscle contraction activated by calcium ion is the key to reveal that honeybee abdomen can achieve various physiological activities through flexible exercises and contributes to a powerful mechanical function of muscle fibers. To investigate the stimulating effect of calcium ion on muscle fibers of honeybee abdomen, atomic force microscopy was used to measure the morphology structure and mechanical properties of muscle fibers from honeybee abdomen in different calcium ion solutions. The periodic morphology structure of muscle fibers stimulated by different calcium ion concentration changed greatly, and the sarcomere length contracted from 6.53 μm to 4.29 μm as the calcium ion concentration increased from 0.11 mM to 10 mM. The mechanical measurement showed that the elastic modulus of Z-line reached the maximum, followed by M-line, overlap zone and I-band in sequence at the same calcium ion concentration, and was approximately 3.636, 2.450, 2.284, 2.748 times that of I-band from 0.11 mM to 10 mM calcium ion concentration. Combining the experimental analysis, the calcium ion threshold range was obtained based on the response surface method. This work adequately elucidates biological structure and biomechanics of muscle fibers from honeybee abdomen and could provide reference for other similar muscle system.
Collapse
Affiliation(s)
- Yuling Zhang
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Xu Pang
- School of Engineering and Technology, China University of Geosciences (Beijing), 100083 Beijing, PR China
| | - Yunqiang Yang
- School of Engineering and Technology, China University of Geosciences (Beijing), 100083 Beijing, PR China
| | - Shaoze Yan
- Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
21
|
Burbaum L, Schneider J, Scholze S, Böttcher RT, Baumeister W, Schwille P, Plitzko JM, Jasnin M. Molecular-scale visualization of sarcomere contraction within native cardiomyocytes. Nat Commun 2021; 12:4086. [PMID: 34215727 PMCID: PMC8253822 DOI: 10.1038/s41467-021-24049-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcomeres, the basic contractile units of striated muscle, produce the forces driving muscular contraction through cross-bridge interactions between actin-containing thin filaments and myosin II-based thick filaments. Until now, direct visualization of the molecular architecture underlying sarcomere contractility has remained elusive. Here, we use in situ cryo-electron tomography to unveil sarcomere contraction in frozen-hydrated neonatal rat cardiomyocytes. We show that the hexagonal lattice of the thick filaments is already established at the neonatal stage, with an excess of thin filaments outside the trigonal positions. Structural assessment of actin polarity by subtomogram averaging reveals that thin filaments in the fully activated state form overlapping arrays of opposite polarity in the center of the sarcomere. Our approach provides direct evidence for thin filament sliding during muscle contraction and may serve as a basis for structural understanding of thin filament activation and actomyosin interactions inside unperturbed cellular environments.
Collapse
Affiliation(s)
- Laura Burbaum
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jonathan Schneider
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sarah Scholze
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralph T Böttcher
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jürgen M Plitzko
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
22
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
23
|
Malingen SA, Hood K, Lauga E, Hosoi A, Daniel TL. Fluid flow in the sarcomere. Arch Biochem Biophys 2021; 706:108923. [PMID: 34029559 DOI: 10.1016/j.abb.2021.108923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
A highly organized and densely packed lattice of molecular machinery within the sarcomeres of muscle cells powers contraction. Although many of the proteins that drive contraction have been studied extensively, the mechanical impact of fluid shearing within the lattice of molecular machinery has received minimal attention. It was recently proposed that fluid flow augments substrate transport in the sarcomere, however, this analysis used analytical models of fluid flow in the molecular machinery that could not capture its full complexity. By building a finite element model of the sarcomere, we estimate the explicit flow field, and contrast it with analytical models. Our results demonstrate that viscous drag forces on sliding filaments are surprisingly small in contrast to the forces generated by single myosin molecular motors. This model also indicates that the energetic cost of fluid flow through viscous shearing with lattice proteins is likely minimal. The model also highlights a steep velocity gradient between sliding filaments and demonstrates that the maximal radial fluid velocity occurs near the tips of the filaments. To our knowledge, this is the first computational analysis of fluid flow within the highly structured sarcomere.
Collapse
Affiliation(s)
- Sage A Malingen
- Department of Biology, University of Washington, Seattle, WA 98195, United States.
| | - Kaitlyn Hood
- Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02138, United States
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Anette Hosoi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02138, United States
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
24
|
Wallace MJ, El Refaey M, Mesirca P, Hund TJ, Mangoni ME, Mohler PJ. Genetic Complexity of Sinoatrial Node Dysfunction. Front Genet 2021; 12:654925. [PMID: 33868385 PMCID: PMC8047474 DOI: 10.3389/fgene.2021.654925] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
The pacemaker cells of the cardiac sinoatrial node (SAN) are essential for normal cardiac automaticity. Dysfunction in cardiac pacemaking results in human sinoatrial node dysfunction (SND). SND more generally occurs in the elderly population and is associated with impaired pacemaker function causing abnormal heart rhythm. Individuals with SND have a variety of symptoms including sinus bradycardia, sinus arrest, SAN block, bradycardia/tachycardia syndrome, and syncope. Importantly, individuals with SND report chronotropic incompetence in response to stress and/or exercise. SND may be genetic or secondary to systemic or cardiovascular conditions. Current management of patients with SND is limited to the relief of arrhythmia symptoms and pacemaker implantation if indicated. Lack of effective therapeutic measures that target the underlying causes of SND renders management of these patients challenging due to its progressive nature and has highlighted a critical need to improve our understanding of its underlying mechanistic basis of SND. This review focuses on current information on the genetics underlying SND, followed by future implications of this knowledge in the management of individuals with SND.
Collapse
Affiliation(s)
- Michael J. Wallace
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Mona El Refaey
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Pietro Mesirca
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Thomas J. Hund
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matteo E. Mangoni
- CNRS, INSERM, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, France
- Laboratory of Excellence ICST, Montpellier, France
| | - Peter J. Mohler
- Frick Center for Heart Failure and Arrhythmia Research, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
25
|
Chen Y, Liu W, Ma J, Wang Y, Huang H. Comprehensive physiological and transcriptomic analysis revealing the responses of hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) to the replacement of fish meal with soy protein concentrate. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2037-2053. [PMID: 32767005 DOI: 10.1007/s10695-020-00851-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Plant proteins are suitable and alternative to fish meals (FMs), with less cost compared with that of all other types of fish feeds. In recent years, soy protein concentrate (SPC) has emerged as a cost-effective alternative to FM; however, little is known regarding the effects of dietary SPC on general fish physiology and well-being. This study aimed to perform comprehensive physiological and transcriptomic analysis for testing the applicability of SPC as fish feeds in hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus♂) [SPC replaced 0% (CK), 30% (SPC30), and 75% (SPC75) of FM protein]. Generally, SPC30 promoted fish survival and had less effects on the phenotype, while SPC75 reduced fish survival, promoted inflammation, and regulated multiple physiological responses. Thousands of differentially expressed genes (DEGs) by SPC were identified in the intestine, liver, and muscle, which were enriched in biological regulation, cellular process, metabolic process, single-organism process, cell, cell part, membrane, binding, and catalytic activity based on RNA-seq. Notably, some DEGs involved in amino acid and lipid metabolism in the digestive system highlighted the modulatory effect of SPC on these metabolic processes, consistent with the physiological responses including enzyme activities. The enriched aspects of these predominant DEGs might be directly related to the different effects of SPC30 and SPC75 on fish growth, digestibility, and underlying enzyme activities and histology. In conclusion, the comprehensive physiological and transcriptomic comparative analysis of CK, SPC30, and SPC75 was also effective in testing the applicability of SPC as fish feeds and in designing a proper diet with the best impact on the growth performance and health of fish in hybrid grouper.
Collapse
Affiliation(s)
- Yan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| | - Wenkan Liu
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| | - Jun Ma
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China.
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China.
| | - Yaorong Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China
| | - Hai Huang
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, 572022, Hainan province, People's Republic of China
- College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, Hainan Province, People's Republic of China
| |
Collapse
|
26
|
Malingen SA, Asencio AM, Cass JA, Ma W, Irving TC, Daniel TL. In vivo X-ray diffraction and simultaneous EMG reveal the time course of myofilament lattice dilation and filament stretch. J Exp Biol 2020; 223:jeb224188. [PMID: 32709625 PMCID: PMC7490515 DOI: 10.1242/jeb.224188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Muscle function within an organism depends on the feedback between molecular and meter-scale processes. Although the motions of muscle's contractile machinery are well described in isolated preparations, only a handful of experiments have documented the kinematics of the lattice occurring when multi-scale interactions are fully intact. We used time-resolved X-ray diffraction to record the kinematics of the myofilament lattice within a normal operating context: the tethered flight of Manduca sexta As the primary flight muscles of M.sexta are synchronous, we used these results to reveal the timing of in vivo cross-bridge recruitment, which occurred 24 ms (s.d. 26) following activation. In addition, the thick filaments stretched an average of 0.75% (s.d. 0.32) and thin filaments stretched 1.11% (s.d. 0.65). In contrast to other in vivo preparations, lattice spacing changed an average of 2.72% (s.d. 1.47). Lattice dilation of this magnitude significantly affects shortening velocity and force generation, and filament stretching tunes force generation. While the kinematics were consistent within individual trials, there was extensive variation between trials. Using a mechanism-free machine learning model we searched for patterns within and across trials. Although lattice kinematics were predictable within trials, the model could not create predictions across trials. This indicates that the variability we see across trials may be explained by latent variables occurring in this naturally functioning system. The diverse kinematic combinations we documented mirror muscle's adaptability and may facilitate its robust function in unpredictable conditions.
Collapse
Affiliation(s)
- Sage A Malingen
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Anthony M Asencio
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| | - Julie A Cass
- Allen Institute for Cell Science, Seattle, WA 98109, USA
| | - Weikang Ma
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas C Irving
- BioCAT, Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
28
|
Melby JA, Jin Y, Lin Z, Tucholski T, Wu Z, Gregorich ZR, Diffee GM, Ge Y. Top-Down Proteomics Reveals Myofilament Proteoform Heterogeneity among Various Rat Skeletal Muscle Tissues. J Proteome Res 2020; 19:446-454. [PMID: 31647247 PMCID: PMC7487979 DOI: 10.1021/acs.jproteome.9b00623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterogeneity in skeletal muscle contraction time, peak power output, and resistance to fatigue, among others, is necessary to accommodate the wide range of functional demands imposed on the body. Underlying this functional heterogeneity are a myriad of differences in the myofilament protein isoform expression and post-translational modifications; yet, characterizing this heterogeneity remains challenging. Herein, we have utilized top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics to characterize myofilament proteoform heterogeneity in seven rat skeletal muscle tissues including vastus lateralis, vastus medialis, vastus intermedius, rectus femoris, soleus, gastrocnemius, and plantaris. Top-down proteomics revealed that myofilament proteoforms varied greatly across the seven different rat skeletal muscle tissues. Subsequently, we quantified and characterized myofilament proteoforms using online LC-MS. We have comprehensively characterized the fast and slow skeletal troponin I isoforms, which demonstrates the ability of top-down MS to decipher isoforms with high sequence homology. Taken together, we have shown that top-down proteomics can be used as a robust and high-throughput method to characterize the molecular heterogeneity of myofilament proteoforms from various skeletal muscle tissues.
Collapse
Affiliation(s)
- Jake A. Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
| | - Gary M. Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
29
|
Moraczewska J, Robaszkiewicz K, Śliwinska M, Czajkowska M, Ly T, Kostyukova A, Wen H, Zheng W. Congenital myopathy-related mutations in tropomyosin disrupt regulatory function through altered actin affinity and tropomodulin binding. FEBS J 2019; 286:1877-1893. [PMID: 30768849 PMCID: PMC7202179 DOI: 10.1111/febs.14787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/28/2018] [Accepted: 02/13/2019] [Indexed: 11/28/2022]
Abstract
Tropomyosin (Tpm) binds along actin filaments and regulates myosin binding to control muscle contraction. Tropomodulin binds to the pointed end of a filament and regulates actin dynamics, which maintains the length of a thin filament. To define the structural determinants of these Tpm functions, we examined the effects of two congenital myopathy mutations, A4V and R91C, in the Tpm gene, TPM3, which encodes the Tpm3.12 isoform, specific for slow-twitch muscle fibers. Mutation A4V is located in the tropomodulin-binding, N-terminal region of Tpm3.12. R91C is located in the actin-binding period 3 and directly interacts with actin. The A4V and R91C mutations resulted in a 2.5-fold reduced affinity of Tpm3.12 homodimers for F-actin in the absence and presence of troponin, and a two-fold decrease in actomyosin ATPase activation in the presence of Ca2+ . Actomyosin ATPase inhibition in the absence of Ca2+ was not affected. The Ca2+ sensitivity of ATPase activity was decreased by R91C, but not by A4V. In vitro, R91C altered the ability of tropomodulin 1 (Tmod1) to inhibit actin polymerization at the pointed end of the filaments, which correlated with the reduced affinity of Tpm3.12-R91C for Tmod1. Molecular dynamics simulations of Tpm3.12 in complex with F-actin suggested that both mutations reduce the affinity of Tpm3.12 for F-actin binding by perturbing the van der Waals energy, which may be attributable to two different molecular mechanisms-a reduced flexibility of Tpm3.12-R91C and an increased flexibility of Tpm3.12-A4V.
Collapse
Affiliation(s)
- Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Katarzyna Robaszkiewicz
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Małgorzata Śliwinska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Marta Czajkowska
- Department of Biochemistry and Cell Biology, Faculty of Natural Sciences, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Thu Ly
- Voiland School of Chemical Engineering and Bioengineering, University of Washington, Pullman, WA, USA
| | - Alla Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, University of Washington, Pullman, WA, USA
| | - Han Wen
- Department of Physics, University at Buffalo, SUNY, NY, USA
| | - Wenjun Zheng
- Department of Physics, University at Buffalo, SUNY, NY, USA
| |
Collapse
|
30
|
Mijailovich SM, Stojanovic B, Nedic D, Svicevic M, Geeves MA, Irving TC, Granzier HL. Nebulin and titin modulate cross-bridge cycling and length-dependent calcium sensitivity. J Gen Physiol 2019; 151:680-704. [PMID: 30948421 PMCID: PMC6504291 DOI: 10.1085/jgp.201812165] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 01/15/2019] [Accepted: 03/03/2019] [Indexed: 12/13/2022] Open
Abstract
Various mutations in the structural proteins nebulin and titin that are present in human disease are known to affect the contractility of striated muscle. Loss of nebulin is associated with reduced actin filament length and impairment of myosin binding to actin, whereas titin is thought to regulate muscle passive elasticity and is likely involved in length-dependent activation. Here, we sought to assess the modulation of muscle function by these sarcomeric proteins by using the computational platform muscle simulation code (MUSICO) to quantitatively separate the effects of structural changes, kinetics of cross-bridge cycling, and calcium sensitivity of the thin filaments. The simulations show that variation in thin filament length cannot by itself account for experimental observations of the contractility in nebulin-deficient muscle, but instead must be accompanied by a decreased myosin binding rate. Additionally, to match the observed calcium sensitivity, the rate of TnI detachment from actin needed to be increased. Simulations for cardiac muscle provided quantitative estimates of the effects of different titin-based passive elasticities on muscle force and activation in response to changes in sarcomere length and interfilament lattice spacing. Predicted force-pCa relations showed a decrease in both active tension and sensitivity to calcium with a decrease in passive tension and sarcomere length. We conclude that this behavior is caused by partial redistribution of the muscle load between active muscle force and titin-dependent passive force, and also by redistribution of stretch along the thin filament, which together modulate the release of TnI from actin. These data help advance understanding of how nebulin and titin mutations affect muscle function.
Collapse
Affiliation(s)
- Srboljub M Mijailovich
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA .,Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Boban Stojanovic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Djordje Nedic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Marina Svicevic
- University of Kragujevac, Faculty of Science, Kragujevac, Serbia
| | - Michael A Geeves
- Department of Biosciences, University of Kent, Canterbury, Kent, UK
| | - Thomas C Irving
- Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | | |
Collapse
|
31
|
Kellermayer M, Sziklai D, Papp Z, Decker B, Lakatos E, Mártonfalvi Z. Topology of interaction between titin and myosin thick filaments. J Struct Biol 2018; 203:46-53. [PMID: 29738832 DOI: 10.1016/j.jsb.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 01/01/2023]
Abstract
Titin is a giant protein spanning between the Z- and M-lines of the sarcomere. In the A-band titin is associated with the myosin thick filament. It has been speculated that titin may serve as a blueprint for thick-filament formation due to the super-repeat structure of its A-band domains. Accordingly, titin might provide a template that determines the length and structural periodicity of the thick filament. Here we tested the titin ruler hypothesis by mixing titin and myosin at in situ stoichiometric ratios (300 myosins per 12 titins) in buffers of different ionic strength (KCl concentration range 100-300 mM). The topology of the filamentous complexes was investigated with atomic force microscopy. We found that the samples contained distinct, segregated populations of titin molecules and myosin thick filaments. We were unable to identify complexes in which myosin molecules were regularly associated to either mono- or oligomeric titin in either relaxed or stretched states of the titin filaments. Thus, the electrostatically driven self-association is stronger in both myosin and titin than their binding to each other, and it is unlikely that titin functions as a geometrical template for thick-filament formation. However, when allowed to equilibrate configurationally, long myosin thick filaments appeared with titin oligomers attached to their surface. The titin meshwork formed on the thick-filament surface may play a role in controlling thick-filament length by regulating the structural dynamics of myosin molecules and placing a mechanical limit on the filament length.
Collapse
Affiliation(s)
- Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary.
| | - Dominik Sziklai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Zsombor Papp
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Brennan Decker
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Eszter Lakatos
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| | - Zsolt Mártonfalvi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest H1094, Hungary
| |
Collapse
|
32
|
Downregulation of Profilin-1 Expression Attenuates Cardiomyocytes Hypertrophy and Apoptosis Induced by Advanced Glycation End Products in H9c2 Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9716087. [PMID: 29238726 PMCID: PMC5697376 DOI: 10.1155/2017/9716087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/08/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022]
Abstract
Cardiomyocytes hypertrophy and apoptosis induced by advanced glycation end products (AGEs) is the crucial pathological foundation contributing to the onset and development of diabetic cardiomyopathy (DCM). However, the mechanism remains poorly understood. Here, we report that profilin-1 (PFN-1), a well-known actin-binding protein, serves as a potent regulator in AGEs-induced cardiomyocytes hypertrophy and apoptosis. PFN-1 was upregulated in AGEs-treated H9c2 cells, which was associated with increased cardiomyocytes hypertrophy and apoptosis. Silencing PFN-1 expression remarkably attenuated AGEs-induced H9c2 cell hypertrophy and apoptosis. Mechanistically, AGEs increased PFN-1 expression through elevating ROS production and RhoA and ROCK2 expression. Consequently, elevated PFN-1 promoted actin cytoskeleton disorganization. When either ROS production/ROCK activation was blocked or cells were treated with Cytochalasin D (actin depolymerizer), H9c2 cells were protected against AGEs-induced cardiac myocyte abnormalities, concomitantly with downregulated expression of PFN-1 and improved actin cytoskeleton alteration. Collectively, these data suggest that PFN-1 may play an important role in AGEs-induced hypertrophy and apoptosis in H9c2 cells.
Collapse
|
33
|
Hissa B, Oakes PW, Pontes B, Ramírez-San Juan G, Gardel ML. Cholesterol depletion impairs contractile machinery in neonatal rat cardiomyocytes. Sci Rep 2017; 7:43764. [PMID: 28256617 PMCID: PMC5335656 DOI: 10.1038/srep43764] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cholesterol regulates numerous cellular processes. Depleting its synthesis in skeletal myofibers induces vacuolization and contraction impairment. However, little is known about how cholesterol reduction affects cardiomyocyte behavior. Here, we deplete cholesterol by incubating neonatal cardiomyocytes with methyl-beta-cyclodextrin. Traction force microscopy shows that lowering cholesterol increases the rate of cell contraction and generates defects in cell relaxation. Cholesterol depletion also increases membrane tension, Ca2+ spikes frequency and intracellular Ca2+ concentration. These changes can be correlated with modifications in caveolin-3 and L-Type Ca2+ channel distributions across the sarcolemma. Channel regulation is also compromised since cAMP-dependent PKA activity is enhanced, increasing the probability of L-Type Ca2+ channel opening events. Immunofluorescence reveals that cholesterol depletion abrogates sarcomeric organization, changing spacing and alignment of α-actinin bands due to increase in proteolytic activity of calpain. We propose a mechanism in which cholesterol depletion triggers a signaling cascade, culminating with contraction impairment and myofibril disruption in cardiomyocytes.
Collapse
Affiliation(s)
- Barbara Hissa
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Patrick W. Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guillermina Ramírez-San Juan
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L. Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| |
Collapse
|
34
|
Merindol R, Walther A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem Soc Rev 2017; 46:5588-5619. [DOI: 10.1039/c6cs00738d] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A broad overview of functional aspects in biological and synthetic out-of-equilibrium systems.
Collapse
Affiliation(s)
- Rémi Merindol
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| | - Andreas Walther
- Institute for Macromolecular Chemistry
- Albert-Ludwigs-University Freiburg
- 79106 Freiburg
- Germany
| |
Collapse
|
35
|
Shwartz A, Dhanyasi N, Schejter ED, Shilo BZ. The Drosophila formin Fhos is a primary mediator of sarcomeric thin-filament array assembly. eLife 2016; 5. [PMID: 27731794 PMCID: PMC5061545 DOI: 10.7554/elife.16540] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/15/2016] [Indexed: 01/26/2023] Open
Abstract
Actin-based thin filament arrays constitute a fundamental core component of muscle sarcomeres. We have used formation of the Drosophila indirect flight musculature for studying the assembly and maturation of thin-filament arrays in a skeletal muscle model system. Employing GFP-tagged actin monomer incorporation, we identify several distinct phases in the dynamic construction of thin-filament arrays. This sequence includes assembly of nascent arrays after an initial period of intensive microfilament synthesis, followed by array elongation, primarily from filament pointed-ends, radial growth of the arrays via recruitment of peripheral filaments and continuous barbed-end turnover. Using genetic approaches we have identified Fhos, the single Drosophila homolog of the FHOD sub-family of formins, as a primary and versatile mediator of IFM thin-filament organization. Localization of Fhos to the barbed-ends of the arrays, achieved via a novel N-terminal domain, appears to be a critical aspect of its sarcomeric roles. DOI:http://dx.doi.org/10.7554/eLife.16540.001 Muscles owe their ability to contract to structural units called sarcomeres, and a single muscle fiber can contain many thousands of these structures, aligned one next to the other. Each mature sarcomere is made up of precisely arranged and intertwined thin filaments of actin and thicker bundles of motor proteins, surrounded by other proteins. Sliding the motors along the filaments provides the force needed to contract the muscle. However, it was far from clear how sarcomeres, especially the arrays of thin-filaments, are assembled from scratch in developing muscles. When the fruit fly Drosophila transforms from a larva into an adult, it needs to build muscles to move its newly forming wings. While smaller in size, these flight muscles closely resemble the skeletal muscles of animals with backbones, and therefore serve as a good model for muscle formation in general. New muscles require new sarcomeres too, and now Shwartz et al. have observed and monitored sarcomeres assembling in developing flight muscles of fruit flies, a process that takes about three days. The analysis made use of genetically engineered flies in which the gene for a fluorescently labeled version of actin, the building block of the thin filaments, could be switched on at specific points in time. Looking at how these green-glowing proteins become incorporated into the growing sarcomere revealed that the assembly process involves four different phases. First, a large store of unorganized and newly-made thin filaments is generated for future use. These filaments are then assembled into rudimentary structures in which the filaments are roughly aligned. Once these core structures are formed, the existing filaments are elongated, while additional filaments are brought in to expand the structure further. Finally, actin proteins are continuously added and removed at the part of the sarcomere where the thin filaments are anchored. Shwartz et al. went on to identify a protein termed Fhos as the chief player in the process. Fhos is a member of a family of proteins that are known to elongate and organize actin filaments in many different settings. Without Fhos, the thin-filament arrays cannot properly begin to assemble, and the subsequent steps of growth and expansion are blocked as well. The next challenges will be to understand what guides the initial stages in the assembly of the thin-filament array, and how the coordination between assembly of actin filament arrays and motor proteins is executed. It will also be important to determine how sarcomeres are maintained throughout the life of the organism when defective actin filaments are replaced, and which proteins are responsible for carrying out this process. DOI:http://dx.doi.org/10.7554/eLife.16540.002
Collapse
Affiliation(s)
- Arkadi Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nagaraju Dhanyasi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal D Schejter
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Ben-Zion Shilo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
36
|
Kooij V, Viswanathan MC, Lee DI, Rainer PP, Schmidt W, Kronert WA, Harding SE, Kass DA, Bernstein SI, Van Eyk JE, Cammarato A. Profilin modulates sarcomeric organization and mediates cardiomyocyte hypertrophy. Cardiovasc Res 2016; 110:238-48. [PMID: 26956799 PMCID: PMC4836629 DOI: 10.1093/cvr/cvw050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 02/28/2016] [Indexed: 11/17/2022] Open
Abstract
Aims Heart failure is often preceded by cardiac hypertrophy, which is characterized by increased cell size, altered protein abundance, and actin cytoskeletal reorganization. Profilin is a well-conserved, ubiquitously expressed, multifunctional actin-binding protein, and its role in cardiomyocytes is largely unknown. Given its involvement in vascular hypertrophy, we aimed to test the hypothesis that profilin-1 is a key mediator of cardiomyocyte-specific hypertrophic remodelling. Methods and results Profilin-1 was elevated in multiple mouse models of hypertrophy, and a cardiomyocyte-specific increase of profilin in Drosophila resulted in significantly larger heart tube dimensions. Moreover, adenovirus-mediated overexpression of profilin-1 in neonatal rat ventricular myocytes (NRVMs) induced a hypertrophic response, measured by increased myocyte size and gene expression. Profilin-1 silencing suppressed the response in NRVMs stimulated with phenylephrine or endothelin-1. Mechanistically, we found that profilin-1 regulates hypertrophy, in part, through activation of the ERK1/2 signalling cascade. Confocal microscopy showed that profilin localized to the Z-line of Drosophila myofibrils under normal conditions and accumulated near the M-line when overexpressed. Elevated profilin levels resulted in elongated sarcomeres, myofibrillar disorganization, and sarcomeric disarray, which correlated with impaired muscle function. Conclusion Our results identify novel roles for profilin as an important mediator of cardiomyocyte hypertrophy. We show that overexpression of profilin is sufficient to induce cardiomyocyte hypertrophy and sarcomeric remodelling, and silencing of profilin attenuates the hypertrophic response.
Collapse
Affiliation(s)
- Viola Kooij
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Meera C Viswanathan
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Dong I Lee
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - Peter P Rainer
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Division of Cardiology, Medical University of Graz, Graz, Austria
| | - William Schmidt
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | - William A Kronert
- Department of Biology, San Diego State University, San Diego, CA, USA
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, 4th floor, ICTEM, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| | | | - Jennifer E Van Eyk
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA Advanced Clinical Biosystems Research Institute, Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony Cammarato
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Vilgis TA. Soft matter food physics--the physics of food and cooking. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:124602. [PMID: 26534781 DOI: 10.1088/0034-4885/78/12/124602] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This review discusses the (soft matter) physics of food. Although food is generally not considered as a typical model system for fundamental (soft matter) physics, a number of basic principles can be found in the interplay between the basic components of foods, water, oil/fat, proteins and carbohydrates. The review starts with the introduction and behavior of food-relevant molecules and discusses food-relevant properties and applications from their fundamental (multiscale) behavior. Typical food aspects from 'hard matter systems', such as chocolates or crystalline fats, to 'soft matter' in emulsions, dough, pasta and meat are covered and can be explained on a molecular basis. An important conclusion is the point that the macroscopic properties and the perception are defined by the molecular interplay on all length and time scales.
Collapse
Affiliation(s)
- Thomas A Vilgis
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55129 Mainz, Germany
| |
Collapse
|
38
|
Ono K, Obinata T, Yamashiro S, Liu Z, Ono S. UNC-87 isoforms, Caenorhabditis elegans calponin-related proteins, interact with both actin and myosin and regulate actomyosin contractility. Mol Biol Cell 2015; 26:1687-98. [PMID: 25717181 PMCID: PMC4436780 DOI: 10.1091/mbc.e14-10-1483] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/18/2015] [Indexed: 12/12/2022] Open
Abstract
Two UNC-87 isoforms with seven calponin-like repeats are expressed widely in muscle and nonmuscle cells in Caenorhabditis elegans. They bind to actin and myosin and inhibit actomyosin motility in vitro. unc-87 mutation enhances contraction of nonstriated muscle in vivo, suggesting that UNC-87 isoforms are negative regulators of actomyosin contractility. Calponin-related proteins are widely distributed among eukaryotes and involved in signaling and cytoskeletal regulation. Calponin-like (CLIK) repeat is an actin-binding motif found in the C-termini of vertebrate calponins. Although CLIK repeats stabilize actin filaments, other functions of these actin-binding motifs are unknown. The Caenorhabditis elegans unc-87 gene encodes actin-binding proteins with seven CLIK repeats. UNC-87 stabilizes actin filaments and is essential for maintenance of sarcomeric actin filaments in striated muscle. Here we show that two UNC-87 isoforms, UNC-87A and UNC-87B, are expressed in muscle and nonmuscle cells in a tissue-specific manner by two independent promoters and exhibit quantitatively different effects on both actin and myosin. Both UNC-87A and UNC-87B have seven CLIK repeats, but UNC-87A has an extra N-terminal extension of ∼190 amino acids. Both UNC-87 isoforms bind to actin filaments and myosin to induce ATP-resistant actomyosin bundles and inhibit actomyosin motility. UNC-87A with an N-terminal extension binds to actin and myosin more strongly than UNC-87B. UNC-87B is associated with actin filaments in nonstriated muscle in the somatic gonad, and an unc-87 mutation causes its excessive contraction, which is dependent on myosin. These results strongly suggest that proteins with CLIK repeats function as a negative regulator of actomyosin contractility.
Collapse
Affiliation(s)
- Kanako Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Takashi Obinata
- Department of Biology, Faculty of Science, Chiba University, Chiba 263-8522, Japan
| | - Sawako Yamashiro
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Zhongmei Liu
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| | - Shoichiro Ono
- Department of Pathology and Department of Cell Biology, Emory University, Atlanta, GA 30322
| |
Collapse
|
39
|
Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA. Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 2015; 87:2107-13. [PMID: 25539164 PMCID: PMC4334242 DOI: 10.1021/ac503716z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Hemodynamic mechanical cues play
a critical role in the early development
and functional maturation of cardiomyocytes (CM). Therefore, tissue
engineering approaches that incorporate immature CM into functional
cardiac tissues capable of recovering or replacing damaged cardiac
muscle require physiologically relevant environments to provide the
appropriate mechanical cues. The goal of this work is to better understand
the subcellular responses of immature cardiomyocytes using an in vitro cardiac cell culture model that realistically mimics in vivo mechanical conditions, including cyclical fluid
flows, chamber pressures, and tissue strains that could be experienced
by implanted cardiac tissues. Cardiomyocytes were cultured in a novel
microfluidic cardiac cell culture model (CCCM) to achieve accurate
replication of the mechanical cues experienced by ventricular CM.
Day 10 chick embryonic ventricular CM (3.5 × 104 cell
clusters per cell chamber) were cultured for 4 days in the CCCM under
cyclic mechanical stimulation (10 mmHg, 8–15% stretch, 2 Hz
frequency) and ventricular cells from the same embryo were cultured
in a static condition for 4 days as controls. Additionally, ventricular
cell suspensions and ventricular tissue from day 16 chick embryo were
collected and analyzed for comparison with CCCM cultured CM. The gene
expressions and protein synthesis of calcium handling proteins decreased
significantly during the isolation process. Mechanical stimulation
of the cultured CM using the CCCM resulted in an augmentation of gene
expression and protein synthesis of calcium handling proteins compared
to the 2D constructs cultured in the static conditions. Further, the
CCCM conditioned 2D constructs have a higher beat rate and contractility
response to isoproterenol. These results demonstrate that early mechanical
stimulation of embryonic cardiac tissue is necessary for tissue proliferation
and for protein synthesis of the calcium handling constituents required
for tissue contractility. Thus, physiologic mechanical conditioning
may be essential for generating functional cardiac patches for replacement
of injured cardiac tissue.
Collapse
Affiliation(s)
- Mai-Dung Nguyen
- Department of Bioengineering and Mechanical Engineering, Speed School of Engineering, University of Louisville , Louisville, Kentucky 40208, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mendias CL, Roche SM, Harning JA, Davis ME, Lynch EB, Sibilsky Enselman ER, Jacobson JA, Claflin DR, Calve S, Bedi A. Reduced muscle fiber force production and disrupted myofibril architecture in patients with chronic rotator cuff tears. J Shoulder Elbow Surg 2015; 24:111-9. [PMID: 25193488 DOI: 10.1016/j.jse.2014.06.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/28/2014] [Accepted: 06/09/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND A persistent atrophy of muscle fibers and an accumulation of fat, collectively referred to as fatty degeneration, commonly occur in patients with chronic rotator cuff tears. The etiology of fatty degeneration and function of the residual rotator cuff musculature have not been well characterized in humans. We hypothesized that muscles from patients with chronic rotator cuff tears have reduced muscle fiber force production, disordered myofibrils, and an accumulation of fat vacuoles. METHODS The contractility of muscle fibers from biopsy specimens of supraspinatus muscles of 13 patients with chronic full-thickness posterosuperior rotator cuff tears was measured and compared with data from healthy vastus lateralis muscle fibers. Correlations between muscle fiber contractility, American Shoulder and Elbow Surgeons (ASES) scores, and tear size were analyzed. Histology and electron microscopy were also performed. RESULTS Torn supraspinatus muscles had a 30% reduction in maximum isometric force production and a 29% reduction in normalized force compared with controls. Normalized supraspinatus fiber force positively correlated with ASES score and negatively correlated with tear size. Disordered sarcomeres were noted, along with an accumulation of lipid-laden macrophages in the extracellular matrix surrounding supraspinatus muscle fibers. CONCLUSIONS Patients with chronic supraspinatus tears have significant reductions in muscle fiber force production. Force production also correlates with ASES scores and tear size. The structural and functional muscle dysfunction of the residual muscle fibers is independent of the additional area taken up by fibrotic tissue. This work may help establish future therapies to restore muscle function after the repair of chronically torn rotator cuff muscles.
Collapse
Affiliation(s)
- Christopher L Mendias
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Stuart M Roche
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Julie A Harning
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Max E Davis
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Evan B Lynch
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Jon A Jacobson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dennis R Claflin
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Surgery, Section of Plastic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sarah Calve
- School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Asheesh Bedi
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle. J Biol Rhythms 2014; 30:84-94. [PMID: 25512305 DOI: 10.1177/0748730414561638] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circadian rhythms are the approximate 24-h biological cycles that function to prepare an organism for daily environmental changes. They are driven by the molecular clock, a transcriptional:translational feedback mechanism that in mammals involves the core clock genes Bmal1, Clock, Per1/2, and Cry1/2. The molecular clock is present in virtually all cells of an organism. The central clock in the suprachiasmatic nucleus (SCN) has been well studied, but the clocks in the peripheral tissues, such as heart and skeletal muscle, have just begun to be investigated. Skeletal muscle is one of the largest organs in the body, comprising approximately 45% of total body mass. More than 2300 genes in skeletal muscle are expressed in a circadian pattern, and these genes participate in a wide range of functions, including myogenesis, transcription, and metabolism. The circadian rhythms of skeletal muscle can be entrained both indirectly through light input to the SCN and directly through time of feeding and activity. It is critical for the skeletal muscle molecular clock not only to be entrained to the environment but also to be in synchrony with rhythms of other tissues. When circadian rhythms are disrupted, the observed effects on skeletal muscle include fiber-type shifts, altered sarcomeric structure, reduced mitochondrial respiration, and impaired muscle function. Furthermore, there are detrimental effects on metabolic health, including impaired glucose tolerance and insulin sensitivity, which skeletal muscle likely contributes to considering it is a key metabolic tissue. These data indicate a critical role for skeletal muscle circadian rhythms for both muscle and systems health. Future research is needed to determine the mechanisms of molecular clock function in skeletal muscle, identify the means by which skeletal muscle entrainment occurs, and provide a stringent comparison of circadian gene expression across the diverse tissue system of skeletal muscle.
Collapse
Affiliation(s)
- Brianna D Harfmann
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Elizabeth A Schroder
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Karyn A Esser
- Center for Muscle Biology, Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
42
|
ACTN3 R577X Polymorphism and Explosive Leg-Muscle Power in Elite Basketball Players. Int J Sports Physiol Perform 2014; 9:226-32. [DOI: 10.1123/ijspp.2012-0331] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Purpose:To determine the association of the ACTN3 R577X polymorphism with leg-muscle explosive power in Spanish (white) elite basketball players and controls.Participants:100 (60 men) elite basketball players (cases) and 283 nonathletic controls.Methods:The authors assessed power performance by means of the vertical-squat and countermovement-jump tests.Results:Genotype distributions did not differ between groups (cases: 37.0% [RR], 42.0% [RX], and 21.0% [XX]; controls: 31.8% [RR], 49.8% [RX], and 18.4% [XX]; P = .353). The authors did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in either group, including when they performed the analyses separately in men and women. They found no association between the ACTN3 R577X polymorphism and the likelihood of being an elite basketball player using the dominant or the recessive model, and the results remained unaltered when the analyses were adjusted for sex, weight, height, and age or when performed for men and women separately.Conclusions:Although the ACTN3 R577X is associated with explosive muscle performance and this phenotype is important in the sport of basketball (ie, during jumps), the authors found no association with leg explosive power in elite basket players or with the status of being this type of athlete.
Collapse
|
43
|
Araki K, Kawauchi K, Hirata H, Yamamoto M, Taya Y. Cytoplasmic translocation of the retinoblastoma protein disrupts sarcomeric organization. eLife 2013; 2:e01228. [PMID: 24302570 PMCID: PMC3843810 DOI: 10.7554/elife.01228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle degeneration is a complication arising from a variety of chronic diseases including advanced cancer. Pro-inflammatory cytokine TNF-α plays a pivotal role in mediating cancer-related skeletal muscle degeneration. Here, we show a novel function for retinoblastoma protein (Rb), where Rb causes sarcomeric disorganization. In human skeletal muscle myotubes (HSMMs), up-regulation of cyclin-dependent kinase 4 (CDK4) and concomitant phosphorylation of Rb was induced by TNF-α treatment, resulting in the translocation of phosphorylated Rb to the cytoplasm. Moreover, induced expression of the nuclear exporting signal (NES)-fused form of Rb caused disruption of sarcomeric organization. We identified mammalian diaphanous-related formin 1 (mDia1), a potent actin nucleation factor, as a binding partner of cytoplasmic Rb and found that mDia1 helps maintain the structural integrity of the sarcomere. These results reveal a novel non-nuclear function for Rb and suggest a potential mechanism of TNF-α-induced disruption of sarcomeric organization. DOI:http://dx.doi.org/10.7554/eLife.01228.001 Skeletal muscles, such as the biceps and calves, are one of three main muscle groups in the body, and a range of chronic diseases—including cancer, heart disease and AIDS—can cause wasting and a loss of strength in these muscles. Many different cellular processes are known to be involved in the degeneration of skeletal muscle during illness. For example, in people suffering from cancer, the immune response produces large numbers of molecules called inflammatory cytokines to combat the cancer cells, and these molecules are thought to have a role in the breakdown of skeletal muscle. A cytokine called tumour necrosis factor alpha, or TNF-α for short, is thought to cause muscle damage, but the details of this process are not fully understood. One possibility is that TNF-α interacts with a protein called Rb—short for retinoblastoma protein—that suppresses the proliferation of cells that leads to cancer. However, if this protein is modified by a chemical process called phosphorylation, the Rb molecules will not be able to suppress the genes that lead to excessive cell growth. The hyperphosphorylation of Rb has been observed in many cancer cells, and it has been shown that high levels of TNF-α in cells results in Rb not working properly, but it has not been clear if faulty Rb also leads to the breakdown of skeletal muscle. Now Araki et al. provide evidence that the phosphorylation of Rb by TNF-α leads to skeletal muscle degeneration. Araki et al. found that in muscle cells that contain high concentrations of TNF-α, the Rb molecules move from the nuclei of the cells, where they interact with genes, to the cytoplasm, where they disrupt the formation of structural fibres. This means that Rb inhibits the ability of muscle cells to slide over one during contractions and relaxation, as happens in normal muscle tissue. If confirmed by further experiments, these results could lead to the development of new approaches for the treatment of skeletal muscle degeneration. DOI:http://dx.doi.org/10.7554/eLife.01228.002
Collapse
Affiliation(s)
- Keigo Araki
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
44
|
NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr Biol 2013; 23:731-6. [PMID: 23562268 DOI: 10.1016/j.cub.2013.03.039] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 11/20/2022]
Abstract
Nonmuscle myosin II (NMII) is thought to be the master integrator of force within epithelial apical junctions, mediating epithelial tissue morphogenesis and tensional homeostasis. Mutations in NMII are associated with a number of diseases due to failures in cell-cell adhesion. However, the organization and the precise mechanism by which NMII generates and responds to tension along the intercellular junctional line are still not known. We discovered that periodic assemblies of bipolar NMII filaments interlace with perijunctional actin and α-actinin to form a continuous belt of muscle-like sarcomeric units (∼400-600 nm) around each epithelial cell. Remarkably, the sarcomeres of adjacent cells are precisely paired across the junctional line, forming an integrated, transcellular contractile network. The contraction/relaxation of paired sarcomeres concomitantly impacts changes in apical cell shape and tissue geometry. We show differential distribution of NMII isoforms across heterotypic junctions and evidence for compensation between isoforms. Our results provide a model for how NMII force generation is effected along the junctional perimeter of each cell and communicated across neighboring cells in the epithelial organization. The sarcomeric network also provides a well-defined target to investigate the multiple roles of NMII in junctional homeostasis as well as in development and disease.
Collapse
|
45
|
Garatachea N, Lucía A. Genes and the ageing muscle: a review on genetic association studies. AGE (DORDRECHT, NETHERLANDS) 2013; 35:207-233. [PMID: 22037866 PMCID: PMC3543750 DOI: 10.1007/s11357-011-9327-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/15/2011] [Indexed: 05/31/2023]
Abstract
Western populations are living longer. Ageing decline in muscle mass and strength (i.e. sarcopenia) is becoming a growing public health problem, as it contributes to the decreased capacity for independent living. It is thus important to determine those genetic factors that interact with ageing and thus modulate functional capacity and skeletal muscle phenotypes in older people. It would be also clinically relevant to identify 'unfavourable' genotypes associated with accelerated sarcopenia. In this review, we summarized published information on the potential associations between some genetic polymorphisms and muscle phenotypes in older people. A special emphasis was placed on those candidate polymorphisms that have been more extensively studied, i.e. angiotensin-converting enzyme (ACE) gene I/D, α-actinin-3 (ACTN3) R577X, and myostatin (MSTN) K153R, among others. Although previous heritability studies have indicated that there is an important genetic contribution to individual variability in muscle phenotypes among old people, published data on specific gene variants are controversial. The ACTN3 R577X polymorphism could influence muscle function in old women, yet there is controversy with regards to which allele (R or X) might play a 'favourable' role. Though more research is needed, up-to-date MSTN genotype is possibly the strongest candidate to explain variance among muscle phenotypes in the elderly. Future studies should take into account the association between muscle phenotypes in this population and complex gene-gene and gene-environment interactions.
Collapse
|
46
|
Abstract
Alpha-actinins (ACTNs) were originally identified as cytoskeletal proteins which cross-link filamentous actin to establish cytoskeletal architect that protects cells from mechanical stress and controls cell movement. Notably, unlike other ACTNs, alpha-actinin 4 (ACTN4) displays unique characteristics in signaling transduction, nuclear translocation, and gene expression regulation. Initial reports indicated that ACTN4 is part of the breast cancer cell motile apparatus and is highly expressed in the nucleus. These results imply that ACTN4 plays a role in breast cancer tumorigenesis. While several observations in breast cancer and other cancers support this hypothesis, little direct evidence links the tumorigenic phenotype with ACTN4-mediated pathological mechanisms. Recently, several studies have demonstrated that in addition to its role in coordinating cytoskeleton, ACTN4 interacts with signaling mediators, chromatin remodeling factors, and transcription factors including nuclear receptors. Thus, ACTN4 functions as a versatile promoter for breast cancer tumorigenesis and appears to be an ideal drug target for future therapeutic development.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- Department of Biochemistry, School of Medicine, Case Western Reserve University-CWRU, The Comprehensive Cancer Center of CWRU, Cleveland, Ohio, USA
| | | |
Collapse
|
47
|
Abstract
A chain is no stronger than its weakest link is an old idiom that holds true for muscle biology. As the name implies, skeletal muscle's main function is to move the bones. However, for a muscle to transmit force and withstand the stress that contractions give rise to, it relies on a chain of proteins attaching the cytoskeleton of the muscle fiber to the surrounding extracellular matrix. The importance of this attachment is illustrated by a large number of muscular dystrophies caused by interruption of the cytoskeletal-extracellular matrix interaction. One of the major components of the extracellular matrix is laminin, a heterotrimeric glycoprotein and a major constituent of the basement membrane. It has become increasingly apparent that laminins are involved in a multitude of biological functions, including cell adhesion, differentiation, proliferation, migration and survival. This review will focus on the importance of laminin-211 for normal skeletal muscle function.
Collapse
Affiliation(s)
- Johan Holmberg
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | | |
Collapse
|
48
|
Folker ES, Schulman VK, Baylies MK. Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. Development 2012; 139:3827-37. [PMID: 22951643 DOI: 10.1242/dev.079178] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Various muscle diseases present with aberrant muscle cell morphologies characterized by smaller myofibers with mispositioned nuclei. The mechanisms that normally control these processes, whether they are linked, and their contribution to muscle weakness in disease, are not known. We examined the role of Dynein and Dynein-interacting proteins during Drosophila muscle development and found that several factors, including Dynein heavy chain, Dynein light chain and Partner of inscuteable, contribute to the regulation of both muscle length and myonuclear positioning. However, Lis1 contributes only to Dynein-dependent muscle length determination, whereas CLIP-190 and Glued contribute only to Dynein-dependent myonuclear positioning. Mechanistically, microtubule density at muscle poles is decreased in CLIP-190 mutants, suggesting that microtubule-cortex interactions facilitate myonuclear positioning. In Lis1 mutants, Dynein hyperaccumulates at the muscle poles with a sharper localization pattern, suggesting that retrograde trafficking contributes to muscle length. Both Lis1 and CLIP-190 act downstream of Dynein accumulation at the cortex, suggesting that they specify Dynein function within a single location. Finally, defects in muscle length or myonuclear positioning correlate with impaired muscle function in vivo, suggesting that both processes are essential for muscle function.
Collapse
Affiliation(s)
- Eric S Folker
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
49
|
Elhanany-Tamir H, Yu YV, Shnayder M, Jain A, Welte M, Volk T. Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. ACTA ACUST UNITED AC 2012; 198:833-46. [PMID: 22927463 PMCID: PMC3432764 DOI: 10.1083/jcb.201204102] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The KASH proteins Klar and MSP-300 cooperate to promote even myonuclear spacing by linking the MSP-300 nuclear ring to the astral microtubule network. Striated muscle fibers are characterized by their tightly organized cytoplasm. Here, we show that the Drosophila melanogaster KASH proteins Klarsicht (Klar) and MSP-300 cooperate in promoting even myonuclear spacing by mediating a tight link between a newly discovered MSP-300 nuclear ring and a polarized network of astral microtubules (aMTs). In either klar or msp-300ΔKASH, or in klar and msp-300 double heterozygous mutants, the MSP-300 nuclear ring and the aMTs retracted from the nuclear envelope, abrogating this even nuclear spacing. Anchoring of the myonuclei to the core acto-myosin fibrillar compartment was mediated exclusively by MSP-300. This protein was also essential for promoting even distribution of the mitochondria and ER within the muscle fiber. Larval locomotion is impaired in both msp-300 and klar mutants, and the klar mutants were rescued by muscle-specific expression of Klar. Thus, our results describe a novel mechanism of nuclear spacing in striated muscles controlled by the cooperative activity of MSP-300, Klar, and astral MTs, and demonstrate its physiological significance.
Collapse
Affiliation(s)
- Hadas Elhanany-Tamir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Zhou Y, Gong B, Kaminski HJ. Genomic profiling reveals Pitx2 controls expression of mature extraocular muscle contraction-related genes. Invest Ophthalmol Vis Sci 2012; 53:1821-9. [PMID: 22408009 PMCID: PMC3995565 DOI: 10.1167/iovs.12-9481] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the influence of the Pitx2 transcription factor on the global gene expression profile of extraocular muscle (EOM) of mice. METHODS Mice with a conditional knockout of Pitx2, designated Pitx2(Δflox/Δflox) and their control littermates Pitx2(flox/flox), were used. RNA was isolated from EOM obtained at 3, 6, and 12 weeks of age and processed for microarray-based profiling. Pairwise comparisons were performed between mice of the same age and differentially expressed gene lists were generated. Select genes from the profile were validated using real-time quantitative polymerase chain reaction and protein immunoblot. Ultrastructural analysis was performed to evaluate EOM sarcomeric structure. RESULTS The number of differentially expressed genes was relatively small. Eleven upregulated and 23 downregulated transcripts were identified common to all three age groups in the Pitx2-deficient extraocular muscle compared with littermate controls. These fell into a range of categories including muscle-specific structural genes, transcription factors, and ion channels. The differentially expressed genes were primarily related to muscle contraction. We verified by protein and ultrastructural analysis that myomesin 2 was expressed in the Pitx2-deficient mice, and this was associated with development of M lines evident in their orbital region. CONCLUSIONS The global transcript expression analysis uncovered that Pitx2 primarily regulates a relatively select number of genes associated with muscle contraction. Pitx2 loss led to the development of M line structures, a feature more typical of other skeletal muscle.
Collapse
Affiliation(s)
- Yuefang Zhou
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Bendi Gong
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| | - Henry J. Kaminski
- From the Department of Neurology and Psychiatry, Saint Louis University, St. Louis, Missouri;the Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri; andthe Department of Neurology, Department of Pharmacology and Physiology, George Washington University, Washington, DC
| |
Collapse
|