1
|
Dajka M, Rath T, Morgner N, Joseph B. Dynamic basis of lipopolysaccharide export by LptB 2FGC. eLife 2024; 13:RP99338. [PMID: 39374147 PMCID: PMC11458178 DOI: 10.7554/elife.99338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Lipopolysaccharides (LPS) confer resistance against harsh conditions, including antibiotics, in Gram-negative bacteria. The lipopolysaccharide transport (Lpt) complex, consisting of seven proteins (A-G), exports LPS across the cellular envelope. LptB2FG forms an ATP-binding cassette transporter that transfers LPS to LptC. How LptB2FG couples ATP binding and hydrolysis with LPS transport to LptC remains unclear. We observed the conformational heterogeneity of LptB2FG and LptB2FGC in micelles and/or proteoliposomes using pulsed dipolar electron spin resonance spectroscopy. Additionally, we monitored LPS binding and release using laser-induced liquid bead ion desorption mass spectrometry. The β-jellyroll domain of LptF stably interacts with the LptG and LptC β-jellyrolls in both the apo and vanadate-trapped states. ATP binding at the cytoplasmic side is allosterically coupled to the selective opening of the periplasmic LptF β-jellyroll domain. In LptB2FG, ATP binding closes the nucleotide binding domains, causing a collapse of the first lateral gate as observed in structures. However, the second lateral gate, which forms the putative entry site for LPS, exhibits a heterogeneous conformation. LptC binding limits the flexibility of this gate to two conformations, likely representing the helix of LptC as either released from or inserted into the transmembrane domains. Our results reveal the regulation of the LPS entry gate through the dynamic behavior of the LptC transmembrane helix, while its β-jellyroll domain is anchored in the periplasm. This, combined with long-range ATP-dependent allosteric gating of the LptF β-jellyroll domain, may ensure efficient and unidirectional transport of LPS across the periplasm.
Collapse
Affiliation(s)
- Marina Dajka
- Department of Physics, Freie Universität BerlinBerlinGermany
| | - Tobias Rath
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe Universität FrankfurtFrankfurtGermany
| | - Benesh Joseph
- Department of Physics, Freie Universität BerlinBerlinGermany
| |
Collapse
|
2
|
Bogdanov A, Frydman V, Seal M, Rapatskiy L, Schnegg A, Zhu W, Iron M, Gronenborn AM, Goldfarb D. Extending the Range of Distances Accessible by 19F Electron-Nuclear Double Resonance in Proteins Using High-Spin Gd(III) Labels. J Am Chem Soc 2024; 146:6157-6167. [PMID: 38393979 PMCID: PMC10921402 DOI: 10.1021/jacs.3c13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Fluorine electron-nuclear double resonance (19F ENDOR) has recently emerged as a valuable tool in structural biology for distance determination between F atoms and a paramagnetic center, either intrinsic or conjugated to a biomolecule via spin labeling. Such measurements allow access to distances too short to be measured by double electron-electron resonance (DEER). To further extend the accessible distance range, we exploit the high-spin properties of Gd(III) and focus on transitions other than the central transition (|-1/2⟩ ↔ |+1/2⟩), that become more populated at high magnetic fields and low temperatures. This increases the spectral resolution up to ca. 7 times, thus raising the long-distance limit of 19F ENDOR almost 2-fold. We first demonstrate this on a model fluorine-containing Gd(III) complex with a well-resolved 19F spectrum in conventional central transition measurements and show quantitative agreement between the experimental spectra and theoretical predictions. We then validate our approach on two proteins labeled with 19F and Gd(III), in which the Gd-F distance is too long to produce a well-resolved 19F ENDOR doublet when measured at the central transition. By focusing on the |-5/2⟩ ↔ |-3/2⟩ and |-7/2⟩ ↔ |-5/2⟩ EPR transitions, a resolution enhancement of 4.5- and 7-fold was obtained, respectively. We also present data analysis strategies to handle contributions of different electron spin manifolds to the ENDOR spectrum. Our new extended 19F ENDOR approach may be applicable to Gd-F distances as large as 20 Å, widening the current ENDOR distance window.
Collapse
Affiliation(s)
- Alexey Bogdanov
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Veronica Frydman
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Manas Seal
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Leonid Rapatskiy
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Schnegg
- Max
Planck Institute for Chemical Energy Conversion, 34-36 Stiftstraße, Mülheim an der Ruhr, 45470, Germany
| | - Wenkai Zhu
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Mark Iron
- Department
of Chemical Research Support, The Weizmann
Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Daniella Goldfarb
- Department
of Chemical and Biological Physics, The
Weizmann Institute of Science, P.O. Box 26, Rehovot, 7610001, Israel
| |
Collapse
|
3
|
Gies SL, Tessmer MH, Frank DW, Feix JB. Site-directed spin label EPR studies of the structure and membrane interactions of the bacterial phospholipase ExoU. APPLIED MAGNETIC RESONANCE 2024; 55:279-295. [PMID: 39175603 PMCID: PMC11340903 DOI: 10.1007/s00723-023-01620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 08/24/2024]
Abstract
Site-directed spin labeling (SDSL) has been invaluable in the analysis of protein structure and dynamics, and has been particularly useful in the study of membrane proteins. ExoU, an important virulence factor in Pseudomonas aeruginosa infections, is a bacterial phospholipase A2 that functions at the membrane - aqueous interface. Using SDSL methodology developed in the Hubbell lab, we find that the region surrounding the catalytic site of ExoU is buried within the tertiary structure of the protein in the soluble, apoenzyme state, but shows a significant increase in dynamics upon membrane binding and activation by ubiquitin. Continuous wave (CW) power saturation EPR studies show that the conserved serine hydrolase motif of ExoU localizes to the membrane surface in the active, holoenzyme state. SDSL studies on the C-terminal four-helix bundle (4HB) domain of ExoU similarly show a co-operative effect of ubiquitin binding and membrane association. CW power saturation studies of the 4HB domain indicate that two interhelical loops intercalate into the lipid bilayer upon formation of the holoenzyme state, anchoring ExoU at the membrane surface. Together these studies establish the orientation and localization of ExoU and the membrane surface, and illustrate the power of SDSL as applied to peripheral membrane proteins.
Collapse
Affiliation(s)
- Samantha L. Gies
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Maxx H. Tessmer
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Current address: Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| | - Dara W. Frank
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jimmy B. Feix
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kundu S, Guo Z, Fanucci GE. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. APPLIED MAGNETIC RESONANCE 2024; 55:317-333. [PMID: 38469359 PMCID: PMC10927023 DOI: 10.1007/s00723-023-01624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 03/13/2024]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Trang T Tran
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Jiatong Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Mingwei Zhou
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Sayan Kundu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Roopnarine O, Thomas DD. Structural Dynamics of Protein Interactions Using Site-Directed Spin Labeling of Cysteines to Measure Distances and Rotational Dynamics with EPR Spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:79-100. [PMID: 38371230 PMCID: PMC10868710 DOI: 10.1007/s00723-023-01623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 02/20/2024]
Abstract
Here we review applications of site-directed spin labeling (SDSL) with engineered cysteines in proteins, to study the structural dynamics of muscle and non-muscle proteins, using and developing the electron paramagnetic resonance (EPR) spectroscopic techniques of dipolar EPR, double electron electron resonance (DEER), saturation transfer EPR (STEPR), and orientation measured by EPR. The SDSL technology pioneered by Wayne Hubbell and collaborators has greatly expanded the use of EPR, including the measurement of distances between spin labels covalently attached to proteins and peptides. The Thomas lab and collaborators have applied these techniques to elucidate dynamic interactions in the myosin-actin complex, myosin-binding protein C, calmodulin, ryanodine receptor, phospholamban, utrophin, dystrophin, β-III-spectrin, and Aurora kinase. The ability to design and engineer cysteines in proteins for site-directed covalent labeling has enabled the use of these powerful EPR techniques to measure distances, while showing that they are complementary with optical spectroscopy measurements.
Collapse
Affiliation(s)
- Osha Roopnarine
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Bogetti X, Saxena S. Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics. Chempluschem 2024; 89:e202300506. [PMID: 37801003 DOI: 10.1002/cplu.202300506] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Electron paramagnetic resonance (EPR) has become a powerful probe of conformational heterogeneity and dynamics of biomolecules. In this Review, we discuss different computational modeling techniques that enrich the interpretation of EPR measurements of dynamics or distance restraints. A variety of spin labels are surveyed to provide a background for the discussion of modeling tools. Molecular dynamics (MD) simulations of models containing spin labels provide dynamical properties of biomolecules and their labels. These simulations can be used to predict EPR spectra, sample stable conformations and sample rotameric preferences of label sidechains. For molecular motions longer than milliseconds, enhanced sampling strategies and de novo prediction software incorporating or validated by EPR measurements are able to efficiently refine or predict protein conformations, respectively. To sample large-amplitude conformational transition, a coarse-grained or an atomistic weighted ensemble (WE) strategy can be guided with EPR insights. Looking forward, we anticipate an integrative strategy for efficient sampling of alternate conformations by de novo predictions, followed by validations by systematic EPR measurements and MD simulations. Continuous pathways between alternate states can be further sampled by WE-MD including all intermediate states.
Collapse
Affiliation(s)
- Xiaowei Bogetti
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Hetzke T, Vogel M, Halbritter ALJ, Saha S, Suess B, Sigurdsson ST, Prisner TF. Simultaneous Localization of Two High Affinity Divalent Metal Ion Binding Sites in the Tetracycline RNA Aptamer with Mn 2+-Based Pulsed Dipolar EPR Spectroscopy. J Phys Chem Lett 2023; 14:11421-11428. [PMID: 38084602 DOI: 10.1021/acs.jpclett.3c02566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Mg2+ ions play an essential part in stabilizing the tertiary structure of nucleic acids. While the importance of these ions is well documented, their localization and elucidation of their role in the structure and dynamics of nucleic acids are often challenging. In this work, pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) was used to localize two high affinity divalent metal ion binding sites in the tetracycline RNA aptamer with high accuracy. For this purpose, the aptamer was labeled at different positions with a semirigid nitroxide spin label and diamagnetic Mg2+ was replaced with paramagnetic Mn2+, which did not alter the folding process or ligand binding. Out of the several divalent metal ion binding sites that are known from the crystal structure, two binding sites with high affinity were detected: one that is located at the ligand binding center and another at the J1/2 junction of the RNA.
Collapse
Affiliation(s)
- Thilo Hetzke
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Marc Vogel
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | | | - Subham Saha
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Beatrix Suess
- Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, 107 Reykjavik, Iceland
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Sun W, Lebedenko OO, Salguero NG, Shannon MD, Zandian M, Poirier MG, Skrynnikov NR, Jaroniec CP. Conformational and Interaction Landscape of Histone H4 Tails in Nucleosomes Probed by Paramagnetic NMR Spectroscopy. J Am Chem Soc 2023; 145:25478-25485. [PMID: 37943892 PMCID: PMC10719895 DOI: 10.1021/jacs.3c10340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with 15N-enriched H4 and nitroxide spin-label tagged H3. The experimental PREs, which report on the proximities of individual H4 tail residues to the different H3 spin-label sites, are interpreted by using microsecond time-scale molecular dynamics simulations of the nucleosome core particle. Collectively, these data enable improved localization of histone H4 tails in nucleosomes and support the notion that H4 tails engage in a fuzzy complex interaction with nucleosomal DNA.
Collapse
Affiliation(s)
- Wenjun Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Olga O. Lebedenko
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nicole Gonzalez Salguero
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew D. Shannon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mohamad Zandian
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette 47907, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
9
|
Khan RH, Rotich NC, Morris A, Ahammad T, Baral B, Sahu ID, Lorigan GA. Probing the Structural Topology and Dynamic Properties of gp28 Using Continuous Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2023; 127:9236-9247. [PMID: 37856870 DOI: 10.1021/acs.jpcb.3c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Lysis of Gram-negative bacteria by dsDNA phages is accomplished through either the canonical holin-endolysin pathway or the pinholin-SAR endolysin pathway. During lysis, the outer membrane (OM) is disrupted, typically by two-component spanins or unimolecular spanins. However, in the absence of spanins, phages use alternative proteins called Disruptin to disrupt the OM. The Disruptin family includes the cationic antimicrobial peptide gp28, which is found in the virulent podophage φKT. In this study, EPR spectroscopy was used to analyze the dynamics and topology of gp28 incorporated into a lipid bilayer, revealing differences in mobility, depth parameter, and membrane interaction among different segments and residues of the protein. Our results indicate that multiple points of helix 2 and helix 3 interact with the phospholipid membrane, while others are solvent-exposed, suggesting that gp28 is a surface-bound peptide. The CW-EPR power saturation data and helical wheel analysis confirmed the amphipathic-helical structure of gp28. Additionally, course-grain molecular dynamics simulations were further used to develop the structural model of the gp28 peptide associated with the lipid bilayers. Based on the data obtained in this study, we propose a structural topology model for gp28 with respect to the membrane. This work provides important insights into the structural and dynamic properties of gp28 incorporated into a lipid bilayer environment.
Collapse
Affiliation(s)
- Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Nancy C Rotich
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Andrew Morris
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Binaya Baral
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
10
|
Denysenkov V, Prisner TF, Neugebauer P, Stoll S, Marko A. Macroscopic sample shape effect on pulse electron double resonance (PELDOR) signal. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107564. [PMID: 37852111 DOI: 10.1016/j.jmr.2023.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Pulse electron double resonance (PELDOR), also called double electron-electron resonance (DEER), is a technique capable of measuring the strength of electron spin dipolar interactions, revealing spin-spin distance distributions in ordered and disordered solid materials. Previous work has shown that PELDOR signals acquire an out-of-phase component under conditions of high electron spin polarization, such as at low temperatures and high fields. In this paper, we show theoretically and experimentally that the size and sign of this effect depends on the macroscopic shape of the sample and its orientation in the external magnetic field. This effect is caused by dipolar interactions between distant spins and provides new insights into the fundamental physics of PELDOR.
Collapse
Affiliation(s)
- Vasyl Denysenkov
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60437, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue Str. 7, 60437, Frankfurt am Main, Germany
| | - Petr Neugebauer
- Central European Institute of Technology and Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195-1700, USA
| | - Andriy Marko
- Central European Institute of Technology and Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic.
| |
Collapse
|
11
|
Armstrong Z, MacRae A, Lenertz M, Li Q, Johnson K, Scheiwiller A, Shen P, Feng L, Quadir M, Yang Z. Impact of Crystallinity on Enzyme Orientation and Dynamics upon Biomineralization in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38124-38131. [PMID: 37494658 DOI: 10.1021/acsami.3c07870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aqueous-phase co-crystallization (also known as biomimetic mineralization or biomineralization) is a unique way to encapsulate large enzymes, enzyme clusters, and enzymes with large substrates in metal-organic frameworks (MOFs), broadening the application of MOFs as enzyme carriers. The crystallinity of resultant enzyme@MOF biocomposites, however, can be low, raising a concern about how MOF crystal packing quality affects enzyme performance upon encapsulation. The challenges to overcome this concern are (1) the limited database of enzyme performance upon biomineralization in different aqueous MOFs and (2) the difficulty in probing enzyme restriction and motion in the resultant MOF scaffolds, which are related to the local crystal packing quality/density, under the interference of the MOF backgrounds. We have discovered several new aqueous MOFs for enzyme biomineralization with varied crystallinity [Jordahl, D.; Armstrong, Z.; Li, Q.; Gao, R.; Liu, W.; Johnson, K.; Brown, W.; Scheiwiller, A.; Feng, L.; Ugrinov, A.; Mao, H.; Chen, B.; Quadir, M.; Pan, Y.; Li, H.; Yang, Z. Expanding the Library of Metal-Organic Frameworks (MOFs) for Enzyme Biomineralization. ACS Appl. Mater. Interfaces 2022, 14 (46), 51619-51629, DOI: 10.1021/acsami.2c12998]. Here, we address the second challenge by probing enzyme dynamics/restriction in these MOFs at the residue level via site-directed spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, a unique approach to determine protein backbone motions regardless of the background complexity. We encapsulated a model large-substrate enzyme, lysozyme, in eight newly discovered MOFs, which possess various degrees of crystallization, via aqueous-phase co-crystallization. Through the EPR study and simulations, we found rough connections between (a) enzyme mobility/dynamics and MOF crystal properties (packing quality and density) and (b) enzyme areas exposed above each MOF and their catalytic performance. This work suggests that protein SDSL and EPR can serve as an indicator of MOF crystal packing quality/density when biomineralized in MOFs. The method can be generalized to probing the dynamics of other enzymes on other solid surfaces/interfaces and guide the rational design of solid platforms (ca. MOFs) to customize enzyme immobilization.
Collapse
Affiliation(s)
- Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Kelley Johnson
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Patrick Shen
- Davis High School, Fargo, North Dakota 58104, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
12
|
Roy AS, Freed JH, Srivastava M. Differentiating Unimodal and Multimodal Distributions in Pulsed Dipolar Spectroscopy Using Wavelet Transforms. RESEARCH SQUARE 2023:rs.3.rs-3216615. [PMID: 37577617 PMCID: PMC10418556 DOI: 10.21203/rs.3.rs-3216615/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Site directed spin labeling has enabled protein structure determination using electron spin resonance (ESR) pulsed dipolar spectroscopy (PDS). Small details in a distance distribution can be key to understanding important protein structure-function relationships. A major challenge has been to differentiate unimodal and overlapped multimodal distance distributions. They often yield similar distributions and dipolar signals. Current model-free distance reconstruction techniques such as Srivastava-Freed Singular Value Decomposition (SF-SVD) and Tikhonov regularization can suppress these small features in uncertainty and/or error bounds, despite being present. In this work, we demonstrate that continuous wavelet transform (CWT) can distinguish PDS signals from unimodal and multimodal distance distributions. We show that periodicity in CWT representation reflects unimodal distributions, which is masked for multimodal cases. This work is meant as a precursor to a cross-validation technique, which could indicate the modality of the distance distribution.
Collapse
Affiliation(s)
- Aritro Sinha Roy
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- National Biomedical Resource for Advanced ESR Spectroscopy, Cornell University, Baker Laboratory, Ithaca, 14853, NY, USA
- Cornell Atkinson Center for Sustainability, Cornell University, 340 Tower Road, Ithaca, 14853, NY, USA
| |
Collapse
|
13
|
Jaiswal M, Tran TT, Guo J, Zhou M, Kunda S, Guo Z, Fanucci G. Spin-labeling Insights into How Chemical Fixation Impacts Glycan Organization on Cells. RESEARCH SQUARE 2023:rs.3.rs-3039983. [PMID: 37398188 PMCID: PMC10312935 DOI: 10.21203/rs.3.rs-3039983/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
As new methods to interrogate glycan organization on cells develop, it is important to have a molecular level understanding of how chemical fixation can impact results and interpretations. Site-directed spin labeling technologies are well suited to study how the spin label mobility is impacted by local environmental conditions, such as those imposed by cross-linking effects of paraformaldehyde cell fixation methods. Here, we utilize three different azide-containing sugars for metabolic glycan engineering with HeLa cells to incorporate azido glycans that are modified with a DBCO-based nitroxide moiety via click reaction. Continuous wave X-band electron paramagnetic resonance spectroscopy is employed to characterize how the chronological sequence of chemical fixation and spin labeling impacts the local mobility and accessibility of the nitroxide-labeled glycans in the glycocalyx of HeLa cells. Results demonstrate that chemical fixation with paraformaldehyde can alter local glycan mobility and care should be taken in the analysis of data in any study where chemical fixation and cellular labeling occur.
Collapse
|
14
|
Role of membrane mimetics on biophysical EPR studies of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184138. [PMID: 36764474 DOI: 10.1016/j.bbamem.2023.184138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023]
Abstract
Biological membranes are essential in providing the stability of membrane proteins in a functional state. Functionally stable homogeneous sample is required for biophysical electron paramagnetic resonance (EPR) studies of membrane proteins for obtaining pertinent structural dynamics of the protein. Significant progresses have been made for the optimization of the suitable membrane environments required for biophysical EPR measurements. However, no universal membrane mimetic system is available that can solubilize all membrane proteins suitable for biophysical EPR studies while maintaining the functional integrity. Great efforts are needed to optimize the sample condition to obtain better EPR data quality of membrane proteins that can provide meaningful information on structural dynamics. In this mini-review, we will discuss important aspects of membrane mimetics for biophysical EPR measurements and current progress with some of the recent examples.
Collapse
|
15
|
Dunleavy R, Chandrasekaran S, Crane BR. Enzymatic Spin-Labeling of Protein N- and C-Termini for Electron Paramagnetic Resonance Spectroscopy. Bioconjug Chem 2023:10.1021/acs.bioconjchem.3c00029. [PMID: 36921260 PMCID: PMC10502183 DOI: 10.1021/acs.bioconjchem.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for investigating the structure and dynamics of proteins. The introduction of paramagnetic moieties at specific positions in a protein enables precise measurement of local structure and dynamics. This technique, termed site-directed spin-labeling, has traditionally been performed using cysteine-reactive radical-containing probes. However, large proteins are more likely to contain multiple cysteine residues and cysteine labeling at specific sites may be infeasible or impede function. To address this concern, we applied three peptide-ligating enzymes (sortase, asparaginyl endopeptidase, and inteins) for nitroxide labeling of N- and C-termini of select monomeric and dimeric proteins. Continuous wave and pulsed EPR (double electron electron resonance) experiments reveal specific attachment of nitroxide probes to ether N-termini (OaAEP1) or C-termini (sortase and intein) across three test proteins (CheY, CheA, and iLOV), thereby enabling a straightforward, highly specific, and general method for protein labeling. Importantly, the linker length (3, 5, and 9 residues for OaAEP1, intein, and sortase reactions, respectively) between the probe and the target protein has a large impact on the utility of distance measurements by pulsed EPR, with longer linkers leading to broader distributions. As these methods are only dependent on accessible N- and C-termini, we anticipate application to a wide range of protein targets for biomolecular EPR spectroscopy.
Collapse
Affiliation(s)
- Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Pan Y, Li Q, Liu W, Armstrong Z, MacRae A, Feng L, McNeff C, Zhao P, Li H, Yang Z. Unveiling the orientation and dynamics of enzymes in unstructured artificial compartments of metal-organic frameworks (MOFs). NANOSCALE 2023; 15:2573-2577. [PMID: 36655708 DOI: 10.1039/d2nr06659a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Confining enzymes in well-shaped MOF compartments is a promising approach to mimic the cellular environment of enzymes and determine enzyme structure-function relationship therein. Under the cellular crowding, however, enzymes can also be confined in unstructured spaces that are close to the shapes/outlines of the enzyme. Therefore, for a better understanding of enzymes in their physiological environments, it is necessary to study enzymes in these unstructured spaces. However, practically it is challenging to create compartments that are close to the outline of an enzyme and probe enzyme structural information therein. Here, for proof-of-principle, we confined a model enzyme, lysozyme, in the crystal defects of a MOF via co-crystallization, where lysozyme served as the nuclei for MOF crystal scaffolds to grow on so that unstructured spaces close to the outline of lysozyme are created, and determined enzyme relative orientation and dynamics. This effort is important for understanding enzymes in near-native environments and guiding the rational design of biocatalysts that mimic how nature confines enzymes.
Collapse
Affiliation(s)
- Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Wei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Charles McNeff
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Pinjing Zhao
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA.
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58108, USA
| |
Collapse
|
17
|
Li Q, Armstrong Z, MacRae A, Ugrinov A, Feng L, Chen B, Huang Y, Li H, Pan Y, Yang Z. Metal-Organic Materials (MOMs) Enhance Proteolytic Selectivity, Efficiency, and Reusability of Trypsin: A Time-Resolved Study on Proteolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8927-8936. [PMID: 36757369 DOI: 10.1021/acsami.2c19873] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteases are involved in essential biological functions in nature and have become drug targets recently. In spite of the promising progress, two challenges, (i) the intrinsic instability and (ii) the difficulty in monitoring the catalytic process in real time, still hinder the further understanding and engineering of protease functionalities. These challenges are caused by the lack of proper materials/approaches to stabilize proteases and monitor proteolytic products (truncated polypeptides) in real time in a highly heterogeneous reaction mixture. This work combines metal-organic materials (MOMs), site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy, and mass spectrometry (MS) to overcome both barriers. A model protease, trypsin, which cleaves the peptide bonds at lysine or arginine residues, was immobilized on a Ca-MOM via aqueous-phase, one-pot cocrystallization, which allows for trypsin protection and ease of separation from its proteolytic products. Time-resolved EPR and MS were employed to monitor the populations, rotational motion, and sequences of the cleaved peptide truncations of a model protein substrate as the reaction proceeded. Our data suggest a significant (at least 5-10 times) enhancement in the catalytic efficiency (kcat/km) of trypsin@Ca-MOM and excellent reusability as compared to free trypsin in solution. Surprisingly, entrapping trypsin in Ca-MOMs results in cleavage site/region selectivity against the protein substrate, as compared to the near nonselective cleavage of all lysine and arginine residues of the substrate in solution. Remarkably, immobilizing trypsin allows for the separation and, thus, MS study on the sequences of truncated peptides in real time, leading to a time-resolved "movie" of trypsin proteolysis. This work demonstrates the use of MOMs and cocrystallization to enhance the selectivity, catalytic efficiency, and stability of trypsin, suggesting the possibility of tuning the catalytic performance of a general protease using MOMs.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ying Huang
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
18
|
Abhyankar N, Agrawal A, Campbell J, Maly T, Shrestha P, Szalai V. Recent advances in microresonators and supporting instrumentation for electron paramagnetic resonance spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:101101. [PMID: 36319314 PMCID: PMC9632321 DOI: 10.1063/5.0097853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy characterizes the magnetic properties of paramagnetic materials at the atomic and molecular levels. Resonators are an enabling technology of EPR spectroscopy. Microresonators, which are miniaturized versions of resonators, have advanced inductive-detection EPR spectroscopy of mass-limited samples. Here, we provide our perspective of the benefits and challenges associated with microresonator use for EPR spectroscopy. To begin, we classify the application space for microresonators and present the conceptual foundation for analysis of resonator sensitivity. We summarize previous work and provide insight into the design and fabrication of microresonators as well as detail the requirements and challenges that arise in incorporating microresonators into EPR spectrometer systems. Finally, we provide our perspective on current challenges and prospective fruitful directions.
Collapse
Affiliation(s)
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Jason Campbell
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Thorsten Maly
- Bridge12 Technologies, Inc., Natick, Massachusetts 01760, USA
| | | | - Veronika Szalai
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
19
|
Hofmann L, Mandato A, Saxena S, Ruthstein S. The use of EPR spectroscopy to study transcription mechanisms. Biophys Rev 2022; 14:1141-1159. [PMID: 36345280 PMCID: PMC9636360 DOI: 10.1007/s12551-022-01004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 02/08/2023] Open
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms in-vitro and in-cell. Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure-function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.
Collapse
Affiliation(s)
- L. Hofmann
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| | - A. Mandato
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Ruthstein
- Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
20
|
Campbell C, Faleel FDM, Scheyer MW, Haralu S, Williams PL, Carbo WD, Wilson-Taylor AS, Patel NH, Sanders CR, Lorigan GA, Sahu ID. Comparing the structural dynamics of the human KCNE3 in reconstituted micelle and lipid bilayered vesicle environments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183974. [PMID: 35716725 PMCID: PMC11503879 DOI: 10.1016/j.bbamem.2022.183974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
KCNE3 is a single transmembrane protein of the KCNE family that modulates the function and trafficking of several voltage-gated potassium channels, including KCNQ1. Structural studies of KCNE3 have been previously conducted in a wide range of model membrane mimics. However, it is important to assess the impact of the membrane mimics used on the observed conformation and dynamics. In this study, we have optimized a method for the reconstitution of the KCNE3 into POPC/POPG lipid bilayer vesicles for electron paramagnetic resonance (EPR) spectroscopy. Our CD spectroscopic data suggested that the degree of regular secondary structure for KCNE3 protein reconstituted into lipid bilayered vesicle is significantly higher than in DPC detergent micelles. Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling (SDSL) was used to probe the structural dynamics of S49C, M59C, L67C, V85C, and S101C mutations of KCNE3 in both DPC micelles and in POPC/POPG lipid bilayered vesicles. Our CW-EPR power saturation data suggested that the site S74C is buried inside the lipid bilayered membrane while the site V85C is located outside the membrane, in contrast to DPC micelle results. These results suggest that the KCNE3 micelle structures need to be refined using data obtained in the lipid bilayered vesicles in order to ascertain the native structure of KCNE3. This work will provide guidelines for detailed structural studies of KCNE3 in a more native membrane environment and comparing the lipid bilayer results to the isotropic bicelle structure and to the KCNQ1-bound cryo-EM structure.
Collapse
Affiliation(s)
- Conner Campbell
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | | | - Matthew W Scheyer
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | - Samuel Haralu
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | - Patrick L Williams
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | - William David Carbo
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | | | - Nima H Patel
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America
| | - Charles R Sanders
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America
| | - Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, KY, United States of America; Department of Chemistry and Biochemistry, Miami University, Oxford, OH, United States of America.
| |
Collapse
|
21
|
Yahalom A, Shaked H, Ruthstein S, Chill JH. Inherent Minor Conformer of Bordetella Effector BteA Directs Chaperone-Mediated Unfolding. J Am Chem Soc 2022; 144:11553-11557. [PMID: 35749268 DOI: 10.1021/jacs.2c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pathogen Bordetella pertussis uses a type-3 secretion system (T3SS) to inject its cytotoxic effector BteA into the host cell via a designated needle structure. Prior to injection BteA is bound to its cognate chaperone BtcA presumed to assist in effector unfolding en route to needle passage. We utilized NMR and EPR spectroscopy to uncover the molecular mechanism of BtcA-mediated unfolding of BteA. BtcA induces a global structural change in the effector, which adopts a more extended and partially unfolded conformation. EPR distance measurements further show that the structured helical-bundle form of free BteA exists in conformational equilibrium with a lowly populated minor species. The nature of this equilibrium was probed using NMR relaxation dispersion experiments. At 283 K structural effects are most pronounced for a contiguous surface spanning the A- and B-helices of BteA, extending at 303 K to a second surface including the D- and E-helices. Residues perturbed in the minor conformation coincide with those exhibiting a BtcA-induced increase in flexibility, identifying this conformation as the BtcA-bound form of the effector. Our findings hint at a conformational-selectivity mechanism for the chaperone interaction with the effector, a paradigm that may be common to effector-chaperones secretion complexes in this family of pathogens.
Collapse
Affiliation(s)
- Adi Yahalom
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Hadassa Shaked
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| | - Jordan H Chill
- Department of Chemistry, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
22
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
23
|
Tretyakov EV, Ovcharenko VI, Terent'ev AO, Krylov IB, Magdesieva TV, Mazhukin DG, Gritsan NP. Conjugated nitroxide radicals. RUSSIAN CHEMICAL REVIEWS 2022. [DOI: 10.1070/rcr5025] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry8010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has emerged as an ideal biophysical tool to study complex biological processes. EPR spectroscopy can follow minor conformational changes in various proteins as a function of ligand or protein binding or interactions with high resolution and sensitivity. Resolving cellular mechanisms, involving small ligand binding or metal ion transfer, is not trivial and cannot be studied using conventional biophysical tools. In recent years, our group has been using EPR spectroscopy to study the mechanism underlying copper ion transfer in eukaryotic and prokaryotic systems. This mini-review focuses on our achievements following copper metal coordination in the diamagnetic oxidation state, Cu(I), between biomolecules. We discuss the conformational changes induced in proteins upon Cu(I) binding, as well as the conformational changes induced in two proteins involved in Cu(I) transfer. We also consider how EPR spectroscopy, together with other biophysical and computational tools, can identify the Cu(I)-binding sites. This work describes the advantages of EPR spectroscopy for studying biological processes that involve small ligand binding and transfer between intracellular proteins.
Collapse
|
25
|
Singewald K, Wilkinson JA, Saxena AS. Copper Based Site-directed Spin Labeling of Proteins for Use in Pulsed and Continuous Wave EPR Spectroscopy. Bio Protoc 2021; 11:e4258. [PMID: 35087917 DOI: 10.21769/bioprotoc.4258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 11/02/2022] Open
Abstract
Site-directed spin labeling in conjunction with electron paramagnetic resonance (EPR) is an attractive approach to measure residue specific dynamics and point-to-point distance distributions in a biomolecule. Here, we focus on the labeling of proteins with a Cu(II)-nitrilotriacetic acid (NTA) complex, by exploiting two strategically placed histidine residues (called the dHis motif). This labeling strategy has emerged as a means to overcome key limitations of many spin labels. Through utilizing the dHis motif, Cu(II)NTA rigidly binds to a protein without depending on cysteine residues. This protocol outlines three major points: the synthesis of the Cu(II)NTA complex; the measurement of continuous wave and pulsed EPR spectra, to verify a successful synthesis, as well as successful protein labeling; and utilizing Cu(II)NTA labeled proteins, to measure distance constraints and backbone dynamics. In doing so, EPR measurements are less influenced by sidechain motion, which influences the breadth of the measured distance distributions between two spins, as well as the measured residue-specific dynamics. More broadly, such EPR-based distance measurements provide unique structural constraints for integrative structural biophysics and complement traditional biophysical techniques, such as NMR, cryo-EM, FRET, and crystallography. Graphic abstract: Monitoring the success of Cu(II)NTA labeling.
Collapse
Affiliation(s)
- Kevin Singewald
- Department of Chemistry, University of Pittsburgh, Pittsburgh, USA
| | | | - And Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
26
|
Schiemann O, Heubach CA, Abdullin D, Ackermann K, Azarkh M, Bagryanskaya EG, Drescher M, Endeward B, Freed JH, Galazzo L, Goldfarb D, Hett T, Esteban Hofer L, Fábregas Ibáñez L, Hustedt EJ, Kucher S, Kuprov I, Lovett JE, Meyer A, Ruthstein S, Saxena S, Stoll S, Timmel CR, Di Valentin M, Mchaourab HS, Prisner TF, Bode BE, Bordignon E, Bennati M, Jeschke G. Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. J Am Chem Soc 2021; 143:17875-17890. [PMID: 34664948 PMCID: PMC11253894 DOI: 10.1021/jacs.1c07371] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Distance distribution information obtained by pulsed dipolar EPR spectroscopy provides an important contribution to many studies in structural biology. Increasingly, such information is used in integrative structural modeling, where it delivers unique restraints on the width of conformational ensembles. In order to ensure reliability of the structural models and of biological conclusions, we herein define quality standards for sample preparation and characterization, for measurements of distributed dipole-dipole couplings between paramagnetic labels, for conversion of the primary time-domain data into distance distributions, for interpreting these distributions, and for reporting results. These guidelines are substantiated by a multi-laboratory benchmark study and by analysis of data sets with known distance distribution ground truth. The study and the guidelines focus on proteins labeled with nitroxides and on double electron-electron resonance (DEER aka PELDOR) measurements and provide suggestions on how to proceed analogously in other cases.
Collapse
Affiliation(s)
- Olav Schiemann
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Caspar A Heubach
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Dinar Abdullin
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Mykhailo Azarkh
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Elena G Bagryanskaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Lavrentieva aven 9, 630090 Novosibirsk, Russia
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Burkhard Endeward
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, and ACERT, National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York 14853-1301, United States
| | - Laura Galazzo
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Laura Esteban Hofer
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Eric J Hustedt
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Svetlana Kucher
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield Campus, Southampton SO17 1BJ, U.K
| | - Janet Eleanor Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, U.K
| | - Andreas Meyer
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sharon Ruthstein
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Sunil Saxena
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Christiane R Timmel
- Department of Chemistry, Centre for Advanced Electron Spin Resonance, University of Oxford, South Parks Road, Oxford OX1 3QR, U.K
| | - Marilena Di Valentin
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Germany
| | - Bela Ernest Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, U.K
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Marina Bennati
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Hönggerberg, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
27
|
Thorsen MK, Lai A, Lee MW, Hoogerheide DP, Wong GCL, Freed JH, Heldwein EE. Highly Basic Clusters in the Herpes Simplex Virus 1 Nuclear Egress Complex Drive Membrane Budding by Inducing Lipid Ordering. mBio 2021; 12:e0154821. [PMID: 34425706 PMCID: PMC8406295 DOI: 10.1128/mbio.01548-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/28/2021] [Indexed: 02/01/2023] Open
Abstract
During replication of herpesviruses, capsids escape from the nucleus into the cytoplasm by budding at the inner nuclear membrane. This unusual process is mediated by the viral nuclear egress complex (NEC) that deforms the membrane around the capsid by oligomerizing into a hexagonal, membrane-bound scaffold. Here, we found that highly basic membrane-proximal regions (MPRs) of the NEC alter lipid order by inserting into the lipid headgroups and promote negative Gaussian curvature. We also find that the electrostatic interactions between the MPRs and the membranes are essential for membrane deformation. One of the MPRs is phosphorylated by a viral kinase during infection, and the corresponding phosphomimicking mutations block capsid nuclear egress. We show that the same phosphomimicking mutations disrupt the NEC-membrane interactions and inhibit NEC-mediated budding in vitro, providing a biophysical explanation for the in vivo phenomenon. Our data suggest that the NEC generates negative membrane curvature by both lipid ordering and protein scaffolding and that phosphorylation acts as an off switch that inhibits the membrane-budding activity of the NEC to prevent capsid-less budding. IMPORTANCE Herpesviruses are large viruses that infect nearly all vertebrates and some invertebrates and cause lifelong infections in most of the world's population. During replication, herpesviruses export their capsids from the nucleus into the cytoplasm by an unusual mechanism in which the viral nuclear egress complex (NEC) deforms the nuclear membrane around the capsid. However, how membrane deformation is achieved is unclear. Here, we show that the NEC from herpes simplex virus 1, a prototypical herpesvirus, uses clusters of positive charges to bind membranes and order membrane lipids. Reducing the positive charge or introducing negative charges weakens the membrane deforming ability of the NEC. We propose that the virus employs electrostatics to deform nuclear membrane around the capsid and can control this process by changing the NEC charge through phosphorylation. Blocking NEC-membrane interactions could be exploited as a therapeutic strategy.
Collapse
Affiliation(s)
- Michael K. Thorsen
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alex Lai
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Michelle W. Lee
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - David P. Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Gerard C. L. Wong
- Department of Bioengineering, Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jack H. Freed
- Department of Chemistry and Chemical Biology and National Biomedical Center for Advanced Electron Spin Resonance Technology, Cornell University, Ithaca, New York, USA
| | - Ekaterina E. Heldwein
- Department of Molecular Biology and Microbiology, Graduate Program in Cellular, Molecular and Developmental Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
29
|
Giannoulis A, Ben-Ishay Y, Goldfarb D. Characteristics of Gd(III) spin labels for the study of protein conformations. Methods Enzymol 2021; 651:235-290. [PMID: 33888206 DOI: 10.1016/bs.mie.2021.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gd(III) complexes are currently established as spin labels for structural studies of biomolecules using pulse dipolar electron paramagnetic resonance (PD-EPR) techniques. This has been achieved by the availability of medium- and high-field spectrometers, understanding the spin physics underlying the spectroscopic properties of high spin Gd(III) (S=7/2) pairs and their dipolar interaction, the design of well-defined model compounds and optimization of measurement techniques. In addition, a variety of Gd(III) chelates and labeling schemes have allowed a broad scope of applications. In this review, we provide a brief background of the spectroscopic properties of Gd(III) pertinent for effective PD-EPR measurements and focus on the various labels available to date. We report on their use in PD-EPR applications and highlight their pros and cons for particular applications. We also devote a section to recent in-cell structural studies of proteins using Gd(III), which is an exciting new direction for Gd(III) spin labeling.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yasmin Ben-Ishay
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
30
|
Emerging applications of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR) to study food protein structure, dynamics, and interaction. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Chandrasekaran S, Schneps CM, Dunleavy R, Lin C, DeOliveira CC, Ganguly A, Crane BR. Tuning flavin environment to detect and control light-induced conformational switching in Drosophila cryptochrome. Commun Biol 2021; 4:249. [PMID: 33637846 PMCID: PMC7910608 DOI: 10.1038/s42003-021-01766-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Light-induction of an anionic semiquinone (SQ) flavin radical in Drosophila cryptochrome (dCRY) alters the dCRY conformation to promote binding and degradation of the circadian clock protein Timeless (TIM). Specific peptide ligation with sortase A attaches a nitroxide spin-probe to the dCRY C-terminal tail (CTT) while avoiding deleterious side reactions. Pulse dipolar electron-spin resonance spectroscopy from the CTT nitroxide to the SQ shows that flavin photoreduction shifts the CTT ~1 nm and increases its motion, without causing full displacement from the protein. dCRY engineered to form the neutral SQ serves as a dark-state proxy to reveal that the CTT remains docked when the flavin ring is reduced but uncharged. Substitutions of flavin-proximal His378 promote CTT undocking in the dark or diminish undocking in the light, consistent with molecular dynamics simulations and TIM degradation activity. The His378 variants inform on recognition motifs for dCRY cellular turnover and strategies for developing optogenetic tools. Chandrasekaran et al. engineered the Drosophila circadian clock protein Cryptochrome (dCRY) to form the neutral semiquinone, which serves as a dark-state proxy. They find that the C-terminal tail of dCRY remains docked when the flavin ring is reduced but uncharged. dCRY His378 variants provide insights into the recognition motifs for dCRY turnover and strategies for optogenetic tools.
Collapse
Affiliation(s)
| | - Connor M Schneps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Robert Dunleavy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Changfan Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Abir Ganguly
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
32
|
Sharma GS, Krishna S, Khan S, Dar TA, Khan KA, Singh LR. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. Int J Biol Macromol 2021; 177:229-240. [PMID: 33607142 DOI: 10.1016/j.ijbiomac.2021.02.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/10/2023]
Abstract
Organic osmolytes are known to play important role in stress protection by stabilizing macromolecules and suppressing harmful effects on functional activity. There is existence of several reports in the literature regarding their effects on structural, functional and thermodynamic aspects of many enzymes and the interaction parameters with proteins have been explored. Osmolytes are compatible with enzyme function and therefore, can be accumulated up to several millimolar concentrations. From the thermodynamic point of view, osmolyte raises mid-point of thermal denaturation (Tm) of proteins while having no significant effect on ΔGD° (free energy change at physiological condition). Unfavorable interaction with the peptide backbone due to preferential hydration is the major driving force for folding of unfolded polypeptide in presence of osmolyte. However, the thermodynamic basis of stress protection and origin of compatibility paradigm has been a debatable issue. In the present manuscript, we attempt to elaborate the origin of stress protection and compatibility paradigm of osmolytes based on the effect on thermodynamic stability of proteins. We also infer that protective effects of osmolytes on ΔGD° (of proteins) could also indicate its potential involvement in unfolded protein response and overall stress biology on macromolecular level.
Collapse
Affiliation(s)
- Gurumayum Suraj Sharma
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Snigdha Krishna
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Sheeza Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, J&K, India
| | - Khurshid A Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | | |
Collapse
|
33
|
Welegedara AP, Maleckis A, Bandara R, Mahawaththa MC, Dilhani Herath I, Jiun Tan Y, Giannoulis A, Goldfarb D, Otting G, Huber T. Cell-Free Synthesis of Selenoproteins in High Yield and Purity for Selective Protein Tagging. Chembiochem 2021; 22:1480-1486. [PMID: 33319405 DOI: 10.1002/cbic.202000785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Indexed: 01/10/2023]
Abstract
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII -GdIII distances measured by double electron-electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII -GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.
Collapse
Affiliation(s)
- Adarshi P Welegedara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.,Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, 1006, Riga, Latvia
| | - Ruchira Bandara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Mithun C Mahawaththa
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Iresha Dilhani Herath
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Angeliki Giannoulis
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| |
Collapse
|
34
|
Heiliger J, Matzel T, Çetiner EC, Schwalbe H, Kuenze G, Corzilius B. Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein. Phys Chem Chem Phys 2020; 22:25455-25466. [PMID: 33103678 DOI: 10.1039/d0cp05021k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.
Collapse
Affiliation(s)
- Jörg Heiliger
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Ahammad T, Drew DL, Sahu ID, Khan RH, Butcher BJ, Serafin RA, Galende AP, McCarrick RM, Lorigan GA. Conformational Differences Are Observed for the Active and Inactive Forms of Pinholin S 21 Using DEER Spectroscopy. J Phys Chem B 2020; 124:11396-11405. [PMID: 33289567 DOI: 10.1021/acs.jpcb.0c09081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteriophages have evolved with an efficient host cell lysis mechanism to terminate the infection cycle and release the new progeny virions at the optimum time, allowing adaptation with the changing host and environment. Among the lytic proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time known as "holin triggering". Pinholin S21 is a prototype holin of phage Φ21 which makes many nanoscale holes and destroys the proton motive force, which in turn activates the signal anchor release (SAR) endolysin system to degrade the peptidoglycan layer of the host cell and destruction of the outer membrane by the spanin complex. Like many others, phage Φ21 has two holin proteins: active pinholin and antipinholin. The antipinholin form differs only by three extra amino acids at the N-terminus; however, it has a different structural topology and conformation with respect to the membrane. Predefined combinations of active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously, the dynamics and topology of active pinholin and antipinholin were investigated (Ahammad et al. JPCB 2019, 2020) using continuous wave electron paramagnetic resonance (CW-EPR) spectroscopy. However, detailed structural studies and direct comparison of these two forms of pinholin S21 are absent in the literature. In this study, the structural topology and conformations of active pinholin (S2168) and inactive antipinholin (S2168IRS) in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) proteoliposomes were investigated using the four-pulse double electron-electron resonance (DEER) EPR spectroscopic technique to measure distances between transmembrane domains 1 and 2 (TMD1 and TMD2). Five sets of interlabel distances were measured via DEER spectroscopy for both the active and inactive forms of pinholin S21. Structural models of the active pinholin and inactive antipinholin forms in DMPC proteoliposomes were obtained using the experimental DEER distances coupled with the simulated annealing software package Xplor-NIH. TMD2 of S2168 remains in the lipid bilayer, and TMD1 is partially externalized from the bilayer with some residues located on the surface. However, both TMDs remain incorporated in the lipid bilayer for the inactive S2168IRS form. This study demonstrates, for the first time, clear structural topology and conformational differences between the two forms of pinholin S21. This work will pave the way for further studies of other holin systems using the DEER spectroscopic technique and will give structural insight into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Brandon J Butcher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alberto P Galende
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Robert M McCarrick
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
36
|
Siegel A, McAvoy CZ, Lam V, Liang FC, Kroon G, Miaou E, Griffin P, Wright PE, Shan SO. A Disorder-to-Order Transition Activates an ATP-Independent Membrane Protein Chaperone. J Mol Biol 2020; 432:166708. [PMID: 33188783 PMCID: PMC7780713 DOI: 10.1016/j.jmb.2020.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/20/2023]
Abstract
The 43 kDa subunit of the chloroplast signal recognition particle, cpSRP43, is an ATP-independent chaperone essential for the biogenesis of the light harvesting chlorophyll-binding proteins (LHCP), the most abundant membrane protein family on earth. cpSRP43 is activated by a stromal factor, cpSRP54, to more effectively capture and solubilize LHCPs. The molecular mechanism underlying this chaperone activation is unclear. Here, a combination of hydrogen-deuterium exchange, electron paramagnetic resonance, and NMR spectroscopy experiments reveal that a disorder-to-order transition of the ankyrin repeat motifs in the substrate binding domain of cpSRP43 drives its activation. An analogous coil-to-helix transition in the bridging helix, which connects the ankyrin repeat motifs to the cpSRP54 binding site in the second chromodomain, mediates long-range allosteric communication of cpSRP43 with its activating binding partner. Our results provide a molecular model to explain how the conformational dynamics of cpSRP43 enables regulation of its chaperone activity and suggest a general mechanism by which ATP-independent chaperones with cooperatively folding domains can be regulated.
Collapse
Affiliation(s)
- Alex Siegel
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Camille Z McAvoy
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Vinh Lam
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Fu-Cheng Liang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Gerard Kroon
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Emily Miaou
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Patrick Griffin
- Department of Molecular Medicine, Florida Campus, The Scripps Research Institute, Jupiter, FL 33458, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
37
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020; 59:23040-23044. [DOI: 10.1002/anie.202009982] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
38
|
Singewald K, Bogetti X, Sinha K, Rule GS, Saxena S. Double Histidine Based EPR Measurements at Physiological Temperatures Permit Site‐Specific Elucidation of Hidden Dynamics in Enzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kevin Singewald
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Xiaowei Bogetti
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| | - Kaustubh Sinha
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Gordon S Rule
- Department of Biological Sciences Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Sunil Saxena
- Department of Chemistry University of Pittsburgh Pittsburgh PA 15260 USA
| |
Collapse
|
39
|
Zhuo Y, Gurevich VV, Vishnivetskiy SA, Klug CS, Marchese A. A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. J Biol Chem 2020; 295:14111-14124. [PMID: 32753481 DOI: 10.1074/jbc.ra120.015074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/29/2020] [Indexed: 12/30/2022] Open
Abstract
The multifaceted adaptor protein β-arr1 (β-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of β-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and β-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which β-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated β-arr1 by binding to a novel surface on β-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding β-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying β-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive β-arrestin signaling.
Collapse
Affiliation(s)
- Ya Zhuo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Candice S Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Adriano Marchese
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
40
|
Ahammad T, Drew DL, Khan RH, Sahu ID, Faul E, Li T, Lorigan GA. Structural Dynamics and Topology of the Inactive Form of S 21 Holin in a Lipid Bilayer Using Continuous-Wave Electron Paramagnetic Resonance Spectroscopy. J Phys Chem B 2020; 124:5370-5379. [PMID: 32501696 DOI: 10.1021/acs.jpcb.0c03575] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bacteriophage infection cycle plays a crucial role in recycling the world's biomass. Bacteriophages devise various cell lysis systems to strictly control the length of the infection cycle for an efficient phage life cycle. Phages evolved with lysis protein systems, which can control and fine-tune the length of this infection cycle depending on the host and growing environment. Among these lysis proteins, holin controls the first and rate-limiting step of host cell lysis by permeabilizing the inner membrane at an allele-specific time and concentration hence known as the simplest molecular clock. Pinholin S21 is the holin from phage Φ21, which defines the cell lysis time through a predefined ratio of active pinholin and antipinholin (inactive form of pinholin). Active pinholin and antipinholin fine-tune the lysis timing through structural dynamics and conformational changes. Previously we reported the structural dynamics and topology of active pinholin S2168. Currently, there is no detailed structural study of the antipinholin using biophysical techniques. In this study, the structural dynamics and topology of antipinholin S2168IRS in DMPC proteoliposomes is investigated using electron paramagnetic resonance (EPR) spectroscopic techniques. Continuous-wave (CW) EPR line shape analysis experiments of 35 different R1 side chains of S2168IRS indicated restricted mobility of the transmembrane domains (TMDs), which were predicted to be inside the lipid bilayer when compared to the N- and C-termini R1 side chains. In addition, the R1 accessibility test performed on 24 residues using the CW-EPR power saturation experiment indicated that TMD1 and TMD2 of S2168IRS were incorporated into the lipid bilayer where N- and C-termini were located outside of the lipid bilayer. Based on this study, a tentative model of S2168IRS is proposed where both TMDs remain incorporated into the lipid bilayer and N- and C-termini are located outside of the lipid bilayer. This work will pave the way for the further studies of other holins using biophysical techniques and will give structural insights into these biological clocks in molecular detail.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Rasal H Khan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.,Natural Science Division, Campbellsville University, Campbellsville, Kentucky 42718, United States
| | - Emily Faul
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Tianyan Li
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
41
|
van Son M, Schilder JT, Di Savino A, Blok A, Ubbink M, Huber M. The Transient Complex of Cytochrome c and Cytochrome c Peroxidase: Insights into the Encounter Complex from Multifrequency EPR and NMR Spectroscopy. Chemphyschem 2020; 21:1060-1069. [PMID: 32301564 PMCID: PMC7317791 DOI: 10.1002/cphc.201901160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022]
Abstract
We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6 M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.
Collapse
Affiliation(s)
- Martin van Son
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| | - Jesika T. Schilder
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Antonella Di Savino
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anneloes Blok
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Marcellus Ubbink
- Leiden Institute of ChemistryLeiden University, Gorlaeus LaboratoriesEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Martina Huber
- Leiden Institute of Physics, Huygens-Kamerlingh Onnes LaboratoryLeiden UniversityNiels Bohrweg 22333 CALeiden (TheNetherlands
| |
Collapse
|
42
|
Scherer A, Tischlik S, Weickert S, Wittmann V, Drescher M. Optimising broadband pulses for DEER depends on concentration and distance range of interest. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:59-74. [PMID: 37904889 PMCID: PMC10500711 DOI: 10.5194/mr-1-59-2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/26/2020] [Indexed: 11/01/2023]
Abstract
EPR distance determination in the nanometre region has become an important tool for studying the structure and interaction of macromolecules. Arbitrary waveform generators (AWGs), which have recently become commercially available for EPR spectrometers, have the potential to increase the sensitivity of the most common technique, double electron-electron resonance (DEER, also called PELDOR), as they allow the generation of broadband pulses. There are several families of broadband pulses, which are different in general pulse shape and the parameters that define them. Here, we compare the most common broadband pulses. When broadband pulses lead to a larger modulation depth, they also increase the background decay of the DEER trace. Depending on the dipolar evolution time, this can significantly increase the noise level towards the end of the form factor and limit the potential increase in the modulation-to-noise ratio (MNR). We found asymmetric hyperbolic secant (HS{ 1 , 6 } ) pulses to perform best for short DEER traces, leading to a MNR improvement of up to 86 % compared to rectangular pulses. For longer traces we found symmetric hyperbolic secant (HS{ 1 , 1 } ) pulses to perform best; however, the increase compared to rectangular pulses goes down to 43 %.
Collapse
Affiliation(s)
- Andreas Scherer
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Sonja Tischlik
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Sabrina Weickert
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology,
University of Konstanz, Konstanz, Germany
| |
Collapse
|
43
|
Meir A, Lepechkin-Zilbermintz V, Kahremany S, Schwerdtfeger F, Gevorkyan-Airapetov L, Munder A, Viskind O, Gruzman A, Ruthstein S. Inhibiting the copper efflux system in microbes as a novel approach for developing antibiotics. PLoS One 2019; 14:e0227070. [PMID: 31887125 PMCID: PMC6936879 DOI: 10.1371/journal.pone.0227070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
Five out of six people receive at least one antibiotic prescription per year. However, the ever-expanding use of antibiotics in medicine, agriculture, and food production has accelerated the evolution of antibiotic-resistant bacteria, which, in turn, made the development of novel antibiotics based on new molecular targets a priority in medicinal chemistry. One way of possibly combatting resistant bacterial infections is by inhibiting the copper transporters in prokaryotic cells. Copper is a key element within all living cells, but it can be toxic in excess. Both eukaryotic and prokaryotic cells have developed distinct copper regulation systems to prevent its toxicity. Therefore, selectively targeting the prokaryotic copper regulation system might be an initial step in developing next-generation antibiotics. One such system is the Gram-negative bacterial CusCFBA efflux system. CusB is a key protein in this system and was previously reported to play an important role in opening the channel for efflux via significant structural changes upon copper binding while also controlling the assembly and disassembly process of the entire channel. In this study, we aimed to develop novel peptide copper channel blockers, designed by in silico calculations based on the structure of CusB. Using a combination of magnetic resonance spectroscopy and various biochemical methods, we found a lead peptide that promotes copper-induced cell toxicity. Targeting copper transport in bacteria has not yet been pursued as an antibiotic mechanism of action. Thus, our study lays the foundation for discovering novel antibiotics.
Collapse
Affiliation(s)
- Aviv Meir
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | | | - Shirin Kahremany
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, California, United States of America
| | - Fabian Schwerdtfeger
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Centre for Biological Signaling Studies (BIOSS), Freiburg, Germany
| | | | - Anna Munder
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Olga Viskind
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
| | - Arie Gruzman
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (SR); (AG)
| | - Sharon Ruthstein
- Chemistry Department, Faculty of Exact Sciences, Bar Ilan University, Ramat-Gan, Israel
- * E-mail: (SR); (AG)
| |
Collapse
|
44
|
Sameach H, Ruthstein S. EPR Distance Measurements as a Tool to Characterize Protein‐DNA Interactions. Isr J Chem 2019. [DOI: 10.1002/ijch.201900091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hila Sameach
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact SciencesBar Ilan University Ramat Gan Israel 5290002
| |
Collapse
|
45
|
Ahammad T, Drew DL, Sahu ID, Serafin RA, Clowes KR, Lorigan GA. Continuous Wave Electron Paramagnetic Resonance Spectroscopy Reveals the Structural Topology and Dynamic Properties of Active Pinholin S 2168 in a Lipid Bilayer. J Phys Chem B 2019; 123:8048-8056. [PMID: 31478671 DOI: 10.1021/acs.jpcb.9b06480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Pinholin S2168 is an essential part of the phage Φ21 lytic protein system to release the virus progeny at the end of the infection cycle. It is known as the simplest natural timing system for its precise control of hole formation in the inner cytoplasmic membrane. Pinholin S2168 is a 68 amino acid integral membrane protein consisting of two transmembrane domains (TMDs) called TMD1 and TMD2. Despite its biological importance, structural and dynamic information of the S2168 protein in a membrane environment is not well understood. Systematic site-directed spin labeling and continuous wave electron paramagnetic resonance (CW-EPR) spectroscopic studies of pinholin S2168 in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) proteoliposomes are used to reveal the structural topology and dynamic properties in a native-like environment. CW-EPR spectral line-shape analysis of the R1 side chain for 39 residue positions of S2168 indicates that the TMDs have more restricted mobility when compared to the N- and C-termini. CW-EPR power saturation data indicate that TMD1 partially externalizes from the lipid bilayer and interacts with the membrane surface, whereas TMD2 remains buried in the lipid bilayer in the active conformation of pinholin S2168. A tentative structural topology model of pinholin S2168 is also suggested based on EPR spectroscopic data reported in this study.
Collapse
Affiliation(s)
- Tanbir Ahammad
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Daniel L Drew
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Indra D Sahu
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Rachel A Serafin
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Katherine R Clowes
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| | - Gary A Lorigan
- Department of Chemistry and Biochemistry , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
46
|
Exploring the role of the various methionine residues in the Escherichia coli CusB adapter protein. PLoS One 2019; 14:e0219337. [PMID: 31465444 PMCID: PMC6715271 DOI: 10.1371/journal.pone.0219337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
The dissemination of resistant pathogenic microbes has become one of the most challenging problems that modern medicine has faced. Developing novel drugs based on new molecular targets that previously were not targeted, is therefore the highest priority in antibiotics research. One approach that has been recently suggested is to inhibit copper transporters in prokaryotic systems. Copper is required for many biological pathways, but sometimes it can harm the cell. Pathogenic systems have a highly sophisticated copper-regulation network; therefore, a better understanding of how this network operates at the molecular level should assist in developing the next generation of antibiotics. The CusB protein is part of the CusCBA periplasmic Cu(I) efflux system in Gram-negative bacteria, and was recently reported to play a key role in the functioning of the whole CusCBA system, in which conformational changes as well as the assembly/disassembly process control the opening of the transporter. More knowledge of the underlying mechanism is needed to attain a full understanding of CusB functioning, which is associated with targeting specific and crucial residues in CusB. Here, we combine in-vitro structural measurements, which use EPR spectroscopy and UV-Vis measurements, with cell experiments to explore the role of the various methionine residues in CusB. We targeted two methionine residues (M227 and M241) that are essential for the proper functioning of CusB.
Collapse
|
47
|
Tao M, Pandey NK, Barnes R, Han S, Langen R. Structure of Membrane-Bound Huntingtin Exon 1 Reveals Membrane Interaction and Aggregation Mechanisms. Structure 2019; 27:1570-1580.e4. [PMID: 31466833 DOI: 10.1016/j.str.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease is caused by a polyQ expansion in the first exon of huntingtin (Httex1). Membrane interaction of huntingtin is of physiological and pathological relevance. Using electron paramagnetic resonance and Overhauser dynamic nuclear polarization, we find that the N-terminal residues 3-13 of wild-type Httex1(Q25) form a membrane-bound, amphipathic α helix. This helix is positioned in the interfacial region, where it is sensitive to membrane curvature and electrostatic interactions with head-group charges. Residues 14-22, which contain the first five residues of the polyQ region, are in a transition region that remains in the interfacial region without taking up a stable, α-helical structure. The remaining C-terminal portion is solvent exposed. The phosphomimetic S13D/S16D mutations, which are known to protect from toxicity, inhibit membrane binding and attenuate membrane-mediated aggregation of mutant Httex1(Q46) due to electrostatic repulsion. Targeting the N-terminal membrane anchor using post-translational modifications or specific binders could be a potential means to reduce aggregation and toxicity in vivo.
Collapse
Affiliation(s)
- Meixin Tao
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nitin K Pandey
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ryan Barnes
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Songi Han
- Department of Chemistry and Biochemistry, Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ralf Langen
- Department of Neuroscience and Physiology, Department of Biochemistry and Molecular Medicine, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
48
|
Seffernick JT, Ren H, Kim SS, Lindert S. Measuring Intrinsic Disorder and Tracking Conformational Transitions Using Rosetta ResidueDisorder. J Phys Chem B 2019; 123:7103-7112. [PMID: 31411026 PMCID: PMC6748046 DOI: 10.1021/acs.jpcb.9b04333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many proteins contain regions of intrinsic disorder, not folding into unique, stable conformations. Numerous experimental methods have been developed to measure the disorder of all or select residues. In the absence of experimental data, computational methods are often utilized to identify these disordered regions and thus gain a better understanding of both structure and function. Many freely available computational methods have been developed to predict regions of intrinsic disorder from the primary sequence of a protein, including our recently developed Rosetta ResidueDisorder. While these methods are very useful, they are only designed to predict intrinsic disorder from the sequence. However, it would be useful to have a method that could also measure intrinsic disorder directly from structure. Such a method might also be used to identify changes in the structure of systems that can transition from folded to unfolded or vice versa, even systems that are not intrinsically disordered. Here we extended the capabilities of Rosetta ResidueDisorder to measure the intrinsic disorder from the coordinates of a single conformation of a protein. As a proof of principle, we show that ResidueDisorder can measure the intrinsic disorder from the coordinates with a higher accuracy (69.2%) than when predicted from sequence (65.4%) using a benchmark set of 229 proteins, showing that intrinsic disorder can be measured accurately from single structures over a large range of intrinsic disorder (0-100%). Additionally, we used ResidueDisorder to analyze unfolding trajectories of 12 fast-folding, nonintrinsically disordered proteins generated using molecular dynamics (MD), specifically steered MD (SMD), high-temperature MD, and accelerated MD (aMD) as well as long-time scale folding/unfolding trajectories. Using ResidueDisorder, a clear correlation between RMSD with respect to the native structure and measured fraction of denatured residues was observed. Finally, we introduced methods to predict folding/unfolding transitions as well as a native-like structure in the absence of a crystal structure from folding/unfolding MD trajectories. Rosetta ResidueDisorder is available as an application in the Rosetta software suite with the addition of new capabilities for directly identifying denatured regions and predicting events.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - He Ren
- Department of Chemistry/Biochemistry, Oberlin College, Oberlin, OH, 44074
| | - Stephanie S. Kim
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH, 43210
| |
Collapse
|
49
|
Kachooei E, Cordina NM, Brown LJ. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Biophys Rev 2019; 11:621-639. [PMID: 31321733 PMCID: PMC6682194 DOI: 10.1007/s12551-019-00568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
The relative ease of introducing a paramagnetic species onto a protein, and advances in electron paramagnetic resonance (EPR) over the past two decades, have established spin labeling as a vital structural biology technique for revealing the functional workings of the troponin muscle regulatory complex-an ~80 kDa heterotrimeric protein switch for turning on striated muscle contraction. Through the site-directed spin labeling (SDSL) of cysteine residues at key sites in troponin, a molecular-level understanding of the troponin muscle regulatory system across all levels of structural hierarchy has been achieved. Through the application of EPR, mobility and accessibility trends in the EPR signals of the spin labels attached to consecutive residues can reveal the secondary structure of troponin elements and also help map the interaction between subunits. Distance restraints calculated from the interspin interactions between spin label pairs have helped with building a structural model of the troponin complex. Further, when SDSL is paired with NMR, paramagnetic relaxation enhancement (PRE)-NMR has been used to obtain high-resolution structural detail for both intra- and interdomain interactions in troponin and revealed details of protein conformational changes and dynamics accompanying troponin function. In this review, we provide an overview of the SDSL labeling methodology and its application towards building a dynamic structural model of the multi-subunit troponin complex which details the calcium-induced conformational changes intimately linked to muscle regulation. We also describe how the SDSL method, in conjunction with EPR or NMR, can be used to obtain insights into structural perturbations to troponin caused by disease-causing mutations.
Collapse
Affiliation(s)
- Ehsan Kachooei
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Nicole M Cordina
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Louise J Brown
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
| |
Collapse
|
50
|
Perez AF, Taing KR, Quon JC, Flores A, Ba Y. Effect of Type I Antifreeze Proteins on the Freezing and Melting Processes of Cryoprotective Solutions Studied by Site-Directed Spin Labeling Technique. CRYSTALS 2019; 9. [PMID: 33224522 PMCID: PMC7678753 DOI: 10.3390/cryst9070352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Antifreeze proteins (AFPs) protect organisms living in subzero environments from freezing injury, which render them potential applications for cryopreservation of living cells, organs, and tissues. Cryoprotective agents (CPAs), such as glycerol and propylene glycol, have been used as ingredients to treat cellular tissues and organs to prevent ice crystal’s formation at low temperatures. To assess AFP’s function in CPA solutions, we have the applied site-directed spin labeling technique to a Type I AFP. A two-step process to prevent bulk freezing of the CPA solutions was observed by the cryo-photo microscopy, i.e., (1) thermodynamic freezing point depression by the CPAs; and (2) inhibition to the growth of seed ice crystals by the AFP. Electron paramagnetic resonance (EPR) experiments were also carried out from room temperature to 97 K, and vice versa. The EPR results indicate that the spin labeled AFP bound to ice surfaces, and inhibit the growths of ice through the bulk freezing processes in the CPA solutions. The ice-surface bound AFP in the frozen matrices could also prevent the formation of large ice crystals during the melting processes of the solutions. Our study illustrates that AFPs can play an active role in CPA solutions for cryopreservation applications.
Collapse
Affiliation(s)
- Adiel F Perez
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Kyle R Taing
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Justin C Quon
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Antonia Flores
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| | - Yong Ba
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032, USA
| |
Collapse
|