1
|
Lourenço Í, Krause Neto W, Amorim LDSP, Ortiz VMM, Geraldo VL, Ferreira GHDS, de Lima JT, Massoni AAR, Oliveira BM, Anaruma CA, Ciena AP, Gama EF, Caperuto ÉC. Previous short-term use of testosterone propionate enhances muscle hypertrophy in Wistar rats submitted to ladder-based resistance training. Tissue Cell 2022; 75:101741. [DOI: 10.1016/j.tice.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
|
2
|
Dantas PS, Guzzoni V, Perez JD, Arita DY, Novaes PD, Marcondes FK, Casarini DE, Cunha TS. Nandrolone combined with strenuous resistance training impairs myocardial proteome profile of rats. Steroids 2021; 175:108916. [PMID: 34492258 DOI: 10.1016/j.steroids.2021.108916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
We aimed to investigate the effects of high doses of nandrolone decanoate and resistance training (RT) on the proteomic profile of the left ventricle (LV) of rats, using a label-free quantitative approach. Male rats were randomized into four groups: untrained vehicle (UTV), trained vehicle (TV), untrained nandrolone (UTN), and trained nandrolone (TN). Rats were familiarized with the exercise training protocol (jump exercise) for one week. Jump-exercise was performed five days a week for 6 weeks, with 30 s of inter-set rest intervals. Nandrolone was administrated for 6 weeks (5 mg/kg, twice a week, via intramuscular). Systolic and diastolic arterial pressure and heart rate were measured 48 h post-training. LV was isolated and collagen content was measured. The expression of cardiac proteins was analyzed by ultra-efficiency liquid chromatography with mass spectrometry high / low collision energy (UPLC/MSE). Nandrolone and RT led to cardiac hypertrophy, even though high doses of nandrolone counteracted the RT-induced arterial pressures lowering. Nandrolone also affected the proteome profile negatively in LV of rats, including critical proteins related to biological processes (metabolism, oxidative stress, inflammation), structural function and membrane transporters. Our findings show physiological relevance since high doses of nandrolone induced detrimental effects on the proteome profile of heart tissue and hemodynamic parameters of rats. Furthermore, as nandrolone abuse has become increasingly common among recreational athletes and casual fitness enthusiasts, we consider that our findings have clinical relevance as well.
Collapse
Affiliation(s)
- Patrícia Sousa Dantas
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Vinicius Guzzoni
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Juliana Dinéia Perez
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Danielle Yuri Arita
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Pedro Duarte Novaes
- Piracicaba Dental School, Department of Morphology, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Dulce Elena Casarini
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
3
|
Nilsen TS, Thorsen L, Kirkegaard C, Ugelstad I, Fosså SD, Raastad T. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect 2016; 5:74-82. [PMID: 27169606 PMCID: PMC5002963 DOI: 10.1530/ec-15-0120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 01/25/2023]
Abstract
BACKGROUND Androgen deprivation therapy (ADT) for prostate cancer (PCa) is associated with several side effects, including loss of muscle mass. Muscle atrophy is associated with reduced mitochondrial function and increased muscle cellular stress that may be counteracted by strength training. Thus, the aim of this study was to investigate the effect of strength training on mitochondrial proteins and indicators of muscle cellular stress in PCa patients on ADT. METHODS Men diagnosed with locally advanced PCa receiving ADT were randomised to a strength training group (STG) (n=16) or a control group (CG) (n=15) for 16 weeks. Muscle biopsies were collected pre- and post-intervention from the vastus lateralis muscle, and analysed for mitochondrial proteins (citrate synthase, cytochrome c oxidase subunit IV (COXIV), HSP60) and indicators of muscle cellular stress (heat shock protein (HSP) 70, alpha B-crystallin, HSP27, free ubiquitin, and total ubiquitinated proteins) using Western blot and ELISA. RESULTS No significant intervention effects were observed in any of the mitochondrial proteins or indicators of muscle cellular stress. However, within-group analysis revealed that the level of HSP70 was reduced in the STG and a tendency towards a reduction in citrate synthase levels was observed in the CG. Levels of total ubiquitinated proteins were unchanged in both groups. CONCLUSION Although reduced HSP70 levels indicated reduced muscle cellular stress in the STG, the lack of an intervention effect precluded any clear conclusions.
Collapse
Affiliation(s)
- T S Nilsen
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - L Thorsen
- Department of OncologyOslo University Hospital, Oslo, Norway
| | - C Kirkegaard
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - I Ugelstad
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| | - S D Fosså
- Department of OncologyOslo University Hospital, Oslo, Norway
| | - T Raastad
- Department of Physical PerformanceNorwegian School of Sports Sciences, Oslo, Norway
| |
Collapse
|
4
|
Pomara C, Neri M, Bello S, Fiore C, Riezzo I, Turillazzi E. Neurotoxicity by synthetic androgen steroids: oxidative stress, apoptosis, and neuropathology: A review. Curr Neuropharmacol 2015; 13:132-45. [PMID: 26074748 PMCID: PMC4462038 DOI: 10.2174/1570159x13666141210221434] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/30/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022] Open
Abstract
Anabolic-androgenic steroids (AAS) are synthetic substances derived from testosterone that are largely employed due to their trophic effect on muscle tissue of athletes at all levels. Since a great number of organs and systems are a target of AAS, their adverse effects are primarily on the following systems: reproductive, hepatic, musculoskeletal, endocrine, renal, immunological, infectious, cardiovascular, cerebrovascular, and hematological. Neuropsychiatric and behavioral effects as a result of AAS abuse are well known and described in the literature. Mounting evidence exists suggesting that in addition to psychiatric and behavioral effects, non-medical use of AAS carries neurodegenerative potential. Although, the nature of this association remains largely unexplored, recent animal studies have shown the recurrence of this AAS effect, ranging from neurotrophin unbalance to increased neuronal susceptibility to apoptotic stimuli. Experimental and animal studies strongly suggest that apoptotic mechanisms are at least in part involved in AAS-induced neurotoxicity. Furthermore, a great body of evidence is emerging suggesting that increased susceptibility to cellular oxidative stress could play a pivotal role in the pathogenesis of many neurodegenerative disorders and cognitive impairment. As in other drug-evoked encephalopathies, the key mechanisms involved in AAS - induced neuropathology could represent a target for future neuroprotective strategies. Progress in the understanding of these mechanisms will provide important insights into the complex pathophysiology of AAS-induced neurodegeneration, and will pave the way for forthcoming studies. Supplementary to abandoning the drug abuse that represents the first step in reducing the possibility of irreversible brain damage in AAS abusers, neuroprotective strategies have to be developed and implemented in future.
Collapse
Affiliation(s)
- Cristoforo Pomara
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Department of Anatomy, University of Malta. Msida, Malta
| | - Margherita Neri
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Stefania Bello
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carmela Fiore
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Irene Riezzo
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Emanuela Turillazzi
- Institute of Legal Medicine, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
5
|
Jannatifar R, Shokri S, Farrokhi A, Nejatbakhsh R. Effect of supraphysiological dose of Nandrolone Decanoate on the testis and testosterone concentration in mature and immature male rats: A time course study. Int J Reprod Biomed 2015. [DOI: 10.29252/ijrm.13.12.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
6
|
Brinkmeier H, Ohlendieck K. Chaperoning heat shock proteins: Proteomic analysis and relevance for normal and dystrophin-deficient muscle. Proteomics Clin Appl 2014; 8:875-95. [DOI: 10.1002/prca.201400015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/24/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Co. Kildare Ireland
| |
Collapse
|
7
|
Chronic nandrolone administration promotes oxidative stress, induction of pro-inflammatory cytokine and TNF-α mediated apoptosis in the kidneys of CD1 treated mice. Toxicol Appl Pharmacol 2014; 280:97-106. [PMID: 25065671 DOI: 10.1016/j.taap.2014.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 06/14/2014] [Accepted: 06/15/2014] [Indexed: 12/26/2022]
Abstract
Nandrolone decanoate administration and strenuous exercise increase the extent of renal damage in response to renal toxic injury. We studied the role played by oxidative stress in the apoptotic response caused by nandrolone decanoate in the kidneys of strength-trained male CD1 mice. To measure cytosolic enzyme activity, glutathione peroxidase (GPx), glutathione reductase (GR) and malondialdehyde (MDA) were determined after nandrolone treatment. An immunohistochemical study and Western blot analysis were performed to evaluate cell apoptosis and to measure the effects of renal expression of inflammatory mediators (IL-1β, TNF-α) on the induction of apoptosis (HSP90, TUNEL). Dose-related oxidative damage in the kidneys of treated mice is shown by an increase in MDA levels and by a reduction of antioxidant enzyme GR and GPx activities, resulting in the kidney's reduced radical scavenging ability. Renal specimens of the treated group showed relevant glomeruli alterations and increased immunostaining and protein expressions, which manifested significant focal segmental glomerulosclerosis. The induction of proinflammatory cytokine expression levels was confirmed by Western blot analysis. Long-term administration of nandrolone promotes oxidative injury in the mouse kidneys. TNF-α mediated injury due to nandrolone in renal cells appears to play a role in the activation of both the intrinsic and extrinsic apoptosis pathways.
Collapse
|
8
|
Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol 2013; 11:129-40. [PMID: 23997749 PMCID: PMC3637668 DOI: 10.2174/1570159x11311020001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/12/2012] [Accepted: 12/14/2012] [Indexed: 12/11/2022] Open
Abstract
The hypothalamus may be involved in regulating homeostasis, motivation, and emotional behavior by controlling autonomic and endocrine activity. The hypothalamus communicates input from the thalamus to the pituitary gland, reticular activating substance, limbic system, and neocortex. This allows the output of pituitary hormones to respond to changes in autonomic nervous system activity. Environmental heat stress increases cutaneous blood flow and metabolism, and progressively decreases splanchnic blood flow. Severe heat exposure also decreases mean arterial pressure (MAP), increases intracranial pressure (ICP), and decreases cerebral perfusion pressure (CPP = MAP - ICP), all of which lead to cerebral ischemia and hypoxia. Compared with normothermic controls, rodents with heatstroke have higher hypothalamic values of cellular ischemia (e.g., glutamate and lactate-to-pyruvate ratio) and damage (e.g., glycerol) markers, pro-oxidant enzymes (e.g., lipid peroxidation and glutathione oxidation), proinflammatory cytokines (e.g., interleukin-1β and tumor necrosis factor-α), inducible nitric oxide synthase-dependent nitric oxide, and an indicator for the accumulation of polymorphonuclear leukocytes (e.g., myeloperoxidase activity), as well as neuronal damage (e.g., apoptosis, necrosis, and autophagy) after heatstroke. Hypothalamic values of antioxidant defenses (e.g., glutathione peroxidase and glutathione reductase), however, are lower. The ischemic, hypoxic, and oxidative damage to the hypothalamus during heatstroke may cause multiple organ dysfunction or failure through hypothalamic-pituitary-adrenal axis mechanisms. Finding the link between the signaling and heatstroke-induced hypothalamic oxidative and ischemic damage might allow us to clinically attenuate heatstroke. In particular, free radical scavengers, heat shock protein-70 inducers, hypervolemic hemodilution, inducible nitric oxide synthase inhibitors, progenitor stem cells, flutamide, estrogen, interleukin-1 receptor antagonists, glucocorticoid, activated protein C, and baicalin mitigate preclinical heatstroke levels.
Collapse
Affiliation(s)
- Sheng-Hsien Chen
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Tainan, Taiwan ; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | | | | |
Collapse
|
9
|
Acute effects of sex-specific sex hormones on heat shock proteins in fast muscle of male and female rats. Eur J Appl Physiol 2013; 113:2503-10. [PMID: 23821238 DOI: 10.1007/s00421-013-2686-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/20/2013] [Indexed: 10/26/2022]
Abstract
Heat shock protein (HSP) expression and sex hormone levels have been shown to influence several aspects of skeletal muscle physiology (e.g., hypertrophy, resistance to oxidative stress), suggesting that sex hormone levels can effect HSP expression. This study evaluated the effects of differing levels of sex-specific sex hormones (i.e., testosterone in males and estrogen in females) on the expression of 4: HSP70, HSC70, HSP25, and αB-crystallin in the quadriceps muscles of male and female rats. Animals were assigned to 1 of 3 groups (n = 5 M and F/group). The first group (Ctl) consisted of typically cage-housed animals that served as controls. The second group (H) was gonadectomized and received either testosterone (males) or estradiol (females) via injection for 12 consecutive days. The third group (Gx) was gonadectomized and injected as above, but with vehicle only, rather than hormones. Significant sex by condition interactions (P < 0.05 by two-way MANOVA) were found for all 4 proteins studied, except for HSP70, which exhibited a significant effect of condition only. The expression of all HSPs was greater (1.9-2.5-fold) in males vs. females in the Ctl group, except for HSP70, which was no different. Generally, gonadectomy appeared to have greater effects in males than females, but administration of the exogenous sex hormones tended to produce more robust relative changes in females than males. There were no differences in myosin composition in any of the groups, suggesting that changes in fiber type were not a factor in the differential protein expression. These data may have implications for sex-related differences in muscular responses to exercise, disuse, and injury.
Collapse
|
10
|
Prolonged treatment with the anabolic–androgenic steroid stanozolol increases antioxidant defences in rat skeletal muscle. J Physiol Biochem 2010; 66:63-71. [DOI: 10.1007/s13105-010-0010-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/09/2009] [Indexed: 10/19/2022]
|
11
|
Soma LR, Uboh CE, Guan F, McDonnell S, Pack J. Pharmacokinetics of boldenone and stanozolol and the results of quantification of anabolic and androgenic steroids in race horses and nonrace horses. J Vet Pharmacol Ther 2007; 30:101-8. [PMID: 17348894 DOI: 10.1111/j.1365-2885.2007.00824.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Anabolic steroids (ABS) boldenone (BL; 1.1 mg/kg) and stanozolol (ST; 0.55 mg/kg) were administered i.m. to horses and the plasma samples collected up to 64 days. Anabolic steroids and androgenic steroids (ANS) in plasma were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The limit of detection of all analytes was 25 pg/mL. The median absorption (t1/2 partial differential) and elimination (t1/2e) half-lives for BL were 8.5 h and 123.0 h, respectively, and the area under the plasma concentration-time curve (AUCho) was 274.8 ng.h/mL. The median t1/2e for ST was 82.1 h and the was 700.1 ng.h/mL. Peak mean (X+/-SD) plasma concentrations (Cmax) for BL and ST were 1127.8 and 4118.2 pg/mL, respectively. Quantifiable concentrations of ABS and ANS were found in 61.7% of the 988 plasma samples tested from race tracks. In 17.3% of the plasma samples two or more ABS or ANS were quantifiable. Testosterone (TES) concentrations mean (X+/-SE) in racing and nonracing intact males were 241.3+/-61.3 and 490.4+/-35.1 pg/mL, respectively. TES was not quantified in nonracing geldings and female horses, but was in racing females and geldings. Plasma concentrations of endogenous 19-nortestosterone (nandrolone; NA) from racing and nonracing males were 50.2+/-5.5 and 71.8+/-4.6 pg/mL, respectively.
Collapse
Affiliation(s)
- L R Soma
- School of Veterinary Medicine, New Bolton Center Campus, University of Pennsylvania, Kennett Square, PA 19348, USA.
| | | | | | | | | |
Collapse
|
12
|
Chang CK, Chang CP, Liu SY, Lin MT. Oxidative stress and ischemic injuries in heat stroke. PROGRESS IN BRAIN RESEARCH 2007; 162:525-46. [PMID: 17645935 DOI: 10.1016/s0079-6123(06)62025-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
When rats were exposed to high environmental temperature (e.g., 42 or 43 degrees C), hyperthermia, hypotension, and cerebral ischemia and damage occurred during heat stroke were associated with increased production of free radicals (specifically hydroxyl radicals and superoxide anions), higher lipid peroxidation, lower enzymatic antioxidant defenses, and higher enzymatic pro-oxidants in the brain of heat stroke-affected rats. Pretreatment with conventional hydroxyl radical scavengers (e.g., mannitol or alpha-tocopherol) prevented increased production of hydroxyl radicals, increased levels of lipid peroxidation, and ischemic neuronal damage in different brain structures attenuated with heat stroke and increased subsequent survival time. Heat shock preconditioning (a mild sublethal heat exposure for 15min) or regular, daily exercise for at least 3 weeks, in addition to inducing overproduction of heat shock protein 72 in multiple organs including brain, significantly attenuated the heat stroke-induced hyperthermia, hypotension, cerebral ischemia and damage, and overproduction of hydroxyl radicals and lipid peroxidation. The precise function of heat shock protein 72 are unknown, but there is considerable evidence that these proteins are essential for survival at both normal and elevated temperatures. They also play a critical role in the development of thermotolerance and protection from oxidative damage associated with cerebral ischemia and energy depletion during heat stroke. In addition, Shengmai San or magnolol (Chinese herbal medicines) or hypervolemic hemodilution (produced by intravenous infusion of 10% human albumin) is effective for prevention and repair of ischemic and oxidative damage in the brain during heat stroke. Thus, it appears that heat shock protein 72 preconditioning induced by prior heat shock or regular exercise training, as well as pretreatment with Shengmai San or magnolol is able to prevent the oxidative damage during heat stroke. On the other hand, hypervolemic hemodilution, Shengmai San, or magnolol is able to treat the oxidative damage after heat stroke onset.
Collapse
Affiliation(s)
- Chen-Kuei Chang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
13
|
Lunz W, Oliveira EC, Neves MTD, Fontes EPB, Dias CMGC, Natali AJ. Anabolic steroid- and exercise-induced cardiac stress protein (HSP72) in the rat. Braz J Med Biol Res 2006; 39:889-93. [PMID: 16862279 DOI: 10.1590/s0100-879x2006000700006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 04/26/2006] [Indexed: 11/21/2022] Open
Abstract
The present study investigated the effects of exercise and anabolic-androgenic steroids on cardiac HSP72 expression. Male Wistar rats were divided into experimental groups: nandrolone exercise (NE, N = 6), control exercise (CE, N = 6), nandrolone sedentary (NS, N = 6), and control sedentary (CS, N = 6). Animals in the NE and NS groups received a weekly intramuscular injection (6.5 mg/kg of body weight) of nandrolone decanoate, while those in the CS and CE groups received mineral oil as vehicle. Animals in the NE and CE groups were submitted to a progressive running program on a treadmill, for 8 weeks. Fragments of the left ventricle were collected at sacrifice and the relative immunoblot contents of HSP72 were determined. Heart weight to body weight ratio was higher in exercised than in sedentary animals (P < 0.05, 4.65 +/- 0.38 vs 4.20 +/- 0.47 mg/g, respectively), independently of nandrolone, and in nandrolone-treated than untreated animals (P < 0.05, 4.68 +/- 0.47 vs 4.18 +/- 0.32 mg/g, respectively), independently of exercise. Cardiac HSP72 accumulation was higher in exercised than in sedentary animals (P < 0.05, 677.16 +/- 129.14 vs 246.24 +/- 46.30 relative unit, respectively), independently of nandrolone, but not different between nandrolone-treated and untreated animals (P > 0.05, 560.88 +/- 127.53 vs 362.52 +/- 95.97 relative unit, respectively) independently of exercise. Exercise-induced HSP72 expression was not affected by nandrolone. These levels of HSP72 expression in response to nandrolone administration suggest either a low intracellular stress or a possible less protection to the myocardium.
Collapse
Affiliation(s)
- W Lunz
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, MG, Brasil
| | | | | | | | | | | |
Collapse
|
14
|
Hung CH, Chang NC, Cheng BC, Lin MT. PROGRESSIVE EXERCISE PRECONDITIONING PROTECTS AGAINST CIRCULATORY SHOCK DURING EXPERIMENTAL HEATSTROKE. Shock 2005; 23:426-33. [PMID: 15834308 DOI: 10.1097/01.shk.0000159557.95285.96] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heat shock protein (HSP) 72 expression protects against arterial hypotension in rat heatstroke. HSP72 can also be induced in multiple organs, including hearts from rats with endurance exercise. We validated the hypothesis that progressive exercise preconditioning may confer cardiovascular protection during heatstroke by inducing the overexpression of HSP72 in multiple organs. To deal with the matter, we assessed the effects of heatstroke on mean arterial pressure, heart rate, cardiac output, stroke volume, total peripheral vascular resistance, colonic temperature, blood gases, and serum or tissue levels of tumor necrosis factor-alpha (TNF-alpha) in urethane-anesthetized rats pretreated without or with progressive exercise training for 1, 2, or 3 weeks. In addition, HSP72 expression in multiple organs was determined in different groups of animals. Heatstroke was induced by exposing the rats to a high blanket temperature (43 degrees C); the moment at which mean arterial pressure decreased from the peak value was taken as the time of heatstroke onset. Previous exercise training for 3 weeks, but not 1 or 2 weeks, conferred significant protection against hyperthermia, arterial hypotension, decreased cardiac output, decreased stroke volume, decreased peripheral vascular resistance, and increased levels of serum or tissue TNF-alpha during heatstroke and correlated with overexpression of HSP72 in multiple organs, including heart, liver, and adrenal gland. However, 10 days after 3 weeks of progressive exercise training, when HSP72 expression in multiple organs returned to basal values, the beneficial effects exerted by 3 weeks of exercise training were no longer observed. These results strongly suggest that HSP72 preconditioning with progressive exercise training protects against hyperthermia, circulatory shock, and TNF-alpha overproduction during heatstroke.
Collapse
Affiliation(s)
- Ching-Hsia Hung
- Department of Physical Therapy, National Cheng Kung University, Tainan, Taiwan 701
| | | | | | | |
Collapse
|
15
|
Abstract
The heat shock proteins are families of proteins with known activities that include chaperoning nascent peptides within the cell and cytoprotection. Most work on the nervous system has related to the role of heat shock proteins in neuroprotection from either hypoxic-ischemic or traumatic injury. The role of these proteins during normal physiological activity and injury is still under investigation. Heat shock proteins in neuromuscular disease have been investigated to some extent but were largely neglected until recently. The goal of this review is to summarize the evidence linking heat shock proteins with neuromuscular disease and to provide some insight into the roles or functions of these proteins in disease states.
Collapse
Affiliation(s)
- Robert N Nishimura
- Department of Neurology, Veterans Affairs Greater Los Angeles Healthcare System, 16111 Plummer Street, Sepulveda, California 91343, USA.
| | | |
Collapse
|
16
|
Georgieva KN, Boyadjiev NP. Effects of Nandrolone Decanoate on &OV0312;O2max, Running Economy, and Endurance in Rats. Med Sci Sports Exerc 2004; 36:1336-41. [PMID: 15292741 DOI: 10.1249/01.mss.0000135781.42515.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The aim of the present study was to determine the effects of treatment with an anabolic androgenic steroid (AAS), nandrolone decanoate, on the submaximal running endurance (SRE), maximum oxygen consumption (VO2max), running economy (VO2submax), and blood oxygen carrying capacity of endurance trained rats. METHODS Forty male Wistar rats were randomly allocated into two groups: a sedentary group and an exercising group training on treadmill for 8 wk. Half of the trained and half of the sedentary rats received weekly either nandrolone decanoate (10 mg x kg(-1)) or placebo (Pl) for the last 6 wk of experiment. SRE and VO2max tests were performed several times for all four groups (N = 10 each).Red blood cells parameters were measured at the end of the experiment. RESULTS The trained rats had increased their SRE compared with sedentary rats throughout the experiment. At the end of the trial, the trained rats receiving nandrolone decanoate ran 46% longer than trained rats receiving Pl during the SRE test (P < 0.05). At the end of the experiment, trained rats had greater maximal time to exhaustion and higher VO2max than those of the sedentary rats but there were no differences in VO2max, VO2submax, and red blood cells parameters between the trained rats receiving nandrolone decanoate and those receiving Pl. CONCLUSIONS Nandrolone decanoate has no effect on the SRE, VO2max and VO2submax of untrained rats. AAS treatment combined with submaximal training enhances SRE more than training alone but exerts no additive effects on VO2max, running economy, and oxygen carrying capacity of blood. The results suggest that this improvement in SRE of trained rats is due to the impact of AAS on other factors involved in exercise adaptation.
Collapse
|
17
|
Abstract
Os hormônios esteróides anabólicos androgênicos (EAA) compreendem a testosterona e seus derivados. Eles são produzidos nos testículos e no córtex adrenal, e promovem as características sexuais secundárias associadas à masculinidade. Na medicina, os EAA são utilizados geralmente no tratamento de sarcopenias, do hipogonadismo, do câncer de mama e da osteoporose. Nos esportes, são utilizados para o aumento da força física e da massa muscular; entretanto, os efeitos sobre o desempenho atlético permanecem, ainda, controversos. Os EAA podem causar diversos efeitos colaterais, como psicopatologias, câncer de próstata, doença coronariana e esterilidade. Estudos epidemiológicos apontam a problemática acerca do uso de EAA, nos esportes; todavia, no Brasil não existem publicações substanciais sobre esse tema. Esta revisão analisa esse assunto, procurando despertar a curiosidade e o interesse dos leitores para a produção científica de novos trabalhos relacionados ao tema.
Collapse
|
18
|
Carson JA, Lee WJ, McClung J, Hand GA. Steroid receptor concentration in aged rat hindlimb muscle: effect of anabolic steroid administration. J Appl Physiol (1985) 2002; 93:242-50. [PMID: 12070211 DOI: 10.1152/japplphysiol.01212.2001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle is a target of anabolic steroid action; however, anabolic steroid's affect on aged skeletal muscle is not well understood. The effect of 4 wk of nandrolone decanoate (ND) administration on hindlimb muscles of 5- and 25-mo-old Fischer 344/Brown Norway rats was examined. ND (6 mg/kg body wt) was injected every 7th day for 4 wk. Controls received an oil injection. ND significantly reduced 25-mo-old rat perirenal fat pad mass by 30%. Soleus (Sol) and plantaris (Plan) muscle-to-body weight ratios were reduced in 25-mo-old rats. ND did not affect Sol or Plan muscle-to-body weight ratios at either age. Sol DNA concentration was reduced by 25% in 25-mo-old rats, and ND increased it to 12% greater than 5-mo-old rats. ND did not affect Plan DNA content. Sol androgen receptor (AR) protein in 25-mo-old rats was reduced to 35% of 5-mo-old values. ND increased AR protein by 900% in 25-mo-old rat Sol. Plan AR concentration was not affected by aging but was induced by ND in both age groups. Aging or ND treatment did not affect glucocorticoid receptor levels in either muscle. These data demonstrate that fast- and slow-twitch rat hindlimb muscles differ in their response to aging and ND therapy.
Collapse
MESH Headings
- Aging/metabolism
- Anabolic Agents/pharmacology
- Animals
- Blotting, Western
- DNA/biosynthesis
- DNA/genetics
- Female
- Hindlimb/metabolism
- Muscle Fibers, Fast-Twitch/drug effects
- Muscle Fibers, Fast-Twitch/physiology
- Muscle Fibers, Slow-Twitch/drug effects
- Muscle Fibers, Slow-Twitch/physiology
- Muscle Proteins/biosynthesis
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Nandrolone/pharmacology
- Organ Size/drug effects
- RNA/biosynthesis
- RNA/genetics
- Rats
- Rats, Inbred F344
- Receptors, Androgen/drug effects
- Receptors, Glucocorticoid/metabolism
- Receptors, Steroid/drug effects
- Receptors, Steroid/metabolism
Collapse
Affiliation(s)
- James A Carson
- Integrative Muscle Biology Laboratory, Exercise Science Department, University of South Carolina, Columbia 29208, USA.
| | | | | | | |
Collapse
|