1
|
Maximov PY, Fan P, Abderrahman B, Curpan R, Jordan VC. Estrogen Receptor Complex to Trigger or Delay Estrogen-Induced Apoptosis in Long-Term Estrogen Deprived Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:869562. [PMID: 35360069 PMCID: PMC8960923 DOI: 10.3389/fendo.2022.869562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Antiestrogen therapy of breast cancer has been a "gold standard" of treatment of estrogen receptor (ER)-positive breast cancer for decades. Resistance to antiestrogen therapy may develop, however, a vulnerability in long-term estrogen deprived (LTED) breast cancer cells was discovered. LTED breast cancer cells may undergo estrogen-induced apoptosis within a week of treatment with estrogen in vitro. This phenomenon has been also validated in vivo and in the clinic. The molecular ER-mediated mechanism of action of estrogen-induced apoptosis was deciphered, however, the relationship between the structure of estrogenic ligands and the activity of the ER in LTED breast cancer cells remained a mystery until recently. In this review we provide an overview of the structure-activity relationship of various estrogens with different chemical structures and the modulation of estrogen-induced apoptosis in LTED breast cancer cells resistant to antihormone therapy. We provide analysis of evidence gathered over more than a decade of structure-activity relationship studies by our group on the role of the change in the conformation of the estrogen receptor and the biological activities of different classes of estrogens and the receptor as well in LTED breast cancer.
Collapse
Affiliation(s)
- Philipp Y. Maximov
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ping Fan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Balkees Abderrahman
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ramona Curpan
- Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | - V. Craig Jordan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: V. Craig Jordan,
| |
Collapse
|
2
|
Jordan VC. Turning scientific serendipity into discoveries in breast cancer research and treatment: a tale of PhD students and a 50-year roaming tamoxifen team. Breast Cancer Res Treat 2021; 190:19-38. [PMID: 34398352 PMCID: PMC8557169 DOI: 10.1007/s10549-021-06356-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE This retrospective, about a single "mobile" laboratory in six locations on two continents, is intended as a case study in discovery for trainees and junior faculty in the medical sciences. Your knowledge of your topic is necessary to expect the unexpected. HISTORICAL METHOD In 1972, there was no tamoxifen, only ICI 46, 474, a non-steroidal anti-estrogen with little chance of clinical development. No one would ever be foolish enough to predict that the medicine, 20 years later, would achieve legendary status as the first targeted treatment for breast cancer, and millions of women would benefit from long-term adjuvant tamoxifen therapy. The secret of tamoxifen's success was a translational research strategy proposed in the mid 1970's. This strategy was to treat only patients with estrogen receptor (ER)-positive breast cancer and deploy 5 or more years of adjuvant tamoxifen therapy to prevent recurrence. Additionally, tamoxifen prevented mammary cancer in animals. Could the medicine prevent breast cancer in women? RESULTS Tamoxifen and the failed breast cancer drug raloxifene became the first selective estrogen receptor modulators (SERMs): a new drug group, discovered at the University of Wisconsin, Comprehensive Cancer Center. Serendipity can play a fundamental role in discovery, but there must be a rigorous preparation for the investigator to appreciate the possibility of a pending discovery. This article follows the unanticipated discoveries when PhD students "get the wrong answer." The secret of success of my six Tamoxifen Teams was their technical excellence to create models, to decipher mechanisms, that drove the development of new medicines. Discoveries are listed that either changed women's health or allowed an understanding of originally opaque mechanisms of action of potential therapies. These advances in women's health were supported entirely by government-sponsored peer-reviewed funding and major philanthropy from the Lynn Sage Breast Cancer Foundation, the Avon Foundation, and the Susan G. Komen Breast Cancer Foundation. The resulting lives saved or extended, families aided in a time of crisis and the injection of billions of dollars into national economies by drug development, is proof of the value of Federal or philanthropic investment into unencumbered research aimed at saving millions of lives.
Collapse
Affiliation(s)
- V Craig Jordan
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1354, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Abderrahman B, Maximov PY, Curpan RF, Fanning SW, Hanspal JS, Fan P, Foulds CE, Chen Y, Malovannaya A, Jain A, Xiong R, Greene GL, Tonetti DA, Thatcher GRJ, Jordan VC. Rapid Induction of the Unfolded Protein Response and Apoptosis by Estrogen Mimic TTC-352 for the Treatment of Endocrine-Resistant Breast Cancer. Mol Cancer Ther 2020; 20:11-25. [PMID: 33177154 DOI: 10.1158/1535-7163.mct-20-0563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/30/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022]
Abstract
Patients with long-term estrogen-deprived breast cancer, after resistance to tamoxifen or aromatase inhibitors develops, can experience tumor regression when treated with estrogens. Estrogen's antitumor effect is attributed to apoptosis via the estrogen receptor (ER). Estrogen treatment can have unpleasant gynecologic and nongynecologic adverse events; thus, the development of safer estrogenic agents remains a clinical priority. Here, we study synthetic selective estrogen mimics (SEM) BMI-135 and TTC-352, and the naturally occurring estrogen estetrol (E4), which are proposed as safer estrogenic agents compared with 17β-estradiol (E2), for the treatment of endocrine-resistant breast cancer. TTC-352 and E4 are being evaluated in breast cancer clinical trials. Cell viability assays, real-time PCR, immunoblotting, ERE DNA pulldowns, mass spectrometry, X-ray crystallography, docking and molecular dynamic simulations, live cell imaging, and Annexin V staining were conducted in 11 biologically different breast cancer models. Results were compared with the potent full agonist E2, less potent full agonist E4, the benchmark partial agonist triphenylethylene bisphenol (BPTPE), and antagonists 4-hydroxytamoxifen and endoxifen. We report ERα's regulation and coregulators' binding profiles with SEMs and E4 We describe TTC-352's pharmacology as a weak full agonist and antitumor molecular mechanisms. This study highlights TTC-352's benzothiophene scaffold that yields an H-bond with Glu353, which allows Asp351-to-helix 12 (H12) interaction, sealing ERα's ligand-binding domain, recruiting E2-enriched coactivators, and triggering rapid ERα-induced unfolded protein response (UPR) and apoptosis, as the basis of its anticancer properties. BPTPE's phenolic OH yields an H-Bond with Thr347, which disrupts Asp351-to-H12 interaction, delaying UPR and apoptosis and increasing clonal evolution risk.
Collapse
Affiliation(s)
- Balkees Abderrahman
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philipp Y Maximov
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ramona F Curpan
- Coriolan Dragulescu Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | - Sean W Fanning
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Jay S Hanspal
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Fan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles E Foulds
- Center for Precision Environmental Health and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Yue Chen
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, Louisiana
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Rui Xiong
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | - Geoffrey L Greene
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
| | - Debra A Tonetti
- Pharmacology and Toxicology, University of Arizona, Tucson, Arizona
| | | | - V Craig Jordan
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
4
|
Jordan VC. The SERM Saga, Something from Nothing: American Cancer Society/SSO Basic Science Lecture. Ann Surg Oncol 2019; 26:1981-1990. [PMID: 30911948 PMCID: PMC6545250 DOI: 10.1245/s10434-019-07291-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND The discovery of nonsteroidal antiestrogens created a new group of medicines looking for an application; however, at the time, cytotoxic chemotherapy was the modality of choice to treat all cancers. Antiestrogens were orphan drugs until 1971, with the passing of the National Cancer Act. This enabled laboratory innovations to aid patient care. METHODS This article traces the strategic application of tamoxifen to treat breast cancer by targeting the estrogen receptor (ER), deploying long-term adjuvant tamoxifen therapy, and becoming the first chemopreventive for any cancer. Laboratory discoveries from the University of Wisconsin Comprehensive Cancer Center (UWCCC) are described that address a broad range of biological issues with tamoxifen. These translated to improvements in clinical care. RESULTS Tamoxifen was studied extensively at UWCCC in the 1980s for the development of acquired resistance to long-term therapy. Additionally, the long-term metabolism of tamoxifen and regulation of growth factors were also studied. A concern with tamoxifen use for chemoprevention was that an antiestrogen would increase bone loss and atherosclerosis. Laboratory studies with tamoxifen and keoxifene (subsequently named raloxifene) demonstrated that 'nonsteroidal antiestrogens' maintained bone density, and this translated into successful clinical trials with tamoxifen at UWCCC. However, tamoxifen also increased endometrial cancer growth; this discovery in the laboratory translated into changes in clinical care. Selective estrogen receptor modulators (SERMs) were born at UWCCC. CONCLUSIONS There are now five US FDA-approved SERMs, all with discovery origins at UWCCC. Women's health was revolutionized as SERMs have the ability to treat multiple diseases by switching target sites around a woman's body on or off.
Collapse
Affiliation(s)
- V Craig Jordan
- Dallas/Fort Worth Living Legend Chair of Cancer Research, Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Furman C, Hao MH, Prajapati S, Reynolds D, Rimkunas V, Zheng GZ, Zhu P, Korpal M. Estrogen Receptor Covalent Antagonists: The Best Is Yet to Come. Cancer Res 2019; 79:1740-1745. [PMID: 30952631 DOI: 10.1158/0008-5472.can-18-3634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 11/16/2022]
Abstract
The development of tamoxifen and subsequent estrogen receptor alpha (ERα) antagonists represents a tremendous therapeutic breakthrough in the treatment of breast cancer. Despite the ability of ERα antagonists to increase survival rates, resistance to these therapies is an all-too-common occurrence. The majority of resistant tumors, including those with hotspot mutations in the ligand-binding domain of ERα, remain dependent on ERα signaling, indicating that either a more potent or novel class of antagonist could have clinical benefit. With this thought in mind, we developed a novel ERα antagonist that exhibits enhanced potency due to its ability to covalently target a unique cysteine in ER. This review describes the design of this antagonist, H3B-5942, and discusses opportunities for future improvements, which could reduce the risk of escape mutations to this therapeutic modality.
Collapse
Affiliation(s)
| | | | | | | | | | - Guo Z Zheng
- H3 Biomedicine, Inc., Cambridge, Massachusetts
| | - Ping Zhu
- H3 Biomedicine, Inc., Cambridge, Massachusetts.
| | | |
Collapse
|
6
|
|
7
|
Abderrahman B, Jordan VC. Successful Targeted Therapies for Breast Cancer: the Worcester Foundation and Future Opportunities in Women's Health. Endocrinology 2018; 159:2980-2990. [PMID: 29931061 PMCID: PMC6963694 DOI: 10.1210/en.2018-00263] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/11/2018] [Indexed: 01/13/2023]
Abstract
The signing of the National Cancer Act in 1971 was designed to take laboratory discoveries rapidly from the bench to the bedside. A "war on cancer" had been declared. Combination cytotoxic chemotherapy was predicted to cure all cancers, based on the stunning success in treating childhood leukemia. Breast cancer treatments were primitive; radical mastectomy and radiation were standard of care for disease that had not spread. Ablative endocrine surgery (oophorectomy, hypophysectomy, and adrenalectomy) was a palliative last option for metastatic breast cancer. However, only 30% responded, surviving for only 1 or 2 years: every patient soon died. The discovery of the estrogen receptor (ER) and translation to breast cancer treatment triggered a revolution in women's health. Two important but interconnected events occurred in 1972 at the Worcester Foundation for Experimental Biology (WFEB) that would exploit the breast tumor ER as the first target to save lives and prevent breast cancer development. Two new groups of medicines-selective ER modulators (SERMs) and aromatase inhibitors (AIs)-would continue the momentum of research at the WFEB to improve women's health. Here, we recount the important progress made in women's health based on knowledge of the endocrinology of breast cancer. We propose future opportunities in SERM therapeutics to "refresh" the current standards of care for breast cancer treatment. The opportunity is based on emerging knowledge about acquired resistance to long-term adjuvant AI therapy used to treat breast cancer.
Collapse
Affiliation(s)
- Balkees Abderrahman
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
| | - V Craig Jordan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas
- Correspondence: V. Craig Jordan, PhD, Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, 1515 Holcombe Street, Unit 1354, Houston, Texas 77030. E-mail:
| |
Collapse
|
8
|
Katzenellenbogen JA, Mayne CG, Katzenellenbogen BS, Greene GL, Chandarlapaty S. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat Rev Cancer 2018; 18:377-388. [PMID: 29662238 PMCID: PMC6252060 DOI: 10.1038/s41568-018-0001-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oestrogen receptor-α (ERα), a key driver of breast cancer, normally requires oestrogen for activation. Mutations that constitutively activate ERα without the need for hormone binding are frequently found in endocrine-therapy-resistant breast cancer metastases and are associated with poor patient outcomes. The location of these mutations in the ER ligand-binding domain and their impact on receptor conformation suggest that they subvert distinct mechanisms that normally maintain the low basal state of wild-type ERα in the absence of hormone. Such mutations provide opportunities to probe fundamental issues underlying ligand-mediated control of ERα activity. Instructive contrasts between these ERα mutations and those that arise in the androgen receptor (AR) during anti-androgen treatment of prostate cancer highlight differences in how activation functions in ERs and AR control receptor activity, how hormonal pressures (deprivation versus antagonism) drive the selection of phenotypically different mutants, how altered protein conformations can reduce antagonist potency and how altered ligand-receptor contacts can invert the response that a receptor has to an agonist ligand versus an antagonist ligand. A deeper understanding of how ligand regulation of receptor conformation is linked to receptor function offers a conceptual framework for developing new anti-oestrogens that might be more effective in preventing and treating breast cancer.
Collapse
Affiliation(s)
| | - Christopher G Mayne
- Beckman Institute for Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Benita S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Geoffrey L Greene
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Bhattacharya P, Abderrahman B, Jordan VC. Opportunities and challenges of long term anti-estrogenic adjuvant therapy: treatment forever or intermittently? Expert Rev Anticancer Ther 2017; 17:297-310. [PMID: 28281842 DOI: 10.1080/14737140.2017.1297233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Extended adjuvant (5-10 years) therapy targeted to the estrogen receptor (ER) has significantly decreased mortality from breast cancer (BC). Areas covered: Translational research advanced clinical testing of extended adjuvant therapy with tamoxifen or aromatase inhibitors (AIs). Short term therapy or non-compliance increase recurrence, but surprisingly recurrence and death does not increase dramatically after 5 years of adjuvant therapy stops. Expert commentary: Compliance ensures optimal benefit from extended antihormone adjuvant therapy.Retarding acquired resistance using CDK4/6 or mTOR inhibitors is discussed. Preventing acquired resistance from mutations of ER could be achieved with Selective ER Downregulators (SERDs), eg fulvestrant. Fulvestrant is a depot injectable so oral SERDs are sought for extended use. In reality, a 'super SERD' which destroys ER but improves women's health like a Selective ER Modulator (SERM), would aid compliance to prevent recurrence and death. Estrogen-induced apoptosis occurs in 30% of BC with antihormone resistance. The 'one in three' rule that dictates that one in three unselected patients respond to either hormonal or antihormonal therapy in BC occurs with estrogen or antiestrogen therapy and must be improved. The goal is to maintain patients for their natural lives by blocking cancer cell survival through precision medicine using short cycles of estrogen apoptotic salvage therapy, and further extended antihormone maintenance.
Collapse
Affiliation(s)
- Poulomi Bhattacharya
- a Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Balkees Abderrahman
- a Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - V Craig Jordan
- a Department of Breast Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
10
|
Fan P, Maximov PY, Curpan RF, Abderrahman B, Jordan VC. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy. Mol Cell Endocrinol 2015; 418 Pt 3:245-63. [PMID: 26052034 PMCID: PMC4760743 DOI: 10.1016/j.mce.2015.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/01/2015] [Indexed: 01/04/2023]
Abstract
During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.
Collapse
Affiliation(s)
- Ping Fan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Philipp Y Maximov
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ramona F Curpan
- Institute of Chemistry, Romanian Academy, Timisoara, Romania
| | | | - V Craig Jordan
- Department of Breast Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Jordan VC, Curpan R, Maximov PY. Estrogen receptor mutations found in breast cancer metastases integrated with the molecular pharmacology of selective ER modulators. J Natl Cancer Inst 2015; 107:djv075. [PMID: 25838462 DOI: 10.1093/jnci/djv075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 02/24/2015] [Indexed: 01/11/2023] Open
Abstract
The consistent reports of mutations at Asp538 and Tyr537 in helix 12 of the ligand-binding domain (LBD) of estrogen receptors (ERs) from antihormone-resistant breast cancer metastases constitute an important advance. The mutant amino acids interact with an anchor amino acid, Asp351, to close the LBD, thereby creating a ligand-free constitutively activated ER. Amino acids Asp 538, Tyr 537, and Asp 351 are known to play a role in either the turnover of ER, the antiestrogenic activity of the ER complex, or the estrogen-like actions of selective ER modulators. A unifying mechanism of action for these amino acids to enhance ER gene activation and growth response is presented. There is a range of mutations described in metastases vs low to zero in primary disease, so the new knowledge is of clinical relevance, thereby confirming an additional mechanism of acquired resistance to antihormone therapy through cell population selection pressure and enrichment during treatment. Circulating tumor cells containing ER mutations can be cultured ex vivo, and tumor tissues can be grown as patient-derived xenografts to add a new dimension for testing drug susceptibility for future drug discovery.
Collapse
Affiliation(s)
- V Craig Jordan
- MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX (VCJ, PYM); Institute of Chemistry, Romanian Academy, Timisoara, Romania (RC).
| | - Ramona Curpan
- MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX (VCJ, PYM); Institute of Chemistry, Romanian Academy, Timisoara, Romania (RC)
| | - Philipp Y Maximov
- MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX (VCJ, PYM); Institute of Chemistry, Romanian Academy, Timisoara, Romania (RC)
| |
Collapse
|
12
|
Abstract
The successful use of high-dose synthetic estrogens to treat postmenopausal metastatic breast cancer is the first effective 'chemical therapy' proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) in postmenopausal hysterectomized women, which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen-induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long-term estrogen deprivation. However, estrogen-independent growth occurs through trial and error. At the cellular level, estrogen-induced apoptosis is dependent upon the presence of the estrogen receptor (ER), which can be blocked by nonsteroidal or steroidal antiestrogens. The shape of an estrogenic ligand programs the conformation of the ER complex, which, in turn, can modulate estrogen-induced apoptosis: class I planar estrogens (e.g., estradiol) trigger apoptosis after 24 h, whereas class II angular estrogens (e.g., bisphenol triphenylethylene) delay the process until after 72 h. This contrasts with paclitaxel, which causes G2 blockade with immediate apoptosis. The process is complete within 24 h. Estrogen-induced apoptosis is modulated by glucocorticoids and cSrc inhibitors, but the target mechanism for estrogen action is genomic and not through a nongenomic pathway. The process is stepwise through the creation of endoplasmic reticulum stress and inflammatory responses, which then initiate an unfolded protein response. This, in turn, initiates apoptosis through the intrinsic pathway (mitochondrial) with the subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of rules for the future clinical application of ERT or phytoestrogen supplements: a 5-year gap is necessary after menopause to permit the selection of estrogen-deprived breast cancer cell populations to cause them to become vulnerable to apoptotic cell death. Earlier treatment with estrogen around menopause encourages growth of ER-positive tumor cells, as the cells are still dependent on estrogen to maintain replication within the expanding population. An awareness of the evidence that the molecular events associated with estrogen-induced apoptosis can be orchestrated in the laboratory in estrogen-deprived breast cancers now supports the clinical findings regarding the treatment of metastatic breast cancer following estrogen deprivation, decreases in mortality following long-term antihormonal adjuvant therapy, and the results of treatment with ERT and ERT plus progestin in the Women's Health Initiative for women over the age of 60. Principles have emerged for understanding and applying physiological estrogen therapy appropriately by targeting the correct patient populations.
Collapse
Affiliation(s)
- V Craig Jordan
- Departments of Breast Medical Oncology and Molecular and Cellular OncologyMD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
13
|
Fan P, Craig Jordan V. Acquired resistance to selective estrogen receptor modulators (SERMs) in clinical practice (tamoxifen & raloxifene) by selection pressure in breast cancer cell populations. Steroids 2014; 90:44-52. [PMID: 24930824 PMCID: PMC4192097 DOI: 10.1016/j.steroids.2014.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tamoxifen, a pioneering selective estrogen receptor modulator (SERM), has long been a therapeutic choice for all stages of estrogen receptor (ER)-positive breast cancer. The clinical application of long-term adjuvant antihormone therapy for the breast cancer has significantly improved breast cancer survival. However, acquired resistance to SERM remains a significant challenge in breast cancer treatment. The evolution of acquired resistance to SERMs treatment was primarily discovered using MCF-7 tumors transplanted in athymic mice to mimic years of adjuvant treatment in patients. Acquired resistance to tamoxifen is unique because the growth of resistant tumors is dependent on SERMs. It appears that acquired resistance to SERM is initially able to utilize either E2 or a SERM as the growth stimulus in the SERM-resistant breast tumors. Mechanistic studies reveal that SERMs continuously suppress nuclear ER-target genes even during resistance, whereas they function as agonists to activate multiple membrane-associated molecules to promote cell growth. Laboratory observations in vivo further show that three phases of acquired SERM-resistance exists, depending on the length of SERMs exposure. Tumors with Phase I resistance are stimulated by both SERMs and estrogen. Tumors with Phase II resistance are stimulated by SERMs, but are inhibited by estrogen due to apoptosis. The laboratory models suggest a new treatment strategy, in which limited-duration, low-dose estrogen can be used to purge Phase II-resistant breast cancer cells. This discovery provides an invaluable insight into the evolution of drug resistance to SERMs, and this knowledge is now being used to justify clinical trials of estrogen therapy following long-term antihormone therapy. All of these results suggest that cell populations that have acquired resistance are in constant evolution depending upon selection pressure. The limited availability of growth stimuli in any new environment enhances population plasticity in the trial and error search for survival.
Collapse
Affiliation(s)
- Ping Fan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States
| | - V Craig Jordan
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC 20057, United States.
| |
Collapse
|
14
|
Sengupta S, Obiorah I, Maximov PY, Curpan R, Jordan VC. Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol 2014; 169:167-78. [PMID: 23373633 DOI: 10.1111/bph.12122] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 12/21/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Oestrogen receptor alpha (ERα) binds to different ligand which can function as complete/partial oestrogen-agonist or antagonist. This depends on the chemical structure of the ligands which modulates the transcriptional activity of the oestrogen-responsive genes by altering the conformation of the liganded-ERα complex. This study determined the molecular mechanism of oestrogen-agonistic/antagonistic action of structurally similar ligands, bisphenol (BP) and bisphenol A (BPA) on cell proliferation and apoptosis of ERα + ve breast cancer cells. EXPERIMENTAL APPROACH DNA was measured to assess the proliferation and apoptosis of breast cancer cells. RT-PCR and ChIP assays were performed to quantify the transcripts of TFF1 gene and recruitment of ERα and SRC3 at the promoter of TFF1 gene respectively. Molecular docking was used to delineate the binding modes of BP and BPA with the ERα. PCR-based arrays were used to study the regulation of the apoptotic genes. KEY RESULTS BP and BPA induced the proliferation of breast cancer cells; however, unlike BPA, BP failed to induce apoptosis. BPA consistently acted as an agonist in our studies but BP exhibited mixed agonistic/antagonistic properties. Molecular docking revealed agonistic and antagonistic mode of binding for BPA and BP respectively. BPA treatment resembled E2 treatment in terms of PCR-based regulation of apoptotic genes whereas BP was similar to 4OHT treatment. CONCLUSIONS AND IMPLICATIONS The chemical structure of ERα ligand determines the agonistic or antagonistic biological responses by the virtue of their binding mode, conformation of the liganded-ERα complex and the context of the cellular function.
Collapse
Affiliation(s)
- S Sengupta
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
15
|
Chang M. Tamoxifen resistance in breast cancer. Biomol Ther (Seoul) 2014; 20:256-67. [PMID: 24130921 PMCID: PMC3794521 DOI: 10.4062/biomolther.2012.20.3.256] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 05/29/2012] [Accepted: 04/02/2012] [Indexed: 12/21/2022] Open
Abstract
Tamoxifen is a central component of the treatment of estrogen receptor (ER)-positive breast cancer as a partial agonist of ER. It has been clinically used for the last 30 years and is currently available as a chemopreventive agent in women with high risk for breast cancer. The most challenging issue with tamoxifen use is the development of resistance in an initially responsive breast tumor. This review summarizes the roles of ER as the therapeutic target of tamoxifen in cancer treatment, clinical values and issues of tamoxifen use, and molecular mechanisms of tamoxifen resistance. Emerging knowledge on the molecular mechanisms of tamoxifen resistance will provide insight into the design of regimens to overcome tamoxifen resistance and discovery of novel therapeutic agents with a decreased chance of developing resistance as well as establishing more efficient treatment strategies.
Collapse
Affiliation(s)
- Minsun Chang
- Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| |
Collapse
|
16
|
Peng KW, Chang M, Wang YT, Wang Z, Qin Z, Bolton JL, Thatcher GRJ. Unexpected hormonal activity of a catechol equine estrogen metabolite reveals reversible glutathione conjugation. Chem Res Toxicol 2011; 23:1374-83. [PMID: 20540524 DOI: 10.1021/tx100129h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
4-Hydroxyequilenin (4-OHEN) is a major phase I metabolite of the equine estrogens present in widely prescribed hormone replacement formulations. 4-OHEN is autoxidized to an electrophilic o-quinone that has been shown to redox cycle, generating ROS, and to covalently modify proteins and DNA and thus potentially to act as a chemical carcinogen. To establish the ability of 4-OHEN to act as a hormonal carcinogen at the estrogen receptor (ER), estrogen responsive gene expression and proliferation were studied in ER(+) breast cancer cells. Recruitment by 4-OHEN of ER to estrogen responsive elements (ERE) of DNA in MCF-7 cells was also studied and observed. 4-OHEN was a potent estrogen, with additional weak activity associated with binding to the arylhydrocarbon receptor (AhR). The potency of 4-OHEN toward classical ERalpha mediated activity was unexpected given the reported rapid autoxidation and trapping of the resultant quinone by GSH. Addition of thiols to cell cultures did not attenuate the estrogenic activity of 4-OHEN, and preformed thiol conjugates added to cell incubations only marginally reduced ERE-luciferase induction. On reaction of the 4OHEN-GSH conjugate with NADPH, 4-OHEN was observed to be regenerated at a rate dependent upon NADPH concentration, indicating that intracellular nonenzymatic and enzymatic regeneration of 4-OHEN accounts for the observed estrogenic activity of 4-OHEN. 4-OHEN is therefore capable of inducing chemical and hormonal pathways that may contribute to estrogen-dependent carcinogenesis, and trapping by cellular thiols does not provide a mechanism of termination of these pathways.
Collapse
Affiliation(s)
- Kuan-Wei Peng
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612-7231, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Anorexia nervosa and estrogen: Current status of the hypothesis. Neurosci Biobehav Rev 2010; 34:1195-200. [DOI: 10.1016/j.neubiorev.2010.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/28/2010] [Accepted: 01/29/2010] [Indexed: 01/25/2023]
|
18
|
Maximov PY, Myers CB, Curpan RF, Lewis-Wambi JS, Jordan VC. Structure-function relationships of estrogenic triphenylethylenes related to endoxifen and 4-hydroxytamoxifen. J Med Chem 2010; 53:3273-83. [PMID: 20334368 DOI: 10.1021/jm901907u] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Estrogens can potentially be classified into planar (class I) or nonplanar (class II) categories, which might have biological consequences. 1,1,2-Triphenylethylene (TPE) derivatives were synthesized and evaluated against 17beta-estradiol (E2) for their estrogenic activity in MCF-7 human breast cancer cells. All TPEs were estrogenic and, unlike 4-hydroxytamoxifen (4OHTAM) and Endoxifen, induced cell growth to a level comparable to that of E2. All the TPEs increased ERE activity in MCF-7:WS8 cells with the order of potency as followed: E2 > 1,1-bis(4,4'-hydroxyphenyl)-2-phenylbut-1-ene (15) > 1,1,2-tris(4-hydroxyphenyl)but-1-ene (3) > Z 4-(1-(4-hydroxyphenyl)-1-phenylbut-1-en-2-yl)phenol (7) > E 4-(1-(4-hydroxyphenyl)-1-phenylbut-1-en-2-yl)phenol (6) > Z(4-(1-(4-ethoxyphenyl)-1-(4-hydroxyphenyl)but-1-en-2-yl)phenol (12) > 4-OHTAM. Transient transfection of the ER-negative breast cancer cell line T47D:C4:2 with wild-type ER or D351G ER mutant revealed that all of the TPEs increased ERE activity in the cells expressing the wild-type ER but not the mutant, thus confirming the importance of Asp351 for ER activation by the TPEs. The findings confirm E2 as a class I estrogen and the TPEs as class II estrogens. Using available conformations of the ER liganded with 4OHTAM or diethylstilbestrol, the TPEs optimally occupy the 4OHTAM ER conformation that expresses Asp351.
Collapse
|
19
|
Ramaswamy B, Majumder S, Roy S, Ghoshal K, Kutay H, Datta J, Younes M, Shapiro CL, Motiwala T, Jacob ST. Estrogen-mediated suppression of the gene encoding protein tyrosine phosphatase PTPRO in human breast cancer: mechanism and role in tamoxifen sensitivity. Mol Endocrinol 2008; 23:176-87. [PMID: 19095770 DOI: 10.1210/me.2008-0211] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously demonstrated the tumor suppressor characteristics of protein tyrosine phosphatase receptor-type O (PTPRO) in leukemia and lung cancer, including its suppression by promoter methylation. Here, we show tumor-specific methylation of the PTPRO CpG island in primary human breast cancer. PTPRO expression was significantly reduced in established breast cancer cell lines MCF-7 and MDA-MB-231 due to promoter methylation compared with its expression in normal human mammary epithelial cells (48R and 184). Further, the silenced gene could be demethylated and reactivated in MCF-7 and MDA-MB-231 cells upon treatment with 5-Azacytidine, a DNA hypomethylating agent. Because PTPRO promoter harbors estrogen-responsive elements and 17beta-estradiol (E2) plays a role in breast carcinogenesis, we examined the effect of E2 and its antagonist tamoxifen on PTPRO expression in human mammary epithelial cells and PTPRO-expressing breast cancer cell line Hs578t. Treatment with E2 significantly curtailed PTPRO expression in 48R and Hs578t cells, which was facilitated by ectopic expression of estrogen receptor (ER)beta but not ERalpha. On the contrary, treatment with tamoxifen increased PTPRO expression. Further, knockdown of ERbeta by small interfering RNA abolished these effects of E2 and tamoxifen. Chromatin immunoprecipitation assay showed association of c-Fos and c-Jun with PTPRO promoter in untreated cells, which was augmented by tamoxifen-mediated recruitment of ERbeta to the promoter. Estradiol treatment resulted in dissociation of c-Fos and c-Jun from the promoter. Ectopic expression of PTPRO in the nonexpressing MCF-7 cells sensitized them to growth-suppressive effects of tamoxifen. These data suggest that estrogen-mediated suppression of PTPRO is probably one of the early events in estrogen-induced tumorigenesis and that expression of PTPRO could facilitate endocrine therapy of breast cancer.
Collapse
Affiliation(s)
- Bhuvaneswari Ramaswamy
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
David Kupfer had a passion for drug metabolism and used his talents to understand the putative metabolic activation of the insecticides o, p'DDT and methoxychlor to estrogens. His research helped to create a scientific foundation for the current interest in endocrine disruption. With the increasing clinical significance of tamoxifen in the late 1980s, and the proposal to test tamoxifen as a breast cancer chemopreventive in healthy women, David initiated laboratory studies on the mechanisms of tamoxifen metabolism. He was the first to note that tamoxifen is metabolically activated to alkylating species. Tamoxifen and insecticides covalently bind to microsomal proteins. His contribution presaged worldwide studies of the induction of rat liver carcinogenesis by tamoxifen.
Collapse
|
21
|
|
22
|
Jordan VC, O'Malley BW. Selective Estrogen-Receptor Modulators and Antihormonal Resistance in Breast Cancer. J Clin Oncol 2007; 25:5815-24. [PMID: 17893378 DOI: 10.1200/jco.2007.11.3886] [Citation(s) in RCA: 226] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Selective estrogen-receptor (ER) modulators (SERMs) are synthetic nonsteroidal compounds that switch on and switch off target sites throughout the body. Tamoxifen, the pioneering SERM, blocks estrogen action by binding to the ER in breast cancers. Tamoxifen has been used ubiquitously in clinical practice during the last 30 years for the treatment of breast cancer and is currently available to reduce the risk of breast cancer in high-risk women. Raloxifene maintains bone density (estrogen-like effect) in postmenopausal osteoporotic women, but at the same time reduces the incidence of breast cancer in both high- and low-risk (osteoporotic) postmenopausal women. Unlike tamoxifen, raloxifene does not increase the incidence of endometrial cancer. Clearly, the simple ER model of estrogen action can no longer be used to explain SERM action at different sites around the body. Instead, a new model has evolved on the basis of the discovery of protein partners that modulate estrogen action at distinct target sites. Coactivators are the principal players that assemble a complex of functional proteins around the ligand ER complex to initiate transcription of a target gene at its promoter site. A promiscuous SERM ER complex creates a stimulatory signal in growth factor receptor–rich breast or endometrial cancer cells. These events cause drug-resistant, SERM-stimulated growth. The sometimes surprising pharmacology of SERMs has resulted in a growing interest in the development of new selective medicines for other members of the nuclear receptor superfamily. This will allow the precise treatment of diseases that was previously considered impossible.
Collapse
Affiliation(s)
- V Craig Jordan
- Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111-2497, USA.
| | | |
Collapse
|
23
|
Chang M, Peng KW, Kastrati I, Overk CR, Qin ZH, Yao P, Bolton JL, Thatcher GRJ. Activation of estrogen receptor-mediated gene transcription by the equine estrogen metabolite, 4-methoxyequilenin, in human breast cancer cells. Endocrinology 2007; 148:4793-802. [PMID: 17584965 DOI: 10.1210/en.2006-1568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
4-Methoxyequilenin (4-MeOEN) is an O-methylated metabolite in equine estrogen metabolism. O-methylation of catechol estrogens is considered as a protective mechanism; however, comparison of the properties of 4-MeOEN with estradiol (E(2)) in human breast cancer cells showed that 4-MeOEN is a proliferative, estrogenic agent that may contribute to carcinogenesis. 4-MeOEN results from O-methylation of 4-hydroxyequilenin, a major catechol metabolite of the equine estrogens present in hormone replacement therapeutics, which causes DNA damage via quinone formation, raising the possibility of synergistic hormonal and chemical carcinogenesis. 4-MeOEN induced cell proliferation with nanomolar potency and induced estrogen response element (ERE)-mediated gene transcription of an ERE-luciferase reporter and the endogenous estrogen-responsive genes pS2 and TGF-alpha. These estrogenic actions were blocked by the antiestrogen ICI 182,780. In the standard radioligand estrogen receptor (ER) binding assay, 4-MeOEN showed very weak binding. To test for alternate ligand-ER-independent mechanisms, the possibility of aryl hydrocarbon receptor (AhR) binding and ER-AhR cross talk was examined using a xenobiotic response element-luciferase reporter and using AhR small interfering RNA silencing in the ERE-luciferase reporter assay. The results negated the possibility of AhR-mediated estrogenic activity. Comparison of gene transcription time course, ER degradation, and rapid activation of MAPK/ERK in MCF-7 cells demonstrated that the actions of 4-MeOEN mirrored those of E(2) with potency for classical and nonclassical estrogenic pathways bracketing that of E(2). Methylation of 4-OHEN may not represent a detoxification pathway because 4-MeOEN is a full, potent estrogen agonist.
Collapse
Affiliation(s)
- Minsun Chang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Green KA, Carroll JS. Oestrogen-receptor-mediated transcription and the influence of co-factors and chromatin state. Nat Rev Cancer 2007; 7:713-22. [PMID: 17721435 DOI: 10.1038/nrc2211] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oestrogen receptor-alpha (ERalpha)-regulated transcription in breast cancer cells involves protein co-factors that contribute to the regulation of chromatin structure. These include co-factors with the potential to regulate histone modifications such as acetylation or methylation, and therefore the transcriptional state of target genes. Although much of the information regarding the interaction of specific co-factors with ER has been generated by studying specific promoter regions, we now have an improved understanding of the nature of these interactions and are better placed to relate these with ER activity and potentially with the activity of breast cancer drugs, including tamoxifen.
Collapse
Affiliation(s)
- Kelly A Green
- Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | | |
Collapse
|
25
|
Heldring N, Pawson T, McDonnell D, Treuter E, Gustafsson JA, Pike ACW. Structural insights into corepressor recognition by antagonist-bound estrogen receptors. J Biol Chem 2007; 282:10449-55. [PMID: 17283072 DOI: 10.1074/jbc.m611424200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct recruitment of transcriptional corepressors to estrogen receptors (ER) is thought to contribute to the tissue-specific effects of clinically important ER antagonists. Here, we present the crystal structures of two affinity-selected peptides in complex with antagonist-bound ERalpha ligand-binding domain. Both peptides adopt helical conformations, bind along the activation function 2 coregulator interaction surface, and mimic corepressor (CoRNR) sequence motif binding. Peptide binding is weak in a wild-type context but significantly enhanced by removal of ER helix 12. This region contains a previously unrecognized CoRNR motif that is able to compete with corepressors for binding to activation function 2, thereby providing a structural explanation for the poor ability of ER to directly interact with classical corepressors. Furthermore, the ability of other sequence motifs to mimic corepressor binding raises the possibility that coregulators do not necessarily require CoRNR motifs for direct recruitment to antagonist-bound ER.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Biosciences and Nutrition, Karolinska Institutet, S-14157 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
26
|
Blackhall FH, Howell S, Newman B. Pharmacogenetics in the Management of Breast Cancer – Prospects for Individualised Treatment. Fam Cancer 2006; 5:151-7. [PMID: 16736284 DOI: 10.1007/s10689-005-3241-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 02/25/2005] [Indexed: 11/24/2022]
Abstract
Increased understanding of how variants in genes encoding metabolising enzymes, transporters and receptors affect drug efficacy and toxicity, in parallel with advances in genotyping technology means that clinical pharmacogenetics is drawing tantalisingly close to reality. This review considers some of the pharmacogenetic variants that have been described that are relevant to the management of women with breast cancer and how these may soon translate into clinical practice.
Collapse
Affiliation(s)
- Fiona H Blackhall
- Department of Medical Oncology, Christie Hospital NHS Trust, M20 2BX, Manchester, UK
| | | | | |
Collapse
|
27
|
Zhao C, Abrams J, Skafar DF. Targeted mutation of key residues at the start of helix 12 in the hERalpha ligand-binding domain identifies the role of hydrogen-bonding and hydrophobic interactions in the activity of the protein. J Steroid Biochem Mol Biol 2006; 98:1-11. [PMID: 16191480 DOI: 10.1016/j.jsbmb.2005.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 06/30/2005] [Indexed: 11/21/2022]
Abstract
Estradiol (E(2)) and tamoxifen exert their effects through two members of the nuclear receptor superfamily, estrogen receptor (ER)-alpha and -beta. We want to identify the key interactions linking ligand-binding and activity of the ERalpha. Asp-351 and Leu-536 participate in hydrogen bond (Asp-351) and hydrophobic (Leu-536) interactions at the start of helix 12 in the ligand-binding domain (LBD) of the ERalpha. Mutations at each position alter ER activity, but we do not know which is more important. We mutated these residues in combination and individually and assessed the activity of the mutated ERs in the absence and presence of E(2) and 4-OHT on an ERE-driven and an AP-1-driven promoter, as well as their ability to interact with coregulators. On an ERE-driven promoter, the residue at position 351 determined whether E(2) stimulated or reduced the activity of the ER, as well as the level of activity in the presence of 4-OHT. Surprisingly, mutation of both residues generally did not produce cumulative deleterious effects, and they exerted counterbalancing effects on the basal activity on both promoters. Our results identify the contributions of specific interactions to the activity of the hERalpha, and support the concept that this region couples ligand-binding with ER activity.
Collapse
Affiliation(s)
- Changqing Zhao
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201-1928, USA
| | | | | |
Collapse
|
28
|
Lewis JS, Jordan VC. Selective estrogen receptor modulators (SERMs): mechanisms of anticarcinogenesis and drug resistance. Mutat Res 2005; 591:247-63. [PMID: 16083919 DOI: 10.1016/j.mrfmmm.2005.02.028] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 02/10/2005] [Accepted: 02/12/2005] [Indexed: 05/03/2023]
Abstract
Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17beta-estradiol (E(2)), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ERalpha or ERbeta, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.
Collapse
Affiliation(s)
- Joan S Lewis
- Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
29
|
Hess-Wilson JK, Boldison J, Weaver KE, Knudsen KE. Xenoestrogen action in breast cancer: impact on ER-dependent transcription and mitogenesis. Breast Cancer Res Treat 2005; 96:279-92. [PMID: 16328721 DOI: 10.1007/s10549-005-9082-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2005] [Accepted: 09/16/2005] [Indexed: 11/26/2022]
Abstract
Several estrogen mimics (xenoestrogens) inappropriately activate the estrogen receptor (ER) in the absence of endogenous ligand. Given the importance of the ER in breast cancer growth and regulation, delineating the impact of these agents under conditions related to tumor treatment is of significant importance. We examined the effect of two prevalent xenoestrogens (bisphenol A and coumestrol) on ER activation and ER-dependent mitogenesis in breast cancer cells. We show that the ability of these agents to induce mitogenesis was restricted to conditions of estrogen depletion, and that these agents failed to cooperate with estradiol to induce MCF-7 breast cancer cell growth. These observations are consistent with the impact of each agent specifically on exogenous ER activation as monitored in HeLa cells, wherein the xenoestrogens activated the receptor in the absence of estradiol but failed to cooperate with estrogen. Tamoxifen blocked bisphenol A and coumestrol-mediated ER activation, indicating that exposure to these agents is unlikely to disrupt such therapeutic intervention. The response of tumor-derived ER alleles to these xenoestrogens was also examined. Although the xenoestrogens failed to alter ER-Y537S function, the ER-D351Y mutant demonstrated an enhanced response to bisphenol A. Moreover, tamoxifen enhanced the agonistic effects of xenoestrogens on ER-D351Y. Lastly, we examined the impact of ER co-activator overexpression on xenoestrogen response. Bisphenol A and coumestrol exhibited differential responses to co-activators with regard to ER activation. However, when using mitogenesis as an endpoint, these co-activators were insufficient to provide a significant growth advantage. Combined, these data demonstrate that bisphenol A and coumestrol can impact ER activity and ER-dependent proliferation in breast cancer cells, but the influence of these agents is restricted to conditions of estrogen depletion, selective mutation of the ER, and expression of specific co-activators.
Collapse
Affiliation(s)
- J K Hess-Wilson
- Department of Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, 45267-0521, USA
| | | | | | | |
Collapse
|
30
|
Abstract
Nuclear receptors modulate transcription through ligand-mediated recruitment of transcriptional coregulator proteins. The structural connection between ligand and coregulator is mediated by a molecular switch, made up of the most carboxy-terminal helix in the ligand-binding domain, helix 12. The dynamics of this switch are thought to underlie ligand specificity of nuclear receptor signaling, but the details of this control mechanism have remained elusive. This review highlights recent structural work on how the ligand controls this molecular switch and the modulation of this signaling pathway by receptor subtype and dimer partner.
Collapse
Affiliation(s)
- Kendall W Nettles
- The University of Chicago, The Ben May Institute for Cancer Research, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
31
|
Abstract
As early as the 1800s, the actions of estrogen have been implicated in the development and progression of breast cancer. The estrogen receptor (ER) was identified in the late 1950s and purified a few years later. However, it was not until the 1980s that the first ER was molecularly cloned, and in the mid 1990s, a second ER was cloned. These two related receptors are now called ERalpha and ERbeta, respectively. Since their discovery, much research has focused on identifying alterations within the coding sequence of these receptors in clinical samples. As a result, a large number of naturally occurring splice variants of both ERalpha and ERbeta have been identified in normal epithelium and diseased or cancerous tissues. In contrast, only a few point mutations have been identified in human patient samples from a variety of disease states, including breast cancer, endometrial cancer, and psychiatric diseases. To elucidate the mechanism of action for these variant isoforms or mutant receptors, experimental mutagenesis has been used to analyze the function of distinct amino acid residues in the ERs. This review will focus on ERalpha and ERbeta alterations in breast cancer.
Collapse
Affiliation(s)
- Matthew H Herynk
- Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | |
Collapse
|
32
|
Freddie CT, Christensen GL, Lykkesfeldt AE. A new MCF-7 breast cancer cell line resistant to the arzoxifene metabolite desmethylarzoxifene. Mol Cell Endocrinol 2004; 220:97-107. [PMID: 15196704 DOI: 10.1016/j.mce.2004.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2003] [Revised: 03/11/2004] [Accepted: 03/17/2004] [Indexed: 02/07/2023]
Abstract
The development of resistance in tamoxifen-treated breast cancer patients and the estrogenic side effects of tamoxifen have lead to the design of many new drugs. The new SERM arzoxifene and its active metabolite desmethylarzoxifene (ARZm) inhibits growth of breast cancer cells and has less estrogenic effects than tamoxifen on gene expression. A cell line with acquired resistance to ARZm (MCF-7/ARZm(R)-1) was established from MCF-7 cells. MCF-7/ARZm(R)-1 cells responded to treatment with tamoxifen and the pure antiestrogen ICI 182,7870. The estrogen receptor alpha (ERalpha) level in MCF-7/ARZm(R)-1 cells was lower than in MCF-7 cells due to a destabilization of the receptor by ARZm. A significant reduction in the mRNA and protein level of some estrogen-regulated genes was observed in MCF-7/ARZm(R)-1 compared to MCF-7. However, both the level of the ERalpha and several ER-regulated gene products increased towards parental MCF-7 level upon withdrawal from ARZm, concomitant with an increase in the sensitivity of MCF-7/ARZm(R)-1 cells to ARZm treatment. These data show that ARZm resistant cells remain sensitive to treatment with both tamoxifen and to ICI 182,780. Furthermore, the partial reversion to ARZm sensitivity upon withdrawal of the SERM suggests that patients may benefit from a rechallenge with ARZm.
Collapse
Affiliation(s)
- Cecilie T Freddie
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, DK-2100 Copenhagen Ø, Denmark
| | | | | |
Collapse
|
33
|
Heldring N, Nilsson M, Buehrer B, Treuter E, Gustafsson JA. Identification of tamoxifen-induced coregulator interaction surfaces within the ligand-binding domain of estrogen receptors. Mol Cell Biol 2004; 24:3445-59. [PMID: 15060164 PMCID: PMC381632 DOI: 10.1128/mcb.24.8.3445-3459.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tamoxifen is a selective estrogen receptor (ER) modulator that is clinically used as an antagonist to treat estrogen-dependent breast cancers but displays unwanted agonistic effects in other tissues. Previous studies on ERalpha have delineated a role of the N-terminal activation function AF-1 in mediating the agonistic effects of tamoxifen, while the mechanisms for how ERbeta mediates tamoxifen action remain to be elucidated. As peptides can be used to detect distinct receptor conformations and binding surfaces for coactivators and corepressors, we attempted in this study to identify previously unrecognized peptides that interact specifically with ERs in the presence of tamoxifen. We identified two distinct peptides among others that are highly selective for tamoxifen-bound ERalpha or ERbeta. Domain mapping and mutation analysis suggest that these peptides recognize a novel tamoxifen-induced binding surface within the C-terminal ligand-binding domain that is distinct from the agonist-induced AF-2 surface. Peptide expression specifically inhibited transcriptional ER activity in response to tamoxifen, presumably by preventing the binding of endogenous coactivators. Moreover, tamoxifen-responsive and ER subtype-selective coactivators were engineered by replacing the LXXLL motifs in the coactivator TIF2 with either of the two peptides. Finally, our results indicate that related coactivators may act via the novel tamoxifen-induced binding surface, referred to as AF-T, allowing us to propose a revised model of tamoxifen agonism.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Biosciences at Novum, Karolinska Institutet, S-14157 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
34
|
Gehm BD, Levenson AS, Liu H, Lee EJ, Amundsen BM, Cushman M, Jordan VC, Jameson JL. Estrogenic effects of resveratrol in breast cancer cells expressing mutant and wild-type estrogen receptors: role of AF-1 and AF-2. J Steroid Biochem Mol Biol 2004; 88:223-34. [PMID: 15120416 DOI: 10.1016/j.jsbmb.2003.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 12/04/2003] [Indexed: 11/19/2022]
Abstract
Resveratrol, a hydroxystilbene found in grapes and wine, has previously been shown to be a non-flavonoid phytoestrogen, and to act as an estrogen receptor (ER) superagonist in MCF-7 cells transiently transfected with estrogen-responsive reporter constructs. Several additional hydroxystilbenes, including diethylstilbestrol (DES) and piceatannol, were tested, and all showed ER agonism or partial agonism, but superagonism was specific to resveratrol. Moreover, superagonism was observed in cells carrying a stably integrated reporter gene, indicating that this phenomenon is not a result of transient transfection. To examine the role of the transcriptional activation function (AF) domains of ERalpha in resveratrol agonism, we compared the effects of resveratrol and estradiol (E2) on expression of exogenous reporter genes and an endogenous estrogen-regulated gene (TGFalpha) in MDA-MB-231 cells stably transfected with wild-type (wt) ERalpha or mutants with deleted or mutated AF domains. In reporter gene assays, cells expressing wtERalpha showed a superagonistic response to resveratrol. Deletion of AF-1 or mutation of AF-2 attenuated the effect of resveratrol disproportionately compared to that of E2, while deletion of AF-2 abrogated the response to both ligands. In TGFalpha expression assays, resveratrol acted as a full agonist in cells expressing wtERalpha. Deletion of AF-1 attenuated stimulation by E2 more severely than that by resveratrol, as did deletion of AF-2. In contrast, mutation of AF-2 left both ligands with a limited ability to induced TGFalpha expression. In summary, the effect of modifying or deleting AF domains depends strongly on the ligand and the target gene.
Collapse
Affiliation(s)
- Barry D Gehm
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Levenson AS, Gehm BD, Pearce ST, Horiguchi J, Simons LA, Ward JE, Jameson JL, Jordan VC. Resveratrol acts as an estrogen receptor (ER) agonist in breast cancer cells stably transfected with ER alpha. Int J Cancer 2003; 104:587-96. [PMID: 12594813 DOI: 10.1002/ijc.10992] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Resveratrol (Res) is a phytoestrogen found in grapes and present in red wine. Res has been shown to function as an estrogen receptor (ER) agonist, but it remains unclear whether it may also exert antagonist activity. Our aim was to study the effects of Res at both the molecular (TGFalpha gene activation) and the cellular (cell growth) levels in breast cancer cells stably transfected with wild-type (wt) ER(D351) and mutant (mut) ER (D351Y). TGFalpha mRNA induction was used as a specific marker of estradiol (E(2)) responsiveness. Res caused a concentration-dependent (10(-8)-10(-4) M) stimulation of TGFalpha mRNA, indicating that it acts as an estrogen agonist in these cell lines. The pure antiestrogen ICI 182,780 (ICI) blocked Res-induced activation of TGFalpha, consistent with action through an ER-mediated pathway. Further studies that combined treatments with E(2) and Res showed that Res does not act as an antagonist in the presence of various (10(-11)-10(-8) M) concentrations of E(2). To determine whether Res can be classified as a type I or type II estrogen (Jordan et al., Cancer Res 2001;61:6619-23,), we examined Res with the D351G ER in the TGFalpha assay and found that Res belongs to the type I estrogens. Both Res and E(2) had concentration-dependent growth inhibitory effects in cells expressing wtER and D351Y ER. Although the pure antiestrogen ICI blocked the growth inhibitory effects of E(2), it did not block the inhibitory effects of Res, suggesting that the antiproliferative effects of Res also involve ER-independent pathways. Interestingly, Res differentially affected the levels of ER protein in these 2 cell lines: Res down-regulated wtER levels while significantly up-regulating the amount of mutD351Y ER. Co-treatment with ICI resulted in strongly reduced ER levels in both cell lines. Gene array studies revealed Res-induced up-regulation of more than 80 genes, among them a profound activation of p21(CIP1)/WAF1, a gene associated with growth arrest. The p21(CIP1)/WAF1 protein levels measured by Western blotting confirmed Res-induced significant up-regulation of this protein in both cell lines. In summary, Res acts as an ER agonist at low doses but also activates ER-independent pathways, some of which inhibit cell growth.
Collapse
Affiliation(s)
- Anait S Levenson
- Robert H Lurie Comprehensive Cancer Center, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Jordan VC. Antiestrogens and selective estrogen receptor modulators as multifunctional medicines. 1. Receptor interactions. J Med Chem 2003; 46:883-908. [PMID: 12620065 DOI: 10.1021/jm020449y] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V Craig Jordan
- Robert H. Lurie Comprehensive Cancer Center, The Feinberg School of Medicine of Northwestern University, 303 East Chicago Avenue, MS N505, Chicago, Illinois 60611, USA
| |
Collapse
|
37
|
Levenson AS, Kliakhandler IL, Svoboda KM, Pease KM, Kaiser SA, Ward JE, Jordan VC. Molecular classification of selective oestrogen receptor modulators on the basis of gene expression profiles of breast cancer cells expressing oestrogen receptor alpha. Br J Cancer 2002; 87:449-56. [PMID: 12177783 PMCID: PMC2376139 DOI: 10.1038/sj.bjc.6600477] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 02/27/2002] [Accepted: 05/27/2002] [Indexed: 11/09/2022] Open
Abstract
The purpose of this study was to classify selective oestrogen receptor modulators based on gene expression profiles produced in breast cancer cells expressing either wtERalpha or mutant(351)ERalpha. In total, 54 microarray experiments were carried out by using a commercially available Atlas cDNA Expression Arrays (Clontech), containing 588 cancer-related genes. Nine sets of data were generated for each cell line following 24 h of treatment: expression data were obtained for cells treated with vehicle EtOH (Control); with 10(-9) or 10(-8) M oestradiol; with 10(-6) M 4-hydroxytamoxifen; with 10(-6) M raloxifene; with 10(-6) M idoxifene, with 10(-6) M EM 652, with 10(-6) M GW 7604; with 5 x 10(-5) M resveratrol and with 10(-6) M ICI 182,780. We developed a new algorithm 'Expression Signatures' to classify compounds on the basis of differential gene expression profiles. We created dendrograms for each cell line, in which branches represent relationships between compounds. Additionally, clustering analysis was performed using different subsets of genes to assess the robustness of the analysis. In general, only small differences between gene expression profiles treated with compounds were observed with correlation coefficients ranged from 0.83 to 0.98. This observation may be explained by the use of the same cell context for treatments with compounds that essentially belong to the same class of drugs with oestrogen receptors related mechanisms. The most surprising observation was that ICI 182,780 clustered together with oestrodiol and raloxifene for cells expressing wtERalpha and clustered together with EM 652 for cells expressing mutant(351)ERalpha. These data provide a rationale for a more precise and elaborate study in which custom made oligonucleotide arrays can be used with comprehensive sets of genes known to have consensus and putative oestrogen response elements in their promoter regions.
Collapse
Affiliation(s)
- A S Levenson
- Robert H Lurie Comprehensive Cancer Center, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, Illinois, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Aliau S, Mattras H, Richard E, Bonnafous JC, Borgna JL. Differential interactions of estrogens and antiestrogens at the 17 beta-hydroxyl or counterpart hydroxyl with histidine 524 of the human estrogen receptor alpha. Biochemistry 2002; 41:7979-88. [PMID: 12069588 DOI: 10.1021/bi0121914] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the role of H524 of the human estrogen receptor alpha (ERalpha) for the binding of various estrogens [estradiol (E(2)), 3-deoxyestradiol (3-dE(2)), and 17beta-deoxyestradiol (17beta-dE(2))] and antiestrogens [4-hydroxytamoxifen (OHT), RU 39 411 (RU), and raloxifene (Ral)], which possess the 17beta-hydroxyl or counterpart hydroxyl (designated: 17beta/c-OH), with the exception of 17beta-dE(2) and OHT. The work involved a comparison of the binding affinities of these ligands for wild-type and H524 mutant ERs, modified or not with diethyl pyrocarbonate (DEPC), a selective histidine reagent. Alanine substitution of H524 did not significantly change the association affinity constant (relative to OHT) of 17beta-dE(2), whereas those of RU, Ral, E(2), and 3-dE(2) were decreased 3-fold, 14-fold, 24-fold, and 49-fold, respectively. Values of the two ligands available in radiolabeled form (E(2) and OHT) were correlated with the dissociation rate constants, which were increased 250-fold and 2-fold, respectively. The action of DEPC on wild-type ER led to a homogeneous ER population which still bound antiestrogens and 17beta-dE(2) with practically unchanged affinities (less than 4-fold decreases in relative affinity constants), while E(2) and 3-dE(2) displayed markedly decreased affinities (56-fold decrease for E(2)). Conversely, DEPC treatment of H524A mutant ER did not induce marked decreases in the relative affinities of any of the checked compounds (decreases </=3-fold). All of these effects appeared to involve H524 as the H516A mutant behaved as wild-type ER. These combined data relative to mutated or DEPC-modified ER converged to support that the interaction of 17beta/c-OH of ER ligands with H524 is strong for estrogens and weaker for antiestrogens, with quantitative or qualitative differences between the binding modes of the latter, as illustrated by RU and Ral. The abilities of E(2) and OHT to protect the various ER types against inactivation by DEPC were strikingly different: OHT totally prevented the effect of DEPC on wild-type, H516A, and H524A ERs, while E(2) only partially protected wild-type and H516A ERs (H516A ER > wild-type ER) and very weakly protected H524A ER. Molecular modeling was tentatively used to interpret the biochemical results.
Collapse
Affiliation(s)
- Sigrid Aliau
- INSERM U.439, 70 rue de Navacelles, 34090 Montpellier, France
| | | | | | | | | |
Collapse
|
40
|
O'Regan RM, Jordan VC. The evolution of tamoxifen therapy in breast cancer: selective oestrogen-receptor modulators and downregulators. Lancet Oncol 2002; 3:207-14. [PMID: 12067682 DOI: 10.1016/s1470-2045(02)00711-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tamoxifen is the most widely used hormonal treatment for all stages of breast cancer and has been approved for the prevention of breast cancer in high-risk women. The observation that tamoxifen acts as an antioestrogen on the breast but has paradoxical oestrogenic effects on bones and lipids heralded the development of the selective oestrogen-receptor modulators (SERM). Raloxifene, another of these drugs, is being used to prevent osteoporosis in postmenopausal women, but it seems, like tamoxifen, to prevent breast cancer. The molecular basis for these target-site-specific actions remains unclear but may involve the relative expressions of coregulatory proteins in target tissues. Several new SERM agents are in clinical development in an attempt to decrease the unwanted effects. Furthermore, two different classes of hormonal agents, the aromatase inhibitors and oestrogen-receptor downregulators, which have no oestrogen-like properties at any site, are promising new treatments for breast cancer.
Collapse
Affiliation(s)
- Ruth M O'Regan
- Robert H Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
41
|
Liu H, Park WC, Bentrem DJ, McKian KP, Reyes ADL, Loweth JA, Schafer JM, Zapf JW, Jordan VC. Structure-function relationships of the raloxifene-estrogen receptor-alpha complex for regulating transforming growth factor-alpha expression in breast cancer cells. J Biol Chem 2002; 277:9189-98. [PMID: 11751902 PMCID: PMC3696956 DOI: 10.1074/jbc.m108335200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acid Asp-351 in the ligand binding domain of estrogen receptor alpha (ERalpha) plays an important role in regulating the estrogen-like activity of selective estrogen receptor modulator-ERalpha complexes. 4-Hydroxytamoxifen is a full agonist at a transforming growth factor alpha target gene in situ in MDA-MB-231 human breast cancer cells stably transfected with the wild-type ERalpha. In contrast, raloxifene (Ral), which is also a selective estrogen receptor modulator, is a complete antiestrogen in this system. Because D351G ERalpha allosterically silences activation function-1 activity in the 4-hydroxytamoxifen-ERalpha complex with the complete loss of estrogen-like activity, we examined the converse interaction of amino acid 351 and the piperidine ring of the antiestrogen side chain of raloxifene to enhance estrogen-like action. MDA-MB-231 cells were either transiently or stably transfected with Asp-351 (the wild type), D351E, D351Y, or D351F ERalpha expression vectors. Profound differences in the agonist and antagonist actions of Ralcenter dotERalpha complexes were noted only in stable transfectants. The agonist activity of the Ralcenter dotERalpha complex was enhanced with D351E and D351Y ERalpha, but raloxifene lost its agonist activity with D351F ERalpha. The distance between the piperidine nitrogen of raloxifene and the negative charge of amino acid 351 was critical for estrogen-like actions. The role of the piperidine ring in neutralizing Asp-351 was addressed using compound R1h, a raloxifene derivative replacing the nitrogen on its piperidine ring with a carbon to form cyclohexane. The derivative was a potent agonist with wild type ERalpha. These results support the concept that the side chain of raloxifene shields and neutralizes the Asp-351 to produce an antiestrogenic ERalpha complex. Alteration of either the side chain or its relationship with the negative charge at amino acid 351 controls the estrogen-like action at activating function 2b of the selective estrogen receptor modulator ERalpha complex.
Collapse
Affiliation(s)
- Hong Liu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Woo-Chan Park
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - David J. Bentrem
- Department of Surgery, Northwestern University Medical School, Chicago, Illinois 60611
| | - Kevin P. McKian
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Alexander De Los Reyes
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Jessica A. Loweth
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | - Jennifer MacGregor Schafer
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
| | | | - V. Craig Jordan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611
- To whom correspondence should be addressed: Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Olson Pavilion 8258, 303 E. Chicago Ave., Chicago, IL 60611. Tel.: 312-908-5250; Fax: 312-908-1372;
| |
Collapse
|
42
|
Iino Y. Treatment of tamoxifen-refractory breast cancer--approach by animal models. Breast Cancer 2002; 8:262-4. [PMID: 11791115 DOI: 10.1007/bf02967522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Y Iino
- Department of Emergency and Critical Care Medicine, Gunma University Faculty of Medicine, 3-39-15 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
43
|
Bentrem DJ, O'Regan RM, Jordan VC. New strategies for the treatment of breast cancer. Breast Cancer 2002; 8:265-74. [PMID: 11791116 DOI: 10.1007/bf02967523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D J Bentrem
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
44
|
Jordan VC. Chemoprevention with antiestrogens: the beginning of the end for breast cancer. Daniel G. Miller Lecture. Ann N Y Acad Sci 2001; 952:60-72. [PMID: 11795444 DOI: 10.1111/j.1749-6632.2001.tb02728.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the 1960s, compounds known as nonsteroidal antiestrogens were identified as potential contraceptives, but the drugs caused the induction of ovulation in subfertile women. Tamoxifen and clomiphene were marketed for this indication. However, tamoxifen was advanced for the treatment of breast cancer in the 1970s through a close cooperation between the laboratory and the clinical trials community. The extensive use of long-term adjuvant tamoxifen has resulted in saving the lives of 400,000 women with breast cancer. Tamoxifen is a selective estrogen receptor modulator (SERM) that produces antiestrogenic actions in the breast but estrogen-like actions in bone and lowers serum cholesterol. These properties not only allowed the application of tamoxifen as the first chemopreventive in high-risk pre- and postmenopausal women but also the development of raloxifene to prevent osteoporosis with the potential to prevent breast cancer in postmenopausal women. The future development of SERMs holds the promise of preventing osteoporosis and coronary heart disease as well as breast and endometrial cancer.
Collapse
Affiliation(s)
- V C Jordan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| |
Collapse
|
45
|
Abstract
The recognition of selective estrogen receptor modulation in the mid-1980s provided a unique opportunity to develop multifunctional drugs. Tamoxifen, the first selective estrogen receptor modulator (SERM), is the first antiestrogen to be tested successfully for the prevention of breast cancer in high-risk women. However, the recognition that SERMs maintain bone density and lower circulating cholesterol suggested that the prevention of osteoporosis and coronary heart disease would be beneficial side effects of tamoxifen treatment. This hypothesis has not been pursued in clinical trial, but an alternate hypothesis, that SERMs could be developed to prevent osteoporosis and potentially reduce the risk of breast cancer, has been pursued with raloxifene. Current molecule modeling of the SERM-ER complex has identified the reason for the promiscuous estrogen-like actions of tamoxifen compared with raloxifene. Future studies of the signal transduction pathways of the ER alpha (alpha)- and beta (beta)-SERM complexes hold the promise of new drug discoveries and a menu of preventive medicine in clinical practice.
Collapse
Affiliation(s)
- V C Jordan
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| |
Collapse
|
46
|
Yamamoto Y, Wada O, Suzawa M, Yogiashi Y, Yano T, Kato S, Yanagisawa J. The tamoxifen-responsive estrogen receptor alpha mutant D351Y shows reduced tamoxifen-dependent interaction with corepressor complexes. J Biol Chem 2001; 276:42684-91. [PMID: 11553641 DOI: 10.1074/jbc.m107844200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effects of estrogen and anti-estrogen are mediated through the estrogen receptors ERalpha and beta, which function as ligand-induced transcriptional factors. The nonsteroidal anti-estrogen tamoxifen is the most commonly used endocrine in the treatment of all stages of breast cancer in both pre- and postmenopausal women. Several lines of evidence have indicated that tamoxifen promotes association between ERalpha and corepressors N-CoR or silencing mediator for retinoid and thyroid hormone receptor (SMRT). Our results indicate that N-CoR/SMRT recognize and interact with helices H3 and H5 of the ERalpha ligand-binding domain in a 4-hydroxy tamoxifen-dependent manner. The mutant ERalpha(D351Y), derived from a tamoxifen-stimulated tumor and containing an amino acid substitution at position 351 within H3, showed reduced interaction with N-CoR/SMRT and high tamoxifen-induced activation function-1 (AF-1) activity. While the estradiol-dependent transcriptional activity of ERalpha(D351Y) was almost equal to that of wild-type ERalpha, the mutant exhibited higher levels of transcriptional activity in the presence of both E2 and 4-hydroxy tamoxifen compared with wild-type ERalpha. These results may explain the observation that the growth of tumor cells expressing ERalpha(D351Y) can be stimulated by tamoxifen, E2, or both.
Collapse
Affiliation(s)
- Y Yamamoto
- Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0034, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
re: Tamoxifen withdrawal and oral bisphosphonates – a very effective treatment in metastatic breast cancer. Breast 2001. [DOI: 10.1054/brst.2001.0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
Jordan V. Oestrogen receptors, growth factors and the control of breast cancer. Breast 2001. [DOI: 10.1016/s0960-9776(16)30006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
49
|
MacGregor Schafer J, Liu H, Levenson AS, Horiguchi J, Chen Z, Jordan VC. Estrogen receptor alpha mediated induction of the transforming growth factor alpha gene by estradiol and 4-hydroxytamoxifen in MDA-MB-231 breast cancer cells. J Steroid Biochem Mol Biol 2001; 78:41-50. [PMID: 11530283 DOI: 10.1016/s0960-0760(01)00072-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The selective estrogen receptor modulator, 4-hydroxytamoxifen (4-OHT) is a full agonist at the transforming growth factor (TGF) alpha gene in ER negative breast cancer cells stably transfected with ER alpha cDNA (Levenson et al., Br. J. Cancer 77 (1998) 1812-1819). E(2) and 4-OHT increase TGF alpha mRNA and protein in a concentration dependent manner. The responses to E(2) and 4-OHT are blocked by the pure antiestrogen ICI 182,780, which does not induce TGF alpha. Transfected MDA-MB-231 cells contain functional ER alpha but no ER beta function was detected. Neo transfected cells that did not express ER alpha or cells stably transfected with the DNA binding domain mutant C202R/E203V which prevents gene activation did not induce TGF alpha mRNA after either E(2) or 4-OHT treatment. An examination of the time course for either 10 nM E(2) or 1 microM 4-OHT for MDA-MB-231 cells stably transfected with cDNA for ER alpha showed increases in TGF alpha mRNA within 2 or 3 h respectively. Cells pretreated with cycloheximide (1 microg/ml) showed induced TGF alpha mRNA in response to E(2) or 4-OHT but TGF alpha mRNA induction was blocked by actinomycin D (1 microg/ml). We conclude that both E(2) and 4-OHT induce TGF alpha by direct interaction of ER alpha with DNA and that ER beta is not involved in the estrogen-like response to 4-OHT in the MDA-MB-231 cells.
Collapse
Affiliation(s)
- J MacGregor Schafer
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Olson Pavilion 8258, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
50
|
Bentrem D, Dardes R, Liu H, MacGregor-Schafer J, Zapf J, Jordan V. Molecular mechanism of action at estrogen receptor alpha of a new clinically relevant antiestrogen (GW7604) related to tamoxifen. Endocrinology 2001; 142:838-46. [PMID: 11159857 DOI: 10.1210/endo.142.2.7932] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tamoxifen is the endocrine treatment of choice for all stages of estrogen receptor (ER)-positive breast cancer, and it is the first drug approved to reduce the incidence of breast cancer in high-risk women. Unfortunately, tamoxifen also possesses some estrogen-like effects in the uterus that cause a modest increase in the risk of endometrial cancer. GW5638 is a tamoxifen derivative with a novel carboxylic acid side chain with no uterotropic activity in the rat (Willson et al., J Med Chem, 1994, 37:1550-1552). We have compared and contrasted the actions of 4-hydroxytamoxifen (4-OHT, the active metabolite of tamoxifen) with GW7604 [the presumed metabolite of GW5638 in breast (MCF-7) and endometrial (ECC-1) cell lines in vitro]. GW7604 did not cause the growth of ECC-1 cells at any concentration (10(-11)-10(-6) M), but 4-OHT was weakly estrogen-like at low concentrations (10(-11)-10(-10) M). Compounds (10(-7) M) blocked the growth promoting action of estradiol (10(-10) M) in both ECC-1 and MCF-7 cells. Western blotting was used to show that GW7604 and raloxifene did not affect ER levels significantly, compared with controls, in MCF-7 cells; whereas the pure antiestrogen ICI182,780 decreased ER levels (P < 0.05). An assay system was used that can classify compounds into tamoxifen-like, raloxifene-like, or pure antiestrogens. The assay depends on the activation of the transforming growth factor alpha (TGFalpha) gene in situ by wild-type or D351Y mutant ER stably transfected into MDA-MB-231 cells (MacGregor-Schafer et al., Cancer Res, 1999, 59:4308-4313). GW7604 inhibited both estradiol (10(-9) M) and 4-OHT (10(-8), 10(-7) M) induction of TGFalpha in a concentration related manner (10(-9)-10(-6) M). GW7604 and raloxifene stimulated TGFalpha with the D351Y ER. In contrast, ICI 182,780 (10(-6) M) did not initiate TGFalpha and blocked the induction of TGFalpha with GW7604, raloxifene, and 4-OHT in D351Y-transfected cells. Using computer-assisted molecular models of ER complexes, we found that the antiestrogenic side chain of 4-OHT weakly interacted with the surface amino acid 351 (aspartate), but the carboxylic acid of GW7604 caused a strong repulsion of aspartate 351. We propose that GW7604 is less estrogen-like than 4-OHT, because it disrupts the surface charge around aa351 required for coactivator docking in the 4-OHT:ER complex. This charge is restored in the D351Y ER, thus converting GW7604 from an antiestrogen to an estrogen-like molecule.
Collapse
Affiliation(s)
- D Bentrem
- Department of Surgery, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|