1
|
Guo Q, Xie C, Zi G, Hou G. Enantioselective Synthesis of Chiral 1,5-Benzodiazepin-2-ones by Pd-Catalyzed Asymmetric Hydrogenation and Reductive Amination. Org Lett 2024; 26:8702-8707. [PMID: 39360951 DOI: 10.1021/acs.orglett.4c02932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The enantioselective synthesis of chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones via asymmetric hydrogenation catalyzed by the Pd/f-spiroPhos complex in the presence of hydrochloric acid as an additive has been developed, achieving excellent enantioselectivities and high turnover numbers, up to 99% ee and TON = 4600. More significantly, the asymmetric reductive amination of β-keto esters with 1,2-phenylenediamine has also been successfully realized to afford chiral 4-substituted 4,5-dihydro-1H-[1,5]benzodiazepin-2(3H)-ones with comparable enantioselectivities of up to 99% ee.
Collapse
Affiliation(s)
- Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Modi P, Shah BM, Patel S. Interleukin-1β converting enzyme (ICE): A comprehensive review on discovery and development of caspase-1 inhibitors. Eur J Med Chem 2023; 261:115861. [PMID: 37857145 DOI: 10.1016/j.ejmech.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Caspase-1 is a critical mediator of the inflammatory process by activating various pro-inflammatory cytokines such as pro-IL-1β, IL-18 and IL-33. Uncontrolled activation of caspase-1 leads to various cytokines-mediated diseases. Thus, inhibition of Caspase-1 is considered therapeutically beneficial to halt the progression of such diseases. Currently, rilonacept, canakinumab and anakinra are in use for caspase-1-mediated autoinflammatory diseases. However, the poor pharmacokinetic profile of these peptides limits their use as therapeutic agents. Therefore, several peptidomimetic inhibitors have been developed, but only a few compounds (VX-740, VX-765) have advanced to clinical trials; because of their toxic profile. Several small molecule inhibitors have also been progressing based on the three-dimensional structure of caspase-1. However there is no successful candidate available clinically. In this perspective, we highlight the mechanism of caspase-1 activation, its therapeutic potential as a disease target and potential therapeutic strategies targeting caspase-1 with their limitations.
Collapse
Affiliation(s)
- Palmi Modi
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Bhumi M Shah
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University Ahmedabad - 382 210, Gujarat, India
| | - Shivani Patel
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
3
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
4
|
Chen Q, Zhou X, Han F, Zhang F, Zhao Y. Facile synthesis of novel 3H-1,5-benzodiazepine-derived aryl C-glycosides by coupling of sugar alkynes, acyl chlorides and 1, 2-phenylenediamine. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2045020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qianxia Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Xiang Zhou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Fen Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Fuyi Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yufen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Van Den Hauwe R, Elsocht M, Ballet S, Hollanders C. Efficient Synthesis of Polysubstituted 1,5-Benzodiazepinone Dipeptide Mimetics via an Ugi-4CR-Ullmann Condensation Sequence. Synlett 2021. [DOI: 10.1055/a-1545-2860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAn efficient three-step synthesis towards 3-amino-1,4-benzodiazepin-2-one derivatives is presented. The versatile Ugi-4-component reaction (Ugi-4CR) and Boc deprotection is followed by a ligand-free Ullmann condensation. This protocol allows the rapid construction of a diverse array of substituted 1,5-benzodiazepinones. Since Ugi-based products are typically limited by their ‘inert’ C-terminal amides, the use of a convertible (‘cleavable’) isocyanide was envisaged and resulted in building blocks that can be made SPPS compatible. To demonstrate the potential of this novel synthetic route, the design and preparation of novel phenylurea-1,5-benzodiazepin-4(5H)-one dipeptide mimetics with potential CCK2-antagonist properties is reported.
Collapse
|
6
|
Ettari R, Previti S, Di Chio C, Zappalà M. Falcipain-2 and Falcipain-3 Inhibitors as Promising Antimalarial Agents. Curr Med Chem 2021; 28:3010-3031. [PMID: 32744954 DOI: 10.2174/0929867327666200730215316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/11/2020] [Indexed: 11/22/2022]
Abstract
Malaria remains a serious problem in global public health, particularly widespread in South America and in tropical regions of Africa and Asia. Chemotherapy is actually the only way to treat this poverty-related disease, since an effective vaccine is not currently available. However, the onset of resistance to the most common antimalarial drugs sometimes makes the current therapeutic regimen problematic. Therefore, the identification of new targets for a new drug discovery process is an urgent priority. In this context, falcipain-2 and falcipain- 3 of P. falciparum represent the key enzymes in the life-cycle of the parasite. Both falcipain- 2 and falcipain-3 are involved in hemoglobin hydrolysis, an essential pathway to provide free amino acids for the parasite metabolic needs. In addition, falcipain-2 is involved in cleaving ankirin and band 4.1 protein, which are cytoskeletal elements essential for the stability of the red cell membrane. This review article is focused on the most recent and effective inhibitors of falcipain-2 and falcipain-3, with particular attention to peptide, peptidomimetic or nonpeptide inhibitors, which targeted one or both the malarial cysteine proteases, endowed with a consistent activity against P. falciparum.
Collapse
Affiliation(s)
- Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
7
|
Yang GF, Li GX, Huang J, Fu DQ, Nie XK, Cui X, Zhao JZ, Tang Z. Regioselective, Diastereoselective, and Enantioselective One-Pot Tandem Reaction Based on an in Situ Formed Reductant: Preparation of 2,3-Disubstituted 1,5-Benzodiazepine. J Org Chem 2021; 86:5110-5119. [DOI: 10.1021/acs.joc.0c03064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gao-feng Yang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Jin Huang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Ding-qiang Fu
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xiao-kang Nie
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Jin-zhong Zhao
- College of Art and Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
El Ghayati L, Sert Y, Sebbar NK, Ramli Y, Ahabchane NH, Talbaoui A, Mague JT, El Ibrahimi B, Taha ML, Essassi EM, Al‐Zaqri N, Alsalme A. Syntheses of novel 1,
5‐benzodiazepine
derivatives: Crystal structures, spectroscopic characterizations, Hirshfeld surface analyses, molecular docking studies,
DFT
calculations, corrosion inhibition anticipation, and antibacterial activities. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lhoussaine El Ghayati
- Laboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Faculté des Sciences Mohammed V University in Rabat Rabat Morocco
| | - Yusuf Sert
- Department of Physics Bozok University Yozgat Turkey
| | - Nada Kheira Sebbar
- Laboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Faculté des Sciences Mohammed V University in Rabat Rabat Morocco
- Laboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences Ibn Zohr University Agadir Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy Mohammed V University Rabat Morocco
| | - Noureddine Hamou Ahabchane
- Laboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Faculté des Sciences Mohammed V University in Rabat Rabat Morocco
| | - Ahmed Talbaoui
- Laboratoire de Biologie des Pathologies Humaines, Faculté des Sciences Université Mohammed V Rabat Morocco
| | - Joel T. Mague
- Department of Chemistry Tulane University New Orleans Louisiana USA
| | - Brahim El Ibrahimi
- Applied Chemistry‐Physic Team, Faculty of Sciences University of Ibn Zohr Agadir Morocco
| | - Mohamed Labd Taha
- Laboratory of Chemistry and Environment, Applied Bioorganic Chemistry Team, Faculty of Sciences Ibn Zohr University Agadir Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Medicines Science Research Center, Pharmacochemistry Competence Center, Faculté des Sciences Mohammed V University in Rabat Rabat Morocco
| | - Nabil Al‐Zaqri
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
9
|
Di Chio C, Previti S, Amendola G, Cosconati S, Schirmeister T, Zappalà M, Ettari R. Development of Novel Benzodiazepine‐Based Peptidomimetics as Inhibitors of Rhodesain from
Trypanosoma brucei rhodesiense. ChemMedChem 2020; 15:995-1001. [DOI: 10.1002/cmdc.202000158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/16/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Santo Previti
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Giorgio Amendola
- DiSTABiFUniversity of Campania Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - Sandro Cosconati
- DiSTABiFUniversity of Campania Luigi Vanvitelli Via Vivaldi 43 81100 Caserta Italy
| | - Tanja Schirmeister
- Institute of Pharmaceutical and Biomedical SciencesUniversity of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Maria Zappalà
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Viale Annunziata 98168 Messina Italy
| |
Collapse
|
10
|
Yang Z, Ding Z, Chen F, He YM, Yang N, Fan QH. Asymmetric Hydrogenation of Cyclic Imines of Benzoazepines and Benzodiazepines with Chiral, Cationic Ruthenium-Diamine Catalysts. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700236] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhusheng Yang
- Key Laboratory of Environmentally Friendly Chemistry of the Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan Hunan P. R. China
- CAS Key Laboratory of Molecular Recognition and Function; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Ziyuan Ding
- CAS Key Laboratory of Molecular Recognition and Function; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Fei Chen
- CAS Key Laboratory of Molecular Recognition and Function; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Yan-Mei He
- CAS Key Laboratory of Molecular Recognition and Function; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; 100190 Beijing P. R. China
| | - Nianfa Yang
- Key Laboratory of Environmentally Friendly Chemistry of the Ministry of Education; College of Chemistry; Xiangtan University; 411105 Xiangtan Hunan P. R. China
| | - Qing-Hua Fan
- CAS Key Laboratory of Molecular Recognition and Function; CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry; Chinese Academy of Sciences (CAS), and University of Chinese Academy of Sciences; 100190 Beijing P. R. China
| |
Collapse
|
11
|
Illán-Cabeza NA, Jiménez-Pulido SB, Hueso-Ureña F, Peña-Ruiz T, Quirós-Olozábal M, Moreno-Carretero MN. Interactions between 2,4-bis-pteridine-1,5-benzodiazepine and group 12 dihalides: synthesis, spectral and XRD structural studies and theoretical calculations. Dalton Trans 2016; 45:17896-17909. [PMID: 27775738 DOI: 10.1039/c6dt03583c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2,4-Bis(1,3,7-trimethyl-pteridine-2,4(1H,3H)-dione-6-yl)-2,3-dihydro-2-methyl-1H-1,5-benzodiazepine (DLMBZD) has been prepared and its molecular and crystal structures have been determined from spectral and XRD data. The benzodiazepine ligand was reacted with zinc(ii), cadmium(ii) and mercury(ii) chloride, bromide and iodide to give complexes with general formula [M(DLMBZD)X2]. The complexes have been synthesized and characterized by IR, NMR and elemental analysis. The structure of seven complexes has been obtained by single crystal X-ray diffraction. In all the cases, the metal is (2 + 2 + 1)-five-coordinated by two halide ligands, two nitrogen atoms from pyrazine and diazepine rings and a carbonyl oxygen from a pteridine ring. The coordinated-metal environment is a square-based pyramid, with increasing trigonality from Hg(ii) to Zn(ii) complexes. To coordinate the metals, the ligand folds itself, establishing four intramolecular σ-π interactions with the pyrimidine and pyrazine rings. A topological analysis of the electron density using the Quantum Theory of Atoms in Molecules and the complexes stability has been performed.
Collapse
Affiliation(s)
- Nuria A Illán-Cabeza
- Department of Inorganic and Organic Chemistry, Campus Las Lagunillas (B3). and University of Jaén, 23071-Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Horiguchi K, Yamamoto E, Saito K, Yamanaka M, Akiyama T. Dynamic Kinetic Resolution Approach for the Asymmetric Synthesis of Tetrahydrobenzodiazepines Using Transfer Hydrogenation by Chiral Phosphoric Acid. Chemistry 2016; 22:8078-83. [DOI: 10.1002/chem.201601611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Kosaku Horiguchi
- Department of Chemistry; Gakushuin University; 1-5-1 Mejiro, Toshima-ku Tokyo 171-8588 Japan
| | - Eri Yamamoto
- Department of Chemistry; Rikkyo University; 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Kodai Saito
- Department of Chemistry; Gakushuin University; 1-5-1 Mejiro, Toshima-ku Tokyo 171-8588 Japan
- Department of Chemistry; Keio University, Hiyoshi, Kohoku-ku, Yokohama; Kanagawa 223-8522 Japan
| | - Masahiro Yamanaka
- Department of Chemistry; Rikkyo University; 3-34-1 Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Takahiko Akiyama
- Department of Chemistry; Gakushuin University; 1-5-1 Mejiro, Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
13
|
Harris PA, King BW, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA, Cox JA, Dare L, Dong X, Finger JN, Grady LC, Hoffman SJ, Jeong JU, Kang J, Kasparcova V, Lakdawala AS, Lehr R, McNulty DE, Nagilla R, Ouellette MT, Pao CS, Rendina AR, Schaeffer MC, Summerfield JD, Swift BA, Totoritis RD, Ward P, Zhang A, Zhang D, Marquis RW, Bertin J, Gough PJ. DNA-Encoded Library Screening Identifies Benzo[b][1,4]oxazepin-4-ones as Highly Potent and Monoselective Receptor Interacting Protein 1 Kinase Inhibitors. J Med Chem 2016; 59:2163-78. [DOI: 10.1021/acs.jmedchem.5b01898] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - LaShadric C. Grady
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jennifer D. Summerfield
- Platform Technology & Science, GlaxoSmithKline, Winter Street, Waltham, Massachusetts 02451, United States
| | | | | | | | - Aming Zhang
- Platform Technology & Science, GlaxoSmithKline, King of Prussia, Pennsylvania 19406, United States
| | | | | | | | | |
Collapse
|
14
|
Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Small Molecule Active Site Directed Tools for Studying Human Caspases. Chem Rev 2015; 115:12546-629. [PMID: 26551511 DOI: 10.1021/acs.chemrev.5b00434] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Caspases are proteases of clan CD and were described for the first time more than two decades ago. They play critical roles in the control of regulated cell death pathways including apoptosis and inflammation. Due to their involvement in the development of various diseases like cancer, neurodegenerative diseases, or autoimmune disorders, caspases have been intensively investigated as potential drug targets, both in academic and industrial laboratories. This review presents a thorough, deep, and systematic assessment of all technologies developed over the years for the investigation of caspase activity and specificity using substrates and inhibitors, as well as activity based probes, which in recent years have attracted considerable interest due to their usefulness in the investigation of biological functions of this family of enzymes.
Collapse
Affiliation(s)
- Marcin Poreba
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Aleksandra Szalek
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Wioletta Rut
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Guy S Salvesen
- Program in Cell Death and Survival Networks, Sanford Burnham Prebys Medical Discovery Institute , La Jolla, California 92037, United States
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Technology , Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
15
|
Karlsson C, Blom M, Johansson (neé Varedian) M, Jansson AM, Scifo E, Karlén A, Govender T, Gogoll A. Phototriggerable peptidomimetics for the inhibition of Mycobacterium tuberculosis ribonucleotide reductase by targeting protein–protein binding. Org Biomol Chem 2015; 13:2612-21. [DOI: 10.1039/c4ob01926a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peptidomimetic inhibitors with photomodulable affinity for the R1–R2 subunit association site were designed based on the R2-subunit C-terminal.
Collapse
Affiliation(s)
| | - Magnus Blom
- Department of Chemistry – BMC
- Uppsala University
- S-751 23 Uppsala
- Sweden
| | | | - Anna M. Jansson
- Department of Cell and Molecular Biology
- Structural Biology
- Uppsala University
- S-751 24 Uppsala
- Sweden
| | - Enzo Scifo
- Department of Cell and Molecular Biology
- Structural Biology
- Uppsala University
- S-751 24 Uppsala
- Sweden
| | - Anders Karlén
- Department of Medicinal Chemistry
- Organic Pharmaceutical Chemistry
- Uppsala University
- S-751 23 Uppsala
- Sweden
| | - Thavendran Govender
- Catalysis and Peptide Research Unit
- University of KwaZulu Natal
- Durban 4000
- South Africa
| | - Adolf Gogoll
- Department of Chemistry – BMC
- Uppsala University
- S-751 23 Uppsala
- Sweden
| |
Collapse
|
16
|
Wayua C, Low PS. Evaluation of a nonpeptidic ligand for imaging of cholecystokinin 2 receptor-expressing cancers. J Nucl Med 2014; 56:113-9. [PMID: 25500824 DOI: 10.2967/jnumed.114.144998] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Tumor-specific targeting ligands were recently exploited to deliver both imaging and therapeutic agents selectively to cancer tissues in vivo. Because the cholecystokinin 2 receptor (CCK2R) is overexpressed in various human cancers (e.g., lung, medullary thyroid, pancreatic, colon, and gastrointestinal stromal tumors) but displays limited expression in normal tissues, natural ligands of CCK2R were recently explored for use in the imaging of CCK2R-expressing cancers. Unfortunately, the results from these studies revealed not only that the peptidic CCK2R ligands were unstable in vivo but also that the ligands that mediated good uptake by tumor tissues also promoted a high level of retention of the radioimaging agent in the kidneys, probably because of capture of the conjugates by peptide-scavenging receptors. In an effort to reduce the normal organ retention of CCK2R-targeted drugs, we synthesized a nonpeptidic ligand of CCK2R and examined its specificity for CCK2R both in vitro and in vivo. METHODS Nonpeptidic agonists and antagonists of CCK2R described in the literature were evaluated for their affinities and specificities for CCK2R. Z-360, a benzodiazepine-derived CCK2R antagonist with subnanomolar affinity, was selected for complexation to (99m)Tc via multiple spacers. After synthesis and purification, 4 complexes with different physicochemical properties were evaluated for binding to CCK2R-transfected HEK 293 cells. The best conjugate, termed CRL-3-(99m)Tc, was injected into mice bearing CCK2R tumor xenografts and examined by γ scintigraphy and SPECT/CT. The uptake of the conjugate in various organs was also quantified by tissue resection and γ counting. RESULTS CRL-3-(99m)Tc was shown to bind with low nanomolar affinity to CCK2R in vitro and was localized to tumor tissues in athymic nu/nu mice implanted with CCK2R-expressing tumors. At 4 h after injection, tumor uptake was measured at 12.0 ± 2.0 percentage injected dose per gram of tissue. CONCLUSION Because the uptake of CRL-3-(99m)Tc by nonmalignant tissues was negligible and retention in the kidneys was only transient, we suggest that CRL-3-(99m)Tc may be a useful radioimaging agent for the detection, sizing, and monitoring of CCK2R-expressing tumors.
Collapse
Affiliation(s)
- Charity Wayua
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, Indiana
| |
Collapse
|
17
|
Synthesis of 3-oxo-1,4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Narayana Rao D, Raghavendra Guru Prasad A, Spoorthy Y, Pariplavi M, Ravindranath L. Synthesis, characterization and biological studies of substituted quinozoline-4-(3H)-ones containing diazepine moiety. ANNALES PHARMACEUTIQUES FRANÇAISES 2014; 72:51-8. [DOI: 10.1016/j.pharma.2013.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/06/2013] [Accepted: 11/06/2013] [Indexed: 10/25/2022]
|
19
|
Wayua C, Low PS. Evaluation of a cholecystokinin 2 receptor-targeted near-infrared dye for fluorescence-guided surgery of cancer. Mol Pharm 2013; 11:468-76. [PMID: 24325469 DOI: 10.1021/mp400429h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Surgical resection of malignant disease remains one of the most effective tools for treating cancer. Tumor-targeted near-infrared dyes have the potential to improve contrast between normal and malignant tissues, thereby enabling surgeons to more quantitatively resect malignant disease. Because the cholecystokinin 2 receptor (CCK2R and its tumor-specific splice variant CCK2i4svR) is overexpressed in cancers of the lungs, colon, thyroid, pancreas, and stomach, but absent or inaccessible to parenterally administered drugs in most normal tissues, we have undertaken to design a targeting ligand that can deliver attached near-infrared dyes to CCK2R+ tumors. We report here the synthesis and biological characterization of a CCK2R-targeted conjugate of the near-infrared dye, LS-288 (CRL-LS288). We demonstrate that CRL-LS288 binds selectively to CCK2R+ cancer cells with low nanomolar affinity (Kd = 7 × 10(-9) M). We further show that CRL-LS288 localizes primarily to CCK2R-expressing HEK 293 murine tumor xenografts and that dye uptake in these xenografts is significantly reduced when CCK2R are blocked by preinjection of excess ligand (CRL) or when mice are implanted with CCK2R-negative tumors. Because CRL-LS288 is also found to reveal the locations of distant tumor metastases, we suggest that CRL-LS288 has the potential to facilitate intraoperative identification of malignant disease during a variety of cancer debulking surgeries.
Collapse
Affiliation(s)
- Charity Wayua
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | |
Collapse
|
20
|
Kester RF, Donnell AF, Lou Y, Remiszewski SW, Lombardo LJ, Chen S, Le NT, Lo J, Moliterni JA, Han X, Hogg JH, Liang W, Michoud C, Rupert KC, Mischke S, Le K, Weisel M, Janson CA, Lukacs CM, Fretland AJ, Hong K, Polonskaia A, Gao L, Li S, Solis DS, Aguilar D, Tardell C, Dvorozniak M, Tannu S, Lee EC, Schutt AD, Goggin B. Optimization of benzodiazepinones as selective inhibitors of the X-linked inhibitor of apoptosis protein (XIAP) second baculovirus IAP repeat (BIR2) domain. J Med Chem 2013; 56:7788-803. [PMID: 24093940 DOI: 10.1021/jm400732v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The IAPs are key regulators of the apoptotic pathways and are commonly overexpressed in many cancer cells. IAPs contain one to three BIR domains that are crucial for their inhibitory function. The pro-survival properties of XIAP come from binding of the BIR domains to the pro-apoptotic caspases. The BIR3 domain of XIAP binds and inhibits caspase 9, while the BIR2 domain binds and inhibits the terminal caspases 3 and 7. While XIAP BIR3 inhibitors have previously been reported, they also inhibit cIAP1/2 and promote the release of TNFα, potentially limiting their therapeutic utility. This paper will focus on the optimization of selective XIAP BIR2 inhibitors leading to the discovery of highly potent benzodiazepinone 36 (IC50 = 45 nM), which has high levels of selectivity over XIAP BIR3 and cIAP1 BIR2/3 and shows efficacy in a xenograft pharmacodynamic model monitoring caspase activity while not promoting the release of TNFα in vitro.
Collapse
Affiliation(s)
- Robert F Kester
- Departments of Discovery Chemistry, ‡Discovery Technologies, §Non-clinical Safety, Early ADME, and ∥Discovery Oncology, Hoffmann-La Roche Inc. , 340 Kingsland Street, Nutley, New Jersey 07110, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, De Micheli C, Conti P. Inhibition of Rhodesain as a Novel Therapeutic Modality for Human African Trypanosomiasis. J Med Chem 2013; 56:5637-58. [DOI: 10.1021/jm301424d] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Roberta Ettari
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Lucia Tamborini
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Ilenia C. Angelo
- Dipartimento di Scienze del
Farmaco e Prodotti per la Salute, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Nicola Micale
- Dipartimento di Scienze del
Farmaco e Prodotti per la Salute, Università degli Studi di Messina, Viale Annunziata, 98168 Messina, Italy
| | - Andrea Pinto
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Carlo De Micheli
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| | - Paola Conti
- Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli
25, 20133 Milano, Italy
| |
Collapse
|
22
|
Nurbo J, Ericsson DJ, Rosenström U, Muthas D, Jansson AM, Lindeberg G, Unge T, Karlén A. Novel pseudopeptides incorporating a benzodiazepine-based turn mimetic—targeting Mycobacterium tuberculosis ribonucleotide reductase. Bioorg Med Chem 2013; 21:1992-2000. [DOI: 10.1016/j.bmc.2013.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/08/2013] [Accepted: 01/11/2013] [Indexed: 11/28/2022]
|
23
|
Ma B, Ding Z, Liu J, He Y, Fan QH. Highly Enantioselective Hydrogenation of 2,4-Diaryl-1,5-Benzodiazepines Catalyzed by Dendritic Phosphinooxazoline Iridium Complexes. Chem Asian J 2013; 8:1101-4. [DOI: 10.1002/asia.201300150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Indexed: 11/10/2022]
|
24
|
Ding ZY, Chen F, Qin J, He YM, Fan QH. Asymmetric Hydrogenation of 2,4-Disubstituted 1,5-Benzodiazepines Using Cationic Ruthenium Diamine Catalysts: An Unusual Achiral Counteranion Induced Reversal of Enantioselectivity. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200309] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Ding ZY, Chen F, Qin J, He YM, Fan QH. Asymmetric Hydrogenation of 2,4-Disubstituted 1,5-Benzodiazepines Using Cationic Ruthenium Diamine Catalysts: An Unusual Achiral Counteranion Induced Reversal of Enantioselectivity. Angew Chem Int Ed Engl 2012; 51:5706-10. [DOI: 10.1002/anie.201200309] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Indexed: 11/05/2022]
|
26
|
Xiang Z, Wang L. Enantiospecific synthesis of genetically encodable fluorescent unnatural amino acid L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid. J Org Chem 2011; 76:6367-71. [PMID: 21732687 PMCID: PMC3155268 DOI: 10.1021/jo2007626] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent unnatural amino acids (UAAs), when genetically incorporated into proteins, can provide unique advantages for imaging biological processes in vivo. Synthesis of optically pure L-enantiomer of fluorescent UAAs is crucial for their effective application in live cells. An efficient six-step synthesis of L-3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (L-Anap), a genetically encodable and polarity-sensitive fluorescent UAA, has been developed. The synthesis takes advantage of a high-yield and enantiospecific Fukuyama-Mitsunobu reaction as the key transformation.
Collapse
Affiliation(s)
- Zheng Xiang
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| | - Lei Wang
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
27
|
Bhattacharya AK, Rana KC, Raut DS, Mhaindarkar VP, Khan MI. An efficient synthesis of benzodiazepinyl phosphonates as clostripain inhibitors via FeCl3 catalyzed four-component reaction. Org Biomol Chem 2011; 9:5407-13. [DOI: 10.1039/c0ob01102a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
28
|
Abstract
Malaria, particularly that one caused by Plasmodium falciparum, remains a serious health problem in Africa, South America, and many parts of Asia where it afflicts about 500 million people and is responsible for the death of more than one million children each year. The main reasons for the persistence of malaria are the emergence of resistance to common antimalarial drugs, inadequate control of mosquito vectors, and the lack of effective vaccines. Therefore, the identification and characterization of new targets for antimalarial chemotherapy are of urgent priority. This review is focused on inhibitors of falcipain-2, a cysteine protease from P. falciparum, which represents one of the most promising targets for antimalarial drug design. Falcipain-2 is a key enzyme in the life cycle of P. falciparum since it degrades hemoglobin, at the early trophozoite stage, and cleaves ankyrin and protein 4.1, the cytoskeletal elements vital to the stability of red cell membrane, at the schizont stage. The main classes of falcipain-2 inhibitors are peptides or peptidomimetics bearing the most popular pharmacophores of cysteine protease inhibitors, such as vinyl sulfones, halomethyl ketones, and aldehydes. Furthermore, many other chemotypes have been identified as inhibitors of falcipain-2, such as isoquinolines, thiosemicarbazones, and chalcones. These inhibitors represent all classes, which, to the best of our knowledge, have been disclosed in journal articles to date.
Collapse
Affiliation(s)
- Roberta Ettari
- Dipartimento Farmaco-Chimico, University of Messina, Messina, Italy.
| | | | | | | | | |
Collapse
|
29
|
Delineating ligand effects in intramolecular aryl amidation reactions: formation of a novel spiro-heterocycle by a tandem cyclisation process. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Hoyt SB, London C, Wyvratt MJ, Fisher MH, Cashen DE, Felix JP, Garcia ML, Li X, Lyons KA, Euan MacIntyre D, Martin WJ, Priest BT, Smith MM, Warren VA, Williams BS, Kaczorowski GJ, Parsons WH. 3-Amino-1,5-benzodiazepinones: Potent, state-dependent sodium channel blockers with anti-epileptic activity. Bioorg Med Chem Lett 2008; 18:1963-6. [DOI: 10.1016/j.bmcl.2008.01.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 01/29/2008] [Accepted: 01/30/2008] [Indexed: 11/15/2022]
|
31
|
Ettari R, Nizi E, Di Francesco ME, Dude MA, Pradel G, Vičík R, Schirmeister T, Micale N, Grasso S, Zappalà M. Development of Peptidomimetics with a Vinyl Sulfone Warhead as Irreversible Falcipain-2 Inhibitors. J Med Chem 2008; 51:988-96. [DOI: 10.1021/jm701141u] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Li Z, Sun Y, Ren X, Li W, Shi Y, Ouyang P. Efficient Synthesis of 1,5‐Benzodiazepines Mediated by Sulfamic Acid under Neat Condition or in Solution. SYNTHETIC COMMUN 2007. [DOI: 10.1080/00397910701263627] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhenjiang Li
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| | - Yingjie Sun
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| | - Xinghua Ren
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| | - Weisi Li
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| | - Yuhu Shi
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| | - Pingkai Ouyang
- a College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing, Jiangsu, China
| |
Collapse
|
33
|
Ramajayam R, Giridhar R, Yadav MR. Synthesis of novel substituted diaryl-1,4-diazepines. Chem Heterocycl Compd (N Y) 2006. [DOI: 10.1007/s10593-006-0178-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|