1
|
Rathi K, Shukla M, Hassam M, Shrivastava R, Rawat V, Prakash Verma V. Recent advances in the synthesis and antimalarial activity of 1,2,4-trioxanes. Bioorg Chem 2024; 143:107043. [PMID: 38134523 DOI: 10.1016/j.bioorg.2023.107043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/29/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The increasing resistance of various malarial parasite strains to drugs has made the production of a new, rapid-acting, and efficient antimalarial drug more necessary, as the demand for such drugs is growing rapidly. As a major global health concern, various methods have been implemented to address the problem of drug resistance, including the hybrid drug concept, combination therapy, the development of analogues of existing medicines, and the use of drug resistance reversal agents. Artemisinin and its derivatives are currently used against multidrug- resistant P. falciparum species. However, due to its natural origin, its use has been limited by its scarcity in natural resources. As a result, finding a substitute becomes more crucial, and the peroxide group in artemisinin, responsible for the drugs biological action in the form of 1,2,4-trioxane, may hold the key to resolving this issue. The literature suggests that 1,2,4-trioxanes have the potential to become an alternative to current malaria drugs, as highlighted in this review. This is why 1,2,4-trioxanes and their derivatives have been synthesized on a large scale worldwide, as they have shown promising antimalarial activity in vivo and in vitro against Plasmodium species. Consequently, the search for a more convenient, environment friendly, sustainable, efficient, and effective synthetic pathway for the synthesis of 1,2,4-trioxanes continues. The aim of this work is to provide a comprehensive analysis of the synthesis and mechanism of action of 1,2,4-trioxanes. This systematic review highlights the most recent summaries of derivatives of 1,2,4-trioxane compounds and dimers with potential antimalarial activity from January 1988 to 2023.
Collapse
Affiliation(s)
- Komal Rathi
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | - Monika Shukla
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India
| | | | - Rahul Shrivastava
- Department of Chemistry, Manipal University Jaipur, Jaipur (Rajasthan), VPO- Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan 30300, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Banasthali Newai 304022, Rajasthan, India.
| |
Collapse
|
2
|
Shukla M, Rathi K, Hassam M, Yadav DK, Karnatak M, Rawat V, Verma VP. An overview on the antimalarial activity of 1,2,4-trioxanes, 1,2,4-trioxolanes and 1,2,4,5-tetraoxanes. Med Res Rev 2024; 44:66-137. [PMID: 37222435 DOI: 10.1002/med.21979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
The demand for novel, fast-acting, and effective antimalarial medications is increasing exponentially. Multidrug resistant forms of malarial parasites, which are rapidly spreading, pose a serious threat to global health. Drug resistance has been addressed using a variety of strategies, such as targeted therapies, the hybrid drug idea, the development of advanced analogues of pre-existing drugs, and the hybrid model of resistant strains control mechanisms. Additionally, the demand for discovering new potent drugs grows due to the prolonged life cycle of conventional therapy brought on by the emergence of resistant strains and ongoing changes in existing therapies. The 1,2,4-trioxane ring system in artemisinin (ART) is the most significant endoperoxide structural scaffold and is thought to be the key pharmacophoric moiety required for the pharmacodynamic potential of endoperoxide-based antimalarials. Several derivatives of artemisinin have also been found as potential treatments for multidrug-resistant strain in this area. Many 1,2,4-trioxanes, 1,2,4-trioxolanes, and 1,2,4,5-tetraoxanes derivatives have been synthesised as a result, and many of these have shown promise antimalarial activity both in vivo and in vitro against Plasmodium parasites. As a consequence, efforts to develop a functionally straight-forward, less expensive, and vastly more effective synthetic pathway to trioxanes continue. This study aims to give a thorough examination of the biological properties and mode of action of endoperoxide compounds derived from 1,2,4-trioxane-based functional scaffolds. The present system of 1,2,4-trioxane, 1,2,4-trioxolane, and 1,2,4,5-tetraoxane compounds and dimers with potentially antimalarial activity will be highlighted in this systematic review (January 1963-December 2022).
Collapse
Affiliation(s)
- Monika Shukla
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Komal Rathi
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Mohammad Hassam
- Department of Chemistry, Chemveda Life Sciences Pvt Ltd, Hyderabad, Telangana, India
| | - Dinesh Kumar Yadav
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Manvika Karnatak
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| | - Varun Rawat
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali University, Newai, Rajasthan, India
| |
Collapse
|
3
|
Bordier C, Escande V, Darcel C. Past and current routes to β-hydroperoxy alcohols: A functional group with high potential in organic synthesis. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Li F, Zhu S, Jiang Q, Hou C, Pang T, Zhang L, Li W. Novel Stachydrine-Leonurine Conjugate SL06 as a Potent Neuroprotective Agent for Cerebral Ischemic Stroke. ACS Chem Neurosci 2021; 12:2478-2490. [PMID: 34180238 DOI: 10.1021/acschemneuro.1c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As major active ingredients of the traditional Chinese medicine motherwort, stachydrine and leonurine were found to have protective effects against cerebral ischemia. However, their bioavailability in vivo was low, and their efficacy was unsatisfactory, which limited their further application. To solve these problems, the conjugates based on the structures of stachydrine and leonurine were designed and synthesized. SL06 was found to have neuronal cell survival improvement, neuronal apoptosis restraining, activation of superoxide dismutase (SOD) activity, and inhibition of lactic dehydrogenase (LDH), reactive oxygen species (ROS), malondialdehyde (MDA) in vitro. In vivo, the infarction size was significantly reduced by SL06 in the middle cerebral artery occlusion rat model. SL06 could also activate protein kinase B (AKT)/glycogen synthase kinase 3β (GSK-3β) activity and promoted the expression of antiapoptoticprotein Bcl-2. On the other hand, the expression of the apoptosis-associated protein cleaved caspase-3 would be inhibited as well. Thus, SL06 as the neuroprotective agent has potential for the treatment of cerebral ischemic stroke.
Collapse
Affiliation(s)
- Feng Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China
| | - Sifeng Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qihui Jiang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Chenhui Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Pang
- New Drug Screening Center, Institute of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenbao Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Weifang 262700, China
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China
| |
Collapse
|
5
|
Louvel D, De Dios Miguel T, Duc Vu N, Duguet N. The Chemistry of β‐Hydroxy Hydroperoxides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dan Louvel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Thomas De Dios Miguel
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nam Duc Vu
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| | - Nicolas Duguet
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA, CPE-Lyon Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard 69100 Villeurbanne cedex France
| |
Collapse
|
6
|
Palladium catalyzed oxidation of biorenewable β-citronellol and geraniol for the synthesis of polyfunctionalized fragrances. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Pepe DA, Toumpa D, André-Barrès C, Menendez C, Mouray E, Baltas M, Grellier P, Papaioannou D, Athanassopoulos CM. Synthesis of Novel G Factor or Chloroquine-Artemisinin Hybrids and Conjugates with Potent Antiplasmodial Activity. ACS Med Chem Lett 2020; 11:921-927. [PMID: 32435406 DOI: 10.1021/acsmedchemlett.9b00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022] Open
Abstract
A series of novel hybrids of artemisinin (ART) with either a phytormone endoperoxide G factor analogue (GMeP) or chloroquine (CQ) and conjugates of the same compounds with the polyamines (PAs), spermidine (Spd), and homospermidine (Hsd) were synthesized and their antiplasmodial activity was evaluated using the CQ-resistant P. falciparum FcB1/Colombia strain. The ART-GMeP hybrid 5 and compounds 9 and 10 which are conjugates of Spd and Hsd with two molecules of ART and one molecule of GMeP, were the most potent with IC50 values of 2.6, 8.4, and 10.6 nM, respectively. The same compounds also presented the highest selectivity indexes against the primary human fibroblast cell line AB943 ranging from 16 372 for the hybrid 5 to 983 for the conjugate 10 of Hsd.
Collapse
Affiliation(s)
- Dionissia A. Pepe
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Dimitra Toumpa
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | - Christiane André-Barrès
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Christophe Menendez
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Elisabeth Mouray
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Michel Baltas
- LSPCMIB, UMR-CNRS 5068, Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse CEDEX 9 31062, France
| | - Philippe Grellier
- MCAM, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier, Paris 75005, France
| | - Dionissios Papaioannou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, Patras GR-26504, Greece
| | | |
Collapse
|
8
|
Khayyat SA, Roselin LS. Recent progress in photochemical reaction on main components of some essential oils. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Isoprenoid Alcohols are Susceptible to Oxidation with Singlet Oxygen and Hydroxyl Radicals. Lipids 2015; 51:229-44. [PMID: 26715533 PMCID: PMC4735226 DOI: 10.1007/s11745-015-4104-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 11/19/2015] [Indexed: 12/01/2022]
Abstract
Isoprenoids, as common constituents of all living cells, are exposed to oxidative agents—reactive oxygen species, for example, singlet oxygen or hydroxyl radicals. Despite this fact, products of oxidation of polyisoprenoids have never been characterized. In this study, chemical oxidation of isoprenoid alcohols (Prenol-2 and -10) was performed using singlet oxygen (generated in the presence of hydrogen peroxide/molybdate or upon photochemical reaction in the presence of porphyrin), oxygen (formed upon hydrogen peroxide dismutation) or hydroxyl radical (generated by the hydrogen peroxide/sonication, UV/titanium dioxide or UV/hydrogen peroxide) systems. The structure of the obtained products, hydroxy-, peroxy- and heterocyclic derivatives, was studied with the aid of mass spectrometry (MS) and nuclear magnetic resonance (NMR) methods. Furthermore, mass spectrometry with electrospray ionization appeared to be a useful analytical tool to detect the products of oxidation of isoprenoids (ESI–MS analysis), as well as to establish their structure on the basis of the fragmentation spectra of selected ions (ESI–MS/MS analysis). Taken together, susceptibility of polyisoprenoid alcohols to various oxidizing agents was shown for the first time.
Collapse
|
10
|
Single Ascending Dose Safety and Pharmacokinetics of CDRI-97/78: First-in-Human Study of a Novel Antimalarial Drug. Malar Res Treat 2014; 2014:372521. [PMID: 24800100 PMCID: PMC3985299 DOI: 10.1155/2014/372521] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/13/2014] [Accepted: 01/17/2014] [Indexed: 11/17/2022] Open
Abstract
Background. CDRI 97/78 has shown efficacy in animal models of falciparum malaria. The present study is the first in-human phase I trial in healthy volunteers. Methods. The study was conducted in 50 healthy volunteers in a single, ascending dose, randomized, placebo-controlled, double blind design. The dose ranges evaluated were from 80 mg to 700 mg. Volunteers were assessed for clinical, biochemical, haematological, radiographic, and electrocardiographic parameters for any adverse events in an in-house facility. After evaluation of safety study results, another cohort of 16 participants were administered a single oral dose of 200 mg of the drug and a detailed pharmacokinetic analysis was undertaken. Results. The compound was found to be well tolerated. MTD was not reached. The few adverse events noted were of grade 2 severity, not requiring intervention and not showing any dose response relationship. The laboratory and electrocardiographic parameters showed statistically significant differences, but all were within the predefined normal range. These parameters were not associated with symptoms/signs and hence regarded as clinically irrelevant. Mean values of T1/2, MRT, and AUC0−∞ of the active metabolite 97/63 were 11.85 ± 1.94 h, 13.77 ± 2.05 h, and 878.74 ± 133.15 ng·h/mL, respectively Conclusion. The novel 1,2,4 trioxane CDRI 97/78 is safe and will be an asset in malarial therapy if results are replicated in multiple dose studies and benefit is shown in confirmatory trials.
Collapse
|
11
|
Terent'ev AO, Borisov DA, Vil’ VA, Dembitsky VM. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products. Beilstein J Org Chem 2014; 10:34-114. [PMID: 24454562 PMCID: PMC3896255 DOI: 10.3762/bjoc.10.6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/16/2013] [Indexed: 12/16/2022] Open
Abstract
The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides), 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.
Collapse
Key Words
- 1,2,4,5-tetraoxanes
- 1,2,4-trioxanes
- 1,2,4-trioxolanes
- 1,2-dioxanes
- 1,2-dioxenes
- 1,2-dioxolanes
- cyclic peroxides
- ozonides
Collapse
Affiliation(s)
- Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Borisov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Vera A Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Valery M Dembitsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
- Institute for Drug Research, P.O. Box 12065, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
12
|
Yadav N, Sharma C, Awasthi SK. Diversification in the synthesis of antimalarial trioxane and tetraoxane analogs. RSC Adv 2014. [DOI: 10.1039/c3ra42513d] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
Jain S, Chourey M, Jetti SR. Photooxygenation of N-(2-Thiazolyl) sulfanilamide, 2-(4-Thiazolyl) benzimidazole and Thiacetazone. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2012. [DOI: 10.1007/s40010-012-0033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Alberti MN, Orfanopoulos M. Unraveling the mechanism of the singlet oxygen ene reaction: recent computational and experimental approaches. Chemistry 2010; 16:9414-21. [PMID: 20623729 DOI: 10.1002/chem.201000752] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mechanism of the singlet oxygen ene reaction has been a subject of renewed interest within the last few years. The main question being whether this reaction proceeds through a concerted mechanism or if it involves discrete intermediates. In general, the majority of experimental and computational studies support a traditional stepwise mechanism involving a perepoxide-like intermediate. In this minireview we highlight the most prominent and recent theoretical, as well as experimental results relating to the challenging mechanism of the singlet oxygen ene oxyfunctionalization.
Collapse
Affiliation(s)
- Mariza N Alberti
- Department of Chemistry, University of Crete, 71003 Voutes Campus, Heraklion, Crete, Greece
| | | |
Collapse
|
15
|
Interspecies comparison of the pharmacokinetics and oral bioavailability of 99-357, a potent synthetic trioxane antimalarial compound. Eur J Pharm Sci 2010; 41:312-9. [PMID: 20599503 DOI: 10.1016/j.ejps.2010.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 06/12/2010] [Accepted: 06/24/2010] [Indexed: 11/24/2022]
Abstract
The pharmacokinetic data obtained in lower animals is of considerable importance in drug discovery and development. The objective of the present study was to generate in vitro and in vivo preclinical pharmacokinetic data of 99-357, a synthetic trioxane antimalarial, in rats and rabbits and to scale-up the data in order to apply for further studies. The pharmacokinetic profile of 99-357 was investigated after both intravenous and oral dose in rats and rabbits. Oral studies were carried out at three dose levels 6, 12 and 24mg/kg in rats while in rabbit only one dose level was selected. Both compartmental and non-compartmental approaches were used to calculate the pharmacokinetic parameters following intravenous and oral doses in both the species. The clearance in rat and rabbit was 45-57% and 60-67% respectively of hepatic blood flow. The plasma protein binding in rats was approximately 75%. In vitro studies showed high RBC partitioning and low to moderate hepatic clearance. Linearity was observed in terms of dose and AUCs suggesting linear pharmacokinetics at the dose levels studied in rats. The oral bioavailability of compound 99-357 in rat and rabbit at 12mg/kg dose level was comparable and 39% and 41% respectively.
Collapse
|
16
|
Singh C, Pandey S, Kushwaha AK, Puri SK. New functionalized 1,2,4-trioxepanes: Synthesis and antimalarial activity against multi-drug resistant P. yoelii in mice. Bioorg Med Chem Lett 2008; 18:5190-3. [DOI: 10.1016/j.bmcl.2008.08.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 08/07/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
|
17
|
Affiliation(s)
- Norbert Hoffmann
- Laboratoire des Réactions Sélectives et Applications, UMR 6519 CNRS et Université de Reims Champagne-Ardenne, UFR Sciences, B.P. 1039, F-51687 Reims, Cedex 02, France
| |
Collapse
|
18
|
Anero R, Díaz-Lanza A, Ollivier E, Baghdikian B, Balansard G, Bernabé M. Monoterpene glycosides isolated from Fadogia agrestis. PHYTOCHEMISTRY 2008; 69:805-811. [PMID: 17988698 DOI: 10.1016/j.phytochem.2007.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/26/2007] [Accepted: 09/26/2007] [Indexed: 05/25/2023]
Abstract
Six monoterpene glycosides were isolated from Fadogia agrestis. Their structures were elucidated using a combination of mass spectroscopy, 1D- and 2D-homo- and hetero-NMR spectroscopy and chemical analysis, and established as being derivatives of 2,6-dimethyl-2(E),6(Z)-octadiene-1,8-diol containing from two to four units of rhamnopyranose and, three of them, one or two additional units of glucopyranose. In three of the compounds an acyl group of 8-hydroxy-2,6-dimethyl-2(E),6(Z)-octadienoyl was found esterifying the O-2 position of one of the units of rhamnopyranose.
Collapse
Affiliation(s)
- Regina Anero
- Departamento de Farmacognosia, Facultad de Farmacia, Universidad de Alcalá de Henares, Carretera Madrid-Barcelona, Km-33,600, 28871 Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Žmitek K, Zupan M, Iskra J. α-Substituted organic peroxides: synthetic strategies for a biologically important class of gem-dihydroperoxide and perketal derivatives. Org Biomol Chem 2007; 5:3895-908. [DOI: 10.1039/b711647k] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Singh C, Pandey S, Saxena G, Srivastava N, Sharma M. Synthesis of 1,2,4-Trioxepanes and 1,2,4-Trioxocanes via Photooxygenation of Homoallylic Alcohols1. J Org Chem 2006; 71:9057-61. [PMID: 17109530 DOI: 10.1021/jo061414z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Homoallylic alcohols 4a-d, easily accessible in two steps from cyclopropyl methyl ketone, underwent a highly regioselective reaction with singlet oxygen to yield gamma-hydroxyhydroperoxides 5a-d in 57-72% yield. Acid-catalyzed reaction of 5a-d with acetone, cyclopentanone, and cyclohexanone furnished 1,2,4-trioxepanes 8a-d, 9a-d, and 10a-d in good yields. Homoallylic alcohol 12 also underwent a highly regioselective photooxygenation to yield gamma-hydroxyhydroperoxide 13 in 67% yield, which on reaction with acetone, cyclopentanone, and cyclohexanone, furnished 1,2,4-trioxocanes 16-18 in 41-55% yield.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow-226001, India.
| | | | | | | | | |
Collapse
|
21
|
O'Neill PM. The therapeutic potential of semi-synthetic artemisinin and synthetic endoperoxide antimalarial agents. Expert Opin Investig Drugs 2006; 14:1117-28. [PMID: 16144496 DOI: 10.1517/13543784.14.9.1117] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Artemisinin derivatives such as artesunate, dihydroartemisinin and artemether are playing an increasing role in the treatment of drug-resistant malaria. They are the most potent antimalarials available, rapidly killing all asexual stages of the parasite Plasmodium falciparum. This review highlights the recent developments in the area of improved second-generation semi-synthetic artemisinin derivatives and fully synthetic antimalarial endoperoxide drugs. In pursuit of synthetic analogues of the artemisinins, one of the major challenges for chemists in this area has been the non-trivial development of techniques for the introduction of the peroxide bridge into candidate drugs. Although chemical research has enabled chemists to incorporate the endoperoxide 'warhead' into synthetic analogues of artemisinin, significant drawbacks with many candidates have included comparatively poor antimalarial activity, non-stereoselective syntheses and chemical approaches that are not readily amenable to scale up. However, very recent progress with synthetic 1,2,4-trioxolanes provides a new benchmark for future medicinal chemistry efforts in this area.
Collapse
Affiliation(s)
- Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, UK.
| |
Collapse
|
22
|
Chemistry of 1,2,4-trioxanes relevant to their mechanism of action. Part 1: Reaction with Fe(II) salts. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Singh RP, Singh SK, Gupta RC. A high throughput approach for simultaneous estimation of multiple synthetic trioxane derivatives using sample pooling for pharmacokinetic studies. J Pharm Biomed Anal 2005; 37:127-33. [PMID: 15664752 DOI: 10.1016/j.jpba.2004.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 09/24/2004] [Accepted: 09/26/2004] [Indexed: 11/23/2022]
Abstract
The present study describes the application of concept of sample pooling to increase the throughput of pharmacokinetic screening at drug discovery and development stage. An HPLC-UV method for the simultaneous estimation of three synthetic antimalarial compounds 99/357, 99/408 and 99/411 has been developed and validated in rat serum with internal standard for pharmacokinetic profiling. Drug compounds in serum were extracted by two-step liquid-liquid extraction with 2% isopropyl alcohol in n-hexane and quantitated using a validated gradient HPLC-UV method, which was made feasible for all compounds using gradient elution scheme. The method was validated in terms of HPLC reproducibility, linearity, specificity, recovery, accuracy and precision, freeze thaw stability and long-term storage stability. Excellent linear relationships (r>0.99) were obtained for calibration as well as analytical standards over a concentration range of 25-1000 ng/ml for three analytes. Recoveries were fond to be >85% for 99/408 and 99/357 and >70% for 99/411. The method developed for three analytes was found to be accurate and precise as bias and percent relative standard deviation (% R.S.D.) values were within limits (<20%). By employing sample pooling approach, plasma level - time profile following single intravenous dose of all three compounds were obtained in a fraction of the time required by conventional single compound dosing and analysis.
Collapse
Affiliation(s)
- Rajendra Pratap Singh
- Pharmacokinetics and Metabolism Division, Central Drug Research Institute, Lucknow 226001, India
| | | | | |
Collapse
|
24
|
Photooxygenation of 3-aryl-2-cyclohexenols: synthesis of a new series of antimalarial 1,2,4-trioxanes. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2004.11.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Singh C, Srivastav NC, Puri SK. Synthesis and antimalarial activity of 6-cycloalkylvinyl substituted 1,2,4-trioxanes. Bioorg Med Chem 2004; 12:5745-52. [PMID: 15498651 DOI: 10.1016/j.bmc.2004.08.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 08/26/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
6-Cycloalkylvinyl substituted 1,2,4-trioxanes 6-15 have been prepared and tested against multi-drug resistant Plasmodium yoelii in mice. The most active trioxane 11 provides 80% protection to the treated mice. Further derivatization of 11 leads to decrease in antimalarial activity.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal and Process Chemistry, Central Drug Research Institute, Lucknow 226001, India.
| | | | | |
Collapse
|
26
|
Singh C, Malik H, Puri SK. Synthesis and antimalarial activity of a new series of trioxaquines. Bioorg Med Chem 2004; 12:1177-82. [PMID: 14980628 DOI: 10.1016/j.bmc.2003.11.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Trioxanes 8a-b, easily accessible in two steps from allylic alcohol 6a-b, on reductive amination with 4-aminoquinolines 4a-c furnish a new series of trioxaquines 9a-b, 10a-b, 11a-b in 32-77% yields. Dicitrate salts of these trioxaquines have been evaluated for antimalarial activity against multidrug resistant Plasmodium yoelii in mice model.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow-226001, India.
| | | | | |
Collapse
|
27
|
Singh C, Malik H, Puri SK. Orally active amino functionalized antimalarial 1,2,4-trioxanes. Bioorg Med Chem Lett 2004; 14:459-62. [PMID: 14698181 DOI: 10.1016/j.bmcl.2003.10.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using readily available trioxanes 6a-b, a new series of amino functionalized 1,2,4-trioxanes 8a-e and 9a-e have been prepared and evaluated for antimalarial activity against multi-drug resistant Plasmodium yoelii in Swiss mice model. Several of these novel trioxanes are orally more active than the parent trioxanes 6a-b. Antimalarial activity of amino functionalized trioxane 9a, the most potent compound in the series, is very close to that of beta-arteether.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal Chemistry, Central Drug Research Institute, -226001, Lucknow, India.
| | | | | |
Collapse
|
28
|
Singh C, Gupta N, Puri SK. Geraniol-derived 1,2,4-Trioxanes with potent in-vivo antimalarial activity. Bioorg Med Chem Lett 2003; 13:3447-50. [PMID: 14505646 DOI: 10.1016/s0960-894x(03)00782-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Geraniol, an abundantly available naturally occurring allylic alcohol, has been used as a starting material to prepare a series of 6-[alpha-(3'-aryl-3'-hydroxypropyl)vinyl]-1,2,4-trioxanes. Some of these novel trioxanes have shown very promising antimalarial activity against multi-drug resistant Plasmodium yoelii in mice by both intramuscular (im) and oral routes.
Collapse
Affiliation(s)
- Chandan Singh
- Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow 226001, India.
| | | | | |
Collapse
|
29
|
Chapter 6.4 Six-membered ring systems: With O and/or S atoms. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0959-6380(03)80018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|