1
|
Hayakawa D, Watanabe Y, Gouda H. Molecular Interaction Fields Describing Halogen Bond Formable Areas on Protein Surfaces. J Chem Inf Model 2024; 64:6003-6013. [PMID: 39012240 PMCID: PMC11323840 DOI: 10.1021/acs.jcim.4c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024]
Abstract
Molecular interaction fields (MIFs) are three-dimensional interaction maps that describe the intermolecular interactions expected to be formed around target molecules. In this paper, a method for the fast computation of MIFs using the approximation functions of quantum mechanics-level MIFs of small model molecules is proposed. MIF functions of N-methylacetamide with chlorobenzene, bromobenzene, and iodobenzene probes were precisely approximated and used to calculate the MIFs on protein surfaces. This method appropriately reproduced halogen-bond-formable areas around the ligand-binding sites of proteins, where halogen bond formation was suggested in a previous study.
Collapse
Affiliation(s)
- Daichi Hayakawa
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yurie Watanabe
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Hiroaki Gouda
- Division of Biophysical
Chemistry,
Department of Pharmaceutical Sciences, Graduate School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
2
|
Lintott M, Perry A. Straightforward synthesis of N-arylindoles via one-pot Fischer indolisation-indole N-arylation. RSC Adv 2023; 13:15993-15997. [PMID: 37250219 PMCID: PMC10214496 DOI: 10.1039/d3ra02658b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023] Open
Abstract
A microwave-promoted, one-pot, three-component synthesis of N-arylindoles has been developed, utilising sequential Fischer indolisation then copper(i)-catalysed indole N-arylation. Novel arylation conditions were identified that use a simple and cheap catalyst/base system (Cu2O/K3PO4) in an environmentally benign solvent (ethanol), with no requirement for ligands, additives or exclusion of air or water, and microwave irradiation enabled significant acceleration of this commonly sluggish process. These conditions were designed to dovetail with Fischer indolisation, and the resulting one-pot, two-step sequence is rapid (total reaction time = 40 minutes), operationally straightforward, generally high yielding and it draws upon readily available hydrazine, ketone/aldehyde and aryl iodide building blocks. This process shows broad substrate tolerance and we have demonstrated its utility in the synthesis of 18 N-arylindoles bearing varied and useful functionality.
Collapse
Affiliation(s)
- Mia Lintott
- Biosciences, University of Exeter Stocker Road Exeter EX4 4QD UK
| | - Alexis Perry
- Biosciences, University of Exeter Stocker Road Exeter EX4 4QD UK
| |
Collapse
|
3
|
Zhao Y, Yang H, Wu F, Luo X, Sun Q, Feng W, Ju X, Liu G. Exploration of N-Arylsulfonyl-indole-2-carboxamide Derivatives as Novel Fructose-1,6-bisphosphatase Inhibitors by Molecular Simulation. Int J Mol Sci 2022; 23:ijms231810259. [PMID: 36142164 PMCID: PMC9499002 DOI: 10.3390/ijms231810259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
A series of N-arylsulfonyl-indole-2-carboxamide derivatives have been identified as potent fructose-1,6-bisphosphatase (FBPase) inhibitors (FBPIs) with excellent selectivity for the potential therapy of type II diabetes mellitus. To explore the structure–activity relationships (SARs) and the mechanisms of action of these FBPIs, a systematic computational study was performed in the present study, including three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling, pharmacophore modeling, molecular dynamics (MD), and virtual screening. The constructed 3D-QSAR models exhibited good predictive ability with reasonable parameters using comparative molecular field analysis (q2 = 0.709, R2 = 0.979, rpre2 = 0.932) and comparative molecular similarity indices analysis (q2 = 0.716, R2 = 0.978, rpre2 = 0.890). Twelve hit compounds were obtained by virtual screening using the best pharmacophore model in combination with molecular dockings. Three compounds with relatively higher docking scores and better ADME properties were then selected for further studies by docking and MD analyses. The docking results revealed that the amino acid residues Met18, Gly21, Gly26, Leu30, and Thr31 at the binding site were of great importance for the effective bindings of these FBPIs. The MD results indicated that the screened compounds VS01 and VS02 could bind with FBPase stably as its cognate ligand in dynamic conditions. This work identified several potential FBPIs by modeling studies and might provide important insights into developing novel FBPIs.
Collapse
Affiliation(s)
- Yilan Zhao
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Honghao Yang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xiaogang Luo
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qi Sun
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
| | - Weiliang Feng
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| | - Xiulian Ju
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
| | - Genyan Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China
- Correspondence: (W.F.); (G.L.)
| |
Collapse
|
4
|
Hu W, Yan G, Ding Q, Cai J, Zhang Z, Zhao Z, Lei H, Zhu YZ. Update of Indoles: Promising molecules for ameliorating metabolic diseases. Biomed Pharmacother 2022; 150:112957. [PMID: 35462330 DOI: 10.1016/j.biopha.2022.112957] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Obesity and metabolic disorders have gradually become public health-threatening problems. The metabolic disorder is a cluster of complex metabolic abnormalities which are featured by dysfunction in glucose and lipid metabolism, and results from the increasing prevalence of visceral obesity. With the core driving factor of insulin resistance, metabolic disorder mainly includes type 2 diabetes mellitus (T2DM), micro and macro-vascular diseases, non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and the dysfunction of gut microbiota. Strategies and therapeutic attention are demanded to decrease the high risk of metabolic diseases, from lifestyle changes to drug treatment, especially herbal medicines. Indole is a parent substance of numerous bioactive compounds, and itself can be produced by tryptophan catabolism to stimulate glucagon-like peptide-1 (GLP-1) secretion and inhibit the development of obesity. In addition, in heterocycles drug discovery, the indole scaffold is primarily found in natural compounds with versatile biological activity and plays a prominent role in drug molecules synthesis. In recent decades, plenty of natural or synthesized indole deriviatives have been investigated and elucidated to exert effects on regulating glucose hemeostasis and lipd metabolism. The aim of this review is to trace and emphasize the compounds containing indole scaffold that possess immense potency on preventing metabolic disorders, particularly T2DM, obesity and NAFLD, along with the underlying molecular mechanisms, therefore facilitate a better comprehension of their druggability and application in metabolic diseases.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Guanyu Yan
- Department of Allergy and Clinical Immunology, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Jianghong Cai
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Zhongyi Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Heping Lei
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macau, China; Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhou J, Bie J, Wang X, Liu Q, Li R, Chen H, Hu J, Cao H, Ji W, Li Y, Liu S, Shen Z, Xu B. Discovery of N-Arylsulfonyl-Indole-2-Carboxamide Derivatives as Potent, Selective, and Orally Bioavailable Fructose-1,6-Bisphosphatase Inhibitors—Design, Synthesis, In Vivo Glucose Lowering Effects, and X-ray Crystal Complex Analysis. J Med Chem 2020; 63:10307-10329. [DOI: 10.1021/acs.jmedchem.0c00726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jianbo Bie
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoyu Wang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Quan Liu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Rongcui Li
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hualong Chen
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Cao
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenming Ji
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhufang Shen
- Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Curran DM, Grote A, Nursimulu N, Geber A, Voronin D, Jones DR, Ghedin E, Parkinson J. Modeling the metabolic interplay between a parasitic worm and its bacterial endosymbiont allows the identification of novel drug targets. eLife 2020; 9:e51850. [PMID: 32779567 PMCID: PMC7419141 DOI: 10.7554/elife.51850] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
The filarial nematode Brugia malayi represents a leading cause of disability in the developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs are not well-suited to mass drug administration efforts, so new treatments are urgently required. One potential vulnerability is the endosymbiotic bacteria Wolbachia-present in many filariae-which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes and protists and have proven valuable in identifying therapeutic targets, but have only been applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first compartmentalized metabolic model of a parasitic worm. We used this model to show how metabolic pathway usage allows the worm to adapt to different environments, and predict a set of 102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug tests and demonstrated novel antifilarial properties for all three compounds.
Collapse
Affiliation(s)
- David M Curran
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Nirvana Nursimulu
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
| | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | | | - Drew R Jones
- Department of Biochemistry and Molecular Pharmacology, New York University School of MedicineNew YorkUnited States
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Epidemiology, School of Global Public Health, New York UniversityNew YorkUnited States
| | - John Parkinson
- Program in Molecular Medicine, Hospital for Sick ChildrenTorontoCanada
- Department of Computer Science, University of TorontoTorontoCanada
- Department of Biochemistry, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| |
Collapse
|
7
|
Xu YX, Huang YY, Song RR, Ren YL, Chen X, Zhang C, Mao F, Li XK, Zhu J, Ni SS, Wan J, Li J. Development of disulfide-derived fructose-1,6-bisphosphatase (FBPase) covalent inhibitors for the treatment of type 2 diabetes. Eur J Med Chem 2020; 203:112500. [PMID: 32711108 DOI: 10.1016/j.ejmech.2020.112500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), as a key rate-limiting enzyme in the gluconeogenesis (GNG) pathway, represents a practical therapeutic strategy for type 2 diabetes (T2D). Our previous work first identified cysteine residue 128 (C128) was an important allosteric site in the structure of FBPase, while pharmacologically targeting C128 attenuated the catalytic ability of FBPase. Herein, ten approved cysteine covalent drugs were selected for exploring FBPase inhibitory activities, and the alcohol deterrent disulfiram displayed superior inhibitory efficacy among those drugs. Based on the structure of lead compound disulfiram, 58 disulfide-derived compounds were designed and synthesized for investigating FBPase inhibitory activities. Optimal compound 3a exhibited significant FBPase inhibition and glucose-lowering efficacy in vitro and in vivo. Furthermore, 3a covalently modified the C128 site, and then regulated the N125-S124-S123 allosteric pathway of FBPase in mechanism. In summary, 3a has the potential to be a novel FBPase inhibitor for T2D therapy.
Collapse
Affiliation(s)
- Yi-Xiang Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Yun-Yuan Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China; Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rong-Rong Song
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Liang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Chao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Xiao-Kang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China
| | - Shuai-Shuai Ni
- Cancer Institute, Longhua Hospital Shanghai University of Traditional Chinese Medicine, 725 South Wan Ping Road, Shanghai, 200032, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai, 200237, China.
| |
Collapse
|
8
|
Singh S, Harmalkar DS, Choi Y, Lee K. Fructose-1,6-bisphosphatase Inhibitors: A Review of Recent (2000- 2017) Advances and Structure-Activity Relationship Studies. Curr Med Chem 2019; 26:5542-5563. [DOI: 10.2174/0929867325666180831133734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/01/2018] [Accepted: 07/20/2018] [Indexed: 11/22/2022]
Abstract
:
Diabetes mellitus, commonly referred to as diabetes, is the 8th leading cause of
death worldwide. As of 2015, approximately 415 million people were estimated to be diabetic
worldwide, type 2 diabetes being the most common accounting for approximately 90-95% of
all diagnosed cases with increasing prevalence. Fructose-1,6-bisphosphatase is one of the important
therapeutic targets recently discovered to treat this chronic disease. In this focused
review, we have highlighted recent advances and structure-activity relationship studies in the
discovery and development of different fructose-1,6-bisphosphatase inhibitors reported since
the year 2000.
Collapse
Affiliation(s)
- Sarbjit Singh
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | | | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
9
|
Huang Y, Chi B, Xu Y, Song R, Wei L, Rao L, Feng L, Ren Y, Wan J. In silico screening of a novel scaffold for fructose-1,6-bisphosatase (FBPase) inhibitors. J Mol Graph Model 2018; 86:142-148. [PMID: 30366190 DOI: 10.1016/j.jmgm.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/22/2022]
Abstract
Fructose-1, 6-bisphosphatase (FBPase) has been regarded as an attractive drug target to control blood glucose against Type 2 diabetes (T2D). In this study, by using the strategy of pharmacophore-based virtual screening, a novel scaffold inhibitor targeted the AMP allosteric site of human liver FBPase were screened, their inhibitory activities were further tested. The experimental results showed that compound H27 exhibited high inhibitory activities with the IC50 value of 5.3 μM. Therefore, compound H27 was chosen as the probe molecule, it's possible binding conformation targeted into FBPase was identified by using DOX2.0 strategy. The importance of key residues (T27, T31, K112 and R140) in allosteric site of FBPase for the binding inhibitors were validated by mutation experiments. The agreement between theory and experiment suggest that the interactional information of FBPase and inhibitors (H27) were reliable. On basis of these rational interactional information, the compound H29 was further designed to exhibit more potential FBPase inhibition (IC50 = 2.5 μM).
Collapse
Affiliation(s)
- Yunyuan Huang
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Bo Chi
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanhong Xu
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Rongrong Song
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lin Wei
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Li Rao
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lingling Feng
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yanliang Ren
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| | - Jian Wan
- International Cooperation Base of Pesticide and Green Synthesis (Hubei), Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, Department of Chemistry, Central China Normal University, Wuhan, 430079, China.
| |
Collapse
|
10
|
Kaur R, Dahiya L, Kumar M. Fructose-1,6-bisphosphatase inhibitors: A new valid approach for management of type 2 diabetes mellitus. Eur J Med Chem 2017; 141:473-505. [DOI: 10.1016/j.ejmech.2017.09.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 11/27/2022]
|
11
|
Yuan M, Vásquez-Valdivieso MG, McNae IW, Michels PAM, Fothergill-Gilmore LA, Walkinshaw MD. Structures of Leishmania Fructose-1,6-Bisphosphatase Reveal Species-Specific Differences in the Mechanism of Allosteric Inhibition. J Mol Biol 2017; 429:3075-3089. [PMID: 28882541 PMCID: PMC5639204 DOI: 10.1016/j.jmb.2017.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 11/29/2022]
Abstract
The gluconeogenic enzyme fructose-1,6-bisphosphatase has been proposed as a potential drug target against Leishmania parasites that cause up to 20,000-30,000 deaths annually. A comparison of three crystal structures of Leishmania major fructose-1,6-bisphosphatase (LmFBPase) along with enzyme kinetic data show how AMP acts as an allosteric inhibitor and provides insight into its metal-dependent reaction mechanism. The crystal structure of the apoenzyme form of LmFBPase is a homotetramer in which the dimer of dimers adopts a planar conformation with disordered "dynamic loops". The structure of LmFBPase, complexed with manganese and its catalytic product phosphate, shows the dynamic loops locked into the active sites. A third crystal structure of LmFBPase complexed with its allosteric inhibitor AMP shows an inactive form of the tetramer, in which the dimer pairs are rotated by 18° relative to each other. The three structures suggest an allosteric mechanism in which AMP binding triggers a rearrangement of hydrogen bonds across the large and small interfaces. Retraction of the "effector loop" required for AMP binding releases the side chain of His23 from the dimer-dimer interface. This is coupled with a flip of the side chain of Arg48 which ties down the key catalytic dynamic loop in a disengaged conformation and also locks the tetramer in an inactive rotated T-state. The structure of the effector site of LmFBPase shows different structural features compared with human FBPases, thereby offering a potential and species-specific drug target.
Collapse
Affiliation(s)
- Meng Yuan
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Montserrat G Vásquez-Valdivieso
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Iain W McNae
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Paul A M Michels
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Linda A Fothergill-Gilmore
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
12
|
Ruf A, Tetaz T, Schott B, Joseph C, Rudolph MG. Quadruple space-group ambiguity owing to rotational and translational noncrystallographic symmetry in human liver fructose-1,6-bisphosphatase. Acta Crystallogr D Struct Biol 2016; 72:1212-1224. [PMID: 27841754 PMCID: PMC5108348 DOI: 10.1107/s2059798316016715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
Fructose-1,6-bisphosphatase (FBPase) is a key regulator of gluconeogenesis and a potential drug target for type 2 diabetes. FBPase is a homotetramer of 222 symmetry with a major and a minor dimer interface. The dimers connected via the minor interface can rotate with respect to each other, leading to the inactive T-state and active R-state conformations of FBPase. Here, the first crystal structure of human liver FBPase in the R-state conformation is presented, determined at a resolution of 2.2 Å in a tetragonal setting that exhibits an unusual arrangement of noncrystallographic symmetry (NCS) elements. Self-Patterson function analysis and various intensity statistics revealed the presence of pseudo-translation and the absence of twinning. The space group is P41212, but structure determination was also possible in space groups P43212, P4122 and P4322. All solutions have the same arrangement of three C2-symmetric dimers spaced by 1/3 along an NCS axis parallel to the c axis located at (1/4, 1/4, z), which is therefore invisible in a self-rotation function analysis. The solutions in the four space groups are related to one another and emulate a body-centred lattice. If all NCS elements were crystallographic, the space group would be I4122 with a c axis three times shorter and a single FBPase subunit in the asymmetric unit. I4122 is a minimal, non-isomorphic supergroup of the four primitive tetragonal space groups, explaining the space-group ambiguity for this crystal.
Collapse
Affiliation(s)
- Armin Ruf
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Tim Tetaz
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Brigitte Schott
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Catherine Joseph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Markus G. Rudolph
- pRED, Therapeutic Modalities, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| |
Collapse
|
13
|
Han X, Huang Y, Zhang R, Xiao S, Zhu S, Qin N, Hong Z, Wei L, Feng J, Ren Y, Feng L, Wan J. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 165:155-160. [PMID: 27137358 DOI: 10.1016/j.saa.2016.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 03/13/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.
Collapse
Affiliation(s)
- Xinya Han
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yunyuan Huang
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rui Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - San Xiao
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuaihuan Zhu
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nian Qin
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zongqin Hong
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lin Wei
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jiangtao Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanliang Ren
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Jian Wan
- Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
14
|
Bie J, Liu S, Li Z, Mu Y, Xu B, Shen Z. Discovery of novel indole derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase. Eur J Med Chem 2014; 90:394-405. [PMID: 25461330 DOI: 10.1016/j.ejmech.2014.11.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/30/2014] [Accepted: 11/24/2014] [Indexed: 11/30/2022]
Abstract
A series of novel indole derivatives was designed and synthesized as inhibitors of fructose-1,6-bisphosphatase (FBPase). The most potent compound 14c was identified with an IC50 value of 0.10 μM by testing the inhibitory activity against recombinant human FBPase. The structure-activity relationships were investigated on the substitution at 4- and 5-position of the indole scaffold. The binding interactions of the title compounds at AMP binding site of FBPase were predicted using CDOCKER algorithm.
Collapse
Affiliation(s)
- Jianbo Bie
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Shuainan Liu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Zhanmei Li
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Yongzhao Mu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China.
| | - Zhufang Shen
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences&Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
15
|
Liao BR, He HB, Yang LL, Gao LX, Chang L, Tang J, Li JY, Li J, Yang F. Synthesis and structure-activity relationship of non-phosphorus-based fructose-1,6-bisphosphatase inhibitors: 2,5-Diphenyl-1,3,4-oxadiazoles. Eur J Med Chem 2014; 83:15-25. [PMID: 24946215 DOI: 10.1016/j.ejmech.2014.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/03/2014] [Accepted: 06/07/2014] [Indexed: 11/28/2022]
Abstract
With the aim of discovering a novel class of non-phosphorus-based fructose-1,6-bisphosphatase (FBPase) inhibitors, a series of 2,5-diphenyl-1,3,4-oxadiazoles were synthesized based on the hit compound (1) resulting from a high-throughput screening (HTS). Structure-activity relationship (SAR) studies led to the identification of several compounds with comparable inhibitory activities to AMP, the natural allosteric inhibitor of FBPase. Notably, compound 22 and 27b, bearing a terminal carboxyl or 1H-tetrazole, demonstrated remarkable inhibition to gluconeogenesis (GNG). In addition, both inhibition and binding mode to the enzyme were investigated by enzymatic kinetics and in silico experiments for representative compounds 16 and 22.
Collapse
Affiliation(s)
- Ben-Ren Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Hai-Bing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China; Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, China
| | - Ling-Ling Yang
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Li-Xin Gao
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China
| | - Liang Chang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Jie Tang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Jing-Ya Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Jia Li
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Fan Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
16
|
Bie J, Liu S, Zhou J, Xu B, Shen Z. Design, synthesis and biological evaluation of 7-nitro-1H-indole-2-carboxylic acid derivatives as allosteric inhibitors of fructose-1,6-bisphosphatase. Bioorg Med Chem 2014; 22:1850-62. [DOI: 10.1016/j.bmc.2014.01.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/15/2014] [Accepted: 01/27/2014] [Indexed: 11/29/2022]
|
17
|
Xiao C, Wu QP, Cai W, Tan JB, Yang XB, Zhang JM. Hypoglycemic effects of Ganoderma lucidum polysaccharides in type 2 diabetic mice. Arch Pharm Res 2012; 35:1793-801. [PMID: 23139131 DOI: 10.1007/s12272-012-1012-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/26/2012] [Accepted: 06/01/2012] [Indexed: 11/28/2022]
Abstract
Our aims were to investigate the hypoglycemic effects and mechanisms of action of Ganoderma lucidum polysaccharides (GLPs) administered for 7 days in type 2 diabetic mice. The mice were randomly divided into four groups (8 mice/group): normal control group, diabetic control group, low-dose GLP-treated diabetic group (50 mg/kg/d), and high-dose GLP-treated diabetic group (100 mg/kg/d). Diabetes was induced by streptozotocin injection and high-fat dietary feeding. At the end of the study, fasting serum glucose, insulin, body weight (BW) and epididymal white adipose tissue weight were measured. The hepatic mRNA levels of glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) genes were determined by real-time polymerase chain reaction. Both doses of GLPs significantly decreased fasting serum glucose, insulin and epididymal fat/BW ratio compared with the diabetic control group (p < 0.05). The hepatic mRNA levels of GP, FBPase, PEPCK and G6Pase were significantly lower in both GLP-treated groups compared with the diabetic control group. Taken together, GLPs significantly decrease fasting serum glucose levels in type 2 diabetic mice in a dose-dependent manner. The decreases in fasting serum glucose levels may be associated with decreased mRNA expression levels of several key enzymes involved in gluconeogenesis and/or glycogenolysis.
Collapse
Affiliation(s)
- Chun Xiao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Ministry of Guangdong Province Joint Breeding Base, South China, Guangdong Institute of Microbiology, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
18
|
Tayyem RF, Zalloum HM, Elmaghrabi MR, Yousef AM, Mubarak MS. Ligand-based designing, in silico screening, and biological evaluation of new potent fructose-1,6-bisphosphatase (FBPase) inhibitors. Eur J Med Chem 2012; 56:70-95. [DOI: 10.1016/j.ejmech.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 07/27/2012] [Accepted: 08/02/2012] [Indexed: 10/28/2022]
|
19
|
Hao M, Zhang S, Qiu J. Toward the prediction of FBPase inhibitory activity using chemoinformatic methods. Int J Mol Sci 2012; 13:7015-7037. [PMID: 22837677 PMCID: PMC3397509 DOI: 10.3390/ijms13067015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 05/18/2012] [Accepted: 05/31/2012] [Indexed: 01/08/2023] Open
Abstract
Currently, Chemoinformatic methods are used to perform the prediction for FBPase inhibitory activity. A genetic algorithm-random forest coupled method (GA-RF) was proposed to predict fructose 1,6-bisphosphatase (FBPase) inhibitors to treat type 2 diabetes mellitus using the Mold2 molecular descriptors. A data set of 126 oxazole and thiazole analogs was used to derive the GA-RF model, yielding the significant non-cross-validated correlation coefficient r2ncv and cross-validated r2cv values of 0.96 and 0.67 for the training set, respectively. The statistically significant model was validated by a test set of 64 compounds, producing the prediction correlation coefficient r2pred of 0.90. More importantly, the building GA-RF model also passed through various criteria suggested by Tropsha and Roy with r2o and r2m values of 0.90 and 0.83, respectively. In order to compare with the GA-RF model, a pure RF model developed based on the full descriptors was performed as well for the same data set. The resulting GA-RF model with significantly internal and external prediction capacities is beneficial to the prediction of potential oxazole and thiazole series of FBPase inhibitors prior to chemical synthesis in drug discovery programs.
Collapse
Affiliation(s)
| | | | - Jieshan Qiu
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-411-84986024; Fax: +86-411-84986080
| |
Collapse
|
20
|
Yang F, Li J, Li JY, He HB, Zhou YY, Liu T, Tang J, Gong XP, Qiu WW. Design, Synthesis and Biological Activity Evaluation of 2,5-Diphenyl-1,3,4-oxadiazole Derivatives as Novel Inhibitors of Fructose-1,6-bisphosphatase. HETEROCYCLES 2012. [DOI: 10.3987/com-12-12565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Hao M, Zhang X, Ren H, Li Y, Zhang S, Luo F, Ji M, Li G, Yang L. In silico identification of structure requirement for novel thiazole and oxazole derivatives as potent fructose 1,6-bisphosphatase inhibitors. Int J Mol Sci 2011; 12:8161-80. [PMID: 22174657 PMCID: PMC3233463 DOI: 10.3390/ijms12118161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/10/2011] [Accepted: 11/16/2011] [Indexed: 12/12/2022] Open
Abstract
Fructose 1,6-bisphosphatase (FBPase) has been identified as a drug discovery target for lowering glucose in type 2 diabetes mellitus. In this study, a large series of 105 FBPase inhibitors were studied using a combinational method by 3D-QSAR, molecular docking and molecular dynamics simulations for a further improvement in potency. The optimal 3D models exhibit high statistical significance of the results, especially for the CoMFA results with rncv2, q2 values of 0.986, 0.514 for internal validation, and rpred2, rm2 statistics of 0.902, 0.828 statistics for external validation. Graphic representation of the results, as contoured 3D coefficient plots, also provides a clue to the reasonable modification of molecules. (1) Substituents with a proper length and size at the C5 position of the thiazole core are required to enhance the potency; (2) A small and electron-withdrawing group at the C2 position linked to the thiazole core is likely to help increase the FBPase inhibition; (3) Substituent groups as hydrogen bond acceptors at the C2 position of the furan ring are favored. In addition, the agreement between 3D-QSAR, molecular docking and molecular dynamics simulation proves the rationality of the developed models. These results, we hope, may be helpful in designing novel and potential FBPase inhibitors.
Collapse
Affiliation(s)
- Ming Hao
- Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China; E-Mails: (M.H.); (S.Z.)
| | - Xiaole Zhang
- Department of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, 116023, China; E-Mail:
| | - Hong Ren
- Department of Ophthalmology, Qi Lu Hospital, Medical School of Shandong University, Jinan, 250012, China; E-Mail:
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; E-Mail:
| | - Yan Li
- Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China; E-Mails: (M.H.); (S.Z.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-411-84986062; Fax: +86-411-84986063
| | - Shuwei Zhang
- Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116023, China; E-Mails: (M.H.); (S.Z.)
| | - Fang Luo
- College of Chemistry and Chemical Engineering, Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China; E-Mails: (F.L.); (M.J.)
| | - Mingjuan Ji
- College of Chemistry and Chemical Engineering, Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China; E-Mails: (F.L.); (M.J.)
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; E-Mail:
| | - Ling Yang
- Laboratory of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Dalian, Liaoning, 116023, China; E-Mail:
| |
Collapse
|
22
|
Yi P, Di YT, Liu W, Hao XJ, Ming Y, Huang DS, Yang J, Yi ZZ, Li ZJ, Yang RD, Zhang JC. Protein-based alignment in 3D-QSAR of FBPase inhibitors. Eur J Med Chem 2011; 46:885-92. [DOI: 10.1016/j.ejmech.2010.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/07/2010] [Accepted: 12/31/2010] [Indexed: 10/18/2022]
|
23
|
Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol 2011:279-301. [PMID: 21484576 DOI: 10.1007/978-3-642-17214-4_12] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fructose-1,6-bisphosphatase (FBPase), a rate-controlling enzyme of gluconeogenesis, has emerged as an important target for the treatment of type 2 diabetes due to the well-recognized role of excessive endogenous glucose production (EGP) in the hyperglycemia characteristic of the disease. Inhibitors of FBPase are expected to fulfill an unmet medical need because the majority of current antidiabetic medications act primarily on insulin resistance or insulin insufficiency and do not reduce gluconeogenesis effectively or in a direct manner. Despite significant challenges, potent and selective inhibitors of FBPase targeting the allosteric site of the enzyme were identified by means of a structure-guided design strategy that used the natural inhibitor, adenosine monophosphate (AMP), as the starting point. Oral delivery of these anionic FBPase inhibitors was enabled by a novel diamide prodrug class. Treatment of diabetic rodents with CS-917, the best characterized of these prodrugs, resulted in a reduced rate of gluconeogenesis and EGP. Of note, inhibition of gluconeogenesis by CS-917 led to the amelioration of both fasting and postprandial hyperglycemia without weight gain, incidence of hypoglycemia, or major perturbation of lactate or lipid homeostasis. Furthermore, the combination of CS-917 with representatives of the insulin sensitizer or insulin secretagogue drug classes provided enhanced glycemic control. Subsequent clinical evaluations of CS-917 revealed a favorable safety profile as well as clinically meaningful reductions in fasting glucose levels in patients with T2DM. Future trials of MB07803, a second generation FBPase inhibitor with improved pharmacokinetics, will address whether this novel class of antidiabetic agents can provide safe and long-term glycemic control.
Collapse
|
24
|
Dang Q, Kasibthatla SR, Jiang T, Taplin F, Gibson T, Potter SC, van Poelje PD, Erion MD. Oxazole
phosphonic acids as fructose 1,6-bisphosphatase inhibitors with potent glucose-lowering activity. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00269k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphonic acid-containing oxazoles were discovered as potent inhibitors of fructose 1,6-bisphosphatase. Several oxazoles demonstrated significant glucose-lowering activity in rats after intravenous dosing.
Collapse
Affiliation(s)
- Qun Dang
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | | | - Tao Jiang
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Frank Taplin
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Tony Gibson
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Scott C. Potter
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Paul D. van Poelje
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| | - Mark D. Erion
- Departments of Chemistry and Biochemistry
- Metabasis Therapeutics, Inc
- La Jolla
- USA
| |
Collapse
|
25
|
Tsukada T, Kanno O, Yamane T, Tanaka J, Yoshida T, Okuno A, Shiiki T, Takahashi M, Nishi T. Discovery of potent and orally active tricyclic-based FBPase inhibitors. Bioorg Med Chem 2010; 18:5346-51. [DOI: 10.1016/j.bmc.2010.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/13/2010] [Accepted: 05/14/2010] [Indexed: 11/28/2022]
|
26
|
Rudnitskaya A, Borkin DA, Huynh K, Török B, Stieglitz K. Rational design, synthesis, and potency of N-substituted indoles, pyrroles, and triarylpyrazoles as potential fructose 1,6-bisphosphatase inhibitors. ChemMedChem 2010; 5:384-9. [PMID: 20069623 DOI: 10.1002/cmdc.200900493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
By using computer modeling and lead structures from our earlier SAR results, a broad variety of pyrrole-, indole-, and pyrazole-based compounds were evaluated as potential fructose 1,6-bisphosphatase (FBPase) inhibitors. The docking studies yielded promising structures, and several were selected for synthesis and FBPase inhibition assays: 1-[4-(trifluoromethyl)benzoyl]-1H-indole-5-carboxamide, 1-(alpha-naphthalen-1-ylsulfonyl)-7-nitro-1H-indole, 5-(4-carboxyphenyl)-3-phenyl-1-[3-(trifluoromethyl)phenyl]-1H-pyrazole, 1-(4-carboxyphenylsulfonyl)-1H-pyrrole, and 1-(4-carbomethoxyphenylsulfonyl)-1H-pyrrole were synthesized and tested for inhibition of FBPase. The IC(50) values were determined to be 0.991 and 1.34 microM, and 575, 135, and 32 nM, respectively. The tested compounds were significantly more potent than the natural inhibitor AMP (4.0 microM) by an order of magnitude; indeed, the best inhibitor showed an IC(50) value toward FBPase more than two orders of magnitude better than that of AMP. This level of activity is virtually the same as that of the best currently known FBPase inhibitors. This work shows that such indole derivatives are promising candidates for drug development in the treatment of type II diabetes.
Collapse
Affiliation(s)
- Aleksandra Rudnitskaya
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | | | | | | |
Collapse
|
27
|
Tsukada T, Tamaki K, Tanaka J, Takagi T, Yoshida T, Okuno A, Shiiki T, Takahashi M, Nishi T. A prodrug approach towards the development of tricyclic-based FBPase inhibitors. Bioorg Med Chem Lett 2010; 20:2938-41. [PMID: 20359891 DOI: 10.1016/j.bmcl.2010.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
Abstract
For the purpose of reducing the strong CYP3A4 inhibitory potency of diamide prodrug 4, cyclic prodrugs of tricyclic-based FBPase inhibitors were synthesized. Extensive SAR studies led to the discovery of pyridine-containing cyclic prodrug 20, which strongly inhibited glucose production in monkey hepatocytes and also showed weak CYP3A4 inhibitory potency.
Collapse
Affiliation(s)
- Tomoharu Tsukada
- Medicinal Chemistry Research Laboratories I, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dang Q, Kasibhatla SR, Xiao W, Liu Y, Dare J, Taplin F, Reddy KR, Scarlato GR, Gibson T, van Poelje PD, Potter SC, Erion MD. Fructose-1,6-bisphosphatase Inhibitors. 2. Design, synthesis, and structure-activity relationship of a series of phosphonic acid containing benzimidazoles that function as 5'-adenosinemonophosphate (AMP) mimics. J Med Chem 2010; 53:441-51. [PMID: 20055427 DOI: 10.1021/jm901420x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Efforts to enhance the inhibitory potency of the initial purine series of fructose-1,6-bisphosphatase (FBPase) inhibitors led to the discovery of a series of benzimidazole analogues with human FBPase IC(50)s < 100 nM. Inhibitor 4.4 emerged as a lead compound based on its potent inhibition of human liver FBPase (IC(50) = 55 nM) and significant glucose lowering in normal fasted rats. Intravenous administration of 4.4 to Zucker diabetic fatty rats led to rapid and robust glucose lowering, thereby providing the first evidence that FBPase inhibitors could improve glycemia in animal models of type 2 diabetes.
Collapse
Affiliation(s)
- Qun Dang
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Heng S, Harris KM, Kantrowitz ER. Designing inhibitors against fructose 1,6-bisphosphatase: exploring natural products for novel inhibitor scaffolds. Eur J Med Chem 2010; 45:1478-84. [PMID: 20116906 DOI: 10.1016/j.ejmech.2009.12.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 12/18/2009] [Indexed: 11/25/2022]
Abstract
Natural products often contain unusual scaffold structures that may be elaborated by combinatorial methods to develop new drug-like molecules. Visual inspection of more than 128 natural products with some type of anti-diabetic activity suggested that a subset might provide novel scaffolds for designing potent inhibitors against fructose 1,6-bisphosphatase (FBPase), an enzyme critical in the control of gluconeogenesis. Using in silico docking methodology, these were evaluated to determine those that exhibited affinity for the AMP binding site. Achyrofuran from the South American plant Achyrocline satureoides, was selected for further investigation. Using the achyrofuran scaffold, inhibitors against FBPase were developed. Compounds 15 and 16 inhibited human liver and pig kidney FBPases at IC50 values comparable to that of AMP, the natural allosteric inhibitor.
Collapse
Affiliation(s)
- Sabrina Heng
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
30
|
Structure-based drug design of tricyclic 8H-indeno[1,2-d][1,3]thiazoles as potent FBPase inhibitors. Bioorg Med Chem Lett 2009; 20:1004-7. [PMID: 20045638 DOI: 10.1016/j.bmcl.2009.12.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022]
Abstract
With the goal of improving metabolic stability and further enhancing FBPase inhibitory activity, a series of tricyclic 8H-indeno[1,2-d][1,3]thiazoles was designed and synthesized with the aid of structure-based drug design. Extensive SAR studies led to the discovery of 19a with an IC(50) value of 1nM against human FBPase. X-ray crystallographic studies revealed that high affinity of 19a was due to the hydrophobic interaction arising from better shape complementarity and to the hydrogen bonding network involving the side chain on the tricyclic scaffold.
Collapse
|
31
|
Tsukada T, Takahashi M, Takemoto T, Kanno O, Yamane T, Kawamura S, Nishi T. Synthesis, SAR, and X-ray structure of tricyclic compounds as potent FBPase inhibitors. Bioorg Med Chem Lett 2009; 19:5909-12. [PMID: 19762234 DOI: 10.1016/j.bmcl.2009.08.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 08/17/2009] [Accepted: 08/18/2009] [Indexed: 10/20/2022]
Abstract
With the aim of discovering a novel class of fructose-1,6-bisphosphatase (FBPase) inhibitors, a series of compounds based on tricyclic scaffolds was synthesized. Extensive SAR studies led to the finding of 8l with an IC50 value of 0.013 microM against human FBPase. An X-ray crystallographic study revealed that 8l bound at AMP binding sites of human liver FBPase with hydrogen bonding interactions similar to AMP.
Collapse
Affiliation(s)
- Tomoharu Tsukada
- Medicinal Chemistry Research Laboratories I, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Dang Q, Brown BS, Liu Y, Rydzewski RM, Robinson ED, van Poelje PD, Reddy MR, Erion MD. Fructose-1,6-bisphosphatase inhibitors. 1. Purine phosphonic acids as novel AMP mimics. J Med Chem 2009; 52:2880-98. [PMID: 19348494 DOI: 10.1021/jm900078f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of FBPase is considered a promising way to reduce hepatic gluconeogenesis and therefore could be a potential approach to treat type 2 diabetes. Herein we report the discovery of a series of purine phosphonic acids as AMP mimics targeting the AMP site of FBPase, which was achieved using a structure-guided drug design approach. These non-nucleotide purine analogues inhibit FBPase in a similar manner and with similar potency as AMP. More importantly, several purine analogues exhibited potent cellular and in vivo glucose-lowering activities, thus achieving proof-of-concept for inhibiting FBPase as a drug discovery target. For example, compounds 4.11 and 4.13 are as equipotent as AMP with regard to FBPase inhibition. Furthermore, compound 4.11 inhibited glucose production in primary rat hepatocytes and significantly lowered blood glucose levels in fasted rats.
Collapse
Affiliation(s)
- Qun Dang
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rudnitskaya A, Huynh K, Török B, Stieglitz K. Novel heteroaromatic organofluorine inhibitors of fructose-1,6-bisphosphatase. J Med Chem 2009; 52:878-82. [PMID: 19143528 DOI: 10.1021/jm800720a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A broad group of compounds including substituted pyrazoles, pyrroles, indoles, and carbazoles were screened to identify potential inhibitor lead compounds of fructose-1,6-bisphosphatase (FBPase). Best inhibitors are (1H-indol-1-yl)(4-(trifluoromethyl)phenyl)methanone, ethyl 3-(3,5-dimethyl-1H-pyrrol-2-yl)-4,4,4-trifluoro-3-hydroxybutanoate, 3,5-diphenyl-1-(3-(trifluoromethyl) phenyl)-1H-pyrazole, and ethyl 3,3,3-trifluoro-2-hydroxy-2-(1-methyl-1H-indol-3-yl)propanoate. The IC50 values (3.1, 4.8, 6.1, and 11.9 microM) were comparable to that of AMP, the natural inhibitor of murine FBPase (IC50 of 4.0 microM). Docking programs were utilized to interpret the experiments.
Collapse
|
34
|
An unexpected cyclization discovered during the synthesis of 8-substituted purines from a 4,5-diaminopyrimidine. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.01.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, Fujitaki JM, van Poelje PD, Huang J, Lipscomb WN, Erion MD. Discovery of Potent and Specific Fructose-1,6-Bisphosphatase Inhibitors and a Series of Orally-Bioavailable Phosphoramidase-Sensitive Prodrugs for the Treatment of Type 2 Diabetes. J Am Chem Soc 2007; 129:15491-502. [DOI: 10.1021/ja074871l] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Abstract
Type-2 diabetes is associated with impaired glucose clearance by the liver in the postprandial state, and with elevated glucose production in the post-absorptive state. New targets within the liver are currently being investigated for development of antihyperglycaemic drugs for type-2 diabetes. They include glucokinase, which catalyses the first step in glucose metabolism, the glucagon receptor, and enzymes of gluconeogenesis and/or glycogenolysis such as glucose 6-phosphatase, fructose 1,6-bisphosphatase and glycogen phosphorylase. Preclinical studies with candidate drugs on animal models or cell-based assays suggest that these targets have the potential for pharmacological glycaemic control. Data from clinical studies is awaited. Further work is required for better understanding of the implications of targeting these sites in terms of possible side-effects or tachyphylaxis. The advantage of combined targeting of two or more sites within the liver for minimizing side-effects and tachyphylaxis caused by single-site targeting is discussed.
Collapse
Affiliation(s)
- Loranne Agius
- Institute of Cellular Medicine, School of Clinical Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
37
|
Erion MD, Dang Q, Reddy MR, Kasibhatla SR, Huang J, Lipscomb WN, van Poelje PD. Structure-guided design of AMP mimics that inhibit fructose-1,6-bisphosphatase with high affinity and specificity. J Am Chem Soc 2007; 129:15480-90. [PMID: 18041833 DOI: 10.1021/ja074869u] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AMP binding sites are commonly used by nature for allosteric regulation of enzymes controlling the production and metabolism of carbohydrates and lipids. Since many of these enzymes represent potential drug targets for metabolic diseases, efforts were initiated to discover AMP mimics that bind to AMP-binding sites with high affinity and high enzyme specificity. Herein we report the structure-guided design of potent fructose 1,6-bisphosphatase (FBPase) inhibitors that interact with the AMP binding site on FBPase despite their structural dissimilarity to AMP. Molecular modeling, free-energy perturbation calculations, X-ray crystallography, and enzyme kinetic data guided our redesign of AMP, which began by replacing the 5'-phosphate with a phosphonic acid attached to C8 of the adenine base via a 3-atom spacer. Additional binding affinity was gained by replacing the ribose with an alkyl group that formed van der Waals interactions with a hydrophobic region within the AMP binding site and by replacing the purine nitrogens N1 and N3 with carbons to minimize desolvation energy expenditures. The resulting benzimidazole phosphonic acid, 16, inhibited human FBPase (IC50 = 90 nM) 11-fold more potently than AMP and exhibited high specificity for the AMP binding site on FBPase. 16 also inhibited FBPase in primary rat hepatocytes and correspondingly resulted in concentration-dependent inhibition of the gluconeogenesis pathway. Accordingly, these results suggest that the AMP site of FBPase may represent a potential drug target for reducing the excessive glucose produced by the gluconeogenesis pathway in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mark D Erion
- Department of Medicinal Chemistry, Metabasis Therapeutics, Inc., 11119 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
van Poelje PD, Dang Q, Erion MD. Fructose-1,6-bisphosphatase as a therapeutic target for type 2 diabetes. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.ddstr.2007.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
|
40
|
von Geldern TW, Lai C, Gum RJ, Daly M, Sun C, Fry EH, Abad-Zapatero C. Benzoxazole benzenesulfonamides are novel allosteric inhibitors of fructose-1,6-bisphosphatase with a distinct binding mode. Bioorg Med Chem Lett 2006; 16:1811-5. [PMID: 16442285 DOI: 10.1016/j.bmcl.2006.01.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 01/04/2006] [Accepted: 01/05/2006] [Indexed: 10/25/2022]
Abstract
We have identified benzoxazole benzenesulfonamide 1 as a novel allosteric inhibitor of fructose-1,6-bisphosphatase (FBPase-1). X-ray crystallographic and biological studies of 1 indicate a distinct binding mode that recapitulates features of several previously reported FBPase-1 inhibitor classes.
Collapse
Affiliation(s)
- Thomas W von Geldern
- Metabolic Disease Research, GPRD, Abbott Laboratories, Abbott Park, IL 60064, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Erion MD, van Poelje PD, Dang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN. MB06322 (CS-917): A potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc Natl Acad Sci U S A 2005; 102:7970-5. [PMID: 15911772 PMCID: PMC1138262 DOI: 10.1073/pnas.0502983102] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In type 2 diabetes, the liver produces excessive amounts of glucose through the gluconeogenesis (GNG) pathway and consequently is partly responsible for the elevated glucose levels characteristic of the disease. In an effort to find safe and efficacious GNG inhibitors, we targeted the AMP binding site of fructose 1,6-bisphosphatase (FBPase). The hydrophilic nature of AMP binding sites and their widespread use for allosteric regulation of enzymes in metabolic pathways has historically made discovery of AMP mimetics suitable for drug development difficult. By using a structure-based drug design strategy, we discovered a series of compounds that mimic AMP but bear little structural resemblance. The lead compound, MB05032, exhibited high potency and specificity for human FBPase. Oral delivery of MB05032 was achieved by using the bisamidate prodrug MB06322 (CS-917), which is converted to MB05032 in two steps through the action of an esterase and a phosphoramidase. MB06322 inhibited glucose production from a variety of GNG substrates in rat hepatocytes and from bicarbonate in male Zucker diabetic fatty rats. Analysis of liver GNG pathway intermediates confirmed FBPase as the site of action. Oral administration of MB06322 to Zucker diabetic fatty rats led to a dose-dependent decrease in plasma glucose levels independent of insulin levels and nutritional status. Glucose lowering occurred without signs of hypoglycemia or significant elevations in plasma lactate or triglyceride levels. The findings suggest that potent and specific FBPase inhibitors represent a drug class with potential to treat type 2 diabetes through inhibition of GNG.
Collapse
Affiliation(s)
- Mark D Erion
- Department of Biochemistry, Metabasis Therapeutics, Inc., 9390 Towne Centre Drive, Building 300, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Gould TD, Quiroz JA, Singh J, Zarate CA, Manji HK. Emerging experimental therapeutics for bipolar disorder: insights from the molecular and cellular actions of current mood stabilizers. Mol Psychiatry 2004; 9:734-55. [PMID: 15136794 DOI: 10.1038/sj.mp.4001518] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bipolar disorder afflicts approximately 1-3% of both men and women, and is coincident with major economic, societal, medical, and interpersonal consequences. Current mediations used for its treatment are associated with variable rates of efficacy and often intolerable side effects. While preclinical and clinical knowledge in the neurosciences has expanded at a tremendous rate, recent years have seen no major breakthroughs in the development of novel types of treatment for bipolar disorder. We review here approaches to develop novel treatments specifically for bipolar disorder. Deliberate (ie not by serendipity) treatments may come from one of two general mechanisms: (1) Understanding the mechanism of action of current medications and thereafter designing novel drugs that mimics these mechanism(s); (2) Basing medication development upon the hypothetical or proven underlying pathophysiology of bipolar disorder. In this review, we focus upon the first approach. Molecular and cellular targets of current mood stabilizers include lithium inhibitable enzymes where lithium competes for a magnesium binding site (inositol monophosphatase, inositol polyphosphate 1-phosphatase, glycogen synthase kinase-3 (GSK-3), fructose 1,6-bisphosphatase, bisphosphate nucleotidase, phosphoglucomutase), valproate inhibitable enzymes (succinate semialdehyde dehydrogenase, succinate semialdehyde reductase, histone deacetylase), targets of carbamazepine (sodium channels, adenosine receptors, adenylate cyclase), and signaling pathways regulated by multiple drugs of different classes (phosphoinositol/protein kinase C, cyclic AMP, arachidonic acid, neurotrophic pathways). While the task of developing novel medications for bipolar disorder is truly daunting, we are hopeful that understanding the mechanism of action of current mood stabilizers will ultimately lead clinical trials with more specific medications and thus better treatments those who suffer from this devastating illness.
Collapse
Affiliation(s)
- T D Gould
- Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|