1
|
Dolle RE, Michaut M, Martinez-Teipel B, Belanger S, Graczyk TM, DeHaven RN. Further studies of tyrosine surrogates in opioid receptor peptide ligands. Bioorg Med Chem Lett 2007; 17:2656-60. [PMID: 17350835 DOI: 10.1016/j.bmcl.2007.01.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
A series of opioid peptide ligands containing modified N-terminal tyrosine (Tyr) residues was prepared and evaluated against cloned human mu, delta, and kappa opioid receptors. This work extends the recent discovery that (S)-4-carboxamidophenylalanine (Cpa) is an effective tyrosine bioisostere. Amino acids containing negatively charged functional groups in place of tyrosine's phenolic hydroxyl lacked receptor affinity, while exchange of Tyr for (S)-4-aminophenylalanine was modestly successful. Peptides containing the new amino acids, (S)-4-carboxamido-2,6-dimethylphenylalanine (Cdp) and (S)-beta-(2-aminobenzo[d]thiazol-6-yl)alanine (Aba), displayed binding (K(i)) and functional (EC(50)) profiles comparable to the parent ligands at the three receptors. Cdp represents the best performing Tyr surrogate in terms of overall activity, while Cpa and Aba show a subtle proclivity toward the delta receptor.
Collapse
MESH Headings
- Chemistry, Pharmaceutical/methods
- Cloning, Molecular
- Drug Design
- Humans
- Hydrogen Bonding
- Kinetics
- Ligands
- Models, Chemical
- Molecular Conformation
- Peptides/chemistry
- Receptors, Opioid/chemistry
- Receptors, Opioid, delta/chemistry
- Receptors, Opioid, kappa/chemistry
- Receptors, Opioid, mu/chemistry
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Roland E Dolle
- Department of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA.
| | | | | | | | | | | |
Collapse
|
2
|
Kane BE, Svensson B, Ferguson DM. Molecular recognition of opioid receptor ligands. AAPS JOURNAL 2006; 8:E126-37. [PMID: 16584119 PMCID: PMC2751431 DOI: 10.1208/aapsj080115] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cloning of the opioid receptors and subsequent use of recombinant DNA technology have led to many new insights into ligand binding. Instead of focusing on the structural features that lead to increased affinity and selectivity, researchers are now able to focus on why these features are important. Site-directed mutagenesis and chimeric data have often been at the forefront in answering these questions. Herein, we survey pharmacophores of several opioid ligands in an effort to understand the structural requirements for ligand binding and selectivity. Models are presented and compared to illustrate key sites of recognition for both opiate and nonopiate ligands. The results indicate that different ligand classes may recognize different sites within the receptor, suggesting that multiple epitopes may exist for ligand binding and selectivity.
Collapse
Affiliation(s)
- Brian E. Kane
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| | - Bengt Svensson
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| | - David M. Ferguson
- College of Pharmacy, Department of Medicinal Chemistry, University of Minnesota, 308 Harvard St SE, 8-101 Weaver-Densford Hall, 55455 Minneapolis, MN
| |
Collapse
|
3
|
Dolle RE, Machaut M, Martinez-Teipel B, Belanger S, Cassel JA, Stabley GJ, Graczyk TM, DeHaven RN. (4-Carboxamido)phenylalanine is a surrogate for tyrosine in opioid receptor peptide ligands. Bioorg Med Chem Lett 2004; 14:3545-8. [PMID: 15177470 DOI: 10.1016/j.bmcl.2004.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 04/12/2004] [Accepted: 04/12/2004] [Indexed: 11/20/2022]
Abstract
(S)-4-(Carboxamido)phenylalanine (Cpa) is examined as a bioisosteric replacement for the terminal tyrosine (Tyr) residue in a variety of known peptide ligands for the mu, delta and kappa opioid receptors. The Cpa-containing peptides, assayed against cloned human opioid receptors, display comparable binding affinity (Ki), and agonist potency (EC50) to the parent ligands at the three receptors. Cpa analogs of delta selective peptides show an increase in delta selectivity relative to the mu receptor. Cpa is the first example of an amino acid that acts as a surrogate for Tyr in opioid peptide ligands, challenging the long-standing belief that a phenolic residue is required for high affinity binding.
Collapse
MESH Headings
- Amino Acids, Aromatic/chemical synthesis
- Amino Acids, Aromatic/pharmacology
- Analgesics, Opioid/chemical synthesis
- Analgesics, Opioid/pharmacology
- Binding Sites
- Cell Line
- Humans
- Ligands
- Molecular Structure
- Opioid Peptides/metabolism
- Phenol/chemistry
- Phenylalanine/analogs & derivatives
- Phenylalanine/chemical synthesis
- Phenylalanine/pharmacology
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Tyrosine/pharmacology
Collapse
Affiliation(s)
- Roland E Dolle
- Department of Chemistry, Adolor Corporation, 700 Pennsylvania Drive, Exton, PA 19341, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
McLamore S, Ullrich T, Rothman RB, Xu H, Dersch C, Coop A, Davis P, Porreca F, Jacobson AE, Rice KC. Effect of N-alkyl and N-alkenyl substituents in noroxymorphindole, 17-substituted-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7:2',3'-indolomorphinans, on opioid receptor affinity, selectivity, and efficacy. J Med Chem 2001; 44:1471-4. [PMID: 11311071 DOI: 10.1021/jm000511w] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-alkyl analogues (N-ethyl through N-heptyl), branched N-alkyl chain analogues (N-isopropyl, N-2-methylpropyl, and N-3-methylbutyl), and N-alkenyl analogues ((E)-N-3-methylallyl (crotyl), N-2-methylallyl, and N-3,3-dimethylallyl) were prepared in the noroxymorphindole series (17-substituted-6,7-dehydro-4,5alpha-epoxy-3,14-dihydroxy-6,7:2',3'-indolomorphinans), and the effect of the N-substituent on opioid receptor affinity, selectivity, and efficacy was examined using receptor binding assays, [(35)S]GTPgammaS efficacy determinations, and smooth muscle functional assays (electrically stimulated mouse vas deferens and guinea pig ileum). All of the compounds acted as opioid antagonists, including those with N-substituents which usually confer either weak agonist-antagonist behavior (N-ethyl) or potent opioid agonist activity (N-pentyl) in morphinan-like ligands which interact with the mu-receptor. Several N-substituted noroxymorphindoles were found to be more mu/delta-selective than naltrindole (NTI). The N-2-methylallylnoroxymorphindole, in particular, was found to be more selective than NTI in receptor binding assays (mu/delta = 1700 vs 120; kappa/delta = 810 vs 140), as an antagonist in the GTPgammaS assay (mu/delta = 170 vs 140; kappa/delta = 620 vs 160), and considerably more selective than NTI in the functional assays (mu/delta > 2200 vs 90). It also had high affinity for the delta-opioid receptor (K(i) = 4.7 nM in the binding assay) and high antagonist potency (1.2 nM in the GTPgammaS assay; 8.9 nM in the MVD assay).
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Electric Stimulation
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Guinea Pigs
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Male
- Mice
- Morphinans/chemical synthesis
- Morphinans/chemistry
- Morphinans/metabolism
- Morphinans/pharmacology
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Narcotic Antagonists
- Radioligand Assay
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
- Vas Deferens/drug effects
- Vas Deferens/physiology
Collapse
Affiliation(s)
- S McLamore
- Laboratory of Medicinal Chemistry, Building 8, Room B1-23, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0815, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chaturvedi K, Jiang X, Christoffers KH, Chinen N, Bandari P, Raveglia LF, Ronzoni S, Dondio G, Howells RD. Pharmacological profiles of selective non-peptidic delta opioid receptor ligands. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 80:166-76. [PMID: 11038249 DOI: 10.1016/s0169-328x(00)00134-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several non-peptidic opioids have been synthesized recently as part of a program to develop selective delta receptor agonists. In this study, the affinities of a set of compounds for cloned delta and mu opioid receptors expressed in HEK 293 cell lines were determined by competition analysis of [3H]bremazocine binding to membrane preparations. All compounds studied exhibited high affinity and selectivity, with apparent dissociation constants in the range of 0.6-1.7 nM for the delta opioid receptor and 240-1165 nM for the mu opioid receptor. We next sought to determine which domain of the delta receptor was critical for mediating the highly selective binding by analysis of ligand affinities for mu/delta receptor chimeras. Receptor binding profiles suggested that a critical site of receptor/ligand interaction was located between transmembrane domain 5 (TM5) and TM7 of the delta receptor. Substitution of tryptophan 284, located at the extracellular surface of TM6, with lysine, which is found at the equivalent position in the mu opioid receptor, led to a spectrum of effects on affinities, depending on the ligand tested. Affinities of SB 219825 and SB 222941 were particularly sensitive to the substitution, displaying a 50-fold and 70-fold decrease in affinity, respectively. Activities of the delta receptor-selective agonists were tested in two functional assays. Brief exposure of HEK 293 cells expressing delta opioid receptors with selective ligands induced phosphorylation of MAP kinase, although the non-peptidic ligands were less efficacious than the enkephalin derivative DADL (Tyr-D-Ala-Gly-Phe-D-Leu). Similarly, chronic exposure of HEK 293 cells expressing delta opioid receptors with selective, non-peptidic ligands, with the exception of SB 206848, caused receptor down-regulation, however, the SB compounds were less efficacious than DADL.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics/metabolism
- Analgesics/pharmacology
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Benzomorphans/metabolism
- Benzomorphans/pharmacology
- Binding, Competitive
- Cells, Cultured
- Cloning, Molecular
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enkephalin, Leucine-2-Alanine/pharmacology
- GTP-Binding Proteins/metabolism
- Heterocyclic Compounds, 4 or More Rings/chemistry
- Heterocyclic Compounds, 4 or More Rings/pharmacology
- Humans
- Indoles/chemistry
- Indoles/pharmacology
- Isoquinolines/chemistry
- Isoquinolines/pharmacology
- Kidney/cytology
- Ligands
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Morphine/metabolism
- Morphine/pharmacology
- Mutagenesis, Site-Directed
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Quinolines/chemistry
- Quinolines/metabolism
- Quinolines/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/genetics
- Tritium
Collapse
Affiliation(s)
- K Chaturvedi
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, 07103, Newark, NJ, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Befort K, Zilliox C, Filliol D, Yue S, Kieffer BL. Constitutive activation of the delta opioid receptor by mutations in transmembrane domains III and VII. J Biol Chem 1999; 274:18574-81. [PMID: 10373467 DOI: 10.1074/jbc.274.26.18574] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated whether transmembrane amino acid residues Asp128 (domain III), Tyr129 (domain III) [corrected], and Tyr308 (domain VII) in the mouse delta opioid receptor play a role in receptor activation. To do so, we have used a [35S]GTPgammaS (where GTPgammaS is guanosine 5'-3-O-(thio)triphosphate) binding assay to quantify the activation of recombinant receptors transiently expressed in COS cells and compared functional responses of D128N, D128A, Y129F, Y129A, and Y308F point-mutated receptors to that of the wild-type receptor. In the absence of ligand, [35S]GTPgammaS binding was increased for every mutant receptor under study (1.6-2.6-fold), suggesting that all mutations are able to enhance constitutive activity at the receptor. In support of this finding, the inverse agonist N,N-diallyl-Tyr-Aib-Aib-Phe-Leu (where Aib represents alpha-aminobutyric acid) efficiently reduced basal [35S]GTPgammaS binding in the mutated receptor preparations. The potent agonist BW373U86 stimulated [35S]GTPgammaS binding above basal levels with similar (D128N, Y129F, and Y129A) or markedly increased (Y308F) efficacy compared with wild-type receptor. BW373U86 potency was maintained or increased. In conclusion, our results demonstrate that the mutations under study increase functional activity of the receptor. Three-dimensional modeling suggests that Asp128 (III) and Tyr308 (VII) interact with each other and that Tyr129 (III) undergoes H bonding with His278 (VI). Thus, Asp128, Tyr129, and Tyr308 may be involved in a network of interhelical bonds, which contributes to maintain the delta receptor under an inactive conformation. We suggest that the mutations weaken helix-helix interactions and generate a receptor state that favors the active conformation and/or interacts with heterotrimeric G proteins more effectively.
Collapse
Affiliation(s)
- K Befort
- Ecole Supérieure de Biotechnologie, Parc d'Innovation, Boulevard Sébastien Brandt, F-67400 Illkirch-Graffenstaden, France
| | | | | | | | | |
Collapse
|