1
|
Effects of repeated treatment with the 5-HT 1A and 5-HT 1B agonists (R)-( +)-8-hydroxy-DPAT and CP-94253 on the locomotor activity and axillary temperatures of preweanling rats: evidence of tolerance and behavioral sensitization. Psychopharmacology (Berl) 2022; 239:413-427. [PMID: 34816290 DOI: 10.1007/s00213-021-06012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE Drugs that stimulate 5-HT1A/1B receptors produce both tolerance and behavioral sensitization in adult rats and mice, yet it is unknown whether the same types of plasticity are evident during earlier ontogenetic periods. OBJECTIVE The purpose of this study was to determine whether repeated treatment with selective 5-HT1A and/or 5-HT1B agonists cause tolerance and/or sensitization in preweanling rats. METHODS In Experiments 1 and 2, male and female preweanling rats were given a single pretreatment injection of saline, the 5-HT1A agonist (R)-( +)-8-hydroxy-DPAT (8-OH-DPAT), or the 5-HT1B agonist CP-94253 on PD 20. After 48 h, rats received a challenge injection of 8-OH-DPAT or CP-94253, respectively. In Experiment 3, rats were pretreated with saline or DPAT + CP on PD 20 and challenged with the same drug cocktail on PD 22. In Experiment 4, the tolerance- or sensitization-inducing properties of 8-OH-DPAT, CP-94253, or DPAT + CP were tested after a 4-day pretreatment regimen on PD 17-20. RESULTS On the first pretreatment day, 8-OH-DPAT, CP-94253, and DPAT + CP increased locomotion and caused hypothermia. Repeated treatment with 8-OH-DPAT (2 or 8 mg/kg) or DPAT + CP caused locomotor sensitization in preweanling rats. In contrast, tolerance to the hypothermic effects of 8-OH-DPAT (8 mg/kg), CP-94253 (5-20 mg/kg), or DPAT + CP was evident after repeated drug treatment. CONCLUSIONS During the preweanling period, a single injection of a selective 5-HT1A or 5-HT1B agonist is capable of producing drug-induced plasticity. A pretreatment administration of 8-OH-DPAT causes both tolerance (hypothermia) and behavioral sensitization (locomotor activity) in preweanling rats, whereas repeated CP-94253 treatment results in tolerance.
Collapse
|
2
|
Bono F, Mutti V, Tomasoni Z, Sbrini G, Missale C, Fiorentini C. Recent Advances in Dopamine D3 Receptor Heterodimers: Focus on Dopamine D3 and D1 Receptor-Receptor Interaction and Striatal Function. Curr Top Behav Neurosci 2022; 60:47-72. [PMID: 35505059 DOI: 10.1007/7854_2022_353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
G protein-coupled receptors (GPCR) heterodimers represent new entities with unique pharmacological, signalling, and trafficking properties, with specific distribution restricted to those cells where the two interacting receptors are co-expressed. Like other GPCR, dopamine D3 receptors (D3R) directly interact with various receptors to form heterodimers: data showing the D3R physical interaction with both GPCR and non-GPCR receptors have been provided including D3R interaction with other dopamine receptors. The aim of this chapter is to summarize current knowledge of the distinct roles of heterodimers involving D3R, focusing on the D3R interaction with the dopamine D1 receptor (D1R): the D1R-D3R heteromer, in fact, has been postulated in both ventral and motor striatum. Interestingly, since both D1R and D3R have been implicated in several pathological conditions, including schizophrenia, motor dysfunctions, and substance use disorders, the D1R-D3R heteromer may represent a potential drug target for the treatment of these diseases.
Collapse
Affiliation(s)
- Federica Bono
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Veronica Mutti
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zaira Tomasoni
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giulia Sbrini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Cristina Missale
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
3
|
Newman AH, Battiti FO, Bonifazi A. 2016 Philip S. Portoghese Medicinal Chemistry Lectureship: Designing Bivalent or Bitopic Molecules for G-Protein Coupled Receptors. The Whole Is Greater Than the Sum of Its Parts. J Med Chem 2020; 63:1779-1797. [PMID: 31499001 PMCID: PMC8281448 DOI: 10.1021/acs.jmedchem.9b01105] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The genesis of designing bivalent or bitopic molecules that engender unique pharmacological properties began with Portoghese's work directed toward opioid receptors, in the early 1980s. This strategy has evolved as an attractive way to engineer highly selective compounds for targeted G-protein coupled receptors (GPCRs) with optimized efficacies and/or signaling bias. The emergence of X-ray crystal structures of many GPCRs and the identification of both orthosteric and allosteric binding sites have provided further guidance to ligand drug design that includes a primary pharmacophore (PP), a secondary pharmacophore (SP), and a linker between them. It is critical to note the synergistic relationship among all three of these components as they contribute to the overall interaction of these molecules with their receptor proteins and that strategically designed combinations have and will continue to provide the GPCR molecular tools of the future.
Collapse
Affiliation(s)
- Amy Hauck Newman
- Corresponding author: Amy H. Newman: Phone: (443)-740-2887. Fax: (443)-740-2111.
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| |
Collapse
|
4
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Stuhr-Hansen N, Andersen J, Thygesen MB, Strømgaard K. Synthesis of Symmetrical and Non-Symmetrical Bivalent Neurotransmitter Ligands. ChemistrySelect 2016. [DOI: 10.1002/slct.201600116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolai Stuhr-Hansen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
- Department of Chemistry; Chemical Biology Section; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Jacob Andersen
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
| | - Mikkel B. Thygesen
- Department of Chemistry; Chemical Biology Section; University of Copenhagen; Thorvaldsensvej 40 1871 Frederiksberg C Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 DK-2100 Copenhagen Denmark
| |
Collapse
|
6
|
Echalier C, Kalistratova A, Ciccione J, Lebrun A, Legrand B, Naydenova E, Gagne D, Fehrentz JA, Marie J, Amblard M, Mehdi A, Martinez J, Subra G. Selective homodimerization of unprotected peptides using hybrid hydroxydimethylsilane derivatives. RSC Adv 2016. [DOI: 10.1039/c6ra06075g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A straightforward way to dimerize unprotected peptide sequences is presented; it relies on a chemoselective condensation of hybrid peptides bearing a hydroxydimethylsilyl group at a chosen position to generate siloxane bonds upon freeze-drying.
Collapse
|
7
|
Huang G, Nimczick M, Decker M. Rational Modification of the Biological Profile of GPCR Ligands through Combination with Other Biologically Active Moieties. Arch Pharm (Weinheim) 2015; 348:531-40. [DOI: 10.1002/ardp.201500079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Guozheng Huang
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Martin Nimczick
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie; Institut für Pharmazie und Lebensmittelchemie; Julius-Maximilians-Universität Würzburg; Würzburg Germany
| |
Collapse
|
8
|
Nimczick M, Decker M. New Approaches in the Design and Development of Cannabinoid Receptor Ligands: Multifunctional and Bivalent Compounds. ChemMedChem 2015; 10:773-86. [DOI: 10.1002/cmdc.201500041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/22/2022]
|
9
|
Jebors S, Ciccione J, Al-Halifa S, Nottelet B, Enjalbal C, M'Kadmi C, Amblard M, Mehdi A, Martinez J, Subra G. A New Way to Silicone-Based Peptide Polymers. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Jebors S, Ciccione J, Al-Halifa S, Nottelet B, Enjalbal C, M'Kadmi C, Amblard M, Mehdi A, Martinez J, Subra G. A New Way to Silicone-Based Peptide Polymers. Angew Chem Int Ed Engl 2015; 54:3778-82. [DOI: 10.1002/anie.201411065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/22/2014] [Indexed: 12/24/2022]
|
11
|
Brogi S, Tafi A, Désaubry L, Nebigil CG. Discovery of GPCR ligands for probing signal transduction pathways. Front Pharmacol 2014; 5:255. [PMID: 25506327 PMCID: PMC4246677 DOI: 10.3389/fphar.2014.00255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 01/11/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are seven integral transmembrane proteins that are the primary targets of almost 30% of approved drugs and continue to represent a major focus of pharmaceutical research. All of GPCR targeted medicines were discovered by classical medicinal chemistry approaches. After the first GPCR crystal structures were determined, the docking screens using these structures lead to discovery of more novel and potent ligands. There are over 360 pharmaceutically relevant GPCRs in the human genome and to date about only 30 of structures have been determined. For these reasons, computational techniques such as homology modeling and molecular dynamics simulations have proven their usefulness to explore the structure and function of GPCRs. Furthermore, structure-based drug design and in silico screening (High Throughput Docking) are still the most common computational procedures in GPCRs drug discovery. Moreover, ligand-based methods such as three-dimensional quantitative structure–selectivity relationships, are the ideal molecular modeling approaches to rationalize the activity of tested GPCR ligands and identify novel GPCR ligands. In this review, we discuss the most recent advances for the computational approaches to effectively guide selectivity and affinity of ligands. We also describe novel approaches in medicinal chemistry, such as the development of biased agonists, allosteric modulators, and bivalent ligands for class A GPCRs. Furthermore, we highlight some knockout mice models in discovering biased signaling selectivity.
Collapse
Affiliation(s)
- Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena Siena, Italy ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Andrea Tafi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena Siena, Italy
| | - Laurent Désaubry
- Therapeutic Innovation Laboratory, UMR7200, CNRS/University of Strasbourg Illkirch, France
| | - Canan G Nebigil
- Receptor Signaling and Therapeutic Innovations, GPCR and Cardiovascular and Metabolic Regulations, Biotechnology and Cell Signaling Laboratory, UMR 7242, CNRS/University of Strasbourg - LabEx Medalis Illkirch, France
| |
Collapse
|
12
|
Huang G, Pemp D, Stadtmüller P, Nimczick M, Heilmann J, Decker M. Design, synthesis and in vitro evaluation of novel uni- and bivalent ligands for the cannabinoid receptor type 1 with variation of spacer length and structure. Bioorg Med Chem Lett 2014; 24:4209-14. [PMID: 25096297 DOI: 10.1016/j.bmcl.2014.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
Using rimonabant, a potent inverse agonist for cannabinoid receptor type 1 (CB1R), as parent ligand, a series of novel univalent and bivalent ligands were designed by variation of spacer length and its chemical structure. The ligands synthesized were evaluated for affinity and selectivity by radioligand displacement and a functional steady-state GTPase assay. The results showed the nature of the spacer influences the biological readout. Albeit all compounds show significantly lower affinities than rimonabant, this fact could be used to demonstrate that affinities and selectivity are influenced by the chemical structure and length of the spacer and might be helpful for designing bivalent probes for other GPCR receptors.
Collapse
Affiliation(s)
- Guozheng Huang
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; Lehrstuhl für Pharmazeutische Chemie I, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Daniela Pemp
- Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Patricia Stadtmüller
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Martin Nimczick
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; Lehrstuhl für Pharmazeutische Chemie I, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Jörg Heilmann
- Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany; Lehrstuhl für Pharmazeutische Biologie, Institut für Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
13
|
Functional significance of serotonin receptor dimerization. Exp Brain Res 2013; 230:375-86. [PMID: 23811735 DOI: 10.1007/s00221-013-3622-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 06/10/2013] [Indexed: 01/01/2023]
Abstract
The original model of G-protein activation by a single G-protein-coupled receptor (GPCR) is giving way to a new model, wherein two protomers of a GPCR dimer interact with a single G-protein. This article will review the evidence suggesting that 5-HT receptors form dimers/oligomers and will compare the findings with the results obtained from the studies with other biogenic amine receptors. Topics to be covered include the origin or biogenesis of dimer formation, potential dimer interface(s), and oligomer size (dimer vs. tetramer or higher order). The functional significance will be discussed in terms of G-protein activation following ligand binding to one or two protomers in a dimeric structure, the formation of heterodimers, and the development of bivalent ligands.
Collapse
|
14
|
Hiller C, Kühhorn J, Gmeiner P. Class A G-Protein-Coupled Receptor (GPCR) Dimers and Bivalent Ligands. J Med Chem 2013; 56:6542-59. [DOI: 10.1021/jm4004335] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christine Hiller
- Department of Chemistry and Pharmacy,
Emil Fischer
Center, Friedrich Alexander University,
Schuhstraße 19, 91052 Erlangen, Germany
| | - Julia Kühhorn
- Department of Chemistry and Pharmacy,
Emil Fischer
Center, Friedrich Alexander University,
Schuhstraße 19, 91052 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy,
Emil Fischer
Center, Friedrich Alexander University,
Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|
15
|
McNulty J, Calzavara J. Tandem oxidative radical fragmentation–rearrangement of 2-amino-1,3-benzylidene acetals: a short entry to densely functionalised fully differentiated oxazolidinones. RSC Adv 2013. [DOI: 10.1039/c3ra40218e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Birnkammer T, Spickenreither A, Brunskole I, Lopuch M, Kagermeier N, Bernhardt G, Dove S, Seifert R, Elz S, Buschauer A. The Bivalent Ligand Approach Leads to Highly Potent and Selective Acylguanidine-Type Histamine H2 Receptor Agonists. J Med Chem 2012; 55:1147-60. [DOI: 10.1021/jm201128q] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Tobias Birnkammer
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Anja Spickenreither
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Irena Brunskole
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Miroslaw Lopuch
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Nicole Kagermeier
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Günther Bernhardt
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Stefan Dove
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Roland Seifert
- Institute
of Pharmacology, Medical School of Hannover, D-30625 Hannover, Germany
| | - Sigurd Elz
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| | - Armin Buschauer
- Department of Pharmaceutical/Medicinal
Chemistry, Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstrasse 31, D-93053
Regensburg, Germany
| |
Collapse
|
17
|
Shonberg J, Scammells PJ, Capuano B. Design strategies for bivalent ligands targeting GPCRs. ChemMedChem 2011; 6:963-74. [PMID: 21520422 DOI: 10.1002/cmdc.201100101] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Indexed: 01/20/2023]
Abstract
Specifically designed bivalent ligands targeting G protein-coupled receptor (GPCR) dimeric structures have become increasingly popular in recent literature. The advantages of the bivalent approach are numerous, including enhanced potency and receptor subtype specificity. However, the use of bivalent ligands as potential pharmacotherapeutics is limited by problematic molecular properties, such as high molecular weight and lipophilicity. This minireview focuses on the design of bivalent ligands recently described in the literature; discussing the choice of lead pharmacophore, the position and nature of the attachment point for linking the two pharmacophore units, and the length and composition of the spacer group. Furthermore, this minireview distils the molecular descriptors of the bivalent ligands that exhibit in vivo activity, as well as highlights their ability to access the central nervous system.
Collapse
Affiliation(s)
- Jeremy Shonberg
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, 381 Royal Pde, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
18
|
Escalated aggression after alcohol drinking in male mice: dorsal raphé and prefrontal cortex serotonin and 5-HT(1B) receptors. Neuropsychopharmacology 2008; 33:2888-99. [PMID: 18305458 DOI: 10.1038/npp.2008.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A significant minority of individuals engages in escalated levels of aggression after consuming moderate doses of alcohol (Alc). Neural modulation of escalated aggression involves altered levels of serotonin (5-HT) and the activity of 5-HT(1B) receptors. The aim of these studies was to determine whether 5-HT(1B) receptors in the dorsal raphé (DRN), orbitofrontal (OFC), and medial prefrontal (mPFC) cortex attenuate heightened aggression and regulate extracellular levels of 5-HT. Male mice were trained to self-administer Alc by performing an operant response that was reinforced with a delivery of 6% Alc. To identify Alc-heightened aggressors, each mouse was repeatedly tested for aggression after consuming either 1.0 g/kg Alc or H2O. Next, a cannula was implanted into either the DRN, OFC, or mPFC, and subsets of mice were tested for aggression after drinking either Alc or H(2)O prior to a microinjection of the 5-HT(1B) agonist, CP-94,253. Additional mice were implanted with a microdialysis probe into the mPFC, through which CP-94,253 was perfused and samples were collected for 5-HT measurement. Approximately 60% of the mice were more aggressive after drinking Alc, confirming the aggression-heightening effects of 1.0 g/kg Alc. Infusion of 1 microg CP-94,253 into the DRN reduced both aggressive and motor behaviors. However, infusion of 1 microg CP-94,253 into the mPFC, but not the OFC, after Alc drinking, increased aggressive behavior. In the mPFC, reverse microdialysis of CP-94,253 increased extracellular levels of 5-HT; levels decreased immediately after the perfusion. This 5-HT increase was attenuated in self-administering mice. These results suggest that 5-HT(1B) receptors in the mPFC may serve to selectively disinhibit aggressive behavior in mice with a history of Alc self-administration.
Collapse
|
19
|
Choi SK, Green D, Ho A, Klein U, Marquess D, Taylor R, Turner SD. Designing selective, high affinity ligands of 5-HT1D receptor by covalent dimerization of 5-HT1F ligands derived from 4-fluoro-N-[3-(1-methyl-4-piperidinyl)-1H-indol-5-yl]benzamide. J Med Chem 2008; 51:3609-16. [PMID: 18507369 DOI: 10.1021/jm7011722] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate here that covalent dimerization of 5-HT 1 ligands is an effective design strategy to modulate affinity and selectivity of 5-HT 1 ligands. This approach was applied to LY-334370, a selective agonist of 5-HT 1F receptor, to generate structurally well-defined divalent molecules. Radioligand binding assays to three cloned 5-HT 1 receptor subtypes (5-HT 1B, 5-HT 1D, 5-HT 1F) demonstrated that the affinity of a series of homologous dimers varied significantly upon exploration of three structural variables (linker length, attachment position, functionality). In particular, the series of C 3-to-C 3 linked dimers derived from a monomer ( 3) showed high binding affinity to 5-HT 1D (for example, K i approximately 0.3 nM for dimer 8) but did not bind to 5-HT 1F ( K i > 0.01 mM), providing >10000-fold subtype selectivity. Results from a functional assay (rabbit saphenous vein contraction) demonstrate that certain dimers are 5-HT 1 receptor agonists.
Collapse
MESH Headings
- Animals
- Benzamides/chemical synthesis
- Benzamides/chemistry
- Benzamides/pharmacology
- CHO Cells
- Cricetinae
- Cricetulus
- Dimerization
- In Vitro Techniques
- Indoles/chemical synthesis
- Indoles/chemistry
- Indoles/pharmacology
- Ligands
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Rabbits
- Radioligand Assay
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1D/metabolism
- Receptors, Serotonin/metabolism
- Saphenous Vein/drug effects
- Saphenous Vein/physiology
- Serotonin 5-HT1 Receptor Agonists
- Serotonin Receptor Agonists/chemical synthesis
- Serotonin Receptor Agonists/chemistry
- Serotonin Receptor Agonists/pharmacology
- Structure-Activity Relationship
- Receptor, Serotonin, 5-HT1F
Collapse
Affiliation(s)
- Seok-Ki Choi
- Department of Medicinal Chemistry, Theravance, Inc., 901 Gateway Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Peng X, Knapp BI, Bidlack JM, Neumeyer JL. Pharmacological properties of bivalent ligands containing butorphan linked to nalbuphine, naltrexone, and naloxone at mu, delta, and kappa opioid receptors. J Med Chem 2007; 50:2254-8. [PMID: 17407276 PMCID: PMC3357624 DOI: 10.1021/jm061327z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our investigation of bivalent ligands at mu, delta, and kappa opioid receptors is focused on the preparation of ligands containing kappa agonist and mu agonist/antagonist pharmacophores at one end joined by a chain containing the mu antagonist pharmacophores (naltrexone, naloxone, or nalbuphine) at the other end. These ligands were evaluated in vitro by their binding affinity at mu, delta, and kappa opioid receptors and their relative efficacy in the [35S]GTPgammaS assay.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- CHO Cells
- Cricetinae
- Cricetulus
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Humans
- Ligands
- Morphinans/chemical synthesis
- Morphinans/chemistry
- Morphinans/pharmacology
- Nalbuphine/analogs & derivatives
- Nalbuphine/chemical synthesis
- Nalbuphine/pharmacology
- Naloxone/analogs & derivatives
- Naloxone/chemical synthesis
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/chemical synthesis
- Naltrexone/pharmacology
- Radioligand Assay
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
| | | | | | - John L. Neumeyer
- To whom correspondence should be addressed. Phone: 617-855-3388. Fax: 617-855-2519.
| |
Collapse
|
21
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
22
|
Handl HL, Vagner J, Han H, Mash E, Hruby VJ, Gillies RJ. Hitting multiple targets with multimeric ligands. Expert Opin Ther Targets 2005; 8:565-86. [PMID: 15584863 DOI: 10.1517/14728222.8.6.565] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Multimeric ligands consist of multiple monomeric ligands attached to a single backbone molecule, creating a multimer that can bind to multiple receptors or targets simultaneously. Numerous examples of multimeric binding exist within nature. Due to the multiple and simultaneous binding events, multimeric ligands bind with an increased affinity compared to their corresponding monomers. Multimeric ligands may provide opportunities in the field of drug discovery by providing enhanced selectivity and affinity of binding interactions, thus providing molecular-based targeted therapies. However, gaps in our knowledge currently exist regarding the quantitative measures for important design characteristics, such as flexibility, length and orientation of the inter-ligand linkers, receptor density and ligand sequence. In this review, multimeric ligand binding in two separate phases is examined. The prerecruitment phase describes the binding of one ligand of a multimer to its corresponding receptor, an event similar to monomeric ligand binding. This results in transient increases in the local concentration of the other ligands, leading to apparent cooperativity. The postrecruitment phase only occurs once all receptors have been aligned and bound by their corresponding ligand. This phase is analogous to DNA-DNA interactions in that the stability of the complex is derived from physical orientation. Multiple factors influence the kinetics and thermodynamics of multimeric binding, and these are discussed.
Collapse
Affiliation(s)
- Heather L Handl
- Arizona Cancer Center, Department of Biochemistry and Molecular Biophysics, 1515 N. Campbell Avenue, Tucson, AZ 85724-5024, USA
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Hansen JL, Sheikh SP. Functional consequences of 7TM receptor dimerization. Eur J Pharm Sci 2004; 23:301-17. [PMID: 15567283 DOI: 10.1016/j.ejps.2004.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 08/11/2004] [Indexed: 12/31/2022]
Abstract
7TM receptors work as signaling platforms that activate multiple signalling systems at the intracellular face of the plasma membrane. It is an emerging concept that 7TM receptors form homo- and hetero-dimers or -oligomers in vitro and in vivo. Numerous studies suggest dimerization is important for receptor function including agonist/antagonist affinity, efficacy, trafficking, and specificity of signal transduction, yet it remains unknown whether dimerization is a prerequisite for 7TM receptor signaling. The current review provides an overview of the biochemical support for 7TM homodimerization, followed by a discussion of the characteristics of homodimerization, with focus on dimer organization, and the functional consequences of dimerization. Heterodimerization will not generally be discussed in this review although we have included a few examples to illustrate specific points, and a table that summarises the current literature on this subject.
Collapse
Affiliation(s)
- Jakob Lerche Hansen
- Laboratory of Molecular Cardiology, The Heart Centre and Copenhagen Heart Arrhythmia Research Centre (CHARC), Copenhagen University Hospital, Faculty of Health, University of Copenhagen, 20 Juliane Mariesvej, Denmark.
| | | |
Collapse
|
25
|
George SR, O'Dowd BF, Lee SP. G-protein-coupled receptor oligomerization and its potential for drug discovery. Nat Rev Drug Discov 2002; 1:808-20. [PMID: 12360258 DOI: 10.1038/nrd913] [Citation(s) in RCA: 489] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
G-protein-coupled receptors (GPCRs) represent by far the largest class of targets for modern drugs. Virtually all therapeutics that are directed towards GPCRs have been designed using assays that presume that these receptors are monomeric. The recent realization that these receptors form homo-oligomeric and hetero-oligomeric complexes has added a new dimension to rational drug design. However, this important aspect of GPCR biology remains largely unincorporated into schemes to search for new therapeutics. This review provides a synopsis of the current thinking surrounding GPCR homo-oligomerization and hetero-oligomerization and shows how new models point towards unexplored avenues in the development of new therapies.
Collapse
Affiliation(s)
- Susan R George
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | | | | |
Collapse
|
26
|
Xie Z, Lee SP, O'Dowd BF, George SR. Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett 1999; 456:63-7. [PMID: 10452531 DOI: 10.1016/s0014-5793(99)00918-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The serotonin (5-hydroxytryptamine (5-HT)) 1B and 1D receptor subtypes share a high amino acid sequence identity and have similar ligand binding properties. In this study, we demonstrate that both receptor subtypes exist as monomers and homodimers when expressed alone and as monomers and heterodimers when co-expressed. Gene expression studies have shown that there are brain regions where the 5-HT1B and 5-HT1D receptors are co-localized and where heterodimerization may occur physiologically. This is the first direct visualization of the physical association between G protein-coupled receptors of different subtypes.
Collapse
Affiliation(s)
- Z Xie
- Department of Pharmacology, University of Toronto, Ont., Canada
| | | | | | | |
Collapse
|
27
|
Dupuis DS, Perez M, Halazy S, Colpaert FC, Pauwels PJ. Magnitude of 5-HT1B and 5-HT1A receptor activation in guinea-pig and rat brain: evidence from sumatriptan dimer-mediated [35S]GTPgammaS binding responses. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:107-23. [PMID: 10101238 DOI: 10.1016/s0169-328x(99)00052-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present study reports on G-protein activation by recombinant 5-HT receptors and by native 5-HT1A and 5-HT1B receptors in guinea-pig and rat brain using agonist-stimulated [35S]GTPgammaS binding responses mediated by a new 5-HT ligand, a dimer of sumatriptan. Dimerization of sumatriptan increased the binding affinity for h 5-HT1B (pKi: 9.22 vs. 7.79 for sumatriptan), h 5-HT1D (9.07 vs. 8.08) and also h 5-HT1A receptors (7.80 vs. 6.40), while the binding affinity for h 5-ht1E (6.67 vs. 6.19) and h 5-ht1F (7.37 vs. 7.78) receptors was not affected. Sumatriptan dimer (10 microM) stimulated [35S]GTPgammaS binding mainly in the superficial gray layer of the superior colliculi, hippocampus and substantia nigra of guinea-pig and rat coronal brain sections. This fits with the labelling by the 5-HT1B/1D receptor antagonist [3H] GR 125743. The observed [35S]GTPgammaS binding responses in the substantia nigra are likely to be mediated by stimulation of the 5-HT1B receptor subtype, since they were antagonized by the 5-HT1B inverse agonist SB 224289 (10 microM), and not by the 5-HT2A/1D antagonist ketanserin (10 microM). Quantitative assessment of the [35S]GTPgammaS binding responses in the substantia nigra of rat showed highly efficacious responses for both sumatriptan dimer and its monomer. In contrast, less efficacious agonist responses (51+/-10% and 35+/-13%, respectively) were measured in the guinea-pig substantia nigra. This may suggest that the G-protein coupling efficacy of 5-HT1B receptors is different between the substantia nigra of both species. In addition, the sumatriptan dimer also activated guinea-pig and rat hippocampal 5-HT1A receptors with high efficacy in contrast to sumatriptan. Therefore, dimerization of sumatriptan can be considered as a new approach to transform a partial 5-HT1A agonist into a more efficacious agonist. In conclusion, the sumatriptan dimer stimulates G-protein activation via 5-HT1B receptors besides 5-HT1A receptors in guinea-pig and rat brain. The magnitude of the 5-HT1B receptor responses is superior for sumatriptan and its dimer in rat compared to guinea-pig substantia nigra.
Collapse
Affiliation(s)
- D S Dupuis
- Cellular and Molecular Biology Department, Centre de Recherche Pierre Fabre, 17, avenue Jean Moulin, F-81106, Castres cédex, France
| | | | | | | | | |
Collapse
|