1
|
Yawei Z, Xiuyun G, Jamali MA, Rui F, Zengqi P. Influence of l-histidine and l-lysine on the phosphorylation of myofibrillar and sarcoplasmic proteins from chicken breast in response to salting. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
2
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
3
|
Comparative analysis of muscle phosphoproteome induced by salt curing. Meat Sci 2017; 133:19-25. [DOI: 10.1016/j.meatsci.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/21/2022]
|
4
|
Janssen BH, Voet NBM, Nabuurs CI, Kan HE, de Rooy JWJ, Geurts AC, Padberg GW, van Engelen BGM, Heerschap A. Distinct disease phases in muscles of facioscapulohumeral dystrophy patients identified by MR detected fat infiltration. PLoS One 2014; 9:e85416. [PMID: 24454861 PMCID: PMC3891814 DOI: 10.1371/journal.pone.0085416] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/26/2013] [Indexed: 11/18/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an untreatable disease, characterized by asymmetric progressive weakness of skeletal muscle with fatty infiltration. Although the main genetic defect has been uncovered, the downstream mechanisms causing FSHD are not understood. The objective of this study was to determine natural disease state and progression in muscles of FSHD patients and to establish diagnostic biomarkers by quantitative MRI of fat infiltration and phosphorylated metabolites. MRI was performed at 3T with dedicated coils on legs of 41 patients (28 men/13 women, age 34-76 years), of which eleven were re-examined after four months of usual care. Muscular fat fraction was determined with multi spin-echo and T1 weighted MRI, edema by TIRM and phosphorylated metabolites by 3D (31)P MR spectroscopic imaging. Fat fractions were compared to clinical severity, muscle force, age, edema and phosphocreatine (PCr)/ATP. Longitudinal intramuscular fat fraction variation was analyzed by linear regression. Increased intramuscular fat correlated with age (p<0.05), FSHD severity score (p<0.0001), inversely with muscle strength (p<0.0001), and also occurred sub-clinically. Muscles were nearly dichotomously divided in those with high and with low fat fraction, with only 13% having an intermediate fat fraction. The intramuscular fat fraction along the muscle's length, increased from proximal to distal. This fat gradient was the steepest for intermediate fat infiltrated muscles (0.07±0.01/cm, p<0.001). Leg muscles in this intermediate phase showed a decreased PCr/ATP (p<0.05) and the fastest increase in fatty infiltration over time (0.18±0.15/year, p<0.001), which correlated with initial edema (p<0.01), if present. Thus, in the MR assessment of fat infiltration as biomarker for diseased muscles, the intramuscular fat distribution needs to be taken into account. Our results indicate that healthy individual leg muscles become diseased by entering a progressive phase with distal fat infiltration and altered energy metabolite levels. Fat replacement then relatively rapidly spreads over the whole muscle.
Collapse
Affiliation(s)
- Barbara H. Janssen
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| | - Nicoline B. M. Voet
- Department of Rehabilitation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine I. Nabuurs
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hermien E. Kan
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jacky W. J. de Rooy
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander C. Geurts
- Department of Rehabilitation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - George W. Padberg
- Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
6
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Abstract
Children are able to resist fatigue better than adults during one or several repeated high-intensity exercise bouts. This finding has been reported by measuring mechanical force or power output profiles during sustained isometric maximal contractions or repeated bouts of high-intensity dynamic exercises. The ability of children to better maintain performance during repeated high-intensity exercise bouts could be related to their lower level of fatigue during exercise and/or faster recovery following exercise. This may be explained by muscle characteristics of children, which are quantitatively and qualitatively different to those of adults. Children have less muscle mass than adults and hence, generate lower absolute power during high-intensity exercise. Some researchers also showed that children were equipped better for oxidative than glycolytic pathways during exercise, which would lead to a lower accumulation of muscle by-products. Furthermore, some reports indicated that the lower ability of children to activate their type II muscle fibres would also explain their greater resistance to fatigue during sustained maximal contractions. The lower accumulation of muscle by-products observed in children may be suggestive of a reduced metabolic signal, which induces lower ratings of perceived exertion. Factors such as faster phosphocreatine resynthesis, greater oxidative capacity, better acid-base regulation, faster readjustment of initial cardiorespiratory parameters and higher removal of metabolic by-products in children could also explain their faster recovery following high-intensity exercise.From a clinical point of view, muscle fatigue profiles are different between healthy children and children with muscle and metabolic diseases. Studies of dystrophic muscles in children indicated contradictory findings of changes in contractile properties and the muscle fatigability. Some have found that the muscle of boys with Duchenne muscular dystrophy (DMD) fatigued less than that of healthy boys, but others have reported that the fatigue in DMD and in normal muscle was the same. Children with glycogenosis type V and VII and dermatomyositis, and obese children tolerate exercise weakly and show an early fatigue. Studies that have investigated the fatigability in children with cerebral palsy have indicated that the femoris quadriceps was less fatigable than that of a control group but the fatigability of the triceps surae was the same between the two groups. Further studies are required to elucidate the mechanisms explaining the origins of muscle fatigue in healthy and diseased children. The use of non-invasive measurement tools such as magnetic resonance imaging and magnetic resonance spectroscopy in paediatric exercise science will give researchers more insight in the future.
Collapse
Affiliation(s)
- Sébastien Ratel
- Laboratory of Exercise Biology BAPS EA 3533, Faculty of Sports Sciences, University of Blaise Pascal, Clermont-Ferrand, France.
| | | | | |
Collapse
|
9
|
Chance B, Im J, Nioka S, Kushmerick M. Skeletal muscle energetics with PNMR: personal views and historic perspectives. NMR IN BIOMEDICINE 2006; 19:904-26. [PMID: 17075955 DOI: 10.1002/nbm.1109] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This article reviews historical and current NMR approaches to describing in vivo bioenergetics of skeletal muscles in normal and diseased populations. It draws upon the first author's more than 70 years of personal experience in enzyme kinetics and the last author's physiological approaches. The development of in vivo PNMR jointly with researchers around the world is described. It is explained how non-invasive PNMR has advanced human exercise biochemistry, physiology and pathology. Further, after a brief explanation of bioenergetics with PNMR on creatine kinase, anerobic glycolysis and mitochondrial oxidative phosphorylation, some basic and controversial subjects are focused upon, and the authors' view of the subjects are offered, with questions and answers. Some of the research has been introduced in exercise physiology. Future directions of NMR on bioenergetics, as a part of system biological approaches, are indicated.
Collapse
Affiliation(s)
- Britton Chance
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA.
| | | | | | | |
Collapse
|
10
|
Kornblum C, Schröder R, Müller K, Vorgerd M, Eggers J, Bogdanow M, Papassotiropoulos A, Fabian K, Klockgether T, Zange J. Creatine has no beneficial effect on skeletal muscle energy metabolism in patients with single mitochondrial DNA deletions: a placebo-controlled, double-blind 31P-MRS crossover study. Eur J Neurol 2005; 12:300-9. [PMID: 15804248 DOI: 10.1111/j.1468-1331.2004.00970.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of our randomized, double-blind, placebo-controlled crossover study in 15 patients with chronic progressive external ophthalmoplegia (CPEO) or Kearns-Sayre syndrome (KSS) because of single large-scale mitochondrial (mt) DNA deletions was to determine whether oral creatine (Cr) monohydrate can improve skeletal muscle energy metabolism in vivo. Each treatment phase with Cr in a dosage of 150 mg/kg body weight/day or placebo lasted 6 weeks. The effect of Cr was estimated by phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS), clinical and laboratory tests. (31)P-MRS analysis prior to treatment showed clear evidence of severe mitochondrial dysfunction. However, there were no relevant changes in (31)P-MRS parameters under Cr. In particular, phosphocreatine (PCr)/ATP at rest did not increase, and there was no facilitation of post-exercise PCr recovery. Clinical scores and laboratory tests did not alter significantly under Cr, which was tolerated without major side-effects in all patients. Cr supplementation did not improve skeletal muscle oxidative phosphorylation in our series of patients. However, one explanation for our negative findings may be the short study duration or the limited number of patients included.
Collapse
Affiliation(s)
- C Kornblum
- Department of Neurology, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mason SD, Howlett RA, Kim MJ, Olfert IM, Hogan MC, McNulty W, Hickey RP, Wagner PD, Kahn CR, Giordano FJ, Johnson RS. Loss of skeletal muscle HIF-1alpha results in altered exercise endurance. PLoS Biol 2004; 2:e288. [PMID: 15328538 PMCID: PMC514537 DOI: 10.1371/journal.pbio.0020288] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 06/29/2004] [Indexed: 12/28/2022] Open
Abstract
The physiological flux of oxygen is extreme in exercising skeletal muscle. Hypoxia is thus a critical parameter in muscle function, influencing production of ATP, utilization of energy-producing substrates, and manufacture of exhaustion-inducing metabolites. Glycolysis is the central source of anaerobic energy in animals, and this metabolic pathway is regulated under low-oxygen conditions by the transcription factor hypoxia-inducible factor 1alpha (HIF-1alpha). To determine the role of HIF-1alpha in regulating skeletal muscle function, we tissue-specifically deleted the gene encoding the factor in skeletal muscle. Significant exercise-induced changes in expression of genes are decreased or absent in the skeletal-muscle HIF-1alpha knockout mice (HIF-1alpha KOs); changes in activities of glycolytic enzymes are seen as well. There is an increase in activity of rate-limiting enzymes of the mitochondria in the muscles of HIF-1alpha KOs, indicating that the citric acid cycle and increased fatty acid oxidation may be compensating for decreased flow through the glycolytic pathway. This is corroborated by a finding of no significant decreases in muscle ATP, but significantly decreased amounts of lactate in the serum of exercising HIF-1alpha KOs. This metabolic shift away from glycolysis and toward oxidation has the consequence of increasing exercise times in the HIF-1alpha KOs. However, repeated exercise trials give rise to extensive muscle damage in HIF-1alpha KOs, ultimately resulting in greatly reduced exercise times relative to wild-type animals. The muscle damage seen is similar to that detected in humans in diseases caused by deficiencies in skeletal muscle glycogenolysis and glycolysis. Thus, these results demonstrate an important role for the HIF-1 pathway in the metabolic control of muscle function.
Collapse
Affiliation(s)
- Steven D Mason
- 1Molecular Biology Section, Division of BiologySchool of Medicine, University of California, San Diego, CaliforniaUnited States of America
| | - Richard A Howlett
- 2Division of Physiology, School of MedicineUniversity of California, San Diego, CaliforniaUnited States of America
| | - Matthew J Kim
- 1Molecular Biology Section, Division of BiologySchool of Medicine, University of California, San Diego, CaliforniaUnited States of America
| | - I. Mark Olfert
- 2Division of Physiology, School of MedicineUniversity of California, San Diego, CaliforniaUnited States of America
| | - Michael C Hogan
- 2Division of Physiology, School of MedicineUniversity of California, San Diego, CaliforniaUnited States of America
| | - Wayne McNulty
- 1Molecular Biology Section, Division of BiologySchool of Medicine, University of California, San Diego, CaliforniaUnited States of America
| | - Reed P Hickey
- 3Cardiology Division, Yale University Medical SchoolNew Haven, Connecticut United States of America
| | - Peter D Wagner
- 2Division of Physiology, School of MedicineUniversity of California, San Diego, CaliforniaUnited States of America
| | - C. Ronald Kahn
- 4Joslin Diabetes Foundation, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Frank J Giordano
- 3Cardiology Division, Yale University Medical SchoolNew Haven, Connecticut United States of America
| | - Randall S Johnson
- 1Molecular Biology Section, Division of BiologySchool of Medicine, University of California, San Diego, CaliforniaUnited States of America
| |
Collapse
|
12
|
Zange J, Grehl T, Disselhorst-Klug C, Rau G, Müller K, Schröder R, Tegenthoff M, Malin JP, Vorgerd M. Breakdown of adenine nucleotide pool in fatiguing skeletal muscle in McArdle's disease: a noninvasive 31P-MRS and EMG study. Muscle Nerve 2003; 27:728-36. [PMID: 12766985 DOI: 10.1002/mus.10377] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Energy metabolism and electrical muscle activity were studied in the calf muscles of 19 patients with proven McArdle's disease and in 25 healthy subjects. Phosphorus magnetic resonance spectroscopy and surface electromyography (S-EMG) were performed during two isometric muscle contractions of 3 min at 30% maximum voluntary contraction, one performed during normal perfusion and the other during applied ischemia. After about 1 min of ischemic muscle contraction in diseased muscle a significant acceleration in phosphocreatine breakdown was observed, along with a significant decrease in adenosine triphosphate. During both contractions the absence of glycolysis was shown by a significant alkalinization. Furthermore, in patients we observed a greater increase in the S-EMG amplitude than in control subjects. We conclude that early on during moderate exercise, a small number of muscle fibers reach metabolic depletion, indicated by a reduction in the adenine nucleotide pool. An increasing number of motor units, which are still in a high-energy state, are continuously recruited to compensate for muscle fatigue. This functional compartmentation may contribute to the pathophysiology of exercise intolerance in McArdle's disease.
Collapse
Affiliation(s)
- Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR e.V.), Linder Höhe, D-51170 Köln, Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The major energy sources for muscle contraction are glycogen, glucose and fatty acids, and defects in their oxidative pathways cause metabolic myopathies. Eleven specific enzyme deficiencies of carbohydrate oxidation affect skeletal muscle alone or in combination with other tissues, such as liver, heart or red blood cells. These hereditary glycogen storage diseases cause two major clinical presentations: one characterized by fixed, often progressive muscle weakness, and the other by acute, intermittent, and reversible muscle dysfunction manifesting as exercise intolerance (myalgia on exertion, muscle contractures, myoglobinuria). RECENT FINDINGS The focus of this review is on recent developments in: clinical features, including a brief description of the newest identified glycogen storage disease type XIII; molecular genetic studies discussing genotype-phenotype correlations in some carbohydrate oxidation disorders; pathophysiological mechanisms, especially those assessed by non-invasive P magnetic resonance spectroscopy; and therapeutic approaches such as nutritional supplementation and gene therapy, including recombinant enzyme replacement. SUMMARY Although major progress has been made in an understanding of the molecular genetic bases of carbohydrate oxidation defects, the pathophysiology of exercise intolerance and muscle weakness remains to be further clarified. Gene therapy and dietary therapeutic regimes appear promising, but need to be actively investigated in the future.
Collapse
Affiliation(s)
- Matthias Vorgerd
- Kliniken Bergmannsheil, Department of Neurology, Ruhr-University Bochum, Germany.
| | | |
Collapse
|
14
|
Ziemssen F, Sindern E, Schr�der JM, Shin YS, Zange J, Kilimann MW, Malin JP, Vorgerd M. Novel missense mutations in the glycogen-branching enzyme gene in adult polyglucosan body disease. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200004)47:4<536::aid-ana22>3.0.co;2-k] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Vorgerd M, Bolz H, Patzold T, Kubisch C, Malin JP, Mortier W. Phenotypic variability in rippling muscle disease. Neurology 1999; 52:1453-9. [PMID: 10227634 DOI: 10.1212/wnl.52.7.1453] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To characterize the phenotype of hereditary rippling muscle disease (RMD) and to report the results of genetic linkage studies. BACKGROUND RMD is a rare autosomal-dominant inherited muscle disorder. Individuals complain of muscle stiffness, exercise-induced muscle pain, and cramp-like sensations. The characteristic feature of RMD is increased mechanical muscle irritability, which is electrically silent in electromyographic examinations. METHODS Forty-six individuals from two unrelated German kindreds with RMD were examined. Linkage analysis to the RMD locus on chromosome 1q41-q43 was performed. RESULTS In kindred A, 15 individuals from four generations, and in kindred B, four individuals from three generations had clinical features of RMD. The most consistent clinical findings were percussion-induced rapid muscle contractions (PIRCs) and muscle mounding, which were present in all 19 affected individuals. Only 12 individuals exhibited muscle rippling, indicating that rippling is not always present in RMD. Twelve of 19 individuals had muscle-related complaints, primarily exertional cramps and stiffness. The mean age at the onset of complaints was 22 years (range, 5 to 54 years). Seven of 19 individuals showed only mechanical-induced muscle irritability but did not have muscular symptoms. Genetic analysis excluded linkage to the RMD locus on chromosome 1q4 in both kindreds. CONCLUSIONS The phenotype of RMD is variable but generalized PIRCs are the most obvious and reliable clinical feature of RMD. Diagnostic criteria of RMD should include generalized PIRCs in addition to muscle mounding, rippling, and creatine kinase elevation.
Collapse
Affiliation(s)
- M Vorgerd
- Department of Neurology, Ruhr-University, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|